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Information Capacity of the Hopfield Model 

YASER S. ABU-MOSTAFA AND JEANNINE-MARIE ST. JACQUES 

Abstract-The information capacity of general forms of memory is 

formalized. The number of bits of information that can be stored in the 

Hopfield model of associative memory is estimated. It is found that the 

asymptotic information capacity of a Hopfield network of N neurons is of 

the order N3 b. The number of arbitrary state vectors that can be made 

stable in a Hopfield network of N neurons is proved to be bounded above 

by N. 

I. INTRODUCTION 

I N CONTRAST to the standard model for memory, 
where the amount of information storage is an explicit 

quantity, the information capacity of certain models of 
associative memory is a debatable issue. Associative mem- 
ory is a plausible model for biological memory, where a 
large number of simple connected building blocks (neu- 
rons) act individually in an apparently random way, yet 
collectively constitute an organ that does a specific com- 
plicated task in a robust manner. Apart from this biologi- 
cal interpretation, the ability to carry out collective compu- 
tation in a distributed system of flexible structure without 
global synchronization has become a recognized engineer- 
ing objective. 

An important step in understanding collective systems is 
to quantify their ability to store information and carry out 
computation. The Hopfield neural network [2] is a model 
of associative content-addressable memory with a simple 
flexible structure. Being a content-addressable memory, it 
is capable of storing information, as well as carrying out 
certain computational tasks such as error correction and 
nearest neighbor search. 

In this work, we introduce a definition of information 
capacity that is applicable to general forms of memory. We 
apply this definition to the Hopfield neural network and 
obtain tight upper and lower bounds for the number of bits 
that can be stored in a network of N neurons. We then 
restrict the format of information storage to stable states 
and obtain a linear upper bound for the number of vectors 
that can be made stable in the model, for every N. These 
results are equally valid in a completely different applica- 
tion that has the same mathematical formulation, namely 
the stable states of spin glasses [5], [8]. 

In Section II, we introduce the Hopfield model of as- 
sociative memory and explain the function of the neural 
network. The concept of information capacity is formalized 
in Section III, and the definition is applied to get a tight 
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asymptotic estimate for the information capacity of a 
network of N neurons. In Section IV, the linear upper 
bound for the number of stable states is derived; this 
constitutes a measure of the useful information capacity of 
the model. The Appendix discusses some background 
material about threshold functions. 

II. THE HOPFIELD MODEL 

Complicated electronic circuits using neuron-like archi- 
tectures can be made in an attempt to produce aspects of 
biological memory. However, these circuits are quite com- 
plex and highly ordered. It seems highly improbable that 
such mechanisms would arise naturally and be used as 
basic building blocks for biological memory. Instead, if a 
large number of neurons had computationally useful col- 
lective properties, arising simply due to their number, 
chance would favor the use of the building block that is the 
simplest and the least ordered. Hopfield [2] has shown that 
a large number of highly stylized neurons do have collec- 
tive properties. He has found that a set of asynchronously 
operating nonlinear neurons can store information with 
stability and efficiency, recall it with some error-correcting 
capability, and exhibit a sense of time order. Also, his 
model is quite robust and should work even when more 
neurological details are added. 

A neural network consists of N pairwise connected 
neurons. The ith neuron can be in one of two states: 
u, = - 1 (off) or ui = + 1 (on). The (synaptic) connections 
are undirected and have strengths that are fixed real num- 
bers. Define the state vector I( to be a binary vector (+ 1) 
whose ith component corresponds to the state of the ith 
neuron. Randomly and asynchronously, each neuron ex- 
amines its inputs and decides whether to turn itself on or 
off. It does this in the following manner. Let wjj be the 
strength (which may be negative) of the synaptic connec- 
tion from neuron j to neuron i. (w,, = wj, and wli = 0). 
Let t, be the threshold voltage of the ith neuron. If the 
weighted sum over all of its inputs is greater than or equal 
to ti, the ith neuron turns on and its state becomes + 1. If 
the sum is less than ti, the neuron turns off and its state 
becomes - 1. The action of each neuron simulates a gen- 
eral threshold function (see the Appendix) of N - 1 varia- 
bles (the states of all the other neurons): 

Let W be an N x N real-valued, zero-diagonal symmet- 
ric matrix. The entries of W are the wlj defined above; wi/ 
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is the strength of the synaptic connection from neuron j to 
neuron i. Let the threshold vector t be a real-valued vector 
whose i th component is the threshold voltage of the i th 
neuron. Each choice of W and t defines a specific neural 
network of N neurons with specific values for the strengths 
of the synaptic connections and the threshold voltages of 
the neurons. The network starts in an initial state and runs 
with each neuron randomly and independently reevaluat- 
ing itself. Often, the network enters a stable point in the 
state space in which all neurons remain in their current 
state after evaluating their inputs. This stable vector of 
states constitutes a stored word in the memory, and the 
basic operation of the network is to converge to a stable 
state if we initialize it with a nearby state vector (in the 
Hamming sense). 

Hopfield [2] proposed a specific scheme of constructing 
the matrix W that makes a given set of vectors ul,. . . , uK 
stable states of the neural network. The scheme is based on 
the sum of the outer products of these vectors. We shall 
make no assumptions here about how the matrix W is 
constructed in terms of the vectors I?, . . . , uK, and all the 
results are valid even if Hopfield’s particular construction 
scheme is not followed. 

III. INFORMATION CAPACITY 

A Hopfield network represents a memory that stores 
information, and it is appropriate to ask how much infor- 
mation we can store in a network of N neurons. To define 
the information capacity C, we start with a familiar exam- 
ple and try to extend it. 

If we have a random access memory with M address 
lines and one data line (an M x 1 RAM, consisting of 2M 
memory locations, where each location is accessed by an 
M-bit address and contains one bit of stored data), it is 
clear that we can store 2M b of information. This is 
because given an arbitrary string of 2M b, we can load the 
M X 1 RAM with the string and be able to retrieve the 
whole string from the memory later on. 

There is also another way to look at it, if we consider the 
string as a single object. We can store and retrieve any 
string (of length 2M b) in the M X 1 RAM, and there are 
22M such strings. Thus the memory can distinguish between 
22M cases. We define the information capacity of a memory to 
be the logarithm of the number of cases it can distinguish 
between, in this case C = log22M = 2M b. 

How does this definition apply to the Hopfield model? 
Consider a neural network with N neurons. The wii and 
the ti are what distinguish one network from the other. If 
we had access to these values and were able to read them, 
the information capacity of the memory would be infinite, 
since a real number constitutes an infinite amount of 
information. However, we can only sense these values 
through the state transitions of the neurons. The question 
now becomes, how many different sets of values for wij 
and ti can we distinguish between merely by observing the 
state transition scheme of the neurons? This corresponds to 
the number of distinguishable networks of N neurons. If 

this number is c, the capacity of the network will be 
C = loge b. 

The key factor in estimating the number of distinguisha- 
ble networks is the known estimate for the number of 
threshold functions (see the Appendix). The action of each 
neuron simulates a general threshold function of N - 1 
variables (the states of all the other neurons). There are at 
most 2cN-l)* such functions [3]. Since there are N neurons, 
there will be at most (2 cN- ‘)‘) N distinguishable networks. 
The logarithm of this number is an upper bound for the 
information capacity C. Hence 

c I log(2 (N-l)*)N = O(N3)b. 

Let us consider the lower bound now. There are at least 
2 anz threshold functions of n variables, where (Y = 0.33 [6]. 
The symmetry of the matrix W makes the N threshold 
functions dependent, but we can take the submatrix of W 
consisting of the first 1 N/2] rows and the last [N/2] 
columns, and consider the partial threshold functions de- 
fined by this submatrix. Since the entries of this submatrix 
are independent, we have at least [N/2] functions each of 
n = [N/2] variables. Therefore, the number of dis- 
tinguishable networks is a least (2* 1 N’2l2) 1 N’2l. The loga- 
rithm of this number is a lower bound for the information 
capacity C. Hence 

C 2 log(2”~N~2~2)‘N’2’ = O(N3)b. 

The conclusion is that the information capacity C of a 
Hopfield neural network with N neurons is exactly of the 
order N3 b. This definition of information capacity is 
quite general, and it is interesting to investigate how it is 
affected by imposing certain restrictions on the format of 
information storage. This aspect is addressed in the next 
section, where the storage format is restricted to stable 
states. 

IV. STABLE STATES 

Information in the Hopfield model is stored as stable 
states. A stable state us is a state that is a fixed point of the 
neural network. Each of the N neurons randomly and 
repeatedly looks at the weighted sum of all its inputs and 
then decides not to change from its previous state. To see 
how information is stored in the model, look at the exam- 
ple of pattern recognition and error correction. 

A person sees a face X and wants to decide if the face is 
that of person A or that of person B. The visual picture of 
the face is processed and the description is encoded into a 
binary vector ux, which contains the information de- 
scribing the face. ux is then fed into the particular neural 
network that remembers the faces of persons A and B. 
That is, uA and uB, which contain the information de- 
scribing faces A and B; respectively, are stable states of 
this particular network. The vector u x is fed into the 
network by setting the initial state of the ith neuron to the 
same value as the i th component of the binary vector ux. 

After a period of time, the state of the network is 
evaluated. If ux is close to uA, then r8 will be the 
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network’s final state. The face is then recognized as belong- 
ing to person A and similarly if uX is close to uB. If u X is 
in between uA and u B, the system will randomly converge 
to one or the other of the two states. Therefore, we have a 
model that makes decisions and has some error-correcting 
capability. 

It is of interest to know the number of memories that 
can be stored in a Hopfield network of N neurons. What is 
the maximum number K such that any K vectors of N 
binary entries can be made stable in a network of N 
neurons by the proper choice of W and t? Since we have 
to come up with a network for every choice of the K 

vectors, and since there are 2N 

than 2N3 
i 1 K 

such choices, but less 

such networks, it follows that 

2N 
( i 

I 2N’. 
K 

Restricting K to be at most 2N-’ because of the symmetry 
of the choice function, we get K = O(N*). To be able to 
store and retrieve the order of N* arbitrary stable states in 
a Hopfield network with N neurons seems quite ambitious. 
Hopfield predicted experimentally that K = 0.15N [2], and 
McEliece showed a statistical bound of K 5 N/2 log N [4]. 
However; these estimates restrict the construction of W to 
the sum-of-outer-products scheme [2]. We now improve on 
the O(N*) bound and show that the number of stable 
states K can be at most N, for every N, no matter how the 
matrix W is constructed. 

Theorem: Let W denote a real-valued zero-diagonal N 
x N matrix, and let t denote a real-valued N vector. 
Suppose that K 5 2N-’ is an integer satisfying the follow- 
ing condition. 

For any K-set of binary N-vectors ul,. * . , uK, there is a 
matrix W and a vector t such that 

then K I N. 

and i = l;.., N, 

Proof: Suppose that K satisfies this property. We 
construct K vector ul, u*, . . . , uK as follows. The first 
entries in these vectors, namely ui, u:, . . . , u:, are binary 
variables x1, x *, . . . , x K to be fixed later. The remaining 
N - 1 entries in each vector are fixed +1’s such that no 
two vectors have exactly the same entries (always possible 
since K I 2N-‘). We apply the condition of the theorem 
for i = 1. For any choice of x1,. . . , xK, there must be real 
numbers w12, w13,. . . , wlN, t, such that 

The information capacity of general forms of memory 
was formalized and applied to the Hopfield model of 
associative memory. Exact asymptotic estimates for the 
number of bits that can be stored in a neural network of N 
neurons were derived. A linear upper bound for the num- 
ber of arbitrary stable states that can be stored in a neural 
network of N neurons was proved. This bound is reasona- 
bly close to the experimentally achievable capacity and to 
the statistically predicted capacity. 

APPENDIX 

ENUMERATION OF THRESHOLD FUNCTIONS 

A switching function f(x,; . ., x,,) of n binary variables 
. . . x,, is defined by assigning either 0 or 1 to each of the 2” 

ibints’(xl; . , x,,) in {O,l}“. We are using a binary (- 1, + 1) 
convention, which is strictly equivalent to the (0,l) convention. A 
switching function f( x,; . ., x,) of n variables is linearly sep- 
arable if there exists a hyperplane 71 in the n-dimensional space, 
which strictly separates the “on” set f-‘(l) from the “off” set 
f-‘(-1). In other words, f’(1) lies on one side of 71, and 
f- ‘( - 1) lies on the other, and v n { -1, + l}N is empty. Lin- 
early separable switching functions are also called threshold 
functions [3]. A threshold function simulates a neuron examining 
its inputs and making its decision as to its next state. Cameron [l] 
and Winder [9] give the following upper bound on the number of 

for k = 1,. . *, K, since wll = 0 (zero-diagonal). Therefore, 
for each of the 2K choices for the values of x1; . . , xK, we 
must find a different threshold function of N - 1 variables 
with K points in the domain. Let Biel be the number of 

the threshold functions of N - 1 variables with K points 
in the domain. We must have 

Bi-1 2 2K. 0) 
Cameron [l] and Winder [9] (see the Appendix), give the 
following upper bound to B,K1: 

If K > N, then 

So if K > N, then B:-l < 2k, which contradicts condition 
(1). Therefore K must be at most N and the proof is 
complete. 

The theorem is a formalization of the fact that a Hop- 
field neural network cannot have more than N arbitrary 
stable states. Notice that the matrix W was not required to 
be symmetric, and this covers the generalization of the 
Hopfield model where the synaptic connections become 
directed (allowing wij # wji). Also, there is no restriction 
on the method of constructing W and t in terms of 
d; * .) u K. McEliece and Posner [5] predicted that a zero- 
diagonal symmetric matrix has an exponential number of 
stable states on the average. The above theorem predicts at 
most a linear number of arbitrary stable states for a 
zero-diagonal matrix. The two results imply that the aver- 
age number of parasitic stable states is exponential in N. 

V. CONCLUSION 
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threshold functions of n variables defined on m points B,“: Therefore 

They arrive at their upper bound in the following manner. Define 
an (n + 1)-dimensional space in which the coordinate axes corre- 

spond to the weights and to the threshold voltage. Consider a 

particular state P. Plot u as a hyperplane in n + 1 space, the set 

of all values of wj and t such that 

n 

c wI”, -t=O 
j=l 

Note that the hyperplane passes through the origin and that it 
divides the space into two regions. Weights and threshold volt- 

ages from one of the regions make C~,,w,u, - t > 0 and corre- 

spond to the threshold function on u being equal to 1. Weights 

and voltages from the other region make Cy,,w,u, - t < 0 and 

correspond to the threshold function on u being equal to - 1. 

Each of the m points gives a similar hyperplane. 

Thus we have m hyperplanes passing through the origin in 

n + 1 space and partitioning the space into a number of regions. 
Each region corresponds to a threshold function. All points in 

any one of these regions correspond to values of wj and t that 

produce the same threshold function. Two points in different 

regions correspond to two different functions as at least one u 

out of the m U’S is mapped to + 1 by one function and mapped 

to - 1 by the other. Therefore &” is less than or equal to the 

maximum number of regions (call the number Cnm+r) made by m 
hyperplanes passing through the origin in n + 1 space. Assume 

m - 1 hyperplanes have made Cnm+<’ regions in n + 1 space. We 

add the m th hyperplane to make as many more regions as 

possible. The mth plane can intersect the other m - 1 hyper- 

planes in at most m 7 1 hyperlines. The m - 1 hyperlines can at 

most partition the mth plane into Cn”“- ’ hyperplane regions, 

since this is the same problem in n space. Since each region in 

the m th plane has been divided into a boundary between two 

regions in n + 1 space, we have added C,TP1 regions to the other 

C,:i<’ regions given by m - 1 planes. 

.rn c nil = CT1 + cm-’ n+1 . 

The solution of this recurrence relation is Cnmi = 

2x:=, which is an upper bound for B,". If m = 2", i.e., 

the thresh;ld function is defined for every binary n-vector, then 

we have an upper bound for the number of fully defined threshold 

functions of n variables (for n 2 4): 

B,z.<25 “y 
i=o ( 1 

I2(” + 1) x 2”; 1 
( ) 

PI 

PI 

131 

141 
151 

[61 

171 

PI 

191 

1101 
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