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Capacities for angular and wavelength multiplexed holographic data storage systems 
are considered. Limitations due to the spatial resolution of the recording and 
reconstructing fields and to the holographic recording process are derived. 

1. Introduction 
Photosensitive volume media have long been considered for applications in data storage. 
Proposals for volume holographic storage were developed shortly after the introduction of 
the laser and interest has continued at varying degrees of intensity since [l, 21. Despite this 
history, volume storage has not been incorporated into commercial systems. Optical data 
storage currently finds commercial viability only in low-cost data distribution on CD 
ROM and in quasi-archival storage on removable disk read-write drives. Both of these 
technologies were made possible by the development in the past twenty years of low-cost 
diode lasers. 

Explanations of the failure of volume storage to achieve commercial success include 
materials oriented and fundamental limitations on recording on 3-D holograms [3, 41, 
noise issues in the reconstruction of holograms [5, 61, the lack of overlap between the 
wavelength range of inexpensive recording sources and the wavelength range of good 
holographic materials, the expense of mechanical and electrooptic equipment for 
scanning volume media, the lack of high-resolution/high-contrast 2-D spatial light modu- 
lators, the sophistication of the control equipment required to form many grating holo- 
grams, and perhaps even insufficient cost-utility value for very large memories in 
currently available digital equipment. In our opinion, materials, source and modulator 
limitations are the most significant barriers. The importance of the modulator and control 
system is emphasized by the fact that until recently relatively few studies had even 
attempted many-hologram storage in volume media [7-91, despite the often discussed 
potential, because hardware for automating the process was unavailable. Even now, the 
resolution and contrast of common liquid crystal modulators is inadequate for real-time 
data storage. 
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Progress in source, modulator and materials research offers hope for alleviating barriers 
to volume data storage systems. Source technologies of potential importance include 
visible solid state sources, high-power diodes and broad temporal bandwidth solid state 
sources. While most experimental studies of volume storage have relied on gas lasers, inex- 
pensive solid state sources are necessary for commercial applications. Gas lasers have been 
necessary to obtain power densities and wavelengths compatible with available photosen- 
sitive media. In the last decade, however, the power, coherence and wavelength range of 
solid state sources has improved dramatically. 2-D modulator technologies have also 
improved. 3-D data storage uses 2-D modulators to encode information for recording 
into the volume. If 3-D storage is to be competitive with 2-D data storage, the spatial 
resolution of these modulators must be comparable to the spatial resolution of 2-D 
storage systems. Ironically, this constraint makes optical disk technology the best candi- 
date for volume control systems. Materials development has not been as dynamic as 
source and modulator work, mostly because materials studies must be specific to the data 
storage problem. A great deal of attention has been paid to photorefractive media, which, 
despite progress on spectral sensitivity and fixing, have not provided a full answer to 
the materials problem. More recently, organic media have begun to be investigated more 
closely. 

Given recent improvements in source and modulator technologies and the availability of 
microprocessor-controlled recording systems, systematic experimental studies of volume 
storage are much more practical now than in the past. Despite the thirty-year history of 
volume holographic storage proposals, optimal designs for these systems are not well 
known and the information-theoretic principles behind their design have not been system- 
atically presented. Our aim in this paper is to elucidate these principles. We consider both 
angularly and wavelength multiplexed multiple hologram storage. Both approaches 
are shown to support substantial information densities. The information capacity 
of a volume data storage system is determined by the space-bandwidth product, which is 
basically the spatial extent of the system divided by the resolution of the data-encoding 
mechanism. In optical storage, resolution is fundamentally limited by the optical wave- 
length. In practice, geometrical factors in system design further limit resolution. In the 
second section of this paper, we calculate the volume of Fourier space spanned by the 
control fields for various volume recording geometries. We discuss the capacity of these 
systems and the relative advantages of each approach. 

The information capacity of volume holographic systems is strongly influenced by the 
information recording process. If data is stored nonholographically, for example by 
layered photolithographic construction of the volume, the space-bandwidth product of 
the probe system is the true limit of the information capacity. In holographically recorded 
systems, however, the most fundamental limitation on information capacity is the loss 
of dynamic range arising from multiple-exposure holography [3, lo]. The diffraction 
efficiency of each hologram in a multiply exposed volume falls inversely with the square 
of the number of holograms recorded. In Section 3 we show that this problem limits 
the factor by which the capacity of a volume memory may exceed the capacity of a planar 
memory. 

2. The band volume 
The information capacity of 3-D data storage is fundamentally limited by the spatial resol- 
ution of the recording and reconstructing fields. One expects the information capacity to 
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be approximately the holographic volume divided by the volume of the smallest feature, 
or voxel. A more formal estimate of the information capacity is obtained from Fourier 
analysis. A hologram is a dielectric modulation in 3-D. Assume that the modulation is 
nonzero only within the finite volume V and that the 3-D spatial Fourier spectrum of 
the modulation occupies an approximate Fourier volume 0 .  We call 52 the band 
volume. If the modulation is sampled at points on a periodic lattice, the actual hologram 
might be recoverable if the volume of the unit cell of the reciprocal lattice exceeds 52. If v is 
the volume of the unit cell of the sampling lattice, the volume of the unit cell on the 
reciprocal lattice is llv. The number of samples taken is V/v. The original hologram 
might be recovered if 

52 > l/v (1) 

An upper bound on the number of degrees of freedom stored in the hologram is therefore, 

S I  VR (2) 

In principle, any grating with spatial frequency less than 2/X can be recorded and recon- 
structed using light of wavelength A. This means that in monochromatic holographic 
system, 

In a polychromatic system, 

R 532n/3&, (4) 

where A,, is the minimum wavelength used in the system [ll]. In practice, it is both diffi- 
cult and, as we argue in the next section, unwise to fully utilize the available band volume. 
In practical systems the spatial bandwidth covered by the recorded hologram is limited by 
the apertures of the control optics and the angular or wavelength tuning characteristics of 
the optical fields. In this section we evaluate the addressable band volume in angular and 
wavelength multiplexed holographic systems. In Section 3, we consider the implications of 
data encoding, reconstruction and recording algorithms on this limit. 

f ***w 
****-a 

#** '\. .,\\\9..\\\\\\..\..\\..\\\, 
ANGULARLY-TUNED 
REFERENCE WAVE 

Figure I Angularly multiplexed hologram recording geometry. 



D. Brady and D. Psaltis 

A 3-D holographic data storage system consists of a high-resolution 2-D spatial light 
modulator, such as film or optical disks, a reference field, a holographic volume and a 
sensor array. Data is encoded in 2-D and stored in 3-D by sequential recording of differ- 
ent 2-D fields. Between exposures the system geometry or recording wavelength is changed 
to address a new segment of the band volume. In this section we evaluate the band volume 
addressed by three types of recording systems. We first consider conventional angle multi- 
plexed memories, which use a plane wave reference to record a page of data and scan from 
one page to the next by varying the angle of incidence of the reference field [12]. Second, 
we consider the band voiume addressed in a stationary plane wave reference system in 
which the band volume addressed in each exposure is changed by rotating the holo- 
graphic volume. Third, we consider a stationary plane reference system in which the band 
volume addressed in each exposure is changed by changing the optical wavelength. We do 
not consider non-plane .wave reference fields, which may be useful for data encoding but 
which do not substantially affect the band volume of the system. 

An angularly multiplexed holographic storage system is sketched in Fig. 1. Signals gen- 
erated on a spatial light modulator (SLM) interfere in a photosensitive volume with light 
from an angularly tuned reference source to create a spatially modulated index of refrac- 
tion. The wave interactions of this system can equivalently be sketched in Fourier space, 
as shown in Fig. 2. The spherical shell is the wave normal surface at the recording wave- 
length. The wave vectors representing the signals form a cone and the wavevectors of the 
reference fields are represented by an arc. In considering Fourier space, we make a distinc- 
tion between the optical Fourier space sketched in Fig. 2 and ‘grating space’. Grating 
space is the Fourier transform space of the holographic modulation. In Fig. 2, the range 
of grating frequencies addressed is the range of difference vectors between the wavevectors 
of the signal field and the reference field. Let 0, represent the angle between the centre axes 
of the signal field and the reference field. The angle between a particular wavevector in the 
signal (reference) field and the z axis is 0, (0,). Reference fields lie entirely in the z-x plane. 
The angle between the projection of a signal field in the x-y plane and the x axis is &. We 
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Figure 3 R,,, as a function of 00 for 
“0 A/3=10”. 

assume that the signal fields occupy a circular region on the normal sphere of angular 
radius A0. The wavevectors in the signal field are 

k, = k,, sin BS cos @ + k0 sin 8, sin &j + cos 8,i (5) 

where -A9 < 8, - es/2 < A8, 

- cos-l 
[ 
cos ae - cos (eo/2) cos 8, 1 < ~ < cos-l [ cos ae - cos (eo/2) cos es 

sin (eo/2) sin es s sin (eo/2) sin es 1 (6) 
and A0 < t&/2 < Pi/2 - A@. The wavevectors in the reference field are 

k, = -k. sin 8,i + cos 0, f (7) 

where -A0 < 8, - @s/2 < At). The grating wavevectors between the reference and signal 
fields are 

Kg = -k, - k, P-9 

An upper bound of the volume in grating space spanned by the recording fields is obtained 
by multiplying the range of Kg along the three Cartesian coordinate axes 

Q.,, = (1/8rr3)(Max(KrJ - Min(Ks,))(Max(K,) - Min(K,))(Max(K,) - Min(K,)) 

i 

2 cos (eo/2) sin A0 for In/2 - eo/21 > A0 
8 e. = zsin2A0sinTx 1 - sin (eo/2 - Ae) for 7r/2 - A0 < eo/2 < 7r/2 (9) 

1 - sin (eo/2 + Ae) for 1r/2 + A0 > eo/2 > r/2 

In Fig. 3 X$,,, is plotted as a function of 0,. We assume that A0 = 10”. The band volume 
of the system at B. = 90” is 11.4 times the minimum band volume, which occurs at 
B. = 180”. The difference in capacity between the transmission and reflection geometries 
is apparent when A0 << 1, in which case 

Slest(eO = 907 x 16Ae3/$, (10) 
and 

st,,,(e, = 180”) X 4 ae4/x; (11) 
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Figure 4 $0 as a function of B0 for AtI = 10”. 

A more exact analysis of the band volume is based on the differential volume 

dv=&~~+]]dq&dB,d6’, 

cos Or sin2 8, cos 4, + i sin 8, sin 28, Id& de, de, (12) 

The differential volume is integrated numerically over the range of the signal and reference 
fields to find the band volume of the recording system. As shown in Fig. 4, the actual band 
volume is somewhat less than the estimate of Fig. 3. The band volume at t9, = 90” is 
plotted as a function of A0 in Fig. 5. As shown in the figure, a large numerical aperture 
allows a sizeable fraction of the total band volume to be addressed in the right-angle trans- 
mission geometry. 

Important differences in the band volume are obtained by rotating the holographic 
medium instead of the reference. Qualitatively, rotation of the medium may be preferred 
because the angle between the optical axes of the reference and signal fields remain at the 
optimal value as the sample is rotated. Since rotation of the sample leads to no shift in 

0.25 ‘. 

0,. -< 

0 5 Ill 13 20 Figure 5 k$l as a function of AfI for 
A0 00 = 90”. 
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Figure 6 Band volume for a rotating medium system. The length scale for the three axes is k,,. The 
intersection of the toroidal band volume with the wave normal sphere is the circularly symmetric signal field 
In this figure, the reference and signal fields are orthogonally propagating and the half-angular width of the 
srgnal field IS IO”. 

beam overlap or relative propagation direction, the angular range of this rotation is likely 
to be much larger than the range of the reference angle. The grating wavevectors recorded 
between a plane wave reference and a circular signal field correspond to the vectors 
between one wavevector in the reference field of Fig. 2 and all points in the signal 
field. We can consider the intersection point of the reference wavevector and the wave 
normal surface to be the origin of the grating space. Rotating the recording medium 
results in an identical rotation in grating space. The band volume addressed by rotating 
the volume is the volume covered by rotating the Fourier representation of the signal field 
about the intersection of the reference wavevector with the wave normal sphere. This 
volume, sketched in Fig. 6, is a toroid. The sphere in Fig. 6 is a wave normal surface 

Figure 7 Effective band volume for a 
A9 rotating sample as a function of At? 
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MODULATOR AND VOLUME / DETECTOR ARRAY HOLOGRAM 

Figure 8 Recording geometry for wavelength multiplexed volume data storage. 

for the recording fields. The total potential band volume for recording at this wavelength is 
a sphere of twice the radius of the sphere shown centred on the reference point. The actual 
band volume accessible to the recording fields is the toroid. To account for inversion sym- 
metry in grating space, the effective band volume for this system must be taken to be half 
the volume of the toroid. The band volume can be shown to be 

$0 = (7r2/2) sin 00(1 + cos Ae)(l - cos4 A,) (13) 
where Bo and A0 are the reference and signal axis angles and signal angular width defined 
above. The band volume at O0 = 90" is plotted as a function of A0 in Fig. 7. If we limit the 
rotational range of the recording medium to less than 180°, the effective band volume is 
proportionally decreased. 

Wavelength multiplexed holograms are an alternative to angularly multiplexed holo- 
grams [13]. The basic geometry for a WDM storage system is sketched in Fig. 8. A 
tunable source is used to record a series of holograms at different wavelengths. We do 
not consider simultaneous angular and wavelength tuning because the optimal signal field 
geometries for the two cases are orthogonal. A cross-section of the band volume that can 

t Figure 9 Cross-section of the band volume of 

REFERENCE wavelength multiplexed fields. The full band 

PROPAGATION volume is the cross-section rotated about the 
DIRECTION vertical axis. 
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Figure 70 X30 as a function of tIO for the 
wavelength multiplexed case. In this 
case A,4 = 0.1 X and A0 = 10”. 00 

be addressed by reference fields propagating along a fixed direction is shown in Fig. 9. The 
reference fields propagate straight down and, as above, are separated from the optical axis 
of the signal fields by an angle 8e. The signal fields cover a circularly symmetric solid angle 
of radius A0. One can see from Fig. 9 that the reflection geometry is optimal for wave- 
length multiplexed holograms because the band volume is thickest at the top. The differ- 
ential band volume for the WDM case is 

(14) 

We find the bandwidth of the holographic storage system by integrating the differential 
band volume over the solid angle of the signal field and the spectral range of the 
source. Figure 10 shows the band volume as a function of 8s for a 20” signal field and a 
10% spectral width. The maximum bandwidth for WDM holograms occurs in the reflec- 
tion geometry. As shown in Fig. 11, the bandwidth at &/2 = 90” is approximately linear in 

Figure II X3R as a function of Ax for 
a Ai9=10°. 
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the spectral width. A 5% spectral width, corresponding to 40nm on an 8OOnm centre 
wavelength, yields a capacity similar to the maximum bandwidth for the angularly multi- 
plexed case at this numerical aperture. 

To this point we have limited our discussion to strictly geometric factors limiting storage 
capacity. In practice it is important to consider a number of other factors in designing 
a volume data storage system. Refraction at material interfaces, polarization states 
and materials anisotropies, aperture sizes, scattering noise and crosstalk all impact 
system design. For example, we have seen that the 90” propagation geometry yields opti- 
mal storage capacity for angularly multiplexed holograms. Brewster constraints prohibit 
polarization-preserving scattering of the polarization in the plane of the signal and refer- 
ence optical axes in this geometry. In anisotropic media with strong scattering for the 
in-plane polarization, implementation of the orthogonally propagating geometry may be 
challenging. 

Our analysis of information capacity as a function of the signal solid angle has been 
based on the value of the solid angle inside the holographic material. In practice, refrac- 
tion at the holographic interface changes both the effective solid angle and the effective 
wavelength. If the boundary of the holographic material is required to be flat, refraction 
compresses the free-space solid angle of the control fields. For orthogonally diffracting 
angularly multiplexed holograms, compression of the solid angle and the wavelength off- 
set each other if the reference and signal fields enter the holographic medium from ortho- 
gonal faces. The information capacity in this case can be shown to be approximately 
independent of the holographic medium’s index of refraction. In reflection geometry 
WDM holograms, the principal grating wavevectors are normal to the interfaces. Since 
the reduction in the effective wavelength is maximal along this direction, the increased 
capacity due to shorter wavelengths dominates the compression of the signal solid angle 
and refraction can substantially increase storage capacity. Our analysis need not be 
limited to flat holographic interfaces, however. While curved interfaces may be difficult 
to achieve using crystalline materials, they can easily be fabricated for organic media. If 
we allow the hologram to have spherical interfaces, then refraction does not limit the solid 
angle of the signal field. 

3. Data storage and retrieval 
While the product of the spatial volume and band volume of a holographic system is a 
good estimate of the potential information capacity, this capacity may be difficult to 
achieve in practice. Two aspects of information storage and retrieval limit the storage 
capacity. Information storage is challenging as a result of the loss in dynamic range 
inherent in holographic control [3]. This problem limits the number of exposures that 
can be superimposed in a volume medium. Information retrieval is challenging because 
digital data storage requires that each bit stored must be independently extractable with 
low signal to noise. Since the impact of the control problem is easier to understand if 
we know the coding scheme, we consider the difficulties of discrete data retrieval first. 

Suppose that a hologram that uses the full band volume has been recorded. The 
problem of retrieving the stored data is equivalent to the general problem of optical tomo- 
graphic imaging, but in a data storage system one is less likely to use phase-sensitive detec- 
tion techniques or to consider correlations between reconstruction views to extract data. 
Thus, we must show that the number of independent parameters that can easily be 
extracted from the scattered fields is comparable to the product VCL We assume that 
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the recorded hologram is a permittivity modulation described by 

At(r) = V(r) c a(n)e jfi” 
n 

(15) 

where n is a vector on a three-dimensional number lattice and the sum is over grating 
wavevectors within the controlled band volume. V(r) is a function describing the extent 
of the holographic volume, analogous to the pupil function of Fourier optics. V(r) is 1 
inside the controlled volume and 0 elsewhere. Since scattering from many exposure holo- 
grams is always weak, the Born approximation is appropriate to analysing the scattered 
field. The scattered field due to a plane wave probe with wavevector k, is 

+sw = J J-Iv d3r’G(r - r’)Ac(r)eJkro’ 

where G(r - r’) is a Green function. The three-dimensional Fourier transform of the 
scattered field is 

Q’,(k) = c a(n)V(IGJ + k, - k&(k) II 
where V(k) and B(k) are the Fourier transforms of V(r) and G(r). 

If the probe wave is Bragg matched to the n,-th grating component in At then a signal 
proportional to I is observed in Fourier component of the scattered field at wave- 
vector k = k, + fir,. If a(q) is our stored data bit, the signal-to-noise ratio for detection 
from the spatial spectrum is the ratio of the power in the Bragg matched term to the total 
power in the mismatched terms. Assuming that a(n) is a random variable with a uniform 
phase distribution, the SNR is 

SNR = IV(O) I2 
C.#., IWb - %))I2 

(18) 

Given V(r), it is straightforward to calculate the SNR for various grating densities. For 
example, if the holographic volume is a sphere of radius R then 

V(k) = $ (sin kR - kRcos kR) (1% 

where k = Ikl. Figure 12 shows the SNR for a spherical volume as a function of the 

Figure 72 Ambiguity SNR of the ampli- 
tude of a single grating in a uniformly 
sampled band volume as a function of 
the sampling rate, K. The sampling 
lattice is face-centred cubic and the 
9260 nearest neighbours to Bragg 
match are used to calculate the SNR. 
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Figure 73 Information capacity S, m 
units of VR, as a function of ambiguity 

SNR SNR 

fundamental grating spacing in the band volume, K. The sampling lattice is a face-centred- 
cubic on which K represents the cubic lattice spacing. K = 27r/R reuslts in an SNR of 1.8 
and corresponds to an information capacity of 

S = 4R/(K/2~r)~ = 3V+ (20) 

While this information capacity is comparable to the results of Section 2, one is likely in 
practice to demand greater SNR. S/RV is plotted as a function of SNR in Fig. 13. 

As mentioned above, the number of exposures that can be made in a volume is funda- 
mentally limited. The diffraction efficiency for each image in a series of exposures falls as 
the square of the number of exposures, N, and is independent of the number of degrees of 
freedom per stored image, A4 [3]. The diffraction efficiency into a single component of a 
hologram therefore scales as 1/N2M. Noting that S = NM, the diffraction efficiency of 
a single grating component of a multiple exposure hologram is 

(21) 
where rlmax is the saturation diffraction efficiency of a single grating hologram in the photo- 
sensitive medium. If the photosensitivity of the material is such that very strong holograms 
may be recorded, the effective value of vmax may exceed 1 [lo]. 

The inverse scaling of n with N has several implications. The most obvious is that 
it is better to record a lot of gratings in fewer exposures than a few gratings in a lot of 
exposures. To minimize N, one may choose not to fully populate the band volume with 
gratings. To record grating wavevectors on a cubic lattice in the band volume, one does 

SIGNAL 
FIELD 

REFERENCE 
FIELD 

Figure 74 Displacement of the recording fields in 
grating space for a discrete rotation of holographic 
medium The displacement IS maximal if the signal 
and reference fields are orthogonally propagating. 
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not use the full space-bandwidth product of the recording field in each exposure. To 
record holograms of images that use the full space-bandwidth product of the recording 
system in each exposure, one rotates the hologram or detunes the wavelength by more 
than is required to record new gratings between the reference and signals near the 
axis of the signal field. Figure 14 shows the displacement of recording fields for a discrete 
rotation of the recording medium by 6. To record N exposures, we set S = rr/N. Figure 14 
shows that, as expected, the change in the gratings addressed is maximal for orthogonally 
propagating reference and signal fields. For a fixed rotation, the change in the grating 
recorded is larger near the centre of the signal field than near the edge of the signal 
field. For example, if A0 = lo”, the difference in the displacement from the original signal 
field to the rotated signal field between the centre of the signal field and the edge is 15%. 
This means that less than 15% of the band volume must be wasted when the full space 
bandwidth of the signal fields is used in every exposure. The loss of band volume due 
to this effect is somewhat less in WDM systems. 

A more serious implication of the inverse scaling of q with N is the implied limitation on 
the capacity of the holographic volume. A good estimate of qmax is obtained by multiply- 
ing the reflectance in each grating period by the approximate number of fringes crossed by 
the probe field, which yields 

Vmax = (22) 

where Anmax is the maximum photoinduced change in refractive index and (T is the cross- 
section of the holographic volume. Substituting in Equation 21 and solving for S yields 

f+4g;g (23) 

f, the ratio of the number of bits stored in the volume and the number that might be stored 
on its surface, is a measure of the effectiveness of the holographic storage system. The 
maximum value off is N. Setting f equal to N in Equation 23 and solving for N, we find 
that the maximum value off is 

For a spherical volume, 

(25) 

The minimum acceptable value of n is key to evaluating J If, for example, we wish to 
detect 1000 electrons in 30ms for each stored bit using a detector of quantum efficiency 
0.5 and 1 eV photons, we require lofemtowatts of optical power per data bit. If we read 
the hologram with a 10mW source, this implies that 

77 2 lo-‘* (26) 

For a spherical volume with An = 10e3 this value of n yields f = 750. If, on the other 
hand, An = 10P5, f is only 7.5. Of course, different values off are obtained with different 
sample shapes. For example, a long filament may have very small cross-section and large 
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volume. However, increasing the ratio of V/CJ~‘~ implies a decrease in Ad. In true volume 
storage one maximizes A0, in which case V/CYJ~/~ is of order 1. 

We have shown that the capacity of a holographically controlled volume memory 
exceeds the capacity of a surface memory of the same cross-section by a constant fac- 
tor. This means that the capacity of the volume memory does not increase linearly with 
increasing volume. Of course, capacity increases linearly with volume if a new recording 
volume replaces the old. This means that even in holographic systems it is important to 
maintain as much locality as possible in data storage. Ideally, the storage system is 
designed with the minimum useful holographic volume and a mechanism for scanning 
the recording system across a larger volume. 

4. Conclusion 
System design and geometry dramatically impact the capacity of volume data storage 
systems. Given finite signal space-bandwidth product, we have derived optimal geomet- 
ries for monochromatic and polychromatic storage. Neglecting recording difficulties, the 
data storage capacities of monochromatic and polychromatic holographic systems do 
not differ significantly. If data is holographically recorded, however, the useful holo- 
graphic volume is severely limited. We have shown that the information capacity of a 
holographically controlled volume is only a constant factor greater than the surface 
capacity, which means that the capacity does not scale as the volume divided by the cubic 
wavelength. To avoid the loss in dynamic range resulting from grating superposition, one 
should minimize the size of the holographic volume recorded and displace new media into 
the recording volume between recording cycles. This displacement is likely to be easier in 
wavelength multiplexed systems. 
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