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PERSPECTIVES ON INFORMATION-BASED COMPLEXITY

J. F. TRAUB AND H. WOZNIAKOWSKI

1. Introduction
Computational complexity studies the intrinsic difficulty of mathematically

posed problems and seeks optimal means for their solutions. This is a rich
and diverse field; for the purpose of this paper we present a greatly simplified
picture.

Computational complexity may be divided into two branches, discrete and
continuous. Discrete computational complexity studies problems such as graph
theoretic, routing, and discrete optimization; see, for example, Garey and John-
son [79]. Continuous computational complexity studies problems such as ordi-
nary and partial differential equations, multivariate integration, matrix multi-
plication, and systems of polynomial equations. Discrete computational com-
plexity often uses the Turing machine model whereas continuous computational
complexity tends to use the real number model.

Continuous computational complexity may again be split into two branches.
The first deals with problems for which the information is complete. Problems
where the information may be complete are those for which the input is specified
by a finite number of parameters. Examples include linear algebraic systems,
matrix multiplication, and systems of polynomial equations. Recently, Blum,
Shub and Smale [89] obtained the first NP-completeness result over the reals
for a problem with complete information.

The other branch of continuous computational complexity is information-
based complexity, which is denoted for brevity as IBC. Typically, IBC studies
infinite-dimensional problems. These are problems where either the input or
the output are elements of infinite-dimensional spaces. Since digital comput-
ers can handle only finite sets of numbers, infinite-dimensional objects such
as functions on the reals must be replaced by finite sets of numbers. Thus,
complete information is not available about such objects. Only partial infor-
mation is available when solving an infinite-dimensional problem on a digital
computer. Typically, information is contaminated with errors such as round-off
error, measurement error, and human error. Thus, the available information is
partial and/or contaminated.

We want to emphasize this point for it is central to IBC. Since only partial
and/or contaminated information is available, we can solve the original problem
only approximately. The goal of IBC is to compute such an approximation as
inexpensively as possible.

In Figure 1 (see p. 30) we schematize the structure of computational com-
plexity described above.

Received by the editors April, 1991.
1991 Mathematics Subject Classification. Primary 68Q25.
This research was supported in part by the National Science Foundation.

29

© 1992 American Mathematical Society
0273-0979/92 $1.00+ $.25 per page



30 J. F. TRAUB AND H. WOZNIAKOWSKI
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Figure 1
Research in the spirit of IBC was initiated in the Soviet Union by Kol-

mogorov in the late 1940s. Nikolskij [50], then a graduate student of Kol-
mogorov, studied optimal quadrature. This line of research was greatly ad-
vanced by Bakhvalov; see, e.g., Bakhvalov [59, 64, 71]. In the United States
research in the spirit of IBC was initiated by Sard [49] and Kiefer [53]. Kiefer
reported the results of his 1948 MIT Master's Thesis that Fibonacci sampling
is optimal when approximating the maximum of a unimodal function. Sard
studied optimal quadrature. Golomb and Weinberger [59] studied optimal ap-
proximation of linear functionals. Schoenberg [64] realized the close connection
between splines and algorithms optimal in the sense of Sard.

IBC is formulated as an abstract theory and it has applications in numerous
areas. The reader may consult TWW [88] ' for some of the applications. IBC
has benefitted from research in many fields. Influential have been questions,
concepts, and results from complexity theory, algorithmic analysis, applied
mathematics, numerical analysis, statistics, and the theory of approximation
(particularly the work on «-widths and splines).

In this paper we discuss, in particular, IBC research for two problems of
numerical analysis. We first contrast IBC and numerical analysis, limiting our-
selves to just one characteristic of each.

IBC is a branch of computational complexity, and optimal (or almost opti-
mal) information and algorithms are obtained from the theory. In numerical
analysis, particular classes of algorithms are carefully analyzed to see if they
satisfy certain criteria such as convergence, error bounds, efficiency, and stabil-
ity.

Numerical analysis and IBC have different views on the problems which lie
in their common domain. The authors of this paper have worked in both nu-
merical analysis and IBC, and believe the viewpoints are not right or wrong,
just different.

On the other hand, in many research groups around the world, people work on
both numerical analysis and IBC, and do not draw a sharp distinction between
the two. They believe IBC can serve as part of the theoretical foundation of
numerical analysis.

We believe there might be some profit in discussing the views of numerical
analysis and IBC. Unfortunately Parlett [92]2 does not serve this purpose since,
as we shall show, this paper ignores relevant literature and is mistaken on issues
of complexity theory.

1 When one of us is a coauthor, the citation will be made using only initials.
2Citation to this paper will be made using only an initial.
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For example, P [92] contains a central misconception about IBC which im-
mediately invalidates large portions of the paper. P [92] assumes that the in-
formation is specified (or fixed). Indeed, the first "high level criticism" is that
IBC "is not complexity theory" (see P [92, 2.A]), since "specified information"
is used.

But it is the very essence of IBC that both the information and the algorithms
are varied. Indeed, one of the central problems of IBC is the optimal choice of
information. Significant portions of three monographs, TW [80] and TWW [83,
88], all of which are cited in P [92], are devoted to this issue. We return to this
issue in §3 after notation has been established.

In P [92], the author limits himself to "matrix computations, which is the
area we understand best." We do not object to discussing matrix computations,
although they constitute a small fraction and are atypical of IBC. For example, in
the recent monograph TWW [88], some ten pages, just 2%, are devoted to matrix
computations. Matrix computations are atypical since complete information
can be obtained at finite cost. However, even in this particular area, P [92]
ignores relevant literature and does not exhibit a grasp of the complexity issues.
Since the discussion will, of necessity, assume some rather technical details
concerning matrix computations, we will defer it to §§5 and 6.

We stress that we are not questioning the importance of matrix computations.
On the contrary, they play a central role in scientific computation. Furthermore,
we believe there are some nice results and deep open questions regarding matrix
computations in IBC.

But the real issue is, after all, IBC in its entirety. P [92] is merely using the
two papers TW [84] and Kuczyñski [86] on matrix computations to criticize all
of IBC. We therefore respond to general criticisms in §§3 and 4.

To make this paper self-contained we briefly summarize the basic concepts
of IBC in §2. Section 7 deals with possible refinements of IBC. A summary of
our rebuttal to criticisms in P [92] is presented in §8.

2. Outline of IBC
In this section we introduce the basic concepts of IBC and define the notation

which will be used for the remainder of this paper. We illustrate the concepts
with the example of multivariate integration, a typical application of IBC. A
more detailed account may be found in TWW [88]. Expository material may
be found in W [85], PT [87], PW [87], and TW [91]. Let

S:F -» G,

where F is a subset of a linear space and G is a normed linear space. We wish
to compute an approximation to S(f) for all / from F .

Typically, / is an element from an infinite-dimensional space and it cannot
be represented on a digital computer. We therefore assume that only partial
information3 about / is available. We gather this partial information about
/ by computing information operations L(f), where L e A. Here the class
A denotes a collection of information operations that may be computed. We
illustrate these concepts by an example.

3For simplicity, we will not consider contaminated information in this paper.
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Example: Multivariate integration. Let F be a unit ball of the Sobolev class
Wp'd of real functions defined on the ¿-dimensional cube D = [0, l]d whose
r th distributional derivatives exist and are bounded in Lp norm. Let G = E
and

S(f)= [ f(t)dt.
Jd

Assume pr > d.  To approximate S(f), we assume we can compute only
function values. That is, the class A is a collection of L : F —> R, such that
for some x from D, L(f) = f{x), V/ 6 F .   D

For each / e F , we compute a number of information operations from the
class A. Let

N(f) = [Liif), L2(f),..., L„(f)],        Li G A,
be the computed information about /. We stress that the L, as well as the num-
ber n can be chosen adaptively. That is, the choice of L, may depend on the al-
ready computed L\{f), L2(f), ... , L,_i(/). The number n may also depend
on the computed L¡(f). (This permits arbitrary termination criteria.)

N(f) is called the information about /, and N the information operator.
In general, N is many-to-one, and that is why it is impossible to recover the
element /, knowing y = N(f) for f e F . For this reason, the information
N is called partial.

Having computed N(f), we approximate S(f) by an element U(f) =
4>(N(f)), where 4>: N(F) -» G. A mapping <f> is called an algorithm.

The definition of error of the approximation U depends on the setting. We
restrict ourselves here to only two settings. In the worst case setting

e(U) = SW\\S(f)-U(f)\\,
feF

and in the average case setting, given a probability measure fi on F,

e(U)=(J \\S(f)-U(f)\\2/i(df)
Example (continued). The information is given by

N(f) = [f(xl),f(x2),...,f(xn)]
with the points x¡ and the number n adaptively chosen. An example of an
algorithm is a linear algorithm given by U(f) = <f>(N(f)) = Y!¡=\ aif(xô f°r
some numbers a,.

In the worst case setting, the error is defined as the maximal distance \S(f)-
U{f)\ in the set F. In the average case setting, the error is the L2 mean of
\S(f) - U(f)\ with respect to the probability measure ß. The measure fi is
sometimes taken as a truncated Gaussian measure.   D

To define the computational complexity we need a model of computation. It
is defined by two assumptions:

( 1 ) We are charged for each information operation. That is, for every L e
A and for every / e F , the computation of L{f) costs c, where c is
positive and fixed, independent of L and /.

'/-
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(2) Let Q denote the set of permissible combinatory operations including
the addition of two elements in G, multiplication by a scalar in G,
arithmetic operations, comparison of real numbers, and evaluations of
certain elementary functions. We assume that each combinatory oper-
ation is performed exactly with unit cost.

In particular, this means that we use the real number model, where we can
perform operations on real numbers exactly and at unit cost. Modulo roundoffs
and the very important concept of numerical stability, this corresponds to float-
ing point arithmetic widely used for solving scientific computational problems.

We now define the cost of the approximations. Let cost(A/, /) denote the
cost of computing the information N(f ). Note that cost( N, f) > en , and the
inequality may occur since adaptive selection of L, and n may require some
combinatory operations.

Knowing y = N(f), we compute U(f) = <f>(y) by combining the informa-
tion Li(f). Let cost((f),y) denote the number of combinatory operations from
ñ needed to compute 4>{y). We stress that cost{N,f) or cost(4>,y) maybe
equal to infinity if N(f) or <f>{y) use an operation outside fí or infinitely
many operations from A or Q, respectively.

The cost of computing U(f), cost (U, /), is given by

cost(U,f) = cost(N,f)+cost(<t>,N(f)).
Depending on the setting, the cost of U is defined as follows. In the worst case
setting

cost(i/) = sup cost(i7, /),
feF

and in the average case setting

cost(C7) =  / cos\(U,f)/i(df).

We are ready to define the basic notion of e-complexity. The e-complexity
is defined as the minimal cost among all U with error at most e,

comp(e) = inf{cost(C/): U such that e(U) < e}.

(Here we use the convention that the infimum of the empty set is taken to be
infinity.) Depending on the setting, this defines the worst case or average case
e-complexity.

We stress that we take the infimum over all possible U for which the error
does not exceed e . Since U can be identified with the pair ( N, <f>), where N is
the information and </> is the algorithm that uses that information, this means
that we take the infimum over all information N consisting of information
operations from the class A, and over all algorithms <j> that use N such that
(N, 4>) computes approximations with error at most e .

Remark. The complexity depends on the set A of permissible information op-
erations and on the set Í2 of permissible combinatory operations. Both sets
are necessary to define the complexity of a problem. This is beneficial because
the dependence of complexity on A and Q enriches the theory; it enables us
to study the power of specified information or combinatory operations. We
illustrate the role of A and Q by a number of examples.
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We begin with the role of A. Assume that F is a subset of a linear space
of functions. Let Ai consist of all linear functionals, and let A2 consist of
function evaluations. For many applications A2 is more practical. Let Q. be
defined as above.

Consider the integration example. For this problem, Ai is not a reasonable
choice since any integral could be computed exactly with cost c. For A2 , we
get the multivariate integration problem discussed in this section.

Consider next the approximate solution of 2mth-order elliptic linear partial
differential equations whose right-hand side belongs to the unit ball of Hr(D)
for a bounded simply-connected C°° region D of Rd . Let G = Hm(D). Wer-
schulz has shown that the worst case complexity in the class Ai is proportional
to £-dl(r+m), and in the class A2 it is proportional to e~d/r ; a thorough study
of this subject may be found in the research monograph Werschulz [91]. Thus,
the complexity penalty for using A2 rather than Ai goes to infinity as e goes
to zero for m > 0 ; see also TWW [88, Chapter 5, Theorem 5.9]. On the other
hand, Werschulz has shown that the complexity of Fredholm integral equations
of the second kind is roughly the same for Ai and A2 ; see Werschulz [91] as
well as TWW [88, Chapter 5, §6].

We now illustrate the role of ÇI for the approximate solution of scalar com-
plex polynomial equations of degree d using complete information, i.e., A
consists of the identity mapping. Let Qi consist of the four arithmetic op-
erations (over the complex field), and let Q2 consist of the four arithmetic
operations and complex conjugation. We confine ourselves to purely iterative
algorithms. Then for d > 4, McMullen [85] proved that the problem cannot
be solved for the class Q\ , whereas Shub and Smale [86] proved that the prob-
lem can be solved for the class Q.2 • The positive result of Shub and Smale
[86] also holds for systems of complex multivariate polynomials of degree d.
Hence, the arithmetic operations are too weak for approximate polynomial zero
finding, whereas also permitting complex conjugation supplies enough power to
solve the problem.   D

Example (continued). For the integration problem, the model of computation
states that one function evaluation costs c, and each arithmetic operation, com-
parisons of real numbers, and evaluations of certain elementary functions can
be performed exactly at unit cost. Usually c » 1.

The worst case e-complexity for the unit ball of W¿'d is as follows. For
pr > d,

comp(e) = &(ce~d¡r)   as e —> 0 ;
see Novak [88] for a recent survey. Take p = +00. Then for d large relative
to r, the worst case e-complexity is huge even for moderate e . Furthermore,
if only continuity of functions is assumed, then the problem cannot be solved
since comp(e) = +00 .

For the average case setting, let F be the unit ball in the sup norm of
continuous functions. Let ß be a truncated classical Wiener sheet measure;
see, e.g., TWW [88, p. 218]. Then using results from number theory concerning
discrepancy (see Roth [54, 80]), we have

comp(e) = e^e-'Ooge-')^-"/2)   as e -» 0;
see W [87, 91]. Thus, the average case complexity depends only mildly on the
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dimension d. (The same 8 result holds if the unit ball is replaced by the en-
tire space of continuous functions.) To get an approximation with cost propor-
tional to comp(e), it is enough to compute the arithmetic mean n~l Yll=i /(■*/) >
where n = ©(e'^loge-1)^-1^2), and the points x¡ are derived from Ham-
mersley points.   D

A goal of IBC is to find or estimate the e-complexity, and to find an e-
complexity optimal U, or equivalently, an e-complexity optimal pair (N, $).
By e-complexity optimality of U we mean that the error of U is at most e
and the cost of U is equal to, or not much greater than, the e-complexity. For
a number of problems this goal has been achieved due to the work of many
researchers.

Many computational problems can be formulated using the approach outlined
above. For some problems, including the two matrix computation problems
discussed in P [92], we need a more general formulation. We now briefly discuss
this more general formulation; details can be found in TWW [83, 88].

Let F and G be given sets, and W be a given mapping
W:Fx[0,+oo)  -> 2G.

We assume that W{f, 0) is nonempty and grows as e increases, i.e., for any
e, < e2 we have W{f, e,) c W(f, e2), V/êF.

We now wish to compute an element U(f) which belongs to W(f, e) for
all f e F . The definitions of U as well as the cost of U are unchanged. The
error of U is now defined as follows. The error of U for f from F is

e(U,f) = wf{*1- U(f)eW(f,n)}.
Then the error of U is defined as e(U) = sup^ef e(U, f) in the worst case
setting, and e(U) = (JFe2(U, f)ß(df))1/2 in the average case setting. Note
that for

W(f,e) = {geG: \\S(f) - g\\ < e}
we have e(U, f) = \\S(f) - U(f)\\ and the two formulations coincide.

Finally, we illustrate how the two matrix computation problems fit in this
formulation.
(i) Large linear systems. We wish to approximate the solution of a large linear
system Az = b by computing a vector x with residual at most e, \\Ax - b\\
< e. Here, b is a given vector, ||¿>|| = 1, and A belongs to a class F of
n x n nonsingular matrices. The vectors x are computed by using matrix-
vector multiplications Az for any vector z .

This problem corresponds to taking G = R" and

W{A, e) = {x G G :  \\Ax - b\\ < e},     VA e F.
The class A of information operations is now given by

A = {L : F -► R" : there exists a vector z G R"
such that L(A) = Az, VA G F}.

(ii) Eigenvalue problem. For a matrix A from a class F of n x n symmetric
matrices, we wish to compute an approximate eigenpair (x, X), where x eR"
with ||x|| = 1 , and A G K, such that

pjc-AxH  < e\\A\\.
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As in (i), the pairs (x, À) are computed by using matrix-vector multiplications.
This problem corresponds to taking G = B"xR, where B" is the unit sphere

of R", and

W(A,e) = {{x,X)eG:  \\Ax - Xx\\<e\\A\\} ,    VA e F.
The class A is the same as in (i).

3. The role of information
Information is central to IBC. We indicate briefly why the distinction between

information and algorithm is so powerful. We then respond to two general
criticisms in P [92] regarding information.

As explained in §2, the approximation U(f) is computed by combining
information operations from the class A. Let y = N(f ) denote this computed
information. In general, the operator N is many-to-one, and therefore the set
iV-1^) consists of many elements of F that cannot be distinguished from /
using N. Then the set SN~l(y) consists of all elements from G which are
indistinguishable from S(f). Since U(f) is the same for any / from the set
N~l(y), the element U(f) must serve as an approximation to any element g
from the set SN~x(y). It is clear that the quality of the approximation U{f)
depends on the "size" of the set SN~l(y). In the worst case setting, define
the radius of information r(N) as the maximal radius of the set SN~l(y) for
y G N(F). (The radius of the set A is the radius of the smallest ball which
contains the set A.)

Clearly, the radius of information r(N) is a sharp lower bound on the worst
case error of any U . We can guarantee an e-approximation iff r(N) does not
exceed e (modulo a technical assumption that the corresponding infimum is
attained).

The cost of computing N(f ) is at least en, where c stands for the cost
of one information operation, and n denotes their number in the information
N. By the ¿-cardinality number m(e) we mean the minimal number n of
information operations for which the information N has radius r(N) at most
equal to e. From this we get a lower bound on the e-complexity in the worst
case setting,

comp(e) > cm(e).
For some problems (see TWW [88, Chapter 5, §5.8]) it turns out that it is
possible to find an information operator Ne consisting of m(e) information
operations, and a mapping 4>E such that the approximation U(f) = </>E(A£(/))
has error at most e and U(f) can be computed with cost at most (c + 2)m(e).
This yields an upper bound on the e-complexity,

comp(e) < (c + 2)m(e).

Since usually c » 1, the last two inequalities yield the almost exact value of
the e-complexity,

comp(e) ~ cm(e).
This also shows that the pair (Ns , (f>E) is almost e-complexity optimal.

In each setting of IBC one can define a radius of information such that we
can guarantee an e-approximation iff r(N) does not exceed e ; see TWW [88].
This permits one to obtain complexity bounds in other settings.
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What is the essence of this approach? The point is that the radius of infor-
mation as well as the e-cardinality number m(e) and the information Ne do
not depend on particular algorithms, and they can often be expressed entirely
in terms of well-known mathematical concepts. Depending on the setting and
on the particular problem, the radii of information, the e-cardinality numbers,
and the information Ne are related to Kolmogorov and Gelfand «-widths, e-
entropy, the traces of correlation operators of conditional measures, discrepancy
theory, the minimal norm of splines, etc.

In summary, there are two reasons why one can sometimes obtain sharp
bounds on e-complexity in IBC. The first is the distinction between information
and algorithm. The second is that, due to this distinction, one can draw on
powerful results in pure and applied mathematics.

We now respond to two central criticisms in P [92] regarding information.
He asserts:

(i) The information is specified (or given) and therefore this "is not com-
plexity theory;" see P [92, 2.A].

(ii) There is an "artificial distinction between information and algorithm;"
see P [92, 1],

(i) P [92] repeatedly asserts that the information is "specified" or "given."
We have already referred to this misconception in our introduction and will
amplify our response here.

Varying the information and the algorithms is characteristic of IBC. (For
problems for which information is complete, i.e., N is one-to-one, only the
algorithms can be varied.) The definition of computational complexity in our
work always entails varying both information and algorithms; see, for example,
TW [80, Chapter 1, Definition 3.2], TWW [83, Chapter 5, §3], W [85, 2.5], PW
[87, II], TWW [88, Chapter 3, §3].

Furthermore the study of optimal information, which of course makes sense
only if the information is being varied, is a constant theme in our work; see,
for example, TW [80, Chapters 2 and 7], TWW [83, Chapter 4], W [85, 3.5],
PW [87, III D, V C], TWW [88, Chapter 4, §5.3, Chapter 6, §5.5].

Here, we have responded to criticism (i) in general. In §§5 and 6 we respond
for the case of matrix computations.

(ii.l) P [92, 1] claims there is an "artificial distinction between information
and algorithm." That is, he argues that writing the approximation U(f) =
<j)(N(f)) is sometimes restrictive. We are surprised that he does not produce a
single example to back his claim.

(ii.2) P [92, Abstract] states that "a sharp distinction is made between infor-
mation and algorithms restricted to this information. Yet the information itself
usually comes from an algorithm and so the distinction clouds the issues and
can lead to true but misleading inferences."

We once again explain our view of the issues involved here using a simple
integration example.

As in §2 assume that we can compute function values. How can we ap-
proximate the integral of /? The approximation U(f) can be computed by
evaluating / at a number of points, say at X\, x2, ... , xn , and then the com-
puted values f{Xi) are combined to get U(f). Computations involving f(x¡),
the adaptive selection of the points x¡, and the adaptive choice of n constitute
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the information N(f). Denoting by cf> the mapping which combines N(f),
we get U{f) = <f>(N(f)).

We do not understand why this is restrictive, why it clouds the issues, and
why it leads to "true but misleading inferences." As explained in the first part
of this section, the distinction between information and algorithm sometimes
enables us to find sharp bounds on complexity.

4. The domain F
A basic concept in IBC is the domain F. A central criticism of IBC in P

[92] concerns F . The assertion is that there are two difficulties with F :

(i) There is no need for F .
(ii) There should be a charge for knowing membership in F .

Concerning (i), the second "high level criticism" P [92, 2.B] states:
"The ingredient of IBCT that allows it to generate irrelevant results is the

problem class F . F does not appear in our brief description of the theory in
the second paragraph of § 1 because it is not a logically essential ingredient but
rather a parameter within IBCT."

Concerning (ii), P [92, Abstract] states:
"By overlooking F 's membership fee the theory sometimes distorts the eco-

nomics of problem solving in a way reminiscent of agricultural subsidies."
First, why is F needed?
(i.l) The set F is necessary since it is the domain of the operator S, or part

of the domain of the operator W.
One need not say anything further; an operator must have a domain. Never-

theless we will add a few additional points regarding the domain F .
(i.2) For discrete or finite-dimensional problems one can sometimes take the

"maximal" set as F. Thus, in studying the complexity of matrix multiplica-
tions one usually takes F as the set of all n x n matrices. In graph-theoretic
complexity one often takes F as the set of all graphs ( V, E), where V is the
set of vertices and E is the set of edges.

However, for infinite-dimensional problems one cannot obtain meaningful
complexity results if F is too large. For example, the largest F one might take
for integration is the set of Lebesgue-integrable functions, but then comp(e) =
+CX3, Ve > 0 in the worst case setting. The e-complexity remains infinite even
if F is the set of continuous functions.

To make the complexity of an infinite-dimensional problem finite, one must
take a smaller F in the worst case setting or switch to the average case setting.
Thus, as we saw in §2, in the average case setting with a Wiener measure, the
complexity is finite even if F is the set of continuous functions.

(i.3) The use of F is not confined to IBC. In discrete computational com-
plexity researchers often use a set F which is smaller than the maximal set. For
example, if F is the set of all graphs then many problems are NP-complete.
If F is a specified smaller set, then depending on the problem it may remain
NP-complete or it may be solvable in polynomial time. See, for example, Garey
and Johnson [79].

(i.4) We believe the dependence of complexity on F is part of the rich-
ness of IBC. For example, in the integration problem it is interesting to know
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how complexity depends on the number of variables and the smoothness of the
integrands.

(i.5) For a moment, we specialize our remarks to matrix computations. One
could study the complexity of large linear systems for the set F of all invertible
matrices of order n . Then to compute an e-approximation one would have to
recover the matrix A by computing n matrix-vector multiplications; this is a
negative result.

We find criticism (i) particularly odd since an entire book, Parlett [80], is
devoted to only the eigenvalue problem for symmetric matrices. The reason
is, of course, that the algorithms and the analysis for the symmetric eigenvalue
problem are very different than for arbitrary matrices. But then why is the
concept of F so elusive?

Researchers in numerical linear algebra often consider other important sub-
sets of matrices such as tridiagonal, Toeplitz, or Hessenberg matrices.

We turn to the criticism that there should be a charge for knowing member-
ship in F.

(ii.l) Is IBC being held to a higher standard? Do researchers in other dis-
ciplines charge for F ? For example, researchers in numerical analysis often
analyze the cost and error of important algorithms. The analysis depends on
F. To give a simple example, the analysis of the composite trapezoidal rule
usually requires that the second derivative of the integrand is bounded. There
is no charge for membership in F. Indeed, how would one charge for knowing
that a function has a bounded second derivative?

(ii.2) We believe that P [92] confuses two different problems:
(a) approximation of S(f) for / from F,
(b) the domain membership problem; that is, does / belong to F ?

Domain membership is an interesting problem which may be formulated within
the IBC framework, although it has nothing to do with the original problem of
approximating S(f) for feF.

We outline how this may be done. First, to make the domain membership
problem meaningful we must define the domain of /, say the set F, in such a
way that the logical values of f e F vary with / from F, i.e., 0 ^ FriF ^ F.
Let S : F -> {0, 1} c 1 be given by

S(f) = XF(f),   V/eF,
where Xf is the characteristic (indicator) function of F.

Then the problem is to compute S{f) exactly or approximately. Observe
that we now assume that feF just as we assumed that / G F for problems
of type (a).

For the domain membership problem we charge for computing an approxi-
mation to S{f ), and the complexity of the domain membership problem is the
minimal cost of verifying whether f £ F.

In the worst case setting, only the exact computation of S(f) makes sense
since for e > i the problem is trivial, and for e < \ it is the same as for e = 0.
However for the average case or probabilistic settings, an e-approximation may
be reasonable. For instance we may wish to compute S(f) with probability
1-e.

It is easy to see that, in general, the domain membership problem cannot be
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solved in the worst case setting. To illustrate this, let T be the set of continous
functions, and let F be the set of r times continuously differentiable functions,
r > 1. Let the class A of information operations consist of function values. It
is obvious that knowing n values of f, no matter how large n may be, there
is no way to verify whether / is a member of F.

The domain membership problem can be studied in the average case or prob-
abilistic settings. Its complexity may be large or small depending on F and F .
An example of work for this problem is Gao and Wasilkowski [90] who study
a particular domain membership problem.

(ii.3) Finally, we are at a loss to understand the following sentence from
P [92, 2.B], "Whenever F is very large (for example, the class of continuous
functions or the class of invertible matrices) then it is realistic to assign no cost
to it." Why is it realistic to assign no cost for "large" F , and why is it necessary
to assign cost to "small" F ? Where is the magic line which separates large F
from small F ?

5. Large linear systems

We briefly describe IBC research on large linear systems and then respond to
the criticisms in P [92]. Let

Ax — b,
where A e F, and F is a class of n x n nonsingular matrices. Here b is a
known n x 1 vector normalized such that ||è|| = 1, and || • || stands for the
spectral norm.

Our problem is defined as follows. For any A e F and any ||è|| = 1 compute
an e-approximation x,

\\Ax-b\\ <e.
Usually A is sparse and therefore Az can be computed in time and storage

proportional to n . It is therefore reasonable for large linear systems to assume
that the class A of information operations consists of matrix-vector multiplica-
tions. That is, we can compute Azx, Az2,... , Azk, where z, may depend on
the known vector b and on the previously computed vectors Az\,..., Az¡-i.
To stress that the right-hand side vector b is known we slightly abuse the no-
tation of §2 and denote

(5.1) Nk(A,b) = [b,Azl,...,Azk],       AeF,
as the information about the problem. The number k is called the cardinality
of information. For this to be of interest, we need k < n .

Krylov information is the special case when we take z\ = b and z, = Az¡^\.
Thus Krylov information is given by

Nf*(A, b) = [b, Ab,... , Akb].
In what follows we will use the concept of orthogonal invariance of the class

F . The class F is orthogonally invariant iff

AeF   implies   QTA QeF
for any orthogonal matrix Q, i.e., satisfying QTQ = I.

Examples of orthogonally invariant classes include many of practical interest
such as symmetric matrices, symmetric positive definite matrices, and matrices
with uniformly bounded condition numbers.
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We first discuss optimal information for large linear systems which is defined
as follows. The e-cardinality number m(e) (see §3) denotes now the minimal
cardinality k of all information Nk of the form (5.1) with r(Nk) < e. Obvi-
ously, m(e) depends on the class F and the class A. The information N£ is
optimal iff k = m(e) and r(N^) < e.
Remark. In §2 we define the e-complexity optimality of a pair (N, <fi). In
this section optimality of information JV£ is introduced. How are these two
optimality notions related?

In general, they are not. However, as already indicated in §2, for many prob-
lems the cost of computing N£(A, b) is proportional to cm(e) and there exists
an algorithm </>* that uses A£ and has error e and combinatory cost propor-
tional to m(e). Then the pair (7V£ , <j>*) is (almost) e-complexity optimal. In
this case, the two notions of optimality coincide and the complexity analysis
reduces to the problem of finding optimal information. Details may be found
in TWW [88, Chapter 4, §4].   D

In TW [84] we conjecture that for the class A of matrix-vector multiplica-
tions and for any orthogonally invariant F, Krylov information is optimal.

Chou [87], based on Nemirovsky and Yudin [83], shows that Krylov informa-
tion is optimal modulo a multiplicative factor of 2. More precisely, let ra^e)
denote the minimal cardinality k of Krylov information for which r(Nk<I) < e .
For any orthogonally invariant class F , we have

m(e) < m^e) < 2 m(e) + 2.
Recently, Nemirovsky [91] shows that for a number of important orthogonally
invariant classes F and for m(e) < \(n - 3), Krylov information is optimal,

m(e) = m^is).
We now discuss algorithms that use Krylov information. We recall the def-

inition of the classical minimal residual (mr) algorithm; see, e.g., Stiefel [58].
The mr algorithm, </Jmr, uses Krylov information Nj^iA, b) and computes the
vector xk such that

\\Axk - b\\ = min{\\Wk(A)b\\: Wk is a polynomial
of degree < k and  Wk(0) = 1}.

Thus, by definition the mr algorithm minimizes the residual in the class of
polynomial algorithms.

The mr algorithm has many good properties. Let mKl(E, <pmT) denote the
minimal cardinality of Krylov information needed to compute an e-approxima-
tion by the mr algorithm. Obviously, m^ie) denotes the minimal cardinality
of Krylov information needed to compute an e-approximation in the class of
all algorithms. For any orthogonally invariant class F, we have (see TW [84])

m^e) < m^ie, </>mr) < m^e) + 1.

These bounds are sharp. That is, for some F we have m^ie) = mKr(e, <f>mT),
and for other F we have mKl(e, <j>mi) = m^ie) + 1.

For all practically important cases, m^e) is large and there is no significant
difference between m^e, </>mr) and m10"^). Therefore the mr algorithm is
always recommended as long as F is orthogonally invariant.
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The mr algorithm minimizes, up to an additive term of 1, the number of
matrix-vector multiplications needed to compute an e-approximation among
all algorithms that use Krylov information in an orthogonally invariant class
F . In this sense, the mr algorithm is Krylov-optimal, or for brevity, optimal.

We comment on the mr algorithm.
( 1 ) The mr algorithm computes xk without using the additional properties

of A , AeF, given in the definition of the class F . This is desirable
since the computation of xk is the same for all F . The vector xk can
be computed by the well-known three-term recurrence formula using at
most \0kn arithmetic operations.

(2) Although the mr algorithm competes with all algorithms, in particular
with algorithms that may use the additional properties of A given in
the definition of F , the mr algorithm can lose at most one insignificant
step. Equivalently, one may say that ./or any orthogonally invariant class
F, the a priori information about the class F and the fact that AeF
is worth at most one step.

(3) On the other hand, if F is not orthogonally invariant then the mr
algorithm may lose its good properties. Example 3.5 of TW [84] pro-
vides such a class for which the worst happens; the mr algorithm takes
n steps to solve the problem, whereas the optimal algorithm, which is
nonpolynomial, takes only one step.

For an orthogonally invariant class F and for the class A of matrix-vector
multiplications, these results yield that the pair Krylov information and mr
algorithm is (almost) e-complexity optimal in the sense of §2. Furthermore, we
have rather tight bounds on the worst case complexity. More precisely,

(5.2) comp(e) = cambie, </>mr),

where c is the cost of one matrix-vector multiplication and

a e [0.5 - l/m^e, </>mr) , 1 + 10/i/c].

For small e and c > n , we have roughly a e[\, 1].
Because of (5.2), the problem of obtaining the complexity reduces to the

problem of finding mKj(e, <j>mr). This number is known for some classes F ;
see TW [84] and TWW [88, Chapter 5, §9]. We discuss two classes:

F, = {A : A = AT > 0,  and \\A\\2 \\A-% < M) ,
F2 = {A: A = AT, and \\A\\2 \\A~l\\2 < M}.

That is, F\ is the class of symmetric positive definite matrices with condition
numbers bounded uniformly by M. Here M is a given number, M > 1 . The
class F> differs from F\ by the lack of positive definiteness.

For these two classes, the result of Nemirovsky [91] can be applied and for
m(e) < j(n-3) we have better bounds on a ; namely a e [1 - l/m^e, </>mr) ,
1 + 10 n/c]. Thus, for small e and c » n , a ~ 1 .

For the class F\ , we have

m^e, 4>mT) = min { n,
ln((l + (l-e2)'/2)/e)

\n{(MV2 + \)/(Mxl2- 1))
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For small e , large M, and n > Mxl2 In (2/e)/2, we have

m^(e,^).^fln^.

m^e, <f>mT) = min i n, 2

For the class F2, we have

'ln((l + (l -e2)'/2)/e)
ln((Af+l)/(M-l))

For small e , large M, and n > Afin (2/e), we have

mKr(e,0mr)~Ann-.

These formulas enable us to compare the complexities for classes F\ and
F2. For small e, large M, and n > 2M\n (2/e) + 3 , we have

comp(e, Fi ) 1
comp(e, F2)   ~  2v/Ä7'

This shows how positive definiteness decreases the e-complexity.
P [92] has four "high level" criticisms of IBC research on the large linear

systems problem. We also select three additional criticisms from P [92, 4]. We
shall respond to these seven criticisms. P [92] contains other misunderstandings
and errors regarding this topic but we will not try the reader's patience by
responding to each of these. We list the seven criticisms of P [92]:

(i) IBC "is not complexity theory" since "the stubborn fact remains that
restricting information to Krylov information is not part of the linear
equations problem" P [92, 2.A].

(ii) "The trouble with this apparent novelty is that it is not possible to eval-
uate the residual norm \\Az - b\\ for those external z because there is
no known matrix A (only Krylov information). So how can an algo-
rithm that produces z verify whether or not it has achieved its goal of
making \\Az - ¿|| < e||o|| " P [92, 2.C].

(iii) "The ingredient of IBCT that allows it to generate irrelevant results is
the problem class F [see paragraph 2 in (A)]. F did not appear in our
brief description of the theory in the second paragraph of § 1 because
it is not a logically essential ingredient but rather a parameter within
IBCT;" P [92, 2.B].

(iv) "IBCT's suggestion that it goes beyond the well-known polynomial class
of algorithms is more apparent than real;" P [92, 2.C].

(v) "Here is a result of ours that shows why the nonpolynomial algorithms
are of no interest in worst case complexity;" P[92, 4.3].

(vi) "With a realistic class such as SPD (sym, pos. def.) MR is optimal
(strongly) as it was designed to be, and as is well known;" P [92, 4.4].

(vii) "The theory claims to compare algorithms restricted solely to informa-
tion Nj. So how could the Cheb algorithm obtain the crucial parameter
p ?;" P [92, 4.4].

We respond to each of these seven criticisms.
(i) IBC does not restrict information to Krylov information. The optimality

of Krylov information in the class of matrix-vector multiplications is a conclu-
sion, not an assumption.
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IBC does assume a class A of information operations. The reasons why this
is both necessary and beneficial were discussed in §2. Here we confine ourselves
to certain classes relevant to large linear systems.

Let Aj denote the class of matrix-vector multiplications. Then as described
above, for an orthogonally invariant class F we may conclude that Krylov in-
formation is optimal to within a multiplicative factor of at most 2. Furthemore,
we may conclude that Krylov information and the mr algorithm are almost e-
complexity optimal. Rather tight bounds have been obtained on the complexity
of important classes such as F\ and F2, see above. Additional classes of ma-
trices are studied in TW [84].

Let A2 denote the class of information operations where inner products of
rows (or columns) of A and an arbitrary vector z can be computed. Rabin
[72] studied the class A2 for the exact solution of linear systems, e = 0, and
for an arbitrary nonsingular matrix A. He proved that, roughly, \n2 inner
products are sufficient to solve the problem. No results are known for e > 0.

Let A3 denote the class of information operations consisting of arbitrary
linear functionals. Optimality questions for the class A3 are posed in TW [84].
No results are known and we believe this to be a difficult problem.

Let A4 denote the class of information operations consisting of continuous
nonlinear functionals, and let A5 denote the class of nonlinear functionals.
In general, complexity results in A4 and A5 can be different; see Kacewicz
and Wasilkowski [86] and Mathé [90]. For linear systems, these classes are too
powerful since all entries of the matrix A can be recovered by knowing the
value of one continuous nonlinear functional. Thus, the e-cardinality number
is 1 even for e = 0 ; see TW [80, Chapter 7, §3] for related material.

(ii) If the class A consists of matrix-vector multiplications then, of course,
we can evaluate the residual \\Az - b\\ for any z. If z is outside of a Krylov
subspace this requires one additional matrix-vector multiplication.

On the other hand, it is sometimes possible to guarantee that \\Az - b\\ < e,
without computing the residual \\Az - b\\. This can be done by using a priori
information that AeF and the computed Krylov information. An example
of such a situation is provided by the Chebyshev algorithm for the class F =
{A = I-B: B = B1, \\B\\ <p<\}.

In general, if the assumptions are satisfied, IBC is predictive. The results of
the theory guarantee an e-approximation. One simply does the amount of work
specified by the upper bound on the complexity. For important classes of ma-
trices we have seen above that there are rather tight bounds on the complexity.
Therefore this strategy does not require much more work than necessary.

For most problems there is no residual that can be checked. There are resid-
uals for problems related to solving linear or nonlinear equations. In the mul-
tivariate integration example of §2, there is no residual that can be computed.
Yet, IBC guarantees an e-approximation by using a priori information about
the class F.

(iii) We responded in general to the criticism that F is not needed in §4;
here we focus on large linear systems. On this problem P [92, 2.B] states that
"IBCT seems to use F as a tuning parameter designed to keep k < n ."

The domain F is not a tuning parameter; it is needed for the problem to
be well defined. The domain F contains all a priori knowledge about matrices
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A. The more we know a priori, the smaller the domain F becomes, and as
F becomes smaller, the problem becomes easier. Furthermore, a priori infor-
mation is often available in practice. For example, matrices which occur in the
approximation of elliptic partial differential operators are symmetric positive
definite, often with known bounds on condition numbers.

Fortunately, many important classes which occur in practice are orthogonally
invariant and the e-complexity optimality of Krylov information and the mr
algorithm may be applied.

Of course, numerical analysts use different algorithms for different classes of
matrices (symmetric, positive definite, tridiagonal, Toeplitz, etc.) It is therefore
all the more surprising that P [92] objects to the concept of the class F.

(iv) P [92, 2C] claims that there is no need to go "beyond the well-known
polynomial class of algorithms." It should be obvious that all algorithms must
be allowed to compete if we want to establish lower bounds on complexity.

For orthogonally invariant classes it turns out that the restriction to the poly-
nomial class of algorithms does not cause any harm since the classical mr algo-
rithm may lose at most one insignificant step. But this had to be proven!

In fact, it is not uncommon in computational complexity that the known
algorithms (that use the specific information) turn out to be optimal or close
to optimal. Examples include the Horner algorithm for evaluating a polyno-
mial, the finite element method with appropriate parameters for elliptic partial
differential equations, or the bisection algorithm for approximating a zero of a
continuous function that changes sign at the interval endpoints.

For large linear systems, a sufficient condition for almost e-complexity op-
timality of Krylov information and the mr algorithm is orthogonal invariance
of the class F . As mentioned above, Example 3.5 of TW [84] shows that if F
is not orthogonally invariant, the mr algorithm may lose its optimality. In this
example the restriction to the polynomial class of algorithms is harmful because
the optimal algorithm is nonpolynomial.

(v) P [92, 4.3] supports his claim that nonpolynomial algorithms are not
interesting by the Theorem of §4.3. This theorem holds for the class of SPD of
all nx n symmetric positive definite matrices. In this theorem it is shown that
for every nonpolynomial algorithm which computes an approximation outside
the Krylov subspace for A e SPD, there exists a matrix from SPD which has
the identical Krylov information as A and for which the residual is arbitrarily
large.

We do not understand why the Theorem of §4.3 and the one page sketch
of its proof were supplied. The same statement can be found in Example 3.4
of TW [84]. In addition, Example 3.4 shows that polynomial algorithms are
also not good for the class SPD; that is, n matrix-vector multiplications are
needed to compute an e-approximation. The reason neither polynomial nor
nonpolynomial algorithms are good is that the class SPD is too large.

We stress that Example 3.4 and the Theorem of §4.3 hold for F = SPD. As
mentioned above, for any orthogonally invariant class F the nonpolynomial
algorithms are not of interest since it has been proven that the mr algorithm is
optimal, possibly modulo one matrix-vector multiplication. Also, as mentioned
above, if F is not orthogonally invariant, a nonpolynomial algorithm may be
optimal.

(vi) P [92] claims that the mr algorithm is optimal "as it was designed to be"
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for the class SPD. This is simply not true. The mr algorithm is defined to be
optimal in the class of polynomial algorithms. Optimality of the mr algorithm
in the class of all algorithms for the class SPD requires a proof.

(vii) As already explained, the information that AeF = {A = I-B: B =
BT, \\B\\ < P < 1} is not used by the mr algorithm. This means that the
mr algorithm does not use the parameter p which is assumed known a priori
and may be used by competing algorithms. The parameter p is used by the
Chebyshev algorithm and that is why the mr algorithm loses one step for the
class F . P [92, 4.4] turns the positive optimality result for the mr algorithm into
the irrelevant question "how could the Chebyshev algorithm obtain the crucial
parameter p ?" By the way, the parameter p is not so crucial if it decreases the
number of steps by only one!

6. Large eigenvalue problem
P [92] has three "high level" criticisms of the IBC research on the large eigen-

pair problem. He also criticizes the numerical testing. We shall respond to these
four criticisms.

We list the four criticisms of P [92]:
(i) Kuczyñski [86] computes an unspecified eigenvalue; P [92, 2.D].

(ii) IBC "is not complexity theory." The reason given is that "the stubborn
fact remains that restricting information to Krylov information is not
part ...  of the eigenvalue problem;" P [92, 2.A].

(iii) "The fact that b is treated as prescribed data is quite difficult to spot;"
P [92, 2.E].

(iv) "The author has worked exclusively with tridiagonal matrices and has
forgotten that the goal of the Lanczos recurrence is to produce a tridi-
agonal matrix! Given such a matrix one has no need of either Lanczos
or GMR;n P [92, 5.5].

We respond to each of these four criticisms.
(i) P [92] is certainly correct in asserting that when only one or a few eigenval-

ues of a symmetric matrix are sought, then one typically desires a preassigned
eigenvalue or a few preassigned eigenvalues. To be specific, assume that the
largest eigenvalue is to be approximated.

It would be desirable to always guarantee that the largest eigenvalue A\{A)
of a large symmetric matrix A can be computed to within error e. Unfor-
tunately, this cannot be done with less than n matrix-vector multiplications,
that is, without recovering the matrix A ; see TWW [88, Chapter 5, §10]. More
precisely, let F denote the class of all n x n symmetric matrices and let A
consist of matrix-vector multiplications. That is, N(A) = \Az\, ... , Azk],
where z\ is an arbitrary vector and z, for / > 2 may depend arbitrarily on
Az\, ..., Azi-\. Then for k < n - 1, there exists no such N and no algorithm
4> which uses N such that U{A) = 4>(N(A)) satisfies

\Xi{A)-U{A)\<e\\A\\,    VAeF.
We are surprised that although TWW [88] is cited in P [92], he does not seem
to be aware of this result.

Thus, the goal of computing an e-approximation to the largest eigenvalue
of a large symmetric matrix cannot be achieved, if less than n matrix-vector



PERSPECTIVES ON INFORMATION-BASED COMPLEXITY 47

multiplications are used. This is, of course, a worst case result. There are a
number of options for coping with this negative result. One could stay with the
worst case setting but settle for an unspecified eigenvalue. Or one could give
up on the worst case guarantee and settle for a weaker one. We consider these
options in turn.

(i.l) One option is to settle for an unspecified eigenvalue. More precisely, the
problem studied by Kuczyñski [86] and Chou [87] is defined as follows. For
AeF, compute (x, X) with x eRn, \\x\\ = 1, and I e R, such that

\\Ax-Xx\\<z\\A\\.
Chou proved, modulo a multiplicative factor of 2, optimality of Krylov in-

formation N(A) = [Ab,..., Akb], where o is a nonzero vector. Optimal-
ity of Krylov information holds independently of the choice of the vector b.
Kuczyñski proved, modulo an additive term of 2, optimality of the generalized
minimal residual (gmr) algorithm that uses Krylov information. (Optimality
of Krylov information and the gmr algorithm is understood as in §5. These
optimality results hold for any orthogonally invariant class of matrices. )

Since the gmr algorithm has small combinatory cost, we conclude that the
pair Krylov information and gmr algorithm is (almost) e-complexity optimal.
Kuczyñski found good bounds on the worst case error of the gmr algorithm.
Hence, for n > e~', the worst case e-complexity is given by

comp(e) = —,

where a roughly belongs to [\, 1] and, as before, c is the cost of one matrix-
vector multiplication.

(i.2) A second option is to attempt to approximate the largest eigenvalue but
to settle for a weaker guarantee. KW [89]4 study this problem in the random-
ized setting. (See, e.g., TWW [88, Chapter 11] for a general discussion of the
randomized setting.)

In particular, the Lanczos algorithm is studied. The Lanczos algorithm uses
Krylov information N(A) - [Ab, A2b,... , Akb] with a random vector b
which is uniformly distributed over the unit sphere of K". The error is
defined for a fixed matrix A while taking the average with respect to the vec-
tors b.

To date only an upper bound on the error of the Lanczos algorithm with
randomized Krylov information has been obtained. This upper bound is pro-
portional to ((In n)/k)2.

As always, to obtain complexity results both the information and the algo-
rithm must be varied. Lower bounds are of particular interest. The complexity
of approximating the largest eigenvalue in the randomized setting is open.

(ii) P [92, 2.A] states "... the stubborn fact remains that restricting infor-
mation to Krylov information is not part ... of the eigenvalue problem."

Although we have mentioned several times in this paper that P [92] seems
unaware of the results regarding optimality of Krylov information we are par-
ticularly surprised that he appears unaware of this result in the context of the
large eigenvalue problem. P [92] repeatedly cites Kuczyñski [86] where Chou's
result is reported.

4This paper is mistakenly referred in P [92] as [Tr & Wo, 1990].
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(iii) P [92, 2.E] states "the fact that b is treated as prescribed data is quite
difficult to spot." Perhaps the reason it is difficult to spot is that it is not
prescribed.

What is assumed known? It is known a priori that A is a symmetric n x n
matrix. Furthermore, we are permitted to compute Az\, ... , Azk , where z;
may be adaptively chosen. We are permitted to choose zx , which is called b ,
arbitrarily. In choosing b we cannot assume that A is known, since the raison
d'etre of methods for solving large eigenvalue problems is just that A need not
be known.

By the result quoted in (i), it is impossible to guarantee that we can find a vec-
tor b such that an e-approximation to the largest eigenvalue can be computed
for all symmetric n x n matrices with k < n .

If Krylov information Ab, A2b, ... , Akb is used then the situation is even
worse. Even for arbitrary k, i.e., even for k > n , an e-approximation cannot
be computed. Indeed, suppose we choose a vector b and a matrix A such that
Ab — b . Then Krylov information is reduced just to the vector b . The largest
eigenvalue cannot be recovered (unless n = 1 ). Thus, for any vector b there
are symmetric matrices A for which Krylov information will not work.

Of course, one can choose b randomly, as was discussed above. The average
behavior with respect to vectors b is satisfactory for all symmetric matrices.
But then one is settling for a weaker guarantee of solving the problem.

P [92, 2.E] claims that for Krylov information "satisfactory starting vectors
are easy to obtain." This remark seems to confuse the worst case and random-
ized settings. To get a satisfactory starting vector b in the worst case setting, the
vector b must be chosen using some additional information about the matrix
A . If such information is not available, it is impossible to guarantee satisfactory
starting vectors. On the other hand, in the randomized setting it is indeed easy
to get satisfactory starting vectors.

(iv) P [92, 5.5] complains that Kuczyñski [86] tests only tridiagonal matrices.
There is no loss of generality in restricting the convergence tests of the Lanc-

zos or gmr algorithms to tridiagonal matrices. That was done in Kuczyñski
[86] to speed up his tests. What is claimed in Kuczyñski [86] for the pairs
(TRI, b), TRI a tridiagonal matrix and b = ex = [1, 0, ... , 0]T , is also true
for the pairs (QT TRI Q, QTb) for any orthogonal matrix Q. Obviously, the
matrix QT TRI Q is not, in general, tridiagonal.

The confusion between the worst case and randomized settings is also appar-
ent when P [92] discusses numerical tests performed by Kuczyñski [86] and by
him.

For the unspecified eigenvalue problem, Kuczyñski [86] compares the gmr
and Lanczos algorithms in the worst case setting. These two algorithms cost
essentially the same per step, and the gmr algorithm never requires more steps
than the Lanczos algorithm. For some matrices, the gmr algorithm uses sub-
stantially fewer steps than the Lanczos algorithm. That is why in the worst case
setting the gmr algorithm is preferable.

P [92] performed his numerical tests for the Lanczos algorithm with ran-
dom starting vectors b. Thus, he uses a different setting. It is meaningless to
compare numerical results in different settings.

Finally, extensive numerical testing is also reported in KW [89] for approxi-
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mating the largest eigenvalue by the Lanczos algorithm with randomized starting
vectors. The Lanczos algorithm worked quite well for all matrices tested. The
numerical tests reported by P [92] and KW [89] show the efficiency of the Lanc-
zos algorithm in the randomized setting.

7. Refinements of IBC
Our response to the criticism in P [92] does not mean that the current model

assumptions of IBC are the only ones possible. On the contrary, we believe
that in some circumstances these assumptions should be refined to improve the
modelling of computational problems. We have mentioned the desirability of
such refinements in, e.g., TWW [88, Chapter 3, §2.3] and W [85, §9]. In this
section we will very briefly indicate some of the possible refinements and exten-
sions of IBC, and indicate partial progress. This is preparatory to responding
to several comments in P [92].

Refinements and extensions of IBC include the following:
(1) We usually assume the real number model in a sequential model of

computation where the cost of a combinatory operation is independent
of the precision of the operands or of the result. Also of interest is a
model where the cost of a combinatory operation depends on the pre-
cision (bit model) and/or on the particular operation. Parallel and dis-
tributed models of computation should also be studied. For examples
of work in these directions see Bojañczyk [84] who studies the approxi-
mate solution of linear systems using a variable precision parallel model
of computation, and Kacewicz [90] who studies initial value problems
for both sequential and parallel models of computation.

(2) We usually assume that for every information operation L e A and
for every feF the computation of L(f) costs c, c > 0. Also of
interest is a model where the cost of an information operation depends
on L, f, and precision. For an example, see Kacewicz and Plaskota
[90] who study linear problems in a model where the cost of information
operations varies with the computed precision.

(3) Let S be a linear operator. Then we often assume that the set F is
balanced and convex; TWW [88, Chapter 4, §5]. In particular, for func-
tions spaces, we often assume that F is a Sobolev space of smoothness
r with a uniform bound on ||/(r)||. It is of interest to study F which
do not have such a nice structure.

P [92, 1] states "a handful of reservations about IBC have appeared in print."
These "reservations" turn out to concern refinements of IBC. P [92] writes that
Babuska [87] calls for realistic models. For example, Babuska points out that
for some problems arising in practice the set F does not consist of smooth
functions but rather of functions which are piecewise smooth with singularities
at unknown points. We agree that this is an important problem. A promising
start has been made by Wasilkowski and Gao [89] on estimating a singularity
of a piecewise smooth function in a probabilistic setting.

Babuska observes that the user may not know the class F or not know F
exactly, and suggests the importance of algorithms which enjoy optimality prop-
erties for a number of classes. We agree that this is an important concern and
a good direction for future research.  See W [85, §9.3] where this problem is
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called the "fat" F problem and where partial results are discussed. One attack
on this problem is to address the domain membership problem defined in §4.
As indicated there, this can only be done with a stochastic assurance.

P [92, 1] asserts that in a review of TWW [83], Shub [87] "gives a couple of
instances of unnatural measures of cost." (These words are from P [92], not
from Shub [87].) Shub, in a generally favorable review (the reader may want to
verify this), suggests circumstances when the cost of an information operation
should vary. We concur.

8. Summary
P [92, 2] states five high level criticisms of IBC. We responded to them in

the following sections:

Criticism Response
A 1, 3, 5, 6
B 4, 5, 6
C 5
D 6
E 6

There are additional criticisms, and in §§5 and 6 we responded to the ones
which seem most important.

P [92, 1] states that "a handful of reservations about IBCT have appeared
in print." He neglects mentioning the many favorable reviews. He cites two
examples of reservations. We discussed the comments of Babuska [87] and
Shub [87] in §7.

P [92] is based upon the following syllogism:
( 1 ) Major Premise: If two specific papers of IBC are misleading, then IBC

is flawed.
(2) Minor Premise: Two specific papers of IBC regarding matrix computa-

tions are misleading.
(3) Conclusion:   IBC is flawed.

We have shown that his reasons for believing the minor premise are mistaken.
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