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Quantitative analysis can play a vital role in a number of polarization-based optical systems, yet to date no

definition regarding resolution in the polarization domain exists. By adopting a stochastic framework, a suitable

metric is developed in this article, allowing a number of polarimetric systems to be assessed and compared. In

so doing, the performance dependencies of polarization-based systems are demonstrated and fundamental trends

are identified.
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I. INTRODUCTION

Analysis of polarized light, or polarimetry, is a popular and

useful tool in science today. Applications vary from astronomy,

microscopy, remote sensing, and biomedical diagnosis [1–3]

to more fundamental crystallographic, material, and single-

molecule studies [4,5]. Polarization can also be utilized in

quantum cryptography and communication [6]. Quantitative

analysis of the polarization state of light output from a physical

system of interest (e.g., light scattered from a biological

sample), plays a key role in such studies; for example, in

determining the depolarization or phase retardation [7] of a

sample. Unfortunately, all practical systems are subject to

noise, thus restricting the accuracy with which parameters

of interest can be determined or the reliability of conclusions

drawn. For example, searches for polarization signatures of

quantum gravity in the cosmic background require high-

precision polarimetric measurements [8], whilst error rates in

wireless communications and polarimetric classification can

be compromised by poor measurement accuracy [9,10]. De-

spite the growing prominence of polarization-based systems,

no definition of resolution in a polarization domain exists

in the literature, hence system capabilities cannot be easily

assessed and compared. This article therefore principally aims

to formulate a suitable definition of polarization resolution

and to evaluate the performance of a number of common

polarimetric architectures frequently found in the literature.

Resolution, by any definition, aims to encapsulate the limits

to which something can be measured or, in other words,

characterizes a region of uncertainty in measurement space.

Consider, for example, Rayleigh’s resolution criterion, which

quantifies the minimum angular separation between which

two point objects, imaged by an incoherent diffraction-limited

imaging system, appear separated. Specifically, Rayleigh’s

criterion states that this minimum separation occurs when

the first minimum in the image of a point source (e.g., an

Airy pattern) coincides with the maximum of the image of

a second point object. Theoretically, in a noiseless system

two point objects can be infinitely resolved; for example, by

deconvolving the image with the point spread function of the

system. However, Rayleigh’s criterion implicitly (although

arbitrarily) makes an assumption of the minimum change

of intensity that can be measured, and hence the extent to
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which the central depression in the total intensity profile can

be distinguished.

Similar principles can be applied to polarimetry; however,

the appropriate region of uncertainty exists not in a spatial

domain, but instead in the polarization domain. A convenient

representation of the polarimetric measurement space and

process is therefore required and is hence considered in

Secs. II and III. Rayleigh’s criterion is, however, fundamentally

deterministic in nature and hence does not characterize

the stochastic origin of uncertainty in any measurement. A

stochastic framework founded in statistical estimation theory is

therefore more appropriate, and is thus presented in Sec. IV and

from which a definition of polarization resolution ultimately

follows. Further alternative, but insightful, metrics are also

constructed. Sections V and VI finally proceed to apply the

developed theory to three polarimetric architectures commonly

found in the literature. So doing highlights the contrasting

characteristics of different measurement configurations, whilst

simultaneously identifying important performance dependen-

cies on source properties.

II. POINCARÉ AND STOKES SPACE

Polarized light (assumed henceforth to be quasimonochro-

matic and plane wave in nature) is frequently described using

the Stokes formalism, whereby a Stokes vector

S =

⎛
⎜⎜⎜⎝

S0

S1

S2

S3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

〈|Ex |2 + |Ey |2〉
〈|Ex |2 − |Ey |2〉
2〈Re[ExE

∗
y ]〉

2〈Im[ExE
∗
y ]〉

⎞
⎟⎟⎟⎠ = S0

⎛
⎜⎜⎜⎝

1

P cos 2ε cos 2ϑ

P cos 2ε sin 2ϑ

P sin 2ε

⎞
⎟⎟⎟⎠

defines a position with polar coordinates (P,π/2 − 2ε,2ϑ)

within a unit sphere known as the Poincaré sphere [11]. The

individual Stokes parameters Si (i = 0,1,2,3) describe the

total intensity of a light beam, the difference in the intensity

of horizontal (Ex) and vertical (Ey) polarized components, the

difference in intensity of components polarized at ±45◦ and,

finally, the difference in intensity of right- and left-handed

circularly polarized components, respectively. Angular braces

〈· · ·〉 denote temporal averaging over a time interval τ ,

assumed long enough to ensure that the time average is inde-

pendent of τ . P is known as the degree of polarization and is

defined as the ratio of the intensity of the polarized component

of a beam to the total intensity [i.e., P = (S2
1 + S2

2 + S2
3 )1/2/S0
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(0 � P � 1)]. Specifically, for fully polarized light (P = 1),

the Stokes parameters define a position on the surface of the

Poincaré sphere, whereby linearly polarized states are located

on the equator, whilst points on the north (south) pole describe

right- (left-) circularly polarized light. Partially polarized states

of light (P < 1) are described by points lying within the

sphere, with unpolarized light ultimately lying at the center

of the sphere.

The Poincaré sphere exists in a Hilbert space P , with

coordinate axes {Š1,Š2,Š3}, where Ši = Si/S0 denotes the

normalized Stokes parameters, which shall be referred to as

Poincaré space, [see Fig. 1(a)]. Note that the caron notation

states

horizontally

polarized

states

polarized

states

linear

S1

S2

0

1

1

partially

polarized

45

ˆ

S3
(a)

states

circularly

right

polarized1

ˆ

ˆ

S1

S2

S0

1

1

0

partially

polarized

states

polarized

states

linear 45

horizontally

polarized

states

(b)

ˆ

ˆ

FIG. 1. Schematic of the (a) Poincaré-sphere and (b) Stokes-

cylinder construction illustrated for linearly polarized light (Š3 = 0).

The axis of the cylinder defines the intensity axis S0. Totally polarized

states lie on the outer surface of both the Poincaré sphere and the

Stokes cylinder (dark shading), with partially polarized states lying

inside (lighter shading).

( )̌ has been used in contrast to the conventional hat (ˆ)

notation so as to avoid confusion with that used for statistical

estimators in subsequent sections. Difficulties can, however,

arise when considering the Poincaré-sphere representation

since all four degrees of freedom in S are not suitably

depicted. When describing general partially polarized states,

it is perhaps more appropriate to consider the Stokes vector

as defining a position in a Hilbert space S with coordinate

axes {S0,Š1,Š2,Š3}, which shall be referred to as Stokes

space. Physically allowable Stokes vectors must satisfy the

inequality S2
0 � S2

1 + S2
2 + S2

3 and, therefore, define a Stokes

cylinder in Stokes space of unit radius, with the intensity S0

defining the axis of the cylinder [see Fig. 1(b)]. A similar

idea was proposed by Tyo [12] in which the coordinate axes

were instead defined by {S0,S1,S2,S3}, meaning admissible

Stokes vectors spanned a Stokes cone; however, use of

normalized coordinates dissociates the polarization properties

and intensity of a beam allowing greater insight to be gained

into performance dependencies of polarimetric systems. A

slice in Stokes space perpendicular to the S0 axis yields the

Poincaré sphere, whilst a cross section taken perpendicular

to the Š3 axis (and through the origin) produces a cylinder

with unit radius akin to that shown in Fig. 1(b). Points on the

surface of this hypercylinder describe totally linearly polarized

light, whilst points toward the central axis describe partially

polarized states. Similar cross sections taken perpendicular to

Š1 and Š2 also give hypercylinders.

III. POLARIMETRIC ANALYSIS

When polarized light is transmitted through a polarization-

state analyzer (PSA) the transmitted intensity D can be found

by projecting the input Stokes vector onto a measurement vec-

tor T = (1,T1,T2,T3)T /2 (T ∈ S), as defined by the analyzer

configuration, whereby D = TT · S. Here, T is normalized

such that T 2
1 + T 2

2 + T 2
3 = 1, so that the transmitted intensity

0 � D � S0; that is, to ensure the analyzer is passive.

With prior knowledge of the analyzing state, as can be

deduced from the polarization elements present in the PSA, it

would theoretically be possible to estimate the Stokes vector of

the incident light. In general however, multiple measurements

are made to improve accuracy and remove ambiguities that

may exist. For example, a division of amplitude polarimeter

(DOAP), as originally proposed by Azzam [13], uses at least

four different analyzers simultaneously, whilst a null ellip-

someter uses an analyzer which is varied between sequential

measurements [11]. Arranging the ND respective transmitted

intensities into an intensity vector D = (D1,D2, . . . ,DND
),

the series of measurements can be described by the matrix

equation

D = V TS, (1)

where T is a ND × 4 instrument matrix with rows correspond-

ing to the ND measurement states. To ensure that Eq. (1)

can describe both sequential or simultaneous measurements,

the diagonal matrix V has been introduced to account

for the beam splitting required for simultaneous measure-

ments. Conservation of energy (assuming ideal optical ele-

ments) dictates that, for multiple simultaneous measurements,

tr[V ] = 1. Alternatively, if D is formed from ND sequential
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measurements, then V = I where I is the ND × ND identity

matrix. Realistically, energy will be lost during propagation

through an optical system from absorption and scattering, for

example. Consequently tr[V ] can then be used as a measure

of the light efficiency of the PSA.

IV. MEASUREMENT UNCERTAINTY AND

POLARIZATION RESOLUTION

A. Fisher information and the Cramér-Rao lower bound

Practically, the empirical intensities D will possess a

random component arising from noise present in the system

(see Sec. V A for a discussion of some potential noise models),

such that D = D0 + �D is a random variable (�D will be

assumed to be a zero-mean random variable throughout this

work). Consequently, it may not be possible to solve Eq. (1)

for S exactly, but instead a “best guess” Ŝ must be formed

for which a multitude of alternative estimation strategies

exist. For example, the most immediately apparent solution

to Eq. (1) is given by Ŝ = [V T ]+D, where + denotes the

Moore-Penrose matrix pseudoinverse. Under a Gaussian noise

regime the pseudoinverse solution minimizes the mean square

error between the true value of S and the different realizations

of Ŝ (which inherit stochasticity from the random nature of D).

More generally, the quality of any particular estimator ŵ

of a set of parameters w can be assessed by considering its

covariance matrix Kw. The on-diagonal terms of the covariance

matrix describe the spread of estimates of each parameter wi ,

where a smaller spread implies a more accurate estimator,

whilst the off-diagonal terms quantify the dependence of

the estimate of one parameter, say wi , on another wj (i �=
j ). Pivotal in the theory of statistical estimation was the

formulation of a lower bound on the covariance matrix of any

estimator, known as the Cramér-Rao lower bound (CRLB)

[14,15]. The CRLB, in its most commonly used form, is valid

for unbiased estimators whereby it is possible to say that the

variance of any estimate made of the parameter vector w is

bounded by

Kw � J
−1
w , (2)

where the inequality implies the difference of the two matrices

is positive definite and does not necessarily hold element-wise.

Jw is a Nw × Nw matrix known as the Fisher information

matrix (FIM) [16,17] and defined by

Jw = E

[(
∂ ln fX(x|w)

∂w

)T
∂ ln fX(x|w)

∂w

]
, (3)

where fX(x|w) is the probability density function (PDF)

describing the likelihood that the random variable X = x, as

parameterized by w, and E[· · ·] denotes the ensemble average

over all possible realizations of x. It should also be noted that

the matrix calculus conventions expounded in [18] are used in

this work.

Since Eq. (3) depends only on the type of noise present

in a system through the PDF fX(x|w), the CRLB can be

considered a fundamental statistical limit on the quality of any

measurement system. An estimator which achieves the CRLB;

that is, for which Kw = J
−1
w , is called efficient. However,

the question arises as to the existence of such an estimator.

A well-documented result in statistical fields is that if an

efficient estimator exists then it is the maximum-likelihood

estimator (see, e.g., [19]); however, if no such estimator exists

then the maximum-likelihood estimator is both asymptotically

unbiased and asymptotically efficient as the number of data

points taken tends to infinity. These desirable properties are

not mirrored by other estimators.

The equations given thus far are valid only for a particular

value of w; however, the parameter values may differ between

different experimental setups or measurements. Adopting a

Bayesian viewpoint, the parameter vector w is then considered

to be a random variable with an associated PDF fW(w) (known

as a prior PDF). Accordingly, it is possible to modify the

definition of the FIM to accommodate this random behavior

such that the Bayesian FIM is given by

J̃w = Ew[Jw] + J
p
w , (4)

where Jw is the deterministic FIM given by Eq. (3) and J
p
w

depends only on the prior PDF fW(w) via

J
p
w = Ew

[(
∂

∂w
ln fW(w)

)T
∂

∂w
ln fW(w)

]
. (5)

A Bayesian CRLB can thus be shown to hold, as was originally

done by van Trees [20], whereby

Kw � J̃
−1
w , (6)

(the tilde notation will be used throughout to represent

Bayesian metrics). If no a priori knowledge about the possible

values of the random parameter is possessed, as is likely in

many experimental scenarios, it can be argued that the prior

PDF should be nearly flat, such that any estimator formed will

not cluster around any particular value. In the limit a uniform

PDF over the admissible values of w can be used. Such a

PDF is known as a noninformative PDF. The assumption of

maximal ignorance can be relaxed, as discussed in [21], but

this case will not be considered in this work.

Again, the question of the existence of efficient estimators

arises in the Bayesian paradigm. Fortunately, it can be shown

[20] that the maximum a posteriori estimator is, in many

respects, the Bayesian equivalent of the maximum-likelihood

estimator. As such, if an efficient estimator exists in the

Bayesian sense then it will be the maximum a posteriori

estimator, otherwise the maximum a posteriori estimator is

asymptotically efficient and hence the Bayesian CRLB is

achievable.

B. Resolution in Stokes space

As a metric of performance, a matrix quantity, such as

the FIM or estimator covariance matrix, is not ideal since

its interpretation is often nontrivial. Scalar measures are thus

preferable, therefore prompting the introduction of suitable

quantities. Since the parameter estimate ŵ is derived from

random experimental data, ŵ is itself a random variable.

Each experimental realization, perturbed by differing noise,

hence defines a different point in the Nw-dimensional Hilbert

space in which w lies. For example, if attempting to estimate

the Stokes vector of polarized light from noisy intensity

measurements, whereupon w = S, each estimate Ŝ defines
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a position in Stokes space. If the estimator is unbiased, the

random distribution of estimates will be centered on the true

parameter value. The eigensystem of the FIM then defines the

axes of a set of concentric “ellipsoids of minimum uncertainty”

(in the sense of the CRLB) in Hilbert space, defined by

(ŵ − w)†J (ŵ − w) = c2. The parameter c dictates the fraction

of the estimates resulting from repeated experiments which lie

within the ellipsoid [19]. For example, if an unbiased efficient

estimator ŵ with covariance matrix J
−1 was normally dis-

tributed, then the probability that a particular estimate would

lie within the region c2 � c2
0 could be found by integrating the

Nw-dimensional χ2-squared probability distribution from 0

to c2.

With these considerations in mind, it is apparent that the

volume of the so-called ellipsoids of concentration, given by

Vmin = VNw

√
cNw

∣∣J−1
w

∣∣ = VNw

√
cNw

|Jw|
, (7)

where VNw
is the volume of the Nw-dimensional unit hyper-

sphere, describe a region of uncertainty in the relevant Hilbert

space. Letting w = (Š1,Š2,Š3,S0) (the reordering is for later

convenience), whereby Nw = 4 and V4 = π2/2, the region of

uncertainty in Stokes space has a volume

Vw =
π2

2

√
c4

|Jw|
, (8)

which hence defines a polarization resolution in that space.

A suitable choice of c in this definition is no less arbitrary

than, for example, the Rayleigh criterion, as it is merely a

measure of what is acceptable to the end user. A value of 0.9

will henceforth be assumed.

Typically, Jw will be dependent on the state of polarization

being measured, hence motivating the further definition of a

Bayesian polarization resolution Ṽw defined analogously to

Eq. (8), in which the Bayesian FIM J̃w = Ew[Jw] is used.

In polarimetry, however, the absolute intensity of the

light may be of secondary or little importance, since the

state of polarization is fully specified by the three variables

{š1,š2,š3}. The estimation problem thus reduces to inferring

a position in the 3-dimensional Hilbert space spanned by

the parameter vector u = (š1,š2,š3) corresponding to Poincaré

space. Unfortunately, this process still necessitates the esti-

mation of the total intensity of the beam s0, be it implicit or

explicit. Ultimately, the requisite estimation of s0 reduces the

polarization accuracy obtainable in Poincaré space, the extent

of which can be assessed by partitioning the FIM; namely,

Jw =
(

J11 J12

JT
12 J22

)
, (9)

where J11 is a 3 × 3 reduced FIM, J12 is a 3 × 1 column

vector describing the cross correlations between estimates of

u and s0, and J22 is a scalar whose reciprocal describes the

accuracy achievable for any estimate of s0 via the CRLB. For

any single state of polarization Vw/Vu = (3π/8)
√

c/|J22|, as

follows from |Ju| = |Jw|/|J22|. The Bayesian FIM relevant to

the estimation of u is then given by [19]

J̃u = Eu|s0
[Ju] = Eu|s0

[
J11 − JT

12J
−1
22 J12

]
, (10)

where Eu|s0
[. . .] denotes averaging with respect to u for a given

total intensity. The cross correlations between estimates of u

and s0 are thus seen to cause a reduction in the polarization

resolution. The reduced Bayesian polarization resolution in

Poincaré space is subsequently given by

Ṽu =
4π

3

√
c3

|J̃u|
. (11)

By partitioning Jw in different ways, the treatment can be ex-

tended to situations in which not all polarization parameters are

desired; for example, if considering only linear polarimeters.

C. Polarization encoding and degrees of freedom

Multiplexing of an optical signal, whereby information is

encoded using different degrees of freedom of light, provides a

means to increase information storage and transmission rates

in optical systems. For example, different wavelengths can

be used to send multiple signals along optical fibers [22] in

so-called wavelength-division multiplexing. Fundamentally,

for wavelength-division multiplexing, the number of different

wavelengths (or, more generally, the number of channels or

degrees of freedom) depends on the bandwidth of the channel

and the extent of interchannel interference (crosstalk) that can

be tolerated. For example, in fiber optic telecommunication

networks which operate in the 1480- to 1600-nm low-loss

window of silica glass, the international recommendation is

for a wavelength spacing of 0.8 nm ranging from 1537 to

1563 nm so as to give 32 channels with acceptable levels of

crosstalk [23].

Polarization encoding is also possible; however, it is almost

exclusively considered in the context of only two orthogonal

states of polarization (see, e.g., [24]). Such analysis is perhaps

natural in the sense that crosstalk between the two degrees of

freedom is zero in the ideal case, but it automatically forsakes

the possibilities afforded by encoding over the entirety of

Poincaré space (or Stokes space if amplitude modulation is

also employed). Given the ability of polarimeters to distinguish

multiple states of polarization, it is hence logical to investigate

the number of degrees of freedom within polarization-based

systems, as will be determined by the size of the polarization

domain and the polarization resolution of the PSA. In this

vein, the number of distinguishable states is defined here to

be the ratio of the volume of uncertainty in polarization space

before a measurement to the volume of uncertainty after a

measurement (and hence can equally be called a metric of

fractional accuracy). Explicitly, the number of degrees of

freedom is then given by

ÑS = Ãw =
VS

Ṽw

, (12)

and

ÑP = Ãu =
VP

Ṽu

, (13)

when considering encoding in Stokes and (reduced) Poincaré

space, respectively. An intuitive analog to this definition can

be found in optical imaging, whereby the uncertainty in an

object’s position before a measurement is merely the field of

view of the imaging system, whereas afterwards, assuming
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a diffraction-limited system with circular aperture, it is the

area of the Airy disk. Similarly, the uncertainty before a

polarimetric measurement is the entirety of the associated

Hilbert space. The volume is thus easily calculable using

the Lebesgue measure and is given by VS = 4π
3
D for Stokes

space, where D is the dynamic range of the photodetectors and

VP = 4π
3

for Poincaré space. If one or more of the polarization

parameters are known a priori, only the volume of space

spanned by the unknown parameters need be considered.

Finally, a local accuracy can also be defined analogously

to Eqs. (12) and (13) if the FIM before Bayesian averaging

(i.e., Jw or Ju) is used to define the volume of the ellipsoid of

concentration for a given incident polarization state.

D. Efficiency of observation

When performing experiments in conditions with limited

light levels; for example, in single-molecule studies [25], it is

important to utilize the detected photons as efficiently as pos-

sible. In the context of polarimetric experiments, this implies

achieving the greatest accuracy, or polarization resolution, per

photon. Physical limits, however, exist regarding the extent to

which this can be achieved. To establish these limits, note that

the reciprocal of the accuracy of a PSA can be considered as

the fractional volume of uncertainty in polarization space,

or the probability of measuring a state of polarization lying

within the same volume, if all polarization states were equally

likely. One can thus (following Shannon [26]) associate

an information gain from a polarimetric observation as the

logarithm of the accuracy; namely,

Ĩ = log2 Ã = − log2

(
Vu

ṼP

)
. (14)

The relationship between physical entropy in the thermody-

namical sense and information has been known for many years

and was first recognized by Szilard [27] and later applied by

Brillioun [28,29]. The relationship states that information Ĩ
about a system can only be obtained if there is an increase in

entropy �H such that

Ĩ �
�H

kB ln 2
, (15)

where kB = 1.381 × 10−23 m2 kg s−1 K−1 is Boltzmann’s

constant. Equality is only achieved for a reversible observation.

From inequality (15), it is thus possible to define the efficiency

of observation η (0 � η � 1):

η =
ĨkB ln 2

�H
. (16)

Consider then a single optical detector which makes an

observation by absorption of ni0 photons with mean energy

hν0, where ni0 = E[ni] is the mean number of photons

absorbed by the ith detector.1 The total energy absorbed

will eventually be dissipated as heat, corresponding to an

1Entropy is an average property of a system and hence it is sufficient

to consider the average number of photons absorbed ni0, as opposed to

a particular realization of the observation process in which ni photons

are absorbed.

increase in the entropy of the detector. The second law of

thermodynamics then dictates that �Hi = ni0hν0/
, where


 is the thermal noise temperature (i.e., ambient temperature)

of the detector. There will, however, be an entropy cost for

each measurement made such that the total entropy cost is

given by

�H =
ND−1∑

i=0

�Hi + �Ha, (17)

where �Ha represents the entropy cost associated with

photons that are not absorbed in the detectors. Ultimately, these

“lost” photons will also be absorbed by some material body

at temperature 
0 and again be dissipated as heat, such that

�Ha = (1 − tr[V ])s0/
0 for simultaneous measurements or,

alternatively, �Ha = (ND − tr[V ])s0/
0 for sequential ob-

servations. If all photons are absorbed by photodetectors (i.e.,

the PSA is 100% light efficient), the efficiency of observation

is given by

η =
kB
 ln 2

n0hν0

log2

(
VP

Ṽu

)
, (18)

where s0 =
∑

i ni0hν0 = n0hν0.

V. EXAMPLES

Accuracy, information, and efficiency of observation have

all been shown to be dependent on the FIM (which is

averaged under the assumption of maximal ignorance to

form the Bayesian FIM) and, as such, all that remains to

quantify system performance in polarization measurements is

to calculate Jw. However, this requires making some assertions

regarding the type of noise present in the system and of the

PSA configuration. In the following numerical calculations

the reduced FIM (and Bayesian FIM) associated with the

estimation of u will only be considered so as to elucidate

the polarization-dependent performance characteristics of

different PSAs.

A. Noise models and Fisher information

In what follows, two noise regimes will be considered;

namely, Poisson and Gaussian statistics. The first example

discussed considers the quantization of classical light, which

produces Poisson-distributed noise on the detector with vari-

ance ni0. The second example assumes that the mean intensity

is large enough so as to invoke the Central Limit Theorem [19],

but it considers the improvement that can be achieved when

using nonclassical, squeezed light (see, e.g., [30–32]). Under

these circumstances, squeezed light produces Gaussian noise

statistics with variance s2n0, where s2 < 1 is the squeezing

factor [33,34]. The number of absorbed photons on a single

detector is thus parameterized by the PDFs:

f sht
Ni

(ni |ni0) =
(ni0 + nib)ni

ni!
exp[−(ni0 + nib)] (19)

and

f
sqz

Ni
(ni |ni0) =

1√
2π (s2ni0 + nib)

exp

[
−

(ni − ni0 − nib)2

2(s2ni0 + nib)

]
,

(20)
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FIG. 2. (Color online) Schematics of three alternative DOAP designs (see text). Notation is as follows: BS is a beam splitter, WP is a

Wollaston prism, QWP is a quarter wave plate, GT is a Glan Thompson polarizer, BBP is a broadband prism, and D is a detector.

respectively. Di = nihν0 is then the detected intensity on

the ith detector.2 The additional mean term nib has been

introduced in Eq. (19) [Eq. (20)] to account for other potential

additive sources of stray photons, assumed to be independent

and Poisson [Gaussian] distributed, such that the joint PDF

is also Poisson [Gaussian] distributed. A good discussion

of such possible noise sources is given in [35]; however,

two simple examples would be a detector dark count or a

passive background. Although not necessary, the simplifying

assumption that these additional noise sources affect each

detector equally such that nib = nb is also made. Furthermore,

it is reasonable to assume that the noise present on each of

the ND measurements is independent and hence the joint

PDF required to calculate the FIM is given by fN(n|n0) =∏ND

i=1 fNi
(ni |ni0).

Using Eqs. (3), (19), and (20), the FIMs for polarization

measurements are given by

Jw = G
T

JDG, (21)

where

JD =
1

h2ν2
0

diag

[
1

ni0 + nb

]
, (22)

assuming classical shot noise and

JD =
1

h2ν2
0

diag

[
1

s2ni0 + nb

]
, (23)

for Gaussian noise, whilst

G =
∂D0

∂w
= V T

∂S

∂w
(24)

and ∂S/∂w = diag[s0,s0,s0,1]. It is immediately apparent

from Eqs. (22) and (23) that the use of squeezed light gives an

improvement in performance over classical light. Although

the potential performance gains from squeezed light have

been previously reported in the context of imaging (see,

e.g., [33]), this result has not previously been shown for

polarimetric studies. It is interesting to note that JD ∝ 1/ν2
0 .

The increase in Fisher information (and associated increase

in system accuracy) with lower frequencies arises since this

corresponds to more collected photons for a given intensity

which, as discussed in [36], corresponds to more independent

samples of the stochastic variables. Bayesian FIMs can be

2Assuming unity quantum efficiency for simplicity.

found by performing the Bayesian averaging of Eqs. (22) and

(23).

B. Polarimeter architectures

For definiteness, the results presented above are illustrated

using three DOAPs existing in the literature. The first of

these, as proposed by Azzam [13] and shown schematically in

Fig. 2(a), can be easily implemented using only beam splitters,

polarizers and waveplates. The detectors in turn project the

incident Stokes vector onto horizontal, vertical, linear 45◦, and

right-circular polarized states, and hence has the instrument

matrix

T1 =
1

2

⎛
⎜⎜⎜⎝

1 1 0 0

1 −1 0 0

1 0 1 0

1 0 0 1

⎞
⎟⎟⎟⎠ . (25)

Any noise in the intensity measurements is amplified

during data processing to extract, for example, the Stokes

parameters, the extent of which is often measured using

the condition number of the instrument matrix T , defined

as κT = ‖T‖F ‖T
−1‖F where ‖ . . . ‖F denotes the Frobenius

norm. Compain and Drevillon [37] proposed an alternative

PSA construction, as shown in Fig. 2(b), in which the prism

geometry and the angle of incidence of light onto the first

surface are optimized to minimize the condition number of the

instrument matrix to a value of 4.48. The associated instrument

matrix is

T2 =
1

2

⎛
⎜⎜⎜⎝

1 −0.575 0.818 0

1 −0.575 −0.818 0

1 0.617 −0.003 0.787

1 0.617 0.003 −0.787

⎞
⎟⎟⎟⎠ . (26)

Note that the deviations of V from the ideal case arising

from Fresnel reflection and transmission at the prism entrance

surface will be ignored so that the results calculated will

be comparable to the alternative DOAPs considered here.

The imbalance between reflected and transmitted beams only

equates to ≈ 5%, however, and discrepancies from reality will

thus be small. Instrument matrices with condition numbers

smaller than 4.48 are possible [38], but experimental realiza-

tion of these is complicated since it requires, in general, eight

Babinent Soleil compensators. The wavelength dependence of

T2 is also neglected here.
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Finally, a DOAP configuration employing a basis of six

distinct measurement states, as given by the instrument matrix

T3 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0

1 −1 0 0

1 0 1 0

1 0 −1 0

1 0 0 1

1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

was recently proposed by Lara and Paterson [39] and is

schematically shown in Fig. 2(c). This DOAP architecture was

shown to possess polarization-independent noise characteris-

tics in the Stokes parameters in the presence of a combination

of Gaussian thermal noise and signal-dependent Poisson noise.

VI. RESULTS AND DISCUSSION

Using Eqs. (10) and (21)–(27), Ju can be calculated and

hence so too can the accuracy before Bayesian averaging

Au = Au(u). Due to the similarity of the form of the FIM

for Gaussian and Poisson noise, restriction is now made to

Poisson noise only. Numerical calculations were performed

for each DOAP configuration assuming incident light with a

wavelength of 405 nm. A total mean photon count of 104 and

a zero-background count were further assumed. The resulting

state-dependent PSA accuracy is shown in Fig. 3. Whilst these

plots are formed via direct evaluation of the formulas given

in the preceding theory, Monte Carlo simulations (in which

the accuracy was calculated from the covariance matrix of

simulated random data) are in good agreement.

With reference to Fig. 3 and Eqs. (25)–(27), it is worth

mentioning that, for a particular polarimeter architecture, the

best accuracy is achieved when measuring totally polarized

states that equalize the intensity measured in each polarimeter

arm; a result which also holds for general PSA configurations.

However, accuracy is seen to decrease with the degree of

polarization (i.e., toward the center of the Poincaré sphere), a

trend which would be expected and has been discussed in [21].

It is also noted that the PSA architecture proposed by Lara

and Paterson is not seen to give a constant accuracy over

the surface of the Poincaré sphere, in apparent contradiction

with [39]. This discrepancy, however, arises due to the use of a

different metric. The metric proposed in [39] is equivalent

to tr[J−1], or so-called A optimality. However, the metric

proposed in this work takes greater account of the cross

correlations present in parameter estimates. The six-arm

DOAP does, however, still exhibit greater uniformity over

the surface of the Poincaré sphere, resulting from a greater

sampling of Poincaré space and hence increased redundancy

in the experimental data. Sampling of the Poincaré sphere

and hence precision can naturally be extended by further

increasing the number of detection arms, however so doing has

implications on the signal-to-noise ratio in each detector due to

the reduced incident intensity (see [21] for further discussion).

If it were known a priori that some particular polarization

state was more likely to be measured, additional accuracy

gains could be made [as described by the J
p
w term of Eq. (4)]

by appropriate system design [21].

Figure 4 shows the variation of accuracy and efficiency of

observation (after averaging) as a function of the number of

absorbed photons for each DOAP configuration. The accuracy

is seen to improve as the number of detected photons increases.

Infinite accuracy is thus, in principle, possible in polarimetry

if enough photons are detected. A similar conclusion was

reached in terms of localization accuracy for two point objects

[40]. Additionally, the efficiency falls as photon numbers

increase. This essentially arises since there is a redundancy

in the information which each photon in a beam carries with

regard to their polarization.

Whilst a relatively low number of photons were considered

when calculating the data in Fig. 4, it should be observed that

both accuracy and efficiency of observation are monotonic

functions of the mean photon count. Consequently, trends

inferred from Fig. 4 are valid for Poisson noise in which

estimator efficiency is only achieved asymptotically [36].

Furthermore, if Gaussian noise described by Eq. (20) was

assumed in numerical calculations, plots of identical functional

form would follow. Due to the exact efficiency of the

maximum-likelihood estimator in Gaussian noise, Fig. 4 is

valid even at such low photon counts.

The results given in this article can be practically employed

in several ways. For example, since the definition of resolution

developed constitutes a fundamental statistical limit, it can be
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FIG. 3. (Color online) Poincaré diagrams showing the polarization-state dependence of accuracy, before Bayesian averaging, for each

DOAP configuration shown in Fig. 2. Simulation parameters used were n0 = 104, nb = 0, λ0 = c/ν0 = 405 nm, and c = 0.9. White markers

denote the state of polarization at different points on the Poincaré sphere and are shown for reference.
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(see text). Simulation parameters are the same as for Fig. 2

used as a benchmark for newly developed polarimetric systems

or signal-processing algorithms. One must thus distinguish

between the theoretical performance limit and that practically

achievable using a given system [cf. Eq. (2)]. Both can be

evaluated using the performance metrics given above [e.g.,

Eqs. (8), (12), and (18)] but, for the latter case, the FIM should

be replaced with the achievable covariance matrix K. Consider,

for instance, the experimental evaluation of the polarization

resolution in Stokes space achievable with a novel DOAP.

For any given incident polarization state S, an ensemble of

data sets must be taken; that is, multiple measurements under

fixed experimental conditions. Inferring the parameter vector

ŵi from the ith set of data, the covariance matrix can be

estimated using the standard statistical formulas:

µ(w) =
1

M

M∑

i=1

ŵi, (28)

where M is the number of measurements taken and

K̂w(S) =
1

M − 1

M∑

i=1

(ŵi − µ)(ŵi − µ)T . (29)

Naturally, if the noise present in the system were known to

be independent of the incident polarization state, only a single

state of polarization would need to be used. However, given

the possibility of signal-dependent noise, a full system char-

acterization requires the use of a polarization-state generator,

so that the sample mean and covariance, given by Eqs. (28)

and (29), can be determined for all input polarization states S.

Given the experimental covariance as a function of position in

Stokes space, it is a simple matter to substitute it numerically

into the desired metric.

Benchmarking, however, in which the experimental perfor-

mance is compared to the theoretical limit, requires knowledge

of the full noise statistics as encapsulated in the PDF f (D|w).

However, since the mapping from intensity vector D to the

parameters of interest (w in this example) is known, it is suffi-

cient to consider the PDF f (D|D0) [cf. Eq. (24)]. A theoretical

noise model of the system means the PDF can be directly

substituted into the metric definitions as above; however, in

the absence of such a model it is necessary to determine

the statistics experimentally. The experimental configuration

will determine whether it is easier to estimate f (D|w) or

f (D|D0). Regardless, one method to measure the desired

PDF3 is to histogram the measured intensities for a fixed

input power (or polarization state), as found from repeated

experiments. Since the derivatives of the likelihood function

are needed to calculate the FIM [i.e., ∂ln f (D|D0)/∂D0 or,

alternatively, ∂ln f (D|w)/∂w], it is again necessary to take

repeated measurements for different illumination conditions

whereby the derivatives can be approximated using discrete

differences. Given the capability to benchmark systems, the

presented metrics immediately present a basis for optimization

and system design.

Finally, it is worth noting that, although the formulas have

been presented in the context of estimating a position in Stokes

or Poincaré space, the formalism can be simply extended to

calculate the accuracy of inferred polarization properties such

as the degree of polarization or dichroism of a sample, allowing

for more rigorous noise analysis in polarimetric systems.

3Note that no claim as to the optimality of this approach is being

made here, but it is instead presented as a simple method to illustrate

the principle.
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[35] A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, J. Europ. Opt.

Soc. Rap. Public. 3, 08002 (2009).

[36] H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers,

J. Opt. Soc. Am. A 12, 834 (1995).

[37] E. Compain and B. Drevillon, Appl. Opt. 37, 5938 (1998).

[38] S. N. Savenkov, Opt. Eng. 41, 965 (2002).

[39] D. Lara and C. Paterson, Opt. Express 17, 21240 (2009).

[40] S. Ram, E. S. Ward, and R. J. Ober, Proc. Natl. Acad. Sci. USA.

103, 4457 (2006).

043835-9

http://dx.doi.org/10.1364/OE.16.015212
http://dx.doi.org/10.1364/OE.16.015212
http://dx.doi.org/10.1006/ofte.1998.0275
http://dx.doi.org/10.1364/JOSAA.3.001152
http://dx.doi.org/10.1364/JOSAA.3.001152
http://dx.doi.org/10.1364/OE.15.013597
http://dx.doi.org/10.1364/OE.15.013597
http://dx.doi.org/10.1063/1.1699951
http://dx.doi.org/10.1063/1.1699952
http://dx.doi.org/10.1103/PhysRevA.65.052306
http://dx.doi.org/10.1103/PhysRevLett.89.253601
http://dx.doi.org/10.1103/PhysRevLett.89.253601
http://dx.doi.org/10.1364/OE.18.001521
http://dx.doi.org/10.1364/OE.18.001521
http://dx.doi.org/10.1103/PhysRevLett.58.2656
http://dx.doi.org/10.1209/0295-5075/81/44001
http://dx.doi.org/10.1364/JOSAA.12.000834
http://dx.doi.org/10.1364/AO.37.005938
http://dx.doi.org/10.1117/1.1467361
http://dx.doi.org/10.1364/OE.17.021240
http://dx.doi.org/10.1073/pnas.0508047103
http://dx.doi.org/10.1073/pnas.0508047103



