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Abstract— This paper studies the consensus problem of
multi-agent systems in an asynchronous framework. Under
certain assumptions, the consensus protocol leads to stable
behaviors even if the updating instants and sets of the agents
are asynchronously determined. The model of asynchronous
multi-agent systems encompasses those synchronous ones with
various communication patterns, i.e., issues of directional,
delayed, or failed communication can be addressed in the same
framework. The asynchronous results in this paper thus shed
new light on the synchronous results reported in the litera-
ture. In particular, synchronous protocols under dynamically
changing interaction topologies can be seen as a special case
of the asynchronous protocol where all communication delays
are zero.

I. INTRODUCTION

Consensus is well accepted as being a fundamental
paradigm for coordination of groups of autonomous agents
[3], [14], [19], [26], [28], [31]. In such a system agents
are autonomous enough to operate independently, yet they
can function collectively as a group and synchronize
through communication. A consensus protocol provides
means through which all agents are coordinated in the sense
that they all agree on some particular parameter of interest.
Our interest in multi-agent systems is motivated by their
broad applications in formation control [7], [9], collective
motion [40], cooperative robotics [1], distributed space
systems [38], and sensor networks [34]. The challenge here
is for the group to cooperate using minimal computing and
communication resources, without the need for centralized
coordination. Naturally, the information flow and interaction
among multiple agents in the group play an important role
in the coordinated behavior of these agents.

In the past, a number of researchers have worked in
problems that are closely related to consensus problems.
Distributed agreement problems in Computer Science have
a long history [24]. Coordinated behaviors in nature, such
as flocking/swarming and coupled oscillators, have been
studied in ecology and biology, as well as in statistical
physics and nonlinear science [29], [40]. Engineering appli-
cations such as formation control have further increased the
interest of engineers in swarming behaviors and collective
motion patterns [9], [11], [14], [16], [19]. Very recent results
on consensus problems include [2], [3], [6], [12], [14],
[17], [19], [25]–[28], [31], [33], [35], [41], to name a few.
These results can be broadly divided into several categories
according to the main mathematical tools used: algebraic
graph theory (e.g., [14], [28], [31]), nonlinear dynamics
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[26], [27], convex or iterative optimization [6], [25], [41],
and partial contraction theory [35].

In the following, we briefly review the work most relevant
to the present research and then point out the relation-
ships among them. The work in [14] focuses on attitude
alignment on undirected graphs in which the agents have
simple dynamics motivated by the model used in [40].
It is shown that the consensus on the heading angles of
the agents can be achieved if the union of the interaction
graphs for the team are connected frequently enough as
the system evolves. Average-consensus problem is solved in
[28] over directed graphs, which are required to be strongly
connected and balanced. Ren et al. [31] extend the results
of [14] from the bidirectional case to unidirectional case.
If the union of the collection of interaction graphs across
some time interval had a spanning tree frequently enough,
consensus (not necessarily average-consensus) can still be
achieved. The interesting work of [26], [27] follows a rather
different approach from the previous ones, where tools from
nonlinear dynamics are used to obtain a broad class of
communication patterns that guarantee global consensus. A
distributed iterative procedure under virtual synchronization
(a weak form of asynchronism) is developed by Mehyar
et. al for calculating averages over an unstructured peer-to-
peer network [25]. Other complementary research efforts
are being reported in [17], [19], [33].

The consensus protocols aforementioned cannot be re-
garded as truly distributed because each agent’s decisions
must be synchronized to a common clock shared by all other
agents in the group. This synchronization requirement could
be unrealistic. Motivated by this, we study the consensus
problem for asynchronous discrete-time multi-agent sys-
tems. In such systems each agent operates according to its
own clock; no assumption is made about the relative speeds
of different clocks. Agents communicate solely by sending
messages, however there is no guarantee on the time of
delivery or even of a successful delivery. This scenario
is actually prevalent in real systems such as distributed
networks. We refer readers to [5], [10], [15] for surveys
on the theory of asynchronous systems.

The asynchronism can destroy convergence properties
that the algorithm may possess when executed synchro-
nously or sequentially. Thus, the analysis of asynchronous
algorithms is considerably more difficult than of their syn-
chronous counterparts. Nevertheless, asynchronous systems
give more reasonable models of the multi-agent systems
in practical situations. For instance, heterogeneous agents,
time-varying communication delays and packet dropout can
be taken into account without much difficulty using the
results from asynchronous theory.
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In this work, we propose an asynchronous framework to
study the consensus problem. To facilitate the analysis, we
start with the multi-agent systems under fixed interaction
topologies, which have a rooted directed spanning tree.
The spanning tree requirement is a milder condition than
connectedness and is therefore more suitable for practical
applications [7], [31]. Under certain assumptions, even if
the updating instants of the agents are asynchronously
determined, the consensus protocol continues to maintain
the stability property. Despite its simple fixed topology, the
model of asynchronous multi-agent systems encompasses
those synchronous ones with various communication pat-
terns, i.e., we can address issues of directional, delayed, or
time-variant communication in the same framework.

This work is not the first one that uses the asynchro-
nous models to analyze multi-agent systems; see, e.g., [4],
[18], [20]–[22]. Another related work is presented in [39],
where decentralized asynchronous control and optimization
schemes for stochastic discrete-event systems are analyzed.
In the present paper, synergistic union of graph theory,
matrix theory and asynchronous theory allows us to reach
very general results on the consensus problem.

The contributions of this paper are two-fold. First, we
extend the existing (synchronous) consensus results to the
asynchronous setting. Under certain mild conditions, con-
sensus can still be achieved for asynchronous multi-agent
systems. Our asynchronous results shed new light on the
existing (synchronous) results reported in [14], [25], [26],
[28], [31]. Second, connections between synchronous and
asynchronous protocols are established. As we show in this
paper, the asynchronous protocol under fixed topologies
contain synchronous protocols under time-varying topolo-
gies as a special case. Then many of the techniques and
results obtained earlier for asynchronous systems can be
applied to study synchronous protocols, thus providing us
with deeper understanding of the synchronous consensus
dynamics. For example, the robustness properties of the
synchronous protocol under time-varying topologies can be
examined using the asynchronous theory.

II. PRELIMINARIES AND BACKGROUND

A. Definitions and Notations

Let G = {V,E,A} be a weighted digraph (or direct graph)
of order n with the set of nodes V = {v1,v2, . . . ,vn}, set of
edges E ⊆V ×V , and a weighted adjacency matrix A = [a i j]
with nonnegative adjacency elements ai j. The node indices
belong to a finite index set I = {1,2, . . . ,n}. A directed
edge of G is denoted by ei j = (vi,v j). For a digraph, ei j ∈ E
does not imply e ji ∈ E. The adjacency elements associated
with the edges of the graph are positive, i.e., ai j > 0 if
and only if e ji ∈ E. Moreover, we assume aii �= 0 for all
i ∈ I . The set of neighbors of node vi is the set of all
nodes which point (communicate) to vi, denoted by Ni =
{v j ∈V : (v j,vi) ∈ E}.

A digraph G can be used to model the interaction
topology among a group of agents, where every graph node

corresponds to an agent and a directed edge e i j represents
a unidirectional information exchange link from v i to v j,
that is, agent j can receive information from agent i. The
interaction graph represents the communication pattern at
certain time. The interaction graph is time-dependent since
the information flow among agents may be dynamically
changing. Let Ḡ = {G1,G2, . . . ,GM} denote the set of all
possible interaction graphs defined for a group of agents.
Note that the cardinality of Ḡ is finite. The union of a
collection of graphs {Gi1 ,Gi2 , . . . ,Gim}, each with vertex
set V , is a graph G with vertex set V and edge set equal to
the union of the edge sets of Gij , j = 1, . . . ,m.

A directed path in graph G is a sequence of edges e i1i2 ,
ei2i3 , ei3i4 , · · · in that graph. Graph G is called strongly
connected if there is a directed path from vi to v j and v j to
vi between any pair of distinct vertices vi and v j. Vertex vi is
said to be linked to vertex v j across a time interval if there
exists a directed path from vi to v j in the union of interaction
graphs in that interval. A directed tree is a directed graph
where every node except the root has exactly one parent. A
spanning tree of a directed graph is a tree formed by graph
edges that connect all the vertices of the graph.

Let xi ∈R, i∈I represent the state associated with agent
i. A group of agents is said to achieve global consensus
asymptotically if for any xi(0), i ∈ I , ‖xi(t)− x j(t)‖ → 0
as t → ∞ for each (i, j) ∈ I . Besides being of interest in
its own right, if consensus is attainable (all agents converge
to a common point), then other formations are achievable
too [19]. So the focus is on convergence to a point.

Let 1 denote an n×1 column vector with all entries equal
to 1. Let Mn(R) represent the set of all n×n real matrices.
A matrix F ∈ Mn(R) is nonnegative, F ≥ 0, if all its entries
are nonnegative, and it is irreducible if and only if (I +
|F |)n−1 > 0. Furthermore, if all its row sums are +1, F is
said to be a (row) stochastic matrix.

B. Synchronous and Asynchronous Consensus Protocols

We consider the following (synchronous) discrete-time
consensus protocol [28], [31]

xi(t + 1) =
1

∑n
j=1 Ai j(t)

n

∑
j=1

Ai j(t)x j(t) (1)

where t ∈ {0,1,2, · · ·} is the discrete-time index, (i, j) ∈ I
and Ai j(t)> 0 if information flows from v j to vi at time t and
zero otherwise, ∀ j �= i. The magnitude of Ai j(t) represents
possibly time-varying relative confidence of agent i in
the information state of agent j at time t or the relative
reliabilities of information exchange links between them.
We can rewrite (1) in a compact form

x(t + 1) = F(t)x(t) (2)

where x = [x1, · · · ,xn]T , F = Fi j with Fi j =
Ai j(t)

∑n
j=1 Ai j(t)

, (i, j) ∈
I . An immediate observation is that the matrix F is a
nonnegative stochastic matrix, which has an eigenvalue at
1 with the corresponding eigenvalue vector equal to 1.
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The protocol (1) or (2) is localized and synchronous
in the sense that all the agents update their states at the
same time using the latest values of neighbors’ states. From
a practical point of view, since a central synchronizing
clock may not exist and communication links create and
fail dynamically, it is of interest to consider asynchronous
multi-agent systems. In the asynchronous setting the order
in which states of agents are updated is not fixed and the
selection of previous values of the states used in the updates
is also not fixed.

Now let t0 < t1 < · · ·< tn < · · · be the time instants when
the state of the multi-agent system undergoes change. Let
xi(k) denote the state of agent i at time tk. The index k is also
called the event-based discrete time index in the literature.
The dynamics of asynchronous systems can be written as

xi(k + 1) =
{

∑n
j=1 Fi j(k)x j(k−d(i, j,k)) if i ∈ S(k),

xi(k) otherwise,
(3)

where d(i, j,k) ≥ 0 are nonnegative integers, S(k) are non-
empty subsets of {1, · · · ,n}, the initial states are specified
by x(0) = x(−1) = · · · Henceforth, we write the initial
vector x(0) to abbreviate reference to this set of equal initial
states. We refer to the d(i, j,k) as iteration delays and S(k)
as updating sets.

Remark 1: The delays d(i, j,k) in (3) are time-varying
and link-dependent. Consensus problems with time-delays
have been considered by previous research, e.g., in [27],
[28], but the delays considered were constant for all com-
munication links.

C. General Stability Theorems for Asynchronous Systems

In this section, we focus on linear asynchronous systems
satisfying the regularity assumption:

• There exists a nonnegative integer D such that

0 ≤ d(i, j,k) ≤ D < ∞, ∀ (i, j,k). (4)

Condition (4) indicates that only a finite number of
updating instants can occur within any time interval
of finite length. In the literature, this is also called
partially asynchronism or (uniformly) bounded-delay
asynchronism.

• The updating sets S(k) satisfy
∞⋃

k=K

S(k) = {1, · · · ,n}, for any K. (5)

Condition (5) says that every agent is updated infinitely
often. In other words, no agent fails to be updated as
time goes on.

The following results due to Chazan and Miranker [8], Su
et al. [36], and Lubachevsky and Mitra [23] are fundamental
in the theory of stability of asynchronous systems.

Lemma 1: Let F(k) = [Fi j(k)] = F, ∀k. The fixed point
of (3) is asymptotically stable under the class of regular
asynchronisms if the spectral radius of |F |, ρ(|F|), is less
than unity. Here the absolute operation is understood to be
element-wise.

Remark 2: When the context is clear, the absolute opera-
tion | · | applied on F is dropped hereafter since it is always
nonnegative in our setting.

A commonly, but mistakenly, held belief is that the
condition ρ(|F|) < 1 is also necessary for the convergence
of asynchronous iterations [5], [8], [36]. The source of
this error was identified only recently by Szyld in [37].
If ρ(|F|) = 1, under certain conditions, convergence can
still be achieved. Lubachevsky and Mitra [23], and more
recently Pott [30], studied asynchronous methods with
singular matrices, i.e., for the specific case of ρ(F) = 1 and
gave conditions for the convergence of the asynchronous
iteration (3). Additional assumptions to (4) and (5) made in
[23] are as follows. For at least one agent, say i, i ∈ I ,

Fii > 0, (6)

d(i, i,k) = 0, (7)

xi(0) > 0. (8)

Lemma 2 ([23]): Consider the asynchronous system (3)
with a nonnegative irreducible matrix F of spectral radius
unity. Assume (4)-(8). Then, there exists a positive, finite
constant b such that, as k → ∞, x(k) → bπ , where π is
a (column) vector satisfying Fπ = π . The constant b is
bounded (from below and above) and its value depends
on x(0), F , and the sequence of the update sets S(k) and
delays d(i, j,k). Furthermore, a measure of the projective
distance of x(k) from the consensus point vanishes at least
at a geometric rate.

III. ASYNCHRONOUS INFORMATION CONSENSUS

In this section, the asynchronous information consensus
problem is studied. We focus on the asynchronous consen-
sus protocol under a (structurally) fixed topology which has
a rooted directed spanning tree.

A. Synchronous Case with Fixed Topologies

Let us first review the known synchronous consensus
results with fixed interaction topologies. We present them
here to allow for a comparison with the asynchronous model
in the following sections.

Lemma 3 ([31]): Let F ∈ Mn(R) be a stochastic matrix
with positive diagonal entries. The matrix F has a unique
eigenvalue at 1 with maximum modulus if and only if the
graph associated with F has a spanning tree. In this case,
limm→∞ Fm = 1µT , where m∈N+ and µ = [µ1, . . . ,µn]T ≥ 0
satisfies FT µ = µ and 1T µ = 1.

Remark 3: The diagonal elements of F are positive since
we assume that there is a link from each vertex to itself.

Lemma 4 ([13], [32]): If graph G has a spanning tree,
then

(F −1µT )m = Fm −1µT , ∀m ∈ N
+,

where µ satisfies the properties defined in Lemma 3.
Furthermore, ρ(F −1µ T ) < 1.

With the help of Lemma 3 and 4, the following synchro-
nous stability result can be obtained.
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Theorem 1: Given the synchronous protocol (1) with
F(k) = F, ∀k ∈N, the consensus is asymptotically reachable
if and only if the associated interaction graph G has a
spanning tree. That is, global consensus is asymptotically
reachable.

Theorem 1 is originally due to Ren and Beard [32]. A
slightly different proof is outlined below for self-contained
purposes.

Proof: From Lemma 3, we know that F m → 1µT as
m → ∞ and FT µ = µ , 1T µ = 1.

Let x̃ = x−1c, where c = µ T x(0) is a real constant. We
refer to x̃ as the (group) disagreement vector. Considering
the synchronous protocol (2), we get

x̃(t) = x(t)−1c

= Ftx(0)−1µT x(0) = (F −1µT )t x(0).

It is then obvious that

x̃(t + 1) = (F −1µT )x̃(t), ∀t ∈ N
+. (9)

From Lemma 4, we have x̃(k) → 0, or equivalently x(k) →
1c, as t → ∞. In other words, the global consensus is
asymptotically reachable in the synchronous mode.

B. Asynchronous Case with Fixed Topologies

As we shall demonstrate below, the convergence process
of asynchronous protocol (3) is fundamentally different
from that of the synchronous protocol (1).

A plausible condition for asynchronous consensus is
ρ(|F − 1µT |) < 1, motivated by (9) and Lemma 1. How-
ever, this ignores the fact that the asynchronous system, if
convergent, will not necessarily reach the same consensus
point as the synchronous system does. By the necessity part
of Lemma 3, to reach a consensus the matrix F must have
a spectral radius equal to one. Hence, we are dealing with
a singular (ρ(F) = 1) asynchronous protocol and Lemma
2, instead of Lemma 1, should be invoked to get a correct
condition.

Before using Lemma 2, let us first check whether or not
the assumptions (6)-(8) are satisfied for the asynchronous
system (3). The assumption (6) is satisfied by Remark 3.
In the multi-agent application, it is reasonable to assume
that every agent always uses its latest state to calculate
the new state, i.e., the condition d(i, i,k) = 0 is true for
at least one agent. Finally, the assumption (8) may not
be a practical restriction at all if the simple expedient of
taking all initial states positive is followed. It is needed to
guarantee the consensus points to be bounded away from
the trivial solution 0.

Now we are ready to state the convergence result for the
asynchronous protocol, which is based on Lemma 2 and
Theorem 1.

Theorem 2: Consider the asynchronous protocol (3) with
structurally fixed topology F(k) = F, ∀k ∈ N. Assume that
all the agents can access their own states (i.e., F has positive
diagonal entries) and at least one of the agents can access

1

5

4 3

2

Fig. 1. The interaction topology of an asynchronous multi-agent system.

its own state without delay and the initial value is great
than zero. Then the consensus is asymptotically reachable
if the associated (directed) graph G has a spanning tree.
That is, global consensus is asymptotically reachable under
the asynchronous mode.

Remark 4: In the full version of this paper, we show that
the irreducibility of F in Lemma 2 can be relaxed in the
proof of Theorem 2 using a decomposition idea.

Although Theorems 1 and 2 look similar, they are funda-
mentally different. In the synchronous case, x(t) converges
to a consensus point, which is only a function of the inter-
action topology and initial states and otherwise independent
of the computations; In the latter case, x(k) converges to a
consensus point depending on the computations, that is, on
the update sets, the delays, and initial states. An intuitive
explanation of why this is the case will be given in the next
section. The only exception is when the interaction graph
has a unique rooted spanning tree, states of all the nodes
asymptotically converge to the initial state of the root node.

Example 1: This example shows that the asynchronous
consensus value generally depends on the course of the
computations. A multi-agent system with five agents and a
(structurally fixed and equally weighted) interaction topol-
ogy is shown in Fig. 1. Since the interaction graph has
a directed spanning tree, the consensus is reachable under
asynchronous updating. With the initial condition x(0) =
[−2 1 2 0 − 4]T , the asynchronous consensus value of
the system is studied. At every iteration, a node is chosen
to update its state randomly and independently of other
nodes with probability p. The delay d(i, j,k) in (3) is a
discrete random variable taking an integer value between 0
and D with an equal probability. All randomizations across
the nodes and across the iterates are independent in the
simulations.

The Monte Carlo simulation experiments are conducted.
Fig. 2 shows different consensus values for 2000 indepen-
dent runs with node selection probability p = 1/2 and the
delay bound D = 0 (zero-asynchronism). From this figure,
it is clear that the asynchronous consensus value can take
any value in a bounded range.

IV. SYNCHRONOUS CONSENSUS WITH TIME-VARYING

TOPOLOGIES: AN ASYNCHRONOUS PERSPECTIVE

We have addressed the asynchronous consensus problem
under a (structurally) fixed topology, which has the same
directed spanning tree during the consensus process. This
obviously is a quite restrictive requirement. However, we
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Fig. 2. Asynchronous consensus value (p = 1/2 and D = 0) depends on
various topology selections made in the course of the computations.

need to emphasize that the topology is only invariant in
the “structure domain” or F(k) = F, ∀k ∈ N in (3). In the
time domain, the interaction between agents may be time-
dependent due to asynchronisms. Can we map the synchro-
nous systems under time-varying interaction topology into
a particular type of asynchronous systems? The answer is
affirmative as shown below, thus results from asynchronous
systems can be used to study the synchronous consensus
protocols. Theorem 2 forms the basis of the following
development.

Consider a special type of asynchronous multi-agent
systems under a fixed interaction topology. All the agents
in the system update their states always at the same time
instants (say, when the updating mechanism is triggered
by a time impulse coming from an external clock). The
asynchronism is solely caused by the loss and creation
of communication links between different agents. In fact,
this kind of asynchronous systems, with the updating set
S(k) = {1, · · · ,n} for all k and non-zero delays, can be seen
as synchronous systems under time-varying topologies. To
see this, we give a simple example. In the sequel, we no
longer differentiate the discrete time index t and event based
discrete time index k.

Example 2: Consider an asynchronous multi-agent sys-
tem under a (structurally) fixed topology G0, which has
a directed spanning tree, as shown in G31 of Fig. 3(a).
The updating sets satisfy S(t) = {1,2,3} for all t and time
delays satisfy 0 ≤ d(i, j,t) ≤ D with D a finite nonnegative
integer. Due to time delays, at a particular time instant the
interaction topology may correspond to one of the graphs
from Fig. 3(a).

On the other hand, a synchronous multi-agent system
under time-varying topologies is shown in Fig. 3(b). At
every time instant, the system has an interaction graph
which is the superset of one of the graphs from Fig.
3(a), e.g., G(t + 1) ⊇ G21. Assume that the time interval
[t, t +T1) is long enough such that

⋃T1
q=0 G(t +q) = G0. Now

we see that the synchronous system under time-varying
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Fig. 3. Synchronous systems with time varying topologies can be seen
as a special case of asynchronous systems.

topologies maps into the asynchronous system across the
time interval, thus the two systems have the same stability
property in terms of consensus reaching. From the pigeon-
hole principle, T1 = DC(n)+ 1 is enough to guarantee the
union of the interaction graphs containing a spanning tree,
where C(n) = 2n−1 (n = 4) is the total number of graphs in
Fig. 3(a).

In Example 2, the mapping between an asynchronous sys-
tem and a synchronous system is established by assuming
that the union of the synchronous interaction graphs across
some time interval contains the same spanning tree as the
asynchronous system. This assumption is not restrictive and
can be relaxed. For a system with n agents, the total number
of different directed spanning tree configurations, denoted
as L(n), is finite. Again using the pigeon-hole principle,
we can conclude that there must exist the same spanning
tree across each time interval of length T2 = (L(n)+1)×T ,
if the union of graphs across each time interval of length
T (≤ T1) has a spanning tree (not necessarily the same one).
Note that T2 is a finite number since L(n) and T are both
bounded. If the asynchronous system under the interaction
topology with such a spanning tree can asymptotically reach
consensus, so can the synchronous system as t → ∞.

Based on the above discussions, we have the following
result.

Theorem 3: Let G(t) ∈ Ḡ be a time-varying interaction
graph at time t, with the weights selected from a finite
set of arbitrary positive numbers. The protocol (3) achieves
global consensus asymptotically if and only if there exists
an infinite sequence of contiguous, nonempty, bounded time
intervals [tl, tl+1), l ≥ 0, starting at t0 = 0, with the property
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that across each such interval, the union of the interaction
graphs has a spanning tree.

Theorem 3 is in essence the same to Proposition 1 in [26]
and Theorem 3.3 in [31] but the proof techniques are totally
different. As we see, the same synchronous system (under
the time-varying topologies) may be mapped to different
asynchronous systems with different spanning trees. This
also gives a physical example why the constant b in Lemma
2 is computationally dependent. Tight lower and upper
bounds for the constant b are given in [23].

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we cast existing work on consensus proto-
cols into an asynchronous framework. This extension lends
powerful results to the consensus problem. Specifically, we
give additional mild conditions in Theorem 2 which when
applied to previously known stable consensus protocols
add the depth of being provably stable under asynchronous
communications.

Some open problems remain. One of them is to under-
stand how asynchronism affects the value of the consensus
point (in view of the results of Example 1). For example, it
is desirable to control UAVs to visit a pre-specified location
within a time window rather than at any time in the planning
horizon.
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