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ABSTRACT

It has been shown that spectroscopy of transiting extrasolar planets can potentially provide a wealth of information
about their atmospheres. Herein, we set up the inverse problem in spectroscopic retrieval. We use nonlinear optimal
estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers). The formulation quantifies
the degrees of freedom and information content of the spectrum with respect to geophysical parameters; herein,
we focus specifically on temperature and composition. First, we apply the technique to synthetic near-infrared
spectra and explore the influence of spectral signal-to-noise ratio and resolution (the two important parameters
when designing a future instrument) on the information content of the data. As expected, we find that the number
of retrievable parameters increases with increasing signal-to-noise ratio and resolution, although the gains quickly
level off for large values. Second, we apply the methods to the previously studied dayside near-infrared emission
spectrum of HD 189733b and compare the results of our retrieval with those obtained by others.
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1. INTRODUCTION

Currently there are about 130 confirmed transiting exoplanets
(www.exoplanet.org). Of these planets, several dozen have
spectra that have been observed, either through broadband
photometry from instruments like the Spitzer Infrared Array
Camera (IRAC; Deming et al. 2005; Charbonneau et al. 2005,
2008; Knutson et al. 2007, 2008; Harrington et al. 2006, 2007;
Stevenson et al. 2010) or higher resolution spectroscopy from
the Hubble Space Telescope (HST) Near Infrared Camera and
Multi-Object Spectrometer (NICMOS; Swain et al. 2009a,
2009b), Spitzer Infrared Spectrometer (IRS; Grillmair et al.
2008), and recently, from ground-based instruments (Redfield
et al. 2007; Snellen et al. 2008, 2010; Swain et al. 2010; Mandell
et al. 2011; Waldmann et al. 2012). Although the spectra are of
low resolution (R = λ/Δλ ∼ 5–50) and low signal to noise
(S/N � 10), they nevertheless provide useful information
about the temperature and composition of the exoplanetary
atmospheres (Tinetti et al. 2007, 2010a; Madhusudhan & Seager
2009, etc.). A typical approach to retrieving this information
is to match the data set with forward models by manually
tuning the model abundances and temperatures, until a possible
best fit is obtained (Tinetti et al. 2007; Swain et al. 2009a,
2009b). This approach does not provide an optimal solution
to the atmospheric state; furthermore, it can be cumbersome
and is susceptible to multiple degeneracies (Tinetti et al. 2007;
Madhusudhan & Seager 2009)

Others have used multi-dimensional grid models to constrain
atmospheric parameters (Madhusudhan & Seager 2009), a
method that is well tuned to systematically searching the
parameter space given sparse data (as with Spitzer/IRAC color
photometry). In this approach, an ensemble of forward models
are generated using up to 10 gridded free parameters (6 to govern
the shape of the temperature profile and 4 scaling factors for
uniform mixing ratios of H2O, CH4, CO, and CO2); model
families that best describe the data are selected based on a
χ2 statistic criterion. Because of the degeneracies between the

different gases, and between gases and temperature, thousands
of solutions can exist within a given χ2 region, thus only
giving loose constraints on the atmospheric composition and
temperature. Furthermore, the formalism provides no easy way
to explore the change in information content associated with a
change in the data phase space (e.g., R or S/N).

Here, we present the inverse approach (see also Lee et al.
2012) that determines the atmospheric “state” (i.e., its temper-
ature structure and abundances) by minimizing a cost function
that simultaneously takes into account new measurements and
prior knowledge of atmospheric properties (such as a state re-
trieved from previous observations). Additionally we determine,
within the context of our model, the quality of the spectra and
the number of useful retrievable atmospheric properties. This
work represents the first attempt at determining the amount of
useful information that can be retrieved from typical exoplanet
spectra. Furthermore, this paper represents the first attempt at
using information theoretic limits for retrievals assuming cer-
tain instrument capabilities (such as R and S/N). Ultimately,
the theory is general and enables prediction of the advances
that can be made with improvements in instrumentation and via
more prudent choosing of spectral ranges.

In Section 2, we outline the basics of the classic retrieval
theory of Rodgers (2000). We first test the technique on an
artificial data set and explore how the number of retrievable
parameters depends on R and S/N and discuss how these can
be optimized to maximize the usefulness of a measurement in
Section 3. We then apply these techniques to the well-studied
HD189733b dayside emission spectra in Section 4. This is
followed by a discussion and conclusions in Section 5.

2. METHOD

2.1. Retrieval Theory

The retrieval problem is well known in the field of Earth
atmospheric studies (Rodgers 1976; Chahine 1968; Twomey
et al. 1977) and in studies of planetary atmospheres (see, e.g.,
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Nixon et al. 2007). The fundamental problem is to determine the
state vector, x of dimension n, often a vector of temperatures and
mixing ratios at different altitudes (but could be other desirable
variables), given some set of observations, y of dimension m,
usually a vector of flux values at each wavelength. In the absence
of any noise, they can be related through y = F(x), where F(x)
is a model that simulates the measurement at each wavelength
given a representative atmosphere. In an idealized scenario, if
the relationship between x and y is linear, we can linearize F(x)
and write

y = F(xa) + K(x − xa), (1)

where K is the m×n Jacobian matrix whose elements are given
by the Frechet derivative

Kij = ∂Fi(x)

∂xj

, (2)

with Fi being the measurement in the ith channel, and xj the
value of the j th parameter. The vector xa is the prior (a priori)
state, which represents our best initial guess of the true state
before the observations are made. The Jacobian describes the
sensitivity of the measurement at each wavelength in a spectrum
to a perturbation of a given parameter in the forward model. If
the lengths of x and y are the same then Equation (1) may be
readily inverted to

x = xa + K−1(y − F(xa)). (3)

Real data are often noisy and usually have a large number of
measurements that overconstrain the atmospheric state. For this
we must use a more sophisticated scheme to invert the data
to determine the atmospheric properties. This can be readily
achieved by using a Bayesian framework. In the remainder of
this section, we present the basic formalism and useful equations
and algorithms that we can use to retrieve atmospheric properties
from spectra as well as their information content, following the
derivations in Rodgers (2000). For further details, see either
Rodgers (2000) or Jacob (2007).

Bayes theorem can be written as

P (x|y) ∝ P (y|x)P (x), (4)

where P(x) is the prior probability distribution, which is knowl-
edge of the atmospheric state before making a measurement,
P(y|x) is the likelihood function, that is, the probability that the
data exists within the context of a particular model, and P(x|y)
is the posterior probability distribution density function which
can be interpreted as the probability that some state x, in our
case atmospheric state, exists given the observations, y. If we
assume Gaussian probability distributions for the observational
error and for the a priori information, we can write

P (y|x) ∝ e− 1
2 (y−Kx)T S−1

e (y−Kx) (5)

P (x) ∝ e− 1
2 (x−xa )T S−1

a (x−xa ), (6)

where Se is the m × m diagonal error covariance matrix
(assuming no correlation between measurements) and Sa is the
n × n a priori covariance matrix. The a priori covariance matrix
represents our prior knowledge of the natural variability of the
system and like Se, it is assumed to be diagonal. It essentially
defines our “trust” region, or how far from the prior state we
think the actual state can exist. In general, the prior constraint

should be loose enough to allow flexibility in the retrieval but not
so loose that the retrieval fails when a measurement contributes
no information.

Using Bayes theorem from Equation (4) we can write the
posterior probability distribution as a product of Equations (5)
and (6):

P (x|y) ∝ e− 1
2 J (x), (7)

where J(x) is the cost function and is given by

J (x) = (y − Kx)T S−1
e (y − Kx)

+(x − xa)T S−1
a (x − xa). (8)

The first term in the cost function represents the contribution
from the data. The second term represents the contribution from
the prior knowledge. If the data are of good quality (high-S/N,
and high R), then the data term will dominate. Since the product
of two Gaussians is a Gaussian, Equation (8) can be equivalently
written as

J (x) = (x − x̂)T Ŝ−1(x − x̂), (9)

where x̂ and Ŝ are the mean and covariance, respectively, of the
posterior probability distribution. A diagonal element of Ŝ is
the variance in the jth component of the state vector, Ŝjj = σ̂ 2

j ,
where σ̂j is the retrieval uncertainty in the jth parameter.

The goal of any retrieval is to obtain the most likely set of
atmospheric parameters given the data. This is achieved when
Equation (7) is maximized which occurs at the mean of the
posterior probability function. Equating Equations (8) and (9)
we can solve for x̂ and Ŝ to get

x̂ = xa + G(y − Kx), (10)

where G is the gain matrix that describes the sensitivity of
the retrieval to the observations (if G = 0, no sensitivity, then
the measurements do not contribute toward the retrieved state),
given by

G = ∂ x̂
∂y

= ŜKT S−1
e , (11)

with
Ŝ = (

KT S−1
e K + S−1

a

)−1
. (12)

As the elements of Sa approach ∞ or the elements of Se

approach 0, then G approaches K−1 which is identically the
sensitivity of the state vector to the observations, and thus the
retrieval is fully characterized by the data.

If the forward model is linear, then Equation (10) can be
solved to obtain the desired state vector. Often, the forward
model is nonlinear, generally the case in radiative transfer;
it is then best to use a numerical iteration scheme to deter-
mine the state vector. In the nonlinear case, the Kx terms
in the cost function in Equation (8) are replaced with F(x).
The Levenberg–Marquardt iteration scheme is used to find the
minimum of the nonlinear cost function. The prescribed scheme
is given by

xk+1 = xk +
[
(1 + γ )S−1

a + KT
k S−1

e Kk

]−1

{
KT

k S−1
e [y − F(xk)] − S−1

a [xk − xa]
}
, (13)

where xk and xk+1 are the state vectors for the kth and k + 1st
iterations, and Kk is the Jacobian matrix calculated at the kth
iteration. γ is a factor that controls the rate of convergence and
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is adjusted at each iteration (Press et al. 1995). Equation (13) is
iterated until convergence, when

(xk − xk+1)T Ŝ−1(xk − xk+1) � n. (14)

Upon convergence, we obtain the retrieved state, x̂ and its
precision Ŝ.

2.2. Information Content and Degrees of Freedom

The information content (Shannon & Weaver 1962) and the
total number of degrees of freedom are useful quantities that
can help diagnose the quality and ability of a spectral data set
to contribute to our knowledge of the atmospheric state. The
number of degrees of freedom represents how many indepen-
dent parameters can be retrieved from the spectrum, and the
information content is a metric of how much the precision in the
retrieved parameters has improved as a result of the observation.
In the simplest sense, if there are m independent measurements
with no error (e.g., fluxes at m different wavelengths), then there
will be at most be m independent pieces of information (degrees
of freedom) that can be obtained from the observations. If m
is fewer than the number of model parameters, n, the exact
values of n−m parameters cannot be obtained from the obser-
vations. We do not discuss those cases in this article, we choose
only cases for which m > n. For a given forward model, with
n parameters, the maximum number of obtainable degrees of
freedom will be the smaller of n and m. In an ideal case, the
total number of degrees of freedom will be close to n, mean-
ing that the observations can be fully characterized by those n
parameters.

In reality, measurements are susceptible to error, and the
total number of degrees of freedom in the observed signal
(denoted by ds), and thus the number of parameters accessible
to our retrieval, may be fewer than the number of independent
measurements, n. Some degrees of freedom, dn, can be lost in
the noise. The sum of ds and dn must add up to the total number
of parameters we are seeking, n.

Before calculating the degrees of freedom it is useful to first
introduce the averaging kernel, A. The averaging kernel tells
us which of the parameters in the state vector have the greatest
impact on the retrieval, that is, the sensitivity of the retrieval to
a given parameter, given by

A = ∂ x̂
∂x

= ∂ x̂
∂y

∂y
∂x

= GK. (15)

A is an n × n matrix whose elements are given by

Aij = ∂x̂i

∂xj

. (16)

If a diagonal element of A is unity, or close to it, then that
means for a given change in the true atmospheric state, there is
identically the same change in the retrieved state. This suggests
that the parameter, xj, is fully characterized by the data. If that
diagonal element is less than unity, meaning that the data itself
are not of a high enough quality to constrain that parameter, then
some fraction of the a priori information must have been used
in determining the value of that parameter. If each parameter
is fully characterized by the data, that is, if all of the diagonal
elements of A are unity, then we would expect to be able to
retrieve all n parameters. If the diagonal elements are less than
unity, then the sum of the diagonals would be less than n. In

essence, the diagonal elements of the averaging kernel can be
thought of as the degrees of freedom per parameter. If the value
of a particular diagonal element is 1, then that parameter is well
characterized by the data. If it is much less than 1, then the
data contribute little to our knowledge of that parameter. The
total degrees of freedom from the signal can be determined by
calculating the trace of A. The difference between n and the
trace of A is the number of degrees of freedom lost to the noise.

The total degrees of freedom, again, tell us how many
independent parameters can be determined from the ob-
servations. The information content, H, tells us quantita-
tively how well the observations increased our confidence in
our estimate of the atmospheric state relative to the a priori
knowledge. In a more precise language, the information con-
tent of a measurement is the reduction in the entropy of the
probability that an atmospheric state exists given some set of
observations, or

H = entropy(P (x)) − entropy(P (x|y)). (17)

The entropy of a Gaussian distribution of width σ , which
the prior and a posterior distributions are assumed to be, can
be shown to be proportional to ln(σ ). Using this fact and
Equations (17), (6), and (9),

H = 1

2
ln(|Ŝ−1Sa|). (18)

From this we can see that if the data are good (small error bars),
then the elements of Ŝ will be small, resulting in a large H. Thus,
H is a quantitative measure of the reduction in our uncertainty
in the retrieved atmospheric state as a result of the observations.
The larger the value of H, the more useful the observations are
in constraining the atmospheric state.

In summary, both ds and H are quantitative measures of the
quality and usefulness of the observations in determining the
atmospheric state, within the context of a given forward model.
From their definitions we would expect that a spectrum with a
higher S/N, or a higher R, would result in higher values. We
will show this in Section 3.

2.3. Forward Model

A relatively simple forward model, F(x), which nonetheless
captures the basic physics and the measurement process, is at
the core of our retrieval. We assume a simplified understanding
of the physical and chemical state of the exoplanet atmosphere,
i.e., a parameterized temperature structure, the major volatile
constituents, the important radiative processes, and the instru-
ment line profiles, etc. Our forward model, as most such models,
is an approximation because the data are of limited quality, the
underlying physics is relatively ill-understood, and simplifying
approximations are necessary. Examples of physics missing in
our F(x) include absent species, inaccurate line lists, clouds,
aerosols, three-dimensional effects, etc., or possibly insufficient
parameterization of the atmosphere. Therefore, our retrievals
must be taken in context of our chosen forward model. Herein,
we only consider the dayside spectra of hot-Jupiters with near
solar metallicity, though the methods are easily be extended
to other kinds of observations (transmission spectra) and exo-
planets (hot-Neptunes, mini-Neptunes, super-Earths, etc.) with
relatively minor modifications to the forward model. For future
instruments, with broader spectral coverage and higher spectral
resolution, the forward models can increase in sophistication.
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Lacking sufficient data (these are low signal-to-noise,
low-resolution spectra), we simplify our atmosphere to eight
parameters that characterize the temperature structure and gas
concentrations. For the sake of simplicity, we use an analytic
temperature profile formulated by Guillot (2010), and since then
modified by V. Parmentier & T. Guillot (in preparation), to in-
clude three channels. The profile, derived using a three-channel
approximation, is given by

T 4(τ ) = 3T 4
int

4

(
2

3
+ τ

)
+

3T 4
irr

4
(1 − α)ξγ1 (τ ) +

3T 4
irr

4
αξγ2 (τ ),

(19)
where

ξγi
= 2

3
+

2

3γi

[
1 +

(γiτ

2
− 1

)
e−γiτ

]
+

2γi

3

(
1 − τ 2

2

)
E2(γiτ ),

(20)
with γ1 = κv1/κIR and γ2 = κv2/κIR, where κv1 , κv2 , and κIR are
the visible and infrared (thermal) opacities, respectively. The
parameter α (range 1–0) partitions the flux between the two
visible streams, and E2(γ τ ) is the second-order exponential
integral function. The internal heat flux (from the net cooling
history) is represented by the temperature Tint, while the solar
flux at the top of the atmosphere is represented by Tirr; these
two temperatures are fixed. Assuming zero albedo and unit
emissivity, Tirr is

Tirr =
(

R∗
2a

)1/2

T∗, (21)

where R∗ and T∗ are the stellar radius and temperature, a is the
star planet separation, and τ is the infrared (thermal) optical
depth:

τ = κIRP

g
, (22)

with P the pressure and g the surface gravity (at 1 bar). In
total, there are four free parameters governing the temperature
structure, κIR, κv1 , κv2 , and α. We choose this parameterization
with two visible streams as opposed to the traditional one visible
stream (Hansen 2008; Guillot 2010) because the extra stream
allows more freedom for a temperature inversion, though in
some cases (as we shall see below) the second visible stream
does not matter.

The remaining four parameters are the uniform mixing ratios
for H2O, CH4, CO, CO2, expected to be the major molecular
opacity sources (Tinetti et al. 2007; Swain et al. 2009b). We
choose vertically uniform mixing ratios for two reasons. First,
the data lack sufficient information content to actually help
resolve vertical structure in abundances, and second, chemical
kinetics models (Moses et al. 2011; Line et al. 2010, 2011) show
that vertical mixing leads to constant vertical mixing ratios for
these species within the IR photosphere, so even if we could
resolve detailed vertical information, we would most likely find
that the abundances remain fairly constant.

Since many of these parameters may vary over many orders
of magnitude we find it convenient with the above formalism to
solve for the logarithm of the atmospheric state. With that, the
state vector of parameters that we would like to retrieve can be

given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

log(κv1 )
log(κv1 )
log(κIR)

α
log(fH2O)
log(fCH4)
log(fCO)
log(fCO2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where fi is the mixing ratio of species i in parts per million (ppm)
and the opacities are in cm2 g−1.

We also include H2–H2 and H2–He collision-induced opac-
ities. The mixing ratios of H2 and He vary little with the at-
mospheric levels that produce the bulk of the dayside thermal
emission (500–2000 K, 10–10−4 bar). We fix fH2 and fHe to
thermochemical abundances (assuming solar elemental abun-
dances) of 0.86 and 0.14, respectively. These values may change
on the tens-of-percent level in enriched atmospheres, however,
this variation has negligible effect on the resultant infrared spec-
tra. Also, we do not include NH3 as an opacity source as it has
little influence in the spectral region we consider.

We use the Reference Forward Model (RFM),3 a line-by-line
radiative transfer code, to calculate the disk-integrated dayside
emission spectra, modified to handle H2-H2 and H2–He col-
lisionally induced opacities. The collisionally induced opacity
tables are taken from Borysow et al. (2001), Borysow (2002),
and Jørgensen et al. (2000). The molecular line strengths for
H2O, CO2, and CO, are from the HITEMP (Rothman et al.
2010) database and CH4

4 is from the HITRAN 2008 database
(Rothman et al. 2009). In order to keep the molecular line lists
from becoming too unwieldy we make an intensity cutoff at
298 K of 10−40 cm molecule−1, as recommended by Sharp &
Burrows (2007).

3. TEST ON SYNTHETIC DATA

First, we test the retrieval method on a synthetic data set
for which we know the answer. Using this synthetic spectrum,
we explore the effect that signal-to-noise ratio and spectral
resolution have on the degrees of freedom and information
content.

A hypothetical hot-Jupiter atmosphere is generated using
κv1 = κv2 = 4 × 10−3 cm2 g−1, κIR = 1 × 10−2 cm2 g−1,
α = 0.5, and fixed vertical mixing ratios of fH2O = 5 × 10−4,
fCH4 = 1 × 10−6, fCO = 3 × 10−4, and fCO2 = 1 × 10−7. The
planet orbits around a G0V host star (e.g., HD 209458a) with
T∗ = 6000 K, R∗ = 1.14 R� at a separation of a = 0.064 AU.
The planetary properties are a radius of 1.35RJ , an internal
temperature of Tint = 200 K, and g = 21.1 m s−2 (at 1 bar
pressure). Using Equation (21) we find Tirr = 1223 K. The
emission spectrum of the exoplanet (see Figure 1) is initially
generated with a one wavenumber resolution (resolving power,
R 	 5000 at 2 μm).

For the initial test, the synthetic spectrum (Figure 1) is
degraded by convolving it with an instrumental profile matching
the defocused HST/NIC3 camera with a spectral FWHM of

3 see http://www.atm.ox.ac.uk/RFM/
4 Upon completion of our initial investigation it was also brought to light that
there exists more appropriate high temperature based line lists for methane
such as the STDS (http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/HTDS.html).
Using this line list over HITRAN makes absolutely no difference for our
synthetic work since the synthetic data were produced using the HITRAN
methane. We have also compared our HD189733b retrieval results for both
methane line lists and found no difference.
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Figure 1. Synthetic spectrum (bottom) generated with the model atmosphere
(top) with a spectral resolution of 1 cm−1 or R ∼ 5000 at 2 μm. The
model temperature profile is generated from Equations (19) and (20) with
κv1 = κv2 = 4 × 10−3 cm2 g−1, κIR = 1 × 10−2 cm2 g−1, α = 0.5,
Tirr = 1223 K, and Tint = 200 K. The constant-with-altitude mixing ratios are
fH2O = 5 × 10−4, fCH4 = 1 × 10−6, fCO = 3 × 10−4, and fCO2 = 1 × 10−7.

0.055 μm (R 	 40 at 2 μm; Swain et al. 2009b), and reducing
the measurement signal-to-noise ratio of each spectral channel to
∼10. Rather than be guided by physical and chemical models, or
some previous observation of the object, we arbitrarily chose an
a priori state, xa , far from the true physical state. The remaining
unspecified quantity is the a priori covariance matrix, Sa . Once
more, the diagonal elements of Sa are allowed a large range as
we are dealing with a relatively novel type of observations and
lack detailed prior information. We also assume that there are no
cross correlations between different state parameters (e.g., fCO
and fCO2 , even though from chemical models we know that such
quantities have high correlations). Because the state parameters
are logarithmic, the elements of Sa are also logarithmic (with
the exception of α) so we set, somewhat arbitrarily, σκv1 = 2,
σκv2 = 2, σκIR = 2, σα = 0.5, σfH2O = 6, σfCH4 = 6, σfCO = 6,
and σfCO2 = 6 meaning that the opacities are permitted to span 4
orders of magnitude centered around their a priori value and the
mixing ratios are allowed to span 12 orders of magnitude. Such
large a priori uncertainties lead to a flat a priori distribution,
relative to the data, reducing the current problem to a maximum
likelihood estimation (as opposed to Bayesian), with the option
of using the a priori information if the data are sparse.

H2O

CH4

CO

CO2

v1, v2

IR

Figure 2. Columns of the Jacobian for the synthetic spectrum evaluated at the
true state. This is the response of the flux as a function of wavelength due to
a small positive perturbation in one of the parameters in x. The top panel is
the flux response for the parameters that govern the temperature profile, κv1 ,
κv2 , and κIR. The bottom panel is the flux response to a small perturbation in
the gas mixing ratios, fH2O, fCH4, fCO, and fCO2. The Jacobian is calculated
as a change in the planet-to-star flux ratio, Δ(Fp/F∗), to a positive logarithmic
perturbation in a given parameter, Δ log(xj ). Note that in the bottom panel an
increase in the gas mixing ratios always results in a decrease in Fp/F∗. In this
particular case, the spectrum is equally sensitive to κv2 and κv1 because α is
0.5. If α = 0 then the spectrum will have no sensitivity to κv2 , and if α = 1
the spectrum will have no sensitivity to κv1 . Also, for this synthetic data set
κv2 = κv1 , which results in no sensitivity to α.

(A color version of this figure is available in the online journal.)

The entirety of the forward model can be summarized with the
Jacobian. Figure 2 shows the columns of the Jacobian evaluated
at the true state (response of the flux in each channel to a
perturbation in each of the parameters in x) for the synthetic data
(Figure 3). The spectrum is most sensitive to perturbations in the
opacities that govern the temperature profile. The 1.7 μm and
2.2 μm channels are most sensitive to changes in the temperature
profile. This is because there are not large absorption features at
these wavelengths, meaning these channels are most sensitive
to the flux from deeper layers (1–10 bar). This also partially
explains why κIR and κv1 have opposite responses. An increase in
κIR results in an increase in flux due to an increase in temperature
in the deep layers probed by these channels, as can be seen in
Equation (19). An increase in κv1 results in a decrease of flux
in these channels due to a decrease in temperature in the deeper
layers. From Equation (19), an increase in κv1 increases the
temperature above the ∼0.1 bar level, and in order to maintain
radiative equilibrium at the top of the atmosphere, a decrease in
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a priori
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7

nal
true state

Figure 3. Synthetic spectrum retrieval. Left: iteration sequence of the model spectrum, F(xk). The diamonds with error bars are the synthetic data convolved down to a
resolution of 0.055 μm (R ∼ 37 at 2 μm) and a signal-to-noise ratio of 10. The thick red curve is the forward model spectrum generated from the a priori, F(xa). Note
that it is a poor fit to the data. Each subsequent curve is the new model spectrum after each iteration of Equation (13). The thick solid blue curve is the final retrieved
model spectrum. Right: evolution of the temperature profile with each iteration. The thick red curve is the a priori temperature profile. The thick blue curve is the
retrieved temperature profile. The diamond symbol curve is the true temperature profile as in Figure 1. χ2 converges to 0.007 after eight iterations of Equation (13).

(A color version of this figure is available in the online journal.)

temperature in the deeper layers must occur, and also a higher
κv prevents the stellar flux from penetrating into the deeper
atmosphere. The opposite is true near 2.9 μm, which is more
sensitive to higher altitudes because of the large absorption; thus
an increase in κv1 will result in an increase in temperature, which
in turn results in a flux increase. Also, in this particular case,
α = 0.5, meaning both κv1 and κv2 have identically the same
results. Additionally, κv1 = κv2, which causes the spectrum to
have no sensitivity to changes in α.

The spectral response is most sensitive to the water abun-
dance, more than any other gas across all wavelengths in this
example (Figure 2). This makes the retrieval of water more pre-
cise than the other species. The greatest sensitivity to changes in
the CO2 abundance occurs at 2.1 and 2.8 μm, which both hap-
pen to be located near the sensitivity minima of CO and CH4,
though it still has to contend with water. Both CO and CH4 have
greatest sensitivity in the 2.3 μm band, making it difficult to
simultaneously retrieve both.

Figure 3 shows the retrieval process for this initial synthetic
test case. We determine the quality of the retrieval using the
standard reduced χ2 given by

χ2 = 1

N

N∑
i=1

(yi − Fi)2

σ 2
i

, (23)

where N is the total number of data points, yi, Fi, and σi ,

are defined in Section 2.1. If χ2 is less than one, then the
difference between the model fit and data is typically better
than 1σ . We should stress, however, that a perfect fit (χ2 = 0)
does not necessarily mean that the true state has been retrieved
because of the degeneracies between some of the parameters.
Table 1 compares the true state to the retrieval results along with
the retrieval precision. The synthetic retrieval demonstrates the
robustness of the retrieval to a poor a priori. The reason for
this can be seen by inspecting the elements of the averaging
kernel. From Table 1, all but κv1 and methane are fairly well
characterized by the data (Ajj is close to 1). Summing these
values gives the total degrees of freedom, and thus the total
number of useful retrievable parameters of ∼6.

3.1. Resolution and Signal-to-noise Effects on the Degrees of
Freedom and Information Content

The S/N and R are two important factors that influence the
quality and usefulness of a spectrum. It is thus imperative to
consider them when designing a spectrometer. In this section,
we use our synthetic data set to explore how the degrees of
freedom, both total and per atmospheric parameter, and the
information content evolve with increasing S/N and R.

We would intuitively expect ds and H both to increase with
increasing R and S/N. Figure 4 shows a contour plot of ds and
H calculated for the synthetic spectrum generated in Figure 1

Table 1
Synthetic Retrieval Results

Parameter True State (x) A priori (xa) Retrieved State (x̂) Retrieval Precision ∂x̂i
∂xj

κv1 4.00 × 10−3 1.00 × 10−3 3.59 × 10−3 2.76 × 10−3–4.68 × 10−3 0.997
κv2 4.00 × 10−3 1.00 × 10−2 1.70 × 10−9 1.70 × 10−11–1.70 × 10−7 0.0
κIR 1.00 × 10−2 3.16 × 10−2 8.93 × 10−3 7.13 × 10−3–1.12 × 10−2 0.998
α 0.5 0.1 0.003 0.00–0.022 0.999
fH2O 5.00 × 10−4 1.00 × 10−6 4.18 × 10−4 2.58 × 10−4–6.76 × 10−4 0.999
fCH4 1.00 × 10−6 1.00 × 10−4 3.43 × 10−7 4.34 × 10−12–2.70 × 10−2 0.334
fCO 3.00 × 10−4 1.00 × 10−6 1.96 × 10−4 2.27 × 10−6–1.69 × 10−2 0.896
fCO2 1.00 × 10−7 1.00 × 10−4 7.70 × 10−7 9.95 × 10−10–5.96 × 10−4 0.768

Notes. κv1, κv2, and κIR are in units of cm2 g−1. fi is the volume mixing ratio for species i. We also show the diagonal averaging kernel elements
(Ajj = (∂x̂j /∂xj )) for each parameter. The retrieval uncertainties are given as x̂ − σ̂ to x̂ + σ̂ for each parameter.
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ds
H

Figure 4. S/N and R effects on the total degrees of freedom (left) and the information content (right). In general, as S/N and R increase, the total number of degrees
of freedom obtainable from the data and the information content increase. See Equations (24) and (25).

(A color version of this figure is available in the online journal.)

for a variety of S/Ns and Rs. The maximum increase in both
occurs with a simultaneous5 increase in S/N and R.

We point out that the contour plots in Figure 4 can only be
taken in the context of the spectral window within which we
are applying the retrieval and the number of parameters we
are trying to retrieve. In other words, for the eight parameters
we are retrieving here, there is no benefit to increasing R or
S/N beyond a few hundred and ∼100, respectively. If we
do happen to have a higher R and S/N, it is likely that we
would be able to retrieve more forward model parameters such
as the concentrations of other gases, or information on the
vertical distributions of the gases. Current observations, like the
HST/NICMOS observations of HD189733b, generally fall
toward the bottom left corners in Figure 4. This suggests that
S/N and Rs of such data are not high enough to fully constrain
even our simple forward model, and thus even less constraining
for more complicated models.

The increasing behavior in ds with increasing S/N can be
seen through the use of Equations (11), (12), and (15). As
S/N goes to infinity, the elements of Se go to zero, causing
G to approach K−1, in turn causing A to approach the identity
matrix, meaning the diagonal elements are all ones with a trace
equal to the total number of parameters and thus the maximum
number of degrees of freedom. The relationship between ds and
S/N can be seen in a one-parameter one-channel model, where
ds = A. Upon reducing the matrix equations, the one-element
averaging kernel becomes

ds = A = K2σ 2
a

K2σ 2
a + (F/(S/N))2

= (S/N)2

(S/N)2 + F 2

K2σ 2
a

, (24)

and the relation of these parameters to the information content
is

H = ln

[
1 +

σ 2
a

F 2
K2(S/N)2

]
, (25)

where K, σa , and F are the one-dimensional analogs for K, Sa ,
and F(x), respectively. We also have assumed that σe, the one-
dimensional analog for Se, is the flux, F, divided by S/N. In this

5 This is true if R and S/N are independent of each other. In most cases, S/N
decreases with increasing R because of the smaller spectral bins.

case, ds approaches unity as S/N goes to infinity, and zero, if
S/N is zero. H approaches infinity as S/N goes to infinity, and
approaches zero when S/N goes to zero. One important thing
to note from these relations is that increasing S/N will matter
only if the Jacobian, K, is non-zero, meaning that there must
be some sensitivity of the flux to a perturbation in the desired
parameter. Otherwise, no amount of S/N increase will improve
our knowledge of the atmospheric state. Increasing R or adding
more spectral channels can also contribute to an increase in ds
and H. If channels are chosen such that the K is large, meaning
large sensitivity to a given parameter, then ds and H will both
increase. As K approaches infinity (infinite sensitivity), ds will
approach unity and H will approach infinity.

From this simple analysis, though it may intuitively obvious,
we can readily see that if we want to improve the characteriza-
tion of a particular atmospheric property, it is best to design an
instrument whose spectral regions offer the greatest sensitivity
to that parameter, and to have a high S/N within those spectral
regions.

4. TEST ON REAL DATA: HD189733b
DAYSIDE EMISSION

Now that we have demonstrated that this retrieval procedure
works and provides useful information about the quality of a data
set through the degrees of freedom and information content, we
wish to apply it to the dayside emission spectra of one of the best-
studied exoplanet atmospheres, HD189733b. We assume the
same forward model and a priori covariances as in the synthetic
work.

The dayside emission spectrum of HD189733b has been
subject to much investigation (Swain et al. 2009b; Grillmair
et al. 2007; Madhusudhan & Seager 2009, and many others), and
often times different analyses come up with different solutions
for its composition and temperature structure. For simplicity,
we investigate only the near-IR spectrum from Swain et al.
(2009b). As an a priori atmospheric state we use the “Fortney
2π” (Fortney et al. 2010) temperature profile from Figure 2
of Moses et al. (2011) approximated with Equation (19) and
the 0.1 bar mixing ratios for H2O, CH4, CO, and CO2 from
their Table 2 but assumed to be constant with altitude within

7
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H2O

CH4

CO

CO2

v1, v2

IR

Figure 5. Retrieval results for the NICMOS dayside emission spectra of HD189733b from Swain et al. (2009b). Top left: the sensitivity of the planet-to-star flux ratio
to a perturbation in the mixing ratios of H2O, CO2, CO, and CH4 at each channel in the NICMOS data set. Top right: the sensitivity of the planet-to-star flux ratio to a
perturbation in the parameters governing the temperature profile. Bottom left: the retrieved spectrum. The black diamonds with error bars are the Swain et al. (2009b)
dayside emission data. The red curve is the a priori spectrum convolved with the instrumental broadening profile and sampled at the data wavelengths. The orange
curve is retrieved spectrum at high resolution. The blue dots are the retrieved spectrum convolved with the instrumental broadening function and sampled at the data
wavelengths. This optimal solution gives χ2 = 0.76. Bottom right: the a priori (red) and retrieved (blue) temperature profiles.

(A color version of this figure is available in the online journal.)

Table 2
Retrieval Results for HD189733b

Parameter A Priori (xa) Retrieved State (x̂) Retrieval Precision ∂x̂i
∂xj

MS10 S09a

κv1 4.00 × 10−3 4.71 × 10−3 1.67 × 10−4–1.32 × 10−1 0.475 · · · · · ·
κv2 4.00 × 10−3 4.71 × 10−3 1.67 × 10−4–1.32 × 10−1 0.475 · · · · · ·
κIR 3.00 × 10−2 4.70 × 10−2 3.00 × 10−2–7.36 × 10−2 0.990 · · · · · ·
α 0.5 0.5 0.00–1.00 0.00 · · · · · ·
fH2O 4.00 × 10−4 1.19 × 10−4 5.29 × 10−5–2.67 × 10−4 0.997 ∼ 10−4 1 × 10−5–1 × 10−4

fCH4 1.00 × 10−6 9.78 × 10−9 9.79 × 10−15–9.77 × 10−3 0.00 �6 × 10−6 �1 × 10−7

fCO 5.00 × 10−4 1.15 × 10−2 3.60 × 10−3–3.64 × 10−2 0.993 2 × 10−4–2 × 10−2 1 × 10−4–3 × 10−4

fCO2 1.00 × 10−7 3.37 × 10−3 1.69 × 10−3–6.72 × 10−3 0.998 7 × 10−4 1 × 10−7–1 × 10−6

Notes. κv1, κv2, and κIR are in units of cm2 g−1. fi is the volume mixing ratio for species i. We also show the diagonal averaging kernel elements
(Ajj = (∂x̂j /∂xj )) for each parameter. The total number of degrees of freedom for this spectrum is ∼5. The retrieval precisions are given as x̂ − σ̂

to x̂ + σ̂ for each parameter. We also show for comparison the abundances derived by Madhusudhan & Seager (2009, MS10) and Swain et al. (2009b,
S09a).

the IR photosphere sampled by the observations (because of
quenching arguments). Figure 5 and Table 2 show the results
of the retrieval. The Jacobian in Figure 5 demonstrates the
high sensitivity of the spectrum to water and carbon dioxide,
some sensitivity to CO near 2.3 μm, and very little sensitivity
to methane at all wavelengths. The 1.7 and 2.2 μm channels
are sensitive to the deep temperatures (effected by κIR) due to
the higher transmittance at those wavelengths. The strong CO2
absorption feature at 2.1 μm has less sensitivity to the deep

temperatures and more sensitivity to temperatures higher up
(controlled by κv1 and κv2).

The diagonal elements of the averaging kernel in Table 2
quantitatively tell us which parameters we can and cannot
retrieve from the dayside emission spectra. Again, H2O, CO, and
CO2 have averaging kernel elements that are near unity and are
therefore well constrained by the data, as is also reflected in the
retrieval uncertainty, which is smaller than the assumed a priori
uncertainty. CH4 is completely unconstrained. The retrieval
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uncertainty is the same as the a priori uncertainty, suggesting that
the observations contribute no information about its abundance.
The trace of the averaging kernel gives the total number of
degrees of freedom, and thus the total number of retrievable
parameters, to be ∼5.

Our results compare quite well with those of Madhusudhan &
Seager (2009) and with Swain et al. (2009b) with the exception
of CO2 (Table 2) which appears to be underestimated by three
orders of magnitude in Swain et al. (2009b). Our derived
temperature profile (Figure 5, bottom right) also appears to fall
within the spread given in Figure 5 of Madhusudhan & Seager
(2009).

5. DISCUSSION AND CONCLUSIONS

We demonstrate retrieval by inverse modeling of extrasolar
planetary spectra. We first apply the technique to a synthetic
model spectrum of a solar metallicity T 	 1200 K hot Jupiter,
and then to a previously published HST/NICMOS spectrum of
HD 189733b, showing results that are consistent with previous
studies. The approach herein is much more efficient than
other methods such as a gridded parameter search, or Monte
Carlo techniques, as it only requires ∼102 forward model
computations as opposed to millions. The formalism also allows
robust estimation of the retrieval uncertainties.

We have also investigated the information theory aspects of
the problem, in order to assess the quality and usefulness of a
spectral data set in constraining atmospheric properties. First, we
discuss how the Jacobian matrix can be used to determine which
spectral channels are most sensitive to chosen atmospheric
parameters. Second, we show the use of the averaging kernel as
a diagnostic tool to guide us to which parameters can be usefully
retrieved from the spectrum in question. Third, we calculated
the number of available degrees of freedom and often found that,
given the current limited observational capabilities, the number
of retrievable parameters was less than the number of parameters
in our forward model. Fourth, using simple expressions for
the degrees of freedom and information content, we showed
semi-quantitatively how S/N and R affect our knowledge of
the atmospheric state. These tools can be particularly useful in
aiding the design of future instruments such that they can be
optimized for observations of transiting exoplanets.

A recent paper (Lee et al. 2012), using the optimal estimation
approach as applied to HD 189733b, was published while this
article was in preparation. The details of the methodology
in that paper are somewhat different from ours, i.e., in the
parameterization of the atmospheric models and in the use of the
correlated-K opacities (we use line-by-line radiative transfer). In
addition, Lee et al. use multi-band (i.e., from various instruments
inclusive of HST/NICMOS, Spitzer/IRAC, IRS, and MIPS),
multi-epoch measurements of HD 189733b as a representative
snapshot of the planetary dayside. We restrict our retrieval
to a single epoch, 13 spectral-channel NICMOS observation
spanning less than one octave of total spectral coverage between
1.45 μm and 2.5 μm. Our retrievals agree for the most part
with those of Lee et al. in that H2O and CO2 are retrieved
with confidence but neither retrieval can say much about the
abundance of methane (a trace species in HD 189733b). One
clear discrepancy is that we are able to retrieve CO whereas they
cannot. Also, Lee et al. do not discuss the information content
aspects of the atmospheric retrieval formulation presented in
both of these papers.

In follow-on investigations, we plan to use the information
content analyses to study aspects of combining Spitzer broad-

band photometry with prior notions about the atmospheric state
to constrain atmospheric properties such as CH4/CO and C/O
ratios. A powerful use of these methods is in optimizing the de-
sign of instruments that could be flown in NASA’s FINESSE and
ESA’s Exoplanet Characterization Observatory, or in studying
the potential of already designed instruments such as the James
Webb Space Telescope NIRCAM that offer various observing
modes, bandpasses, and spectral resolving power.
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