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We present an approach, framed in information theory, to assess nonlinear causality between the subsystems

of a whole stochastic or deterministic dynamical system. The approach follows a sequential procedure for

nonuniform embedding of multivariate time series, whereby embedding vectors are built progressively on the

basis of a minimization criterion applied to the entropy of the present state of the system conditioned to its

past states. A corrected conditional entropy estimator compensating for the biasing effect of single points in the

quantized hyperspace is used to guarantee the existence of a minimum entropy rate at which to terminate the

procedure. The causal coupling is detected according to the Granger notion of predictability improvement, and is

quantified in terms of information transfer. We apply the approach to simulations of deterministic and stochastic

systems, showing its superiority over standard uniform embedding. Effects of quantization, data length, and noise

contamination are investigated. As practical applications, we consider the assessment of cardiovascular regulatory

mechanisms from the analysis of heart period, arterial pressure, and respiration time series, and the investigation

of the information flow across brain areas from multichannel scalp electroencephalographic recordings.
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I. INTRODUCTION

Quantification of the direction and strength of the coupling

among simultaneously observed systems from the analysis of

time series recordings is an important topic currently under

investigation in many fields of science. In the study of physio-

logical systems, a huge number of theoretical and experimental

studies have been published in recent years, with typical

examples regarding cardiovascular and cardiorespiratory in-

teractions [1], and synchronization of neural signals [2]. The

mathematical formulation of the concept of causality given by

Wiener [3] and formalized by Granger in the context of linear

regression models of stochastic processes [4] has become

a reference approach for identifying directional interactions

between coupled systems. Even though its original formulation

was based on measuring predictability improvements in

bivariate linear autoregressive models, Granger causality was

successfully extended to multivariate linear models [5], as

well as to nonlinear systems [6]. While they have been proven

useful in addressing specific issues of cardiovascular or neural

interactions, model-based approaches are often of difficult

generalization as they may suffer from the shortcomings of

model mis-specification.

As an alternative to linear or nonlinear parametric models,

information-theoretic methods [7] constitute a valid, model-

free approach to assess nonlinear causality for both determin-

istic and stochastic systems. The key for assessing causality

within the information-theoretic framework is to incorporate

the flow of time into the desired measure through the utilization

of conditional probabilities. According to this concept, Porta

et al. [8] exploited the definition of conditional entropy [9]

to measure causality in bivariate systems as the amount of

information carried by one process when the past of the
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other process is known. Further developing this idea through

independent approaches, Schreiber [10] and Palus et al. [11]

defined the concepts of transfer entropy and conditional mutual

information, which have been shown to be equivalent later

on [12]. These measures allow us to quantify the amount of

information exchanged between two systems separately for

both directions and, when desired, conditional to common

signals. The assessment of causality based on information

transfer is framed in different terms with respect to the Granger

approach, the first involving the concept of uncertainty and

the second the concept of predictability. Nevertheless, the

relation between transfer entropy and Granger causality is

known [11,13], and analytical equivalence has been very

recently demonstrated [14], bridging information-theoretic

approaches to the classical predictability-based approaches for

the evaluation of causality.

Even though various measures have been proposed in the

past [15], the practical application of information-theoretic

concepts to the evaluation of Granger causality on multivariate

experimental time series is not a trivial task. One major issue is

related to how to perform proper conditioning, i.e., to choose

which and how many past states of the considered processes

have to be considered for the estimation of conditional

entropy. This problem can be seen in terms of performing

suitable multivariate embedding of the considered set of time

series [16]. The large majority of approaches applied so far

implicitly follow uniform multivariate embedding schemes

where the components to be included in the embedding

vectors are selected arbitrarily or separately for each time

series [15,17,18]. The obvious arbitrariness and redundancy

introduced by this strategy are likely to cause problems

such as overfitting and detection of false causalities [12,13].

Another issue is related to the estimation of entropies them-

selves. While several estimators designed for multidimen-

sional spaces can be applied for conditional entropy estimation

[7], a common problem is the bias that increasingly affects
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conditional entropy estimates at augmenting dimensionality

of the embedding vectors. These issues become critical when

factors typical of practical applications, such as the data length

and the signal-to-noise ratio, decrease to the values commonly

encountered in experimental short-term time series analysis.

In this work, we focus on applicability of information theo-

retic methods for the evaluation of nonlinear Granger causality

on multivariate deterministic and/or stochastic coupled pro-

cesses. Taking inspiration from the ideas outlined in Refs. [16]

and [8,19], we propose an information-theoretic approach

to assess causality among multiple time series measured

from coupled dynamical systems, which integrates together a

sequential procedure for nonuniform multivariate embedding

for allowing proper conditioning, and a corrected estimate

of the conditional entropy allowing bias compensation. The

method is described in detail in Sec. II, tested on several

simulations of deterministic and stochastic systems in Sec. III,

and applied on physiological time series from cardiovascular

and brain systems in Sec. IV. Summary results are discussed

in Sec. V.

II. METHODS

A. Assessment of nonlinear Granger causality through

conditional entropy estimation

Let us consider M physical processes X1,...,XM , as interact-

ing subsystems of a whole observed stochastic or deterministic

system. Given the M time series of length N,{xm,n},m =
1,...,M,n = 1,...N , generated from the processes, we treat

them as short, and possibly noisy, descriptors of the states

assumed by the subsystems over time; the state xm,n visited by

Xm at time n is associated with the probability p(xm,n).

In order to describe the dynamics of one of the processes,

say Xi , we need to define composite processes consisting

of words, or embedding vectors. For instance, Xi may

be characterized through a uniform univariate embedding

procedure whereby the k past states of the process, collected

in the embedding vector x
(k)
i,n = (xi,n−1, . . . ,xi,n−k) with joint

probability p(x
(k)
i,n), are exploited to describe the current state

xi,n. The dynamical state of the process is reflected in the

transition probabilities p(xi,n|x(k)
i,n), measuring the probability

for Xi to be in the state xi,n at time n when the preceding

states at times n − 1, . . . ,n − k are xi,n−1, . . . ,xi,n−k . The

uncertainty of a transition into a new state is quantified through

the conditional entropy [9]:

H
(

xi,n|x(k)
i,n

)

= −
∑

n

p
(

xi,n,x
(k)
i,n

)

ln p
(

xi,n|x(k)
i,n

)

, (1)

where the sum extends over all states visited by Xi . The

conditional entropy may be expressed as H (xi,n|x(k)
i,n) =

H (xi,n,x
(k)
i,n) − H (x

(k)
i,n), where H(·) denotes the entropy of a

vector variable measuring the amount of information carried

by the variable. As a result, the conditional entropy in Eq. (1)

may be interpreted as the residual information carried by the

present of the ith process when its past is known up to a lag k.

According to the Granger notion of predictability improve-

ment [4], causality from the process Xj to the process Xi is

assessed comparing the entropy of Xi conditioned on its own

past and the past of all processes except Xj , and its entropy

conditioned on the past of all processes, including Xj . The

two steps require us to design procedures for multivariate

embedding where components from different processes are

included into the embedding vectors. In the classical uniform

embedding framework, the embedding vectors are

x(Kj ) =
(

x
(k1)
1,n , . . . ,x

(kj−1)

j−1,n,x
(kj+1)

j+1,n, . . . ,x
(kM )
M,n

)

,
(2)

x(K) =
(

x
(k1)
1,n , . . . ,x

(kM )
M,n

)

with dimensions

Kj =
M

∑

m=1

m�=j

km

and K =
∑M

m=1 km, respectively. These vectors are used as

conditioning vectors to calculate the entropies H (xi,n|x(Kj ))

and H (xi,n|x(K)), which are in turn combined to assess the

resolution of uncertainty (i.e., increase of predictability or

decrease of information) of the present of Xi yielded by

consideration of the past of Xj :

Cj→i = 1 −
H (xi,n|x(K))

H (xi,n|x(Kj ))
. (3)

The index Cj→i ranges between 0 and 1, and its magnitude

reflects the coupling strength as a measure of the amount of

information carried by Xi which is explained exclusively by

the past of Xj . This quantity can be taken as a normalized

version of the transfer entropy proposed by Schreiber [10]

when more than two processes are considered.

The estimation of the quantity in Eq. (3) from multiple

time series poses problems related to appropriateness of the

embedding procedure. As a matter of fact, the traditional

procedures for uniform embedding, yielding the embedding

vectors in Eq. (2), introduce issues of arbitrariness and

redundancy that may become critical in the assessment of

causality. While in linear Granger causality appropriate order

selection methods may be implemented [20], in nonlinear

extensions like ours the selection of the embedding dimensions

ki , and of the relation between the overall dimensions Kj

and K, is not straightforward. In addition, even with a proper

selection of the embedding dimension, the uniform scheme

may include redundant terms that bring overlapping informa-

tion, with possible consequences in the causality estimates.

From a theoretical standpoint, in deterministic systems an

exhaustive embedding based only on components from Xi

(with dimension k � 2d + 1, where d is the dimension of the

manifold where the observed motion develops [21]) would

be sufficient for explaining the dynamics of Xi , and thus

predicting its states; in this case, the index Cj→i would be

indeterminate regardless of the strength of coupling exerted

from Xj to Xi . From a practical standpoint, an uncontrolled

inclusion of components into the embedding vectors would

easily lead to overfitting and detection of false causalities [13].

Another aspect is related to the known bias affecting estimation

of the conditional entropy, which leads to entropy values

becoming more and more underestimated at increasing the

dimension of the embedding vectors [8,19]. The modifications

to the traditional procedures for embedding formation and

conditional entropy estimation proposed in the following

section aim at addressing these critical issues.
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B. Nonuniform multivariate embedding and corrected

conditional entropy

We propose to assess causality through a procedure for

nonuniform multivariate embedding in which the form of the

embedding vectors is not imposed a priori like in Eq. (2), but

is determined in a sequential way selecting progressively the

terms that contribute most to the description of the observed

dynamics. These terms are taken from a set of candidate

terms which includes the past states of the processes under

analysis, X1,...,XM . As reported above, to quantify causality

from Xj to Xi we need to compare the entropy of Xi measured

either after conditioning on the past of all processes, or

after conditioning on the past of all processes except Xj .

To this end, two different sets of initial candidate terms are

defined, respectively including and excluding the past states

of Xj : � = {xi,n−l|i = 1, . . . ,M; l = 1, . . . ,L} and �−j =
{xi,n−l|i = 1, . . . ,M,i �= j ; l = 1, . . . ,L} (L is the maximum

lag at which the past of each process is investigated; it may

vary across processes). Given the candidate set, the procedure

starts with an empty embedding vector x(0), and then proceeds

as follows:

(i) for each k � 1, form the candidate vector (x,x(k−1))

where x is an element of the candidate set not already present

in x(k−1);

(ii) compute the entropy of Xigiven the considered candi-

date vector, H [xi,n|(x,x(k−1))];

(iii) repeat steps (i) and (ii) for each x belonging to the

candidate set and not already selected, and then retain the

candidate x̃, which minimizes the conditional entropy, i.e., set

x(k) = (x̃,x(k−1)) such that x̃ = argx min H (xi,n|(x,x(k−1)));

(iv) if a minimum of the conditional entropy is found,

i.e., the condition H (xi,n|x(k)) > H (xi,n|x(k−1)) holds, exit the

algorithm; otherwise increase k and go back to step (i).

After exiting the algorithm, the selected embedding vector

is the one which minimizes the conditional entropy, i.e., x(K)

such that K = k − 1. The corresponding entropy is taken

as a measure of the amount of information carried by Xi ,

which is not explained by the set of candidate terms; taking

either � or �−j as the initial set of candidates, the entropies

H (xi,n|x(K)) and H (xi,n|x(Kj )) are computed and used as in

Eq. (3) to quantify causality from Xj to Xi . As it selects

progressively the candidate that minimizes conditional entropy

[at step (iii)] and the length of the embedding vector that again

minimizes conditional entropy [at step (iv)], the procedure

described above optimizes the embedding of the multivariate

time series in order to better explain the dynamics of the

considered process starting from the considered set of initial

candidate terms. We note that the criterion for candidate

selection is based on information reduction rather than on

temporal ordering. Hence it may happen that a past term is

selected before a more recent one; however, this does not affect

the resulting measure, as joint probabilities are insensitive to

the ordering of components within vector variables. Another

observation is that the sequential procedure described here

does not guarantee convergence to the absolute minimum of

conditional entropy. However, it was preferred to an exhaustive

exploration of all possible combinations of candidate terms,

which would become computationally intractable still at low

embedding dimensions.

To yield conditional entropy estimates, which do not

decrease monotonically at increasing the length of the

conditioning vector, but exhibit a well defined minimum,

we followed the strategy proposed in [8,19]. This strategy

is based first on performing uniform quantization of the

observed time series to compute conditional entropy, and

then on introducing a corrective term to compensate the

bias occurring in entropy estimation. Each original time

series xm,n is first normalized to have zero mean and unit

variance, and then coarse grained spreading its dynamics

over Q quantization levels of amplitude r = (xmax
m − xmin

m )/Q,

where xmax
m and xmin

m represent the minimum and maximum

values of the normalized series. The resulting quantized series,

denoted as ξm,n, take discrete values within the alphabet

of Q symbols A = {0,1, . . . ,Q − 1}. As a result, uniform

quantization applied to a given embedding vector x(k) builds

a uniform partition of the k-dimensional state space into Qk

disjoint hypercubes of size r; all vectors falling within the

same hypercube are associated with the same quantized vector

ξ (k) and are thus indistinguishable within the tolerance r.

The entropy of x(k) is approximated with the entropy of its

discrete version ξ (k): H (ξ (k)) = −
∑

ξ (k)∈Ak p(ξ (k)) ln p(ξ (k)),

where p(ξ (k)) is an estimate of the joint probability p(x(k))

obtained as the frequency of occurrence of ξ (k) within Ak .

Then, an estimate of the conditional entropy H (xi,n|x(k)) is

given by

H (ξi.n|ξ (k)) = H (ξi.n,ξ
(k)) − H (ξ (k)). (4)

As pointed out in [8,19], when the conditional entropy is es-

timated from time series of limited length, it always decreases

towards zero with increasing the embedding dimension k. This

effect results from the fact that, letting k increase, an increasing

number of vectors x(k) will be found alone within a hypercube

of the k-dimensional space and, as a consequence, also the

vectors (xi,n,x
(k)) will be alone in the (k + 1)-dimensional

space. Therefore their contribution to H (xi,n|x(k)) is null, and

a bias towards a reduction of the entropy rate is introduced. To

counteract this bias, we use the following corrected conditional

entropy measure:

H c(ξi,n|ξ (k)) = H (ξi,n|ξ (k)) + n(ξ (k))H (ξi,n), (5)

where n(ξ (k)) is the fraction of k-dimensional quantized vectors

found only once in Ak[0 � n(ξ (k)) � 1]. With this correction,

in the presence of a single point inside a hypercube, its

null contribution is substituted with the maximal amount of

information carried by a white noise with the same marginal

distribution of the observed process Xi [i.e., H (ξi,n)].

The application of the procedure for nonuniform embed-

ding, with utilization of the corrected conditional entropy

estimator described above, leads to the conditional entropy

estimates H c(ξi,n|ξ (K)) and H c(ξi,n|ξ (Kj )), respectively, when

� and �−j are taken as the initial set of candidate terms. These

measures are combined as in Eq. (3) to obtain an estimate of

the causal coupling from Xj to Xi :

Cc
j→i = 1 −

H c(ξi,n|ξ (K))

H c(ξi,n|ξ (Kj ))
. (6)
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III. SIMULATED SYSTEMS

This section reports the evaluation of the proposed approach

on numerical examples reproducing different conditions of

interaction among multiple subsystems. We consider both non-

linear deterministic and linear stochastic simulated systems,

with varying number of interacting processes and coupling de-

grees. The effect of relevant factors such as time series length,

level of noise contamination, and number of quantization levels

used for entropy estimation are investigated.

In order to perform reliable detection of causality from

one process to another, we use a statistical approach for

the detection of the significance of each specific estimated

value of causal coupling. The approach performs a comparison

between the original value of the considered measure and the

distribution of such a measure under the null hypothesis of

absence of coupling over the assigned causal direction. As the

analytic null distribution of the proposed causality measure

is not available, we exploit a method based on surrogate data

to reproduce it empirically. First, we use the technique of

time shifted surrogates [16,18,22] to generate multiple (S =
40 in this study) realizations of the input process Xj , which

share the statistical structure of the original time series xj,n,

but are not causally coupled to the output time series xi,n.

The technique simply shifts the original series (xj,1,...,xj,n)

of a randomly selected lag l (l > 20) to yield the surrogate

series (xj,l+1, . . . ,xj,N ,xj,1,...,xj,l
). The causal coupling from

Xj to Xi is then computed both for the set of original time

series {x1,n, . . . ,xM,n} and for the S sets of series in which

xj,n is substituted by one of the surrogate series. As the null

distribution of the causal coupling is hardly symmetric, we

perform the test for significance on the basis of rank ordering.

According to the distribution-free plotting position formula

devised in [23], we estimate the type-I error probability as

α = 1 − (i − 0.326)/(S + 1 + 0.348), where i is the position

taken by the original causal coupling within the ascending

ordered sequence of original and surrogate causal coupling

values (the test is one-sided); for instance, if the statistic for the

original series is the second largest (i = 40), the null hypothesis

of absence of causality can be rejected with significance

α = 0.0405. We remark that the significance levels set in

this way are appropriate for testing causality over the assigned

selected direction, while a correction for multiple comparisons

would be necessary if one had to test for the presence of

causality within the whole observed system (according to

the null hypothesis of absence of coupling in at least one

direction).

A. Coupled Rössler-Lorenz system

The first considered example is the unidirectionally coupled

Rössler-Lorenz map (with M = 2 subsystems) [24], where an

autonomous Rössler system,

ż1(t) = −6[z2(t) + z3(t)],

ż2(t) = 6[z1(t) + az2(t)], (7a)

ż3(t) = 6[b + z1(t)z3(t) − dz3(t)],

with parameters a = 0.2, b = 0.2, d = 5.7, drives a Lorenz

system, in which the equation for the variable y2 is augmented

by a driving term involving the variable z2 with coupling

parameter C:

ẏ1(t) = 10[−y1(t) + y2(t)],

ẏ2(t) = 28y1(t) − y2(t) − y1(t)y3(t) + Cz2
2(t), (7b)

ẏ3(t) = y1(t)y2(t) − (8/3)y3(t).

We denote the Rössler and Lorenz systems as X1 and X2,

and consider z2 and y2 as driving and driven variables, which

we denote as x1 and x2, respectively. The differential equations

were iterated using an explicit Runge-Kutta method with a

time step of 0.01. After discarding the first 105 iterations to

eliminate transients, time series x1,n and x2,n of length N =
10 000 were generated. The coupling strength was varied in

the range C = {0, 0.5, 1, 1.5, 2, 2.5, 3}; for each value of

C, 100 realizations of the processes were generated varying

the initial conditions for the two subsystems. Moreover, to

investigate dependence of the results on data size, the analysis

was repeated for shortened versions of the time series obtained

cutting the original series to the reduced lengths N = 100, 300,

500, 750, 1000, or 5000.

A representative example of the analysis is reported in

Fig. 1. The sequential procedure for nonuniform embedding

applied to the Lorenz system starting from a set of initial

candidates excluding terms from the Rössler system [Fig. 1(a);

x2,n is described from �−1 = {x2,n−1, . . . ,x2,n−10}] terminates

at the step K1 = 3, yielding the embedding vector x(K1) =
(x2,n−1,x2,n−2,x2,n−8) and the corresponding minimum cor-

rected conditional entropy Hc(ξ2,n|ξ
(K1)) = 0.708. When

Rössler terms are included in the set of initial candidates

[Fig. 1(b), � = {x1,n−1, . . . ,x1,n−10,x2,n−1, . . . ,x2,n−10}], the

procedure selects the same terms for the first two steps, but

includes x1,n−6 in place of x2,n−8 at the third step; this leads

to a reduction in the minimum corrected conditional entropy,

which is now H c(ξ2,n|ξ (K)) = 0.653, and consequently to a

positive causal coupling Cc
1→2 = 0.078. The significance of

this value is assessed, repeating the analysis after substitution

of the input series x1,n with a set of time-shifted surrogates.

This alters the procedure executed with � as the initial

candidate set: as shown in Fig. 1(b), the minimum corrected

conditional entropy values estimated for the surrogates are

always higher than that estimated for the original series, so

that the original causal coupling is the largest of the sequence

of original and surrogate causal coupling values, and the test

is rejected with significance α = 0.0163. When the coupling

over the opposite causal direction (from Lorenz to Rössler)

is investigated, exclusion or inclusion of terms of the Lorenz

system X2 from the set of initial candidates used to describe

the Rössler system X1 does not alter the procedure. Indeed,

the selected embedding vectors in Figs. 1(c) and Fig. 1(d)

are the same, x(K2) = x(K) = (x1,n−5,x1,n−6,x1,n−1,x1,n−4); as

a consequence, the minimum corrected conditional entropy

does not change and Cc
2→1 = 0. The same embedding vector

is found also for the surrogate time series [all lines overlap

in Fig. 1(d)], and thus the coupling is not significant over this

direction.
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FIG. 1. Example of application of the sequential procedure for

nonuniform multivariate embedding for the simulation with a Rössler

system (X1) driving a Lorenz system (X2). Plots depict the corrected

entropy conditioned to the optimal candidate vector x(k), estimated at

each step k of the procedure, for X2 when the set of initial candidate

terms is �−1 (a) or � (b), and for X1 when the set is �−2 (c) or � (d).

The candidate term selected at each step is indicated in the plot, and

the horizontal dotted line indicates the minimum estimated corrected

conditional entropy. Multiple lines plotted in gray represent results

of the analysis performed on different sets of surrogate time series.

Analysis parameters: coupling strength C = 1.5, time series length

N = 500, number of quantization levels Q = 6, maximum lag of the

terms included in the initial sets of candidates L = 10.

Figure 2 summarizes the results of the analysis performed at

varying the coupling strength C. As imposed by the procedure,

the embedding vectors contain only terms of the studied system

when terms of the other system are excluded from the set of

initial candidates [in Figs. 2(a) and 2(d), all terms are from X2

and from X1, respectively]. When the procedure is repeated

starting from the most comprehensive set of initial candidate

terms (� = {x1,n−1, . . . ,x1,n−10,x2,n−1, . . . ,x2,n−10}), terms

from the input system may enter the embedding vector describ-

ing the output system. Specifically we note that, increasing the

coupling parameter C, an increasing number of terms from

X1 enter the embedding vector describing X2 [Fig. 2(b)]; this

greater importance of the input terms is reflected by increasing

values of the causal coupling from X1 to X2 [Fig. 2(c), black

squares]. On the contrary, the embedding vector describing X1

keeps containing exclusively terms from X1 even when terms

from X2 could be selected [Fig. 2(e)]; as a consequence, no

variations in the minimum corrected conditional entropy are

observed and the causal coupling from X2 to X1 is uniformly

zero [Fig. 2(f)]. A slight exception to this behavior occurs for

the largest values of the coupling parameter, when a small

percentage of realizations contain one term from X2 [Fig. 2(e)

with C = 2.5 and C = 3] and this results in slightly positive

values of Cc
2→1 [Fig. 2(f)]. A possible explanation of this trend

is in the fact that for C > 2 the systems tend to approach a state

of generalized synchronization [25] in which �−1 and �−2

contain common information; in this condition, behaviors such

as the increase of coupling over the uncoupled direction, or the

decrease of coupling over the coupled direction, observed in

Ref. [16], are likely to occur. The dimension of the embedding

vector is estimated around 4 for both systems and both sets of

initial candidate components. This value is larger than the true

embedding dimension, which is known to be 3 for individual

uncoupled Rössler and Lorenz systems. Slight variations in the

number of components selected as a function of C are observed

for X2, reflecting the fact that the presence of a driving term

may alter the dimension of the system. On the contrary, both K2

and K do not vary with C for the system X1, correctly indicating

that the dynamics of the driving system is not affected by the

coupling strength.

Figure 2(c) reports also the causal coupling evaluated when

a uniform embedding procedure, implemented selecting the

terms through progressive increase of the lags and alternation

between the two series, was used to estimate the causal

coupling (white squares). The comparison with the proposed

nonuniform embedding evidences the inability of the uniform

embedding to detect coupling below C = 2, and the weaker

coupling detected for C � 2.

With the parameter setting of Eq. (7a), which corresponds to

that commonly chosen for studying directional coupling in the

Rössler-Lorenz system [16,24], the driving Rössler system is

in a phase-coherent regime exhibiting a chaotic attractor with

a relatively simple topology. To investigate coupling detection

in the presence of a more complex topological structure, we

set a = 0.25, b = 0.1, d = −8.5 in Eq. (7a), so that the

Rössler attractor becomes a funnel attractor [26]. The results

reported in Figs. 2(c) and 2(f) show that the causal coupling

(black circles) was detected also in this case with the driving

system in the funnel chaotic regime, often even with a better

performance (larger coupling detected) than during the phase-

coherent regime. Hence it appears that the evolution of the

driving system over more complex chaotic manifolds is not

detrimental for the detection of nonlinear Granger causality

towards the driven system.

The dependence of the procedure on the length of the

considered time series is analyzed in Fig. 3. As seen in

Fig. 3(a), the procedure yields a causal coupling from the

Rössler to the Lorenz system increasing progressively with

the coupling parameter C even for time series as short as N =
100 samples. The values of causal coupling tend, with some

exceptions, to be higher for longer time series. Moreover,

the procedure is able to detect the unidirectional nature of

the coupling for all time series length, as coupling on the

opposite direction remains very low [Fig. 3(b)]. Figures 3(c)

and 3(d) report the estimated number of realizations (out of

100) in which the causal coupling was detected as significant

according to the adopted statistical test (the criterion adopted

here takes as significant up to the third largest coupling,

corresponding to a significance level α = 0.0647). The plot

in Fig. 3(c) reflects that of the causal coupling, with a
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FIG. 2. Composition of the embedding vectors and corresponding causal coupling yielded for the simulation with a Rössler system (X1)

in the phase-coherent regime driving a Lorenz system (X2). Left and middle panels depict the dimension of the embedding vectors for the

description of X2 when the set of initial candidate terms is �−1 (a) or � (b), and for the description of X1 when the set of initial candidate terms

is �−2 (d) or � (e). Each bar is partitioned with two colors indicating the number of terms from X1 (black) and from X2 (gray) forming the

embedding vector. Right panels depict the corresponding causal coupling estimated from X1 to X2 (c) and from X2 to X1 (f) (black squares).

Panel (c) includes also coupling values obtained by uniform embedding (white squares), while panels (c) and (f) include coupling values

obtained for the parameter setting of a funnel regime for the Rössler system (black circles). All values in the plots are the average over 100

realizations of the simulation and are expressed as a function of the coupling strength C. Analysis parameters: N = 500, Q = 6, L = 10.

percentage of rejection of the null hypothesis of uncoupling

which increases with the imposed coupling strength and with

the time series length. While the coupling is hardly detected

for C = 0.5 (n1→2 is ∼50% for N = 1000 and lower

for shorter series), the percentage of detection is substantial

(>80%), e.g., for {C � 1,N � 750}, {C � 1.5,N � 500}, and

{C � 2,N � 300}. As perceived in Fig. 2, Figs. 3(b) and 3(d)

show that the coupling over the uncoupled direction starts to

be nonzero and significant for C � 2.5. Again, this result may

be ascribed rather than to the presence of spurious causality to

the emergence of generalized synchronization, which favors

the detection of bidirectional interactions [25].

B. Multivariate coupled Henon maps

As a second example, we consider M = 3 discrete-time

deterministic systems interacting in accordance with the

equations

x1,n = 1.4 − x2
1,n−1 + 0.3x1,n−2 + 0.08

(

x2
1,n−1 − x2

2,n−1

)

,

x2,n = 1.4 − x2
2,n − 1 + 0.3x2,n − 2 + 0.08

(

x2
2,n − 1 − x2

1,n − 1

)

,

x3,n = 1.4 − [C x1,n−1 + (1 − C)x3,n−1]x3,n−1 + 0.1x2,n−2.

(8)

The time series x1,n and x2,n describe two bidirectionally

coupled Henon systems [27] X1 and X2 with identical coupling

strength of 0.08, while the time series x3,n describes a Henon

system X3, which is driven both by X1, through the coupling

parameter C, and by X2. After setting the value of C in

the range 0 to 1, step 0.1, 100 realizations of Eq. (8) were

generated varying the initial conditions and discarding the

first 105 iterations as transients. To study the deterioration

of the method performance in the presence of noise, we

performed the analysis for the clean time series (N = 300) and

after contamination with additive white noise; the noise level

was varied to obtain a signal-to-noise ratio of 25, 20, 15, and

10 dB.

Figure 4 depicts the results obtained, for the clean time

series, when the procedure is performed to quantify causality

from X1 to X3 at varying the coupling parameter C. As shown

in Figs. 4(a) and 4(b), the dimension of the embedding vectors

is very close to 3 for all values of C. While for C > 0 this is the

correct embedding dimension derived from the third equation

in Eq. (8), for C = 0 the procedure selects one term from X2 and

two terms from X3 for the description of X3 [Fig. 4(a)], thus

overestimating the expected dimension which is known to be 2.

However, the selection of one term in excess from X3 does not

affect the evaluation of causality, since the same embedding

vectors are selected also when terms of X1 are included in

the initial set of candidates [with C = 0, Fig. 4(b) indicates

the same composition of the embedding vectors as Fig. 4(a)]

and, as a consequence, the causal coupling from X1 to X3 is

equal to zero [Fig. 4(c)]. With C > 0, the composition of the

embedding vectors always varies when candidate terms from

X1 are allowed in the procedure (i.e., moving from �−1 to � as

the initial set of candidates). Specifically, while starting from

the set �−1 no terms from X1 are selected by construction

[Fig. 4(a)]; starting from the set � a given percentage of

realizations contain a term from X1 [black part of the bars in

Fig. 4(b)]. Such an inclusion determines a deeper minimum in
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FIG. 3. Dependence on time series length for the simulation with

a Rössler system (X1) driving a Lorenz system (X2). Plots depict the

average causal coupling over 100 realizations estimated from X1 to

X2 (a) and from X2 to X1 (b), and the percentage of realizations of

the simulation for which the two causal couplings were significant

according to the test based on surrogate data (c),(d), expressed as a

function of the coupling parameter C for different values of the series

length N. Analysis parameters: Q = 6, L = 10.

the estimated corrected conditional entropy and thus a positive

value for the causal coupling index [Fig. 4(c), black squares].

While the percentage of realizations in which an input term

is selected is very small for C = 0.1 (and in this case also

the causal coupling is very low), it grows for higher imposed

coupling strengths; for C � 0.3, all realizations contain at

least one input term and the estimated causal coupling

takes significant positive values. When C approaches 1, the

composition of the embedding vectors resembles the imposed

one (i.e., one term from each of the three systems is selected)

and the corresponding causal coupling estimates stabilize at

∼0.24. The comparison with the coupling index estimated

through uniform embedding [Fig. 4(c), white squares] indi-

cates the better ability of the proposed nonuniform embedding

to detect the causality relation imposed in the simulated

scheme.

FIG. 4. Composition of the embedding vectors and corresponding

causal coupling yielded for the simulation with three coupled Henon

systems. Upper and middle panels depict the dimension of the

embedding vectors for the description of X3 when the set of initial

candidate terms is �−1 (a) or � (b). Each bar is partitioned with

three colors indicating the number of terms from X1 (black), from

X2 (gray) and from X3 (white) forming the embedding vector. The

corresponding causal coupling estimated from X1 to X3 is in panel

(c) (black squares), which includes also coupling values obtained by

uniform embedding (white squares). All values in the plots are the

average over 100 realizations of the simulation, and are expressed as

a function of the coupling parameter C. Analysis parameters: N =
300, Q = 6, L = 5.

Figure 5 illustrates the effects of observational noise on

the procedure for nonuniform embedding and causal coupling

estimation. As clearly seen in Fig. 5(a), increasing levels

of noise lead to decreasing values of the estimated causal

coupling from X1 to X3. For all noise values except 10 dB,

this decrease seems not problematic, as the percentage of

realizations in which the causal coupling was detected as

significant [Fig. 5(b), imposed significance of the test α =
0.0647] remains zero for uncoupled dynamics (C = 0) and

follows with good approximation the values obtained for the

clean data for coupled dynamics (C > 0). With this series

length, results appear deteriorated for a signal-to-noise ratio

of 10 dB, as a probability of false rejection of 8% is revealed

with C = 0 and the percentage of coupling detection does not

rise above 80% for any value of C > 0.
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FIG. 5. Dependence on noise contamination for the simulation

with three coupled Henon systems. Plots depict the average causal

coupling over 100 realizations estimated from X1 to X3 (a), and

the percentage of realizations of the simulation for which the causal

coupling was significant according to the test based on surrogate data

(b), expressed as a function of the coupling parameter C for different

levels of additive noise. Analysis parameters: N = 500, Q = 6,

L = 5.

C. Coupled map lattice

The third example consists of a ring lattice of M = 10

unidirectionally coupled tent maps [10,17]:

xm,n+1 = f [Cxm−1,n + (1 − C)xm,n],

m = 1, . . . ,M(x0 = xM ), (9)

with f (x) = 1 − 2|0.5 − x|. The strength of the unidirectional

coupling between each pair of adjacent maps of the lattice is

varied from C = 0 to C = 0.5, step 0.05. Figure 6 (circle

symbols) shows the causal coupling along the directions

xm−1 → xm,xm → xm−1, and xm−2 → xm, averaged for each

possible value of m. As expected, Cc
m−1→m is positive and

increases with the coupling strength [Fig. 6(a)], whereas

Cc
m→m−1 is uniformly zero regardless of the coupling strength

[Fig. 6(b)], thus detecting the unidirectional nature of the

coupling. Note that the coupling is also absent over the

direction xm−2 → xm [Fig. 6(c)], reflecting the fact that the

proposed multivariate approach measures exclusively direct

coupling between two sites of the lattice.

The comparison with a bivariate approach (Fig. 6, square

symbols), in which the same analysis is performed considering

only the two time series identifying the direction of interaction,

shows that spurious coupling from xm−2 to xm may be detected

as a consequence of the indirect effect involving the series

FIG. 6. Causal coupling estimated by means of a multivariate

approach (circles) and a bivariate approach (squares) for the sim-

ulation of a coupled map lattice along the directions xm−1 → xm

(a), xm → xm−1 (b), and xm−2 → xm (c), averaged over 20 simulation

runs, starting from random initial conditions and discarding 104 points

as transients. Analysis parameters: N = 300, Q = 6, L = 5.

xm−1 [Fig. 6(c)]. Moreover, for low values of C the bivariate

approach may not be able to detect the unidirectional coupling

between adjacent sites, as some degree of information transfer

is measured also over the uncoupled direction [Fig. 6(b)].

These results show how the utilization of a multivariate

approach using the all of the information coming from high-

dimensional systems may be recommended to rule out spurious

causal effects due to latent variables.

D. Multivariate coupled stochastic processes

The fourth example involves M = 4 linear stochastic

systems generated with the equations

x1,n = 2ρ1cosϕ1x1,n−1 − ρ2
1x1,n−2 + w1,n,

x2,n = 0.5x1,n−1 + 0.5x4,n−1 + w2,n,
(10)

x3,n = 2ρ3cosϕ3x3,n−1 − ρ2
3x3,n−2 − 0.5x1,n−2 + w3,n,

x4,n = 2ρ4cosϕ4x4,n−1 − ρ2
4x4,n−2 + x1,n−2 + w4,n,

where ρ1 = 0.95, ρ3 = 0.8, ρ4 = 0.9, ϕ1 = 0.628, ϕ3 =
1.256, ϕ4 = 1.884, and wi,n are Gaussian white noises with

zero mean and unit variance. The processes X1,X3, and X4

exhibit autonomous stochastic oscillations generated through

the autoregressive terms: the strength and frequency of the
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FIG. 7. Causal coupling strength and significance assessed for

the simulation with four coupled stochastic systems. Plots depict,

for each pair of processes Xi and Xj (i,j = 1,...,4), the interquartile

range (25th percentile, median and 75th percentile) of the distribution

of causal coupling from Xi to Xj estimated from 100 simulation

runs (a), and the percentage of runs for which the coupling was

significant according to the test based on surrogate data (b; black

bars: significance α = 0.0163; gray bars: significance α = 0.0647).

Analysis parameters: N = 300, Q = 6, L = 10.

oscillation of the series xi,n are controlled respectively by the

parameters ρi and ϕi included in the weights of the terms

xi,n−1 and xi,n−2 (i = 1,3,4). Directional connections at lag k

are then obtained from the process Xj to the process Xi setting

a nonzero weight for the term xj,n−k in the right-hand side of

the equation having xi,n as the left-hand side.

The results summarized in Fig. 7 indicate that the procedure

is able to detect the causal relationship imposed in Eq. (10)

and at the same time avoid the detection of spurious causality

over the uncoupled directions. In fact, the distribution of

causal coupling estimated over the 100 realizations is clearly

larger than zero from X1 to X2, to X3 and to X4, and from

X4 to X2, while the coupling is substantially absent over

the remaining causal directions [Fig. 7(a)]. This behavior is

reflected by the percentage of rejection of the null hypothesis

of uncoupling estimated along the different causal directions.

As depicted in Fig. 7(b), such a percentage is substantial for

the coupled directions, while it is close to the expected type-I

error probability for the uncoupled directions.

E. Limits of applicability

Since the proposed approach is directly based on the

concept of Granger causality, its operational implementation

is subject to restrictions and limitations of the causality

definition, which were made explicit by Granger himself in

his seminal papers [4,28]. One of these restrictions is related

to the necessity of providing a causally complete description

of the observed system, in order to avoid detection of spurious

connections due to common sources or missing variables.

Another axiom for Granger causality implies that any variable

that is a perfect function of one or more other variables

should be excluded from the observation set [28]. This case

involves, e.g., fully synchronized systems, for which it is

known that state space-based methods like transfer entropy

[10] and predictability improvement [17,18] cannot detect the

presence of coupling because the driving and driven systems

are indistinguishable to each other.

Like any other approach grounded on the notion of Granger

causality, the proposed method fails to detect causality when

the present state of the investigated process can be fully

described from its own past states. In this case, the entropy

of the driven process conditioned to its own past would

be zero and thus could not be further reduced using data

from the driving process, preventing the detection of the

drive-response system coupling. To explore this situation

in practical examples, we applied our approach to coupled

deterministic and stochastic systems with different degrees of

self-predictability of the observed dynamics. As deterministic

and stochastic systems, we considered respectively two unidi-

rectionally coupled Logistic maps [29],

x1,n = ρ x1,n−1(1 − x1,n−1),
(11)

x2,n = Cx1,n−1 + (1 − C)[ρ x2,n−1(1 − x2,n−1)],

and two unidirectionally coupled autoregressive (AR) process

fed with independent Gaussian white noises w1 and w2 [30]:

x1,n =
√

2ρ x1,n−1 − ρ2x1,n−2 + w1,n,
(12)

x2,n =
√

2ρ[C x1,n−1 + (1 − C)x2,n−1] − ρ2x2,n−2 + w2,n.

In both simulations, C represents the coupling strength

from x1 to x2, while the parameter ρ was varied to achieve

different behaviors for the dynamical system. Increasing ρ

from 3.5 to 4, the logistic maps in Eq. (11) move from a

periodic and fully predictable regime to a chaotic, non-fully

predictable regime. On the contrary, the AR processes in

Eq. (12) become progressively more and more predictable

when ρ is increased from 0 to 0.98. Results in Fig. 8 show,

for values of C set to get a detectable coupling from x1 to

x2, the minimum corrected conditional entropy estimated for

the driven series x2 either excluding or including terms of

the driving series x1 in the set of initial candidate terms.

Considering the deterministic system [Fig. 8(a)] we note that,

for values of the control parameter preceding the onset of

chaos (ρ < 3.57), the driven system is fully described from

its own past states. In this condition, in which the logistic

maps exhibit permanent oscillations of finite period [29],

the minimum conditional entropy is zero both before and

after consideration of the driving series, so that the causal

coupling could not be determined. As soon as chaos sets in

(ρ > 3.57), the driven system is no longer fully predictable

using only its past terms; in this case, the minimum conditional

entropy decreases when candidates from the driving system are

considered, thus allowing the quantification of a positive causal

coupling. If we consider the stochastic system [Fig. 8(b)], we

see that the entropy of the driven series conditioned only to
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FIG. 8. Minimum corrected conditional entropy estimated, on the

simulation of unidirectionally coupled Logistic maps (a) and AR

processes (b), for the series x2 when the set of initial candidate terms

is �−2 (black squares) or � (white squares). All values in the plots are

the average over 20 realizations of the simulation, and are expressed

as a function of the parameter ρ in Eqs. (11) and (12). Analysis

parameters: C = 0.2 for the Logistic system (a), C = 0.5 for the AR

system (b); N = 1000; Q = 6; L = 10.

its own past never falls to zero, even for values of the control

parameter approaching the condition of maximum regularity

of the dynamics (ρ = 0.98). Correspondingly, the inclusion of

terms from the driving series always leads to a reduction in

the minimum conditional entropy, thus favoring the detection

of the imposed causal coupling.

Another important aspect, which may affect the applicabil-

ity of the proposed approach, is related to the dependence of

the results on the parameters determining entropy estimation

in practical time series of finite length. To assess such a

dependence within the framework proposed in this study, we

studied the effects of varying the number of quantization levels

Q. Theoretically, increasing Q would lead to finer partition of

the state space, better estimates of conditional probabilities,

and ultimately to more accurate coupling estimates. This

observation holds for N → ∞. In real applications the series

length is finite and Q should remain as low as QK ≈ N

to guarantee a reliable approximation of probabilities with

sample frequencies [19]. Figures 9 and 10 show the corrected

conditional entropy and causal coupling estimated as a

function of the coupling strength for different values of Q and

N set for the simulations of Eqs. (11) and (12), respectively. As

a general result, we see that the utilization of finer partitions

yielded by increasing Q brings about an increase of corrected

conditional entropy estimates, as well as a decrease in the gap

between entropies estimated, for the driven series, excluding

and including the driving series in the analysis (Figs. 9 and

10, left columns). This second result leads to estimates of the

causal coupling that decrease progressively at increasing the

number of quantization levels (Figs. 9 and 10, right columns).

As expected, these effects are dependent on the time series

length, in such a way that if N is higher the causal coupling

may be detected for higher values of Q. This result is related

to the fact that probabilities in higher dimensional state spaces

are estimated with progressively increasing accuracy for longer

time series.

FIG. 9. (Color online) Dependence on the number of quantization

levels Q used to estimate conditional entropy for the simulation

of unidirectionally coupled Logistic maps with ρ = 3.8. Plots

depict the minimum corrected conditional entropy for the series x2

when the set of initial candidate terms is �−2 (filled symbols) or

� (empty symbols) (left panels), together with the corresponding

causal coupling (right panels), averaged over 20 simulation runs and

expressed as a function of the coupling parameter C for time series

length N = 300 (a), N = 500 (b), and N = 1000 (c).

IV. EVALUATION ON PHYSIOLOGICAL SYSTEMS

This section describes the evaluation of the proposed

approach for quantifying nonlinear Granger causality in physi-

ological systems where commonly only short time series (few

hundred points) are available due to stationarity constraints.

The considered applications are the study of short-term inter-

actions among cardiovascular and cardiorespiratory variability

series, and the study of propagation of the electrocortical

activity of the brain measured from multichannel electroen-

cephalographic (EEG) recordings. We apply the nonuniform

embedding procedure quantizing the physiological time series

with Q = 6 quantization levels and using L = 10 as maximum

lag for the candidate terms.

A. Cardiovascular and cardiorespiratory interactions

As a first practical application, we study nonlinear

causality in short-term cardiovascular and cardiorespiratory
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FIG. 10. (Color online) Dependence on the number of quantiza-

tion levels Q used to estimate conditional entropy for the simulation

of unidirectionally coupled AR processes with ρ = 0.94. Plots and

symbols are as in Fig. 9.

interactions. The considered dynamical systems are the

respiratory system, the vascular system, and the cardiac

system, which we denote as X1,X2, and X3, respectively.

The acquired signals are noninvasive recordings of

electrocardiogram (ECG, lead II), finger photopletismographic

arterial pressure (Finapres device) and respiratory nasal flow

(by differential pressure transducer) obtained in a young

healthy subject (20 years old) in sinus rhythm and breathing

spontaneously [31]. From these signals, the beat-to-beat time

series of the heart period (x3,n), systolic arterial pressure

(x2,n), and respiratory flow (x1,n) are offline measured,

respectively, as the sequences of the temporal distances

between consecutive R waves of the ECG, the local maxima

of the arterial pressure signal inside each detected heart period,

and the values of the respiratory signal taken at the onset of

each heart period. Two stationary, artifact-free windows of

N = 300 samples, measured synchronously for the M = 3

time series, are considered for the analysis, the first in the

resting supine position and the second in the upright position

assumed by the subject after passive head-up tilting. As the

adopted measurement convention allows instantaneous (i.e.,

not delayed) effects from respiration to systolic pressure and to

heart period, as well as from systolic pressure to heart period,

we include the zero-lag term in the set of initial candidate

components when appropriate; for instance, the set � =
{x1,n, x1, n−1, . . . , x1, n−10,x2,n,x2,n−1, . . . ,x2,n−10,x3,n−1, . . . ,

x3,n−10}, including the zero-lag terms x1,n and x2,n in addition

to the lagged terms, is considered for the analysis of causality

from X1 to X3.

The results of the analysis are reported in Fig. 11. In

each plot, results of the description of the target series xi

are shown for the procedure applied either excluding or

including in the initial set of candidate components the terms

of the input series xj , yielding, respectively, the black and red

(gray triangles) curves. A difference between the two curves

is observed only if some terms from the input system are

selected for the embedding of the target system, leading to

a decrease in the corrected conditional entropy and thus to a

positive value of the causal coupling. In the supine position

[Fig. 11(a)], this situation occurs from X1 to X2 and to X3,

and from X3 to X2, with causal coupling values detected as

significant in accordance with the test based on surrogate data

(S = 40 surrogates, significance α = 0.0163). The opposite

situation, with terms from the input system not selected even

when available in the set of candidates, leads to unaltered

conditional entropy estimates. This occurs from X2 to X1,

from X3 to X1, and from X2 to X3, with coupling equal to zero

(and nonsignificant). The overall picture is in agreement with

behaviors that are well explainable in terms of the known

cardiovascular physiology: The unidirectional interactions

from X1 to X2 and from X1 to X3 document expected

physiological mechanisms whereby respiration affects both

the arterial pressure, through mechanical effects, and the heart

rate, according to the so-called respiratory sinus arrhythmia

phenomenon [32]; moreover, the significance of the coupling

from X3 to X2 and the simultaneous absence of coupling in

the opposite direction from X2 to X3 are in agreement with

the notion that mechanisms operating in the direction from

heart period to arterial pressure may prevail, in the nonsolicited

resting condition of the subject, over the baroreflex mechanism

describing driving effects from systolic pressure to heart

period [33,34]. Results obtained in the upright position after

head-up tilt evidence an alteration of the Granger causal

relationships among the observed systems [Fig. 11(b)]. While

the mechanical effects of respiration on systolic pressure are

still described (the coupling from X1 to X2 is significant,

α = 0.0405), the respiratory sinus arrhythmia mechanism

from respiration to heart period is dampened (the coupling

from X1 to X3 is null) as a consequence of the shift of

the cardiovascular sympathovagal balance toward sympathetic

activation and vagal deactivation provoked by tilt [35]. In

addition, the emergence of a strong coupling from X2 to X3

(significance α = 0.0163), together with the corresponding

decrease of coupling from X3 to X2 (significance α = 0.0647),

document an enhanced regulation over the baroreflex pathway

consequent to the continuous solicitation of the sympathovagal

balance resulting from the assumption of the upright position

[34–36].

B. EEG interactions

As a second practical example, the method is applied on

EEG recordings measured from different cortical locations in
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FIG. 11. (Color online) Application of the procedure for nonuniform multivariate embedding to respiratory flow (x1), systolic arterial

pressure (x2), and heart period (x3) time series measured in the supine position (a) and in the upright position (b). Each plot depicts the corrected

conditional entropy of Xi when the set of initial candidate terms is �−j (black circles) or � [red (gray) triangles], estimated as a function of

the dimension k of the embedding vector. The candidate term selected at each step of the procedure in indicated in the plot.

a young healthy subject (27 years old) resting in the relaxed

awake state, both during eyes closed and eyes open conditions

[37]. We consider multichannel EEG recorded according to

the international 10-20 system (Fpz common reference), with

256-Hz sampling rate. As preprocessing steps, signals are

band-pass filtered (Fast Fourier Transform filter, 0-40 Hz)

and downsampled to 64 Hz. Different cortical areas are

considered selecting appropriate electrode locations (M =
4): X1, posterior area (electrode Pz); X2, left central area

(electrode C3); X3, right central area (electrode C4); X4,

frontal area (electrode Fz). In order to reduce the effects of

the reference electrode location, the signal to be analyzed for

each area is obtained subtracting from the signal measured

at the considered electrode the average signal of its four

nearest electrodes, according to the Hjorth surface Laplacian

technique [38]. Two artifact-free windows of 8 s duration

(N = 512 samples), in the eyes closed and eyes open

conditions, are then selected for the analysis.

Figure 12 reports the causal coupling estimated between

each pair of time series in the two conditions. During eyes

closed, nonzero values of causal coupling are observed from

the posterior area towards all other cortical areas, and from the

left central to the right central areas [Fig. 12(a)]. This pattern

of Cc
i→j values suggests that the EEG activity in this condition

propagates mainly along a back-to-front direction, while

front-to-back propagation is absent. The result is strengthened

by the statistical analysis, showing that the link is significant

over all directions for which the coupling value is nonzero.

This behavior is likely related to the presence of a dominant

α activity in subjects with eyes closed [39]. This activity is

supposed to originate in the occipital visual cortex, located

in proximity of the posterior brain areas, and then to spread

toward the central and anterior brain areas [40]. Another

interesting result is that the stronger coupling is that from the

posterior to the frontal areas, both in absolute value (Cc
1→4 =

0.088) and in statistical significance (the original coupling

value is larger than any surrogate value). The observation that

α activity is more coupled between posterior and anterior

cortical regions than between central and other regions was

reported in early studies [41]. Besides the back-to-front EEG

propagation, a significant interaction from X2 to X3 is also

observed. This observation is in agreement with previous

results [37,42] showing that in the eyes closed condition the

sources of EEG activity are mainly located in the left occipital

areas, and propagate in the forward direction but also toward

the right hemisphere. The results obtained with eyes open,

reported in Fig. 12(b), are less easy to interpret because the

literature is mostly focused on studies of traveling waves of

the α activity, while the αrhythm is known to weaken with the

opening of the eyes. Multivariate embedding procedures like

ours provide a nonlinear measure of Granger causality which is

not restricted to specific frequency bands, but rather reflects the

interaction between the overall dynamics of the two considered

subsystems. Hence the generally low values observed for

causal coupling, with statistical significance reached in only

one causal direction, are likely to indicate the presence of

a pattern of EEG signals in which multiple and/or irregular

rhythms do not exhibit a consistent direction of propagation.
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FIG. 12. Application of the procedure for nonuniform multivari-

ate embedding to EEG signals measured with eyes closed (a) and

with eyes open (b). Each plot depicts the estimated causal coupling

from Xi to Xj evaluated for the original time series (circles) and for

the set of S = 40 surrogate time series (gray crosses). Filled circles

represent causal coupling values detected as statistically significant

(significance: α = 0.0647). X1 = posterior; X2 = left central; X3 =
right central; X3 = frontal.

V. DISCUSSION

We have presented a model-free, information theoretic

tool for the assessment of nonlinear Granger causality from

multiple interacting dynamical systems. Being grounded

on information theory, the method does not make strong

assumptions about the nature of the investigated dynamics,

and thus works both for deterministic and stochastic systems.

This property favors utilization on physiological time series in

which the type of the dynamics cannot be assumed a priori.

The approach was devised to cope with problems typical

of application of information-theoretic tools on multiple

experimental time series, such as the bias affecting estimation

of the conditional entropy at increasing the dimensionality of

the embedding and/or decreasing the length of the available

data.

The main peculiarity of the approach is the procedure

devised for nonuniform embedding of multiple time series.

Such a procedure allows an intuitive selection of the terms

to be included in multivariate embedding, based on the fact

that only the candidate components which contribute most to

the prediction of the target series are allowed to enter—in a

progressive fashion—the embedding vector. Unlike traditional

uniform embedding schemes where components from all

series are included in multivariate embedding vectors, in our

nonuniform embedding scheme the components are selected

only if they are useful for prediction. We have demonstrated

the superiority of nonuniform embedding in the detection

of Granger causality, showing that the arbitrariness inherent

to uniform embedding may mask the detection of weak

coupling conditions. Moreover, this feature allows us to control

overfitting and, ultimately, to limit the rate of false causality

detection. In fact we found that, considering the situations in

which absence of coupling was imposed from one system to

another in our simulation examples, in the large majority of

cases no one component of the input system was included in

the embedding vector, so that the procedure returned causal

coupling equal to zero along the uncoupled directions. Few

exceptions of input components entering the embedding vector

in uncoupled directions were observed for very short or

noisy time series. These situations led to negative or slightly

positive values of the causal coupling that resulted in being

undistinguishable from those obtained for input surrogate time

series where components enter the embedding vector only by

chance.

The second important aspect is the utilization of the

corrected conditional entropy estimator. By compensating the

bias that affects the conditional entropy estimates at increasing

the embedding dimension, the corrected estimator serves to

provide an objective criterion, i.e., the corrected conditional

entropy minimum, for the termination of the embedding

procedure. As also seen in the investigated simulated systems,

the empirical correction proposed here does not guarantee

to retrieve the correct embedding dimension; this appears

too demanding a task to be achieved from short and noisy

data realizations. However, we found that this fact does not

affect remarkably the detection of Granger causality and

the quantification of the coupling strength. In the absence

of coupling, the estimated embedding dimension was small

enough to avoid the inclusion of unwanted input components

which could give rise to spurious causality; in the presence of

coupling, it was large enough to allow inclusion of relevant

input components, which made the causal coupling differ

significantly from zero. As expected, both specificity and

sensitivity degraded with shortening of the available data

sequences and with noise contamination. Nevertheless, the

approach allowed reliable rejection and detection of causality

in the conditions typical of experimental time series (few

hundred points available and limited noise corruption). In these

conditions, both the causal coupling values and the rate of

causality detection were found to increase with the coupling

parameter set in the simulations.

The limits of applicability of the method were investigated

evaluating its ability to detect coupled states either for different

types of dynamical systems, or for different values of the anal-

ysis parameters. In general terms, the approach does not work

whenever the driven process is fully predictable without any

need of using samples from the driving signal. We found that

this is the case for deterministic nonchaotic systems in which

the present state of the driven process is functionally related to

its past states and/or to the past states of processes other than

the driving one. In such a case, no causal interaction could be

detected by any method based on Granger causality because

the full description of the driven system is obtained already

before incorporating information from the driving system.

On the contrary, we showed applicability of the method for

stochastic systems, where the intrinsic nature of the observed

dynamics does not allow the corrected conditional entropy to
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decay to zero, as well as for deterministic chaotic systems,

where the evolution from similar states cannot be fully

predicted. Applicability was demonstrated for a broad range of

simulated deterministic chaotic systems or stochastic systems,

ranging from continuous to discrete systems, from bivariate to

multivariate and spatially extended processes, over realizations

of different length and using different values for the analysis

parameters. We ascribe the ability of the approach to detect

the information transfer in such a broad range of situations

to the progressive nature of the proposed embedding scheme

and to the strict threshold implicitly set by the conditional

entropy estimator, which limits the number of components

selected by the procedure to those effectively important for

the description of the observed dynamics. For instance, in

deterministic systems an embedding scheme working on the

driven variable only would be theoretically as good as a scheme

involving both driven and driving variables, provided that the

embedding dimension is sufficiently high. Since the proposed

procedure prevents the inclusion of redundant components into

the embedding vector, it realizes a parsimonious approach

to the reconstruction of the state space, seeking the lowest

dimension of the reconstructed space that allows the best

predictability of the driven dynamics. This feature is helpful to

improve causality estimation and definitely contributes to the

efficacy of the proposed method. This way to proceed shares

some similarities with a very recently proposed method using

nonuniform embedding and an arbitrary threshold selection

on conditional mutual information for estimating directional

coupling in bivariate deterministic systems [16].

The approach has been shown to be useful in the description

of physiological systems composed of multiple interacting

subsystems, such as the cardiovascular and cardiorespiratory

ones, and of spatially extended physiological systems, such

as the cortical system where EEG activity is supposed to

propagate among different scalp locations. We emphasize

that here a preliminary analysis was performed to verify the

feasibility of the approach in different fields of application,

and that systematic tests performed on extensive databases

should be carried out to corroborate the validity of the results.

Nevertheless, we observed patterns of Granger causality which

agree with known mechanisms of cardiovascular physiology

and neural physiology; significant examples are the emergence

of causality from arterial pressure to heart period variability

with the assumption of the upright position, documenting an

increased activity of the baroreflex regulation of heart rate, and

the presence of causality from the posterior towards the central

and anterior EEG recorded during eyes closed wakefulness,

suggesting a back-to-front propagation of the brain αwaves.
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