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Preface

Statistical modeling is a critical tool in scientific research. Statistical mod-
els are used to understand phenomena with uncertainty, to determine the
structure of complex systems, and to control such systems as well as to make
reliable predictions in various natural and social science fields. The objective
of statistical analysis is to express the information contained in the data of
the phenomenon and system under consideration. This information can be
expressed in an understandable form using a statistical model. A model also
allows inferences to be made about unknown aspects of stochastic phenomena
and to help reveal causal relationships. In practice, model selection and evalu-
ation are central issues, and a crucial aspect is selecting the most appropriate
model from a set of candidate models.

In the information-theoretic approach advocated by Akaike (1973, 1974),
the Kullback–Leibler (1951) information discrepancy is considered as the basic
criterion for evaluating the goodness of a model as an approximation to the
true distribution that generates the data. The Akaike information criterion
(AIC) was derived as an asymptotic approximate estimate of the Kullback–
Leibler information discrepancy and provides a useful tool for evaluating
models estimated by the maximum likelihood method. Numerous successful
applications of the AIC in statistical sciences have been reported [see, e.g.,
Akaike and Kitagawa (1998) and Bozdogan (1994)]. In practice, the Bayesian
information criterion (BIC) proposed by Schwarz (1978) is also widely used
as a model selection criterion. The BIC is based on Bayesian probability and
can be applied to models estimated by the maximum likelihood method.

The wide availability of fast and inexpensive computers enables the con-
struction of various types of nonlinear models for analyzing data with complex
structure. Nonlinear statistical modeling has received considerable attention in
various fields of research, such as statistical science, information science, com-
puter science, engineering, and artificial intelligence. Considerable effort has
been made in establishing practical methods of modeling complex structures of
stochastic phenomena. Realistic models for complex nonlinear phenomena are
generally characterized by a large number of parameters. Since the maximum
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likelihood method yields meaningless or unstable parameter estimates and
leads to overfitting, such models are usually estimated by such methods as
the maximum penalized likelihood method [Good and Gaskins (1971), Green
and Silverman (1994)] or the Bayes approach. With the development of these
flexible modeling techniques, it has become necessary to develop model selec-
tion and evaluation criteria for models estimated by methods other than the
maximum likelihood method, relaxing the assumptions imposed on the AIC
and BIC.

One of the main objectives of this book is to provide comprehensive expla-
nations of the concepts and derivations of the AIC, BIC, and related criteria,
together with a wide range of practical examples of model selection and eval-
uation criteria. A secondary objective is to provide a theoretical basis for
the analysis and extension of information criteria via a statistical functional
approach. A generalized information criterion (GIC) and a bootstrap infor-
mation criterion are presented, which provide unified tools for modeling and
model evaluation for a diverse range of models, including various types of non-
linear models and model estimation procedures such as robust estimation, the
maximum penalized likelihood method and a Bayesian approach. A general
framework for constructing the BIC is also described.

In Chapter 1, the basic concepts of statistical modeling are discussed. In
Chapter 2, models are presented that express the mechanism of the occurrence
of stochastic phenomena. Chapter 3, the central part of this book, explains
the basic ideas of model evaluation and presents the definition and derivation
of the AIC, in both its theoretical and practical aspects, together with a wide
range of practical applications. Chapter 4 presents various examples of statis-
tical modeling based on the AIC. Chapter 5 presents a unified information-
theoretic approach to statistical model selection and evaluation problems in
terms of a statistical functional and introduces the GIC [Konishi and Kitagawa
(1996)] for the evaluation of a broad class of models, including models esti-
mated by robust procedures, maximum penalized likelihood methods, and the
Bayes approach. In Chapter 6, the GIC is illustrated through nonlinear sta-
tistical modeling in regression and discriminant analyses. Chapter 7 presents
the derivation of the GIC and investigates its asymptotic properties, along
with some theoretical and numerical improvements. Chapter 8 is devoted to
the bootstrap version of information criteria, including the variance reduction
technique that substantially reduces the variance associated with a Monte
Carlo simulation. In Chapter 9, the Bayesian approach to model evaluation,
such as the BIC, ABIC [Akaike (1980b)] and the predictive information cri-
terion [Kitagawa (1997)] are discussed. The BIC is also extended such that
it can be applied to the evaluation of models estimated by the method of
regularization. Finally, in Chapter 10, several model selection and evaluation
criteria such as cross-validation, generalized cross-validation, final prediction
error (FPE), Mallows’ Cp, the Hannan–Quinn criterion, and ICOMP are in-
troduced as related topics.
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1

Concept of Statistical Modeling

Statistical modeling is a crucial issue in scientific data analysis. Models are
used to represent stochastic structures, predict future behavior, and extract
useful information from data. In this chapter, we discuss statistical models
and modeling methodologies such as parameter estimation, model selection,
regularization method, and hierarchical Bayesian modeling. Finally, the orga-
nization of this book is described.

1.1 Role of Statistical Models

Models play a critical role in statistical data analysis. Once a model has been
identified, various forms of inferences such as prediction, control, information
extraction, knowledge discovery, validation, risk evaluation, and decision mak-
ing can be done within the framework of deductive argument. Thus, the key
to solving complex real-world problems lies in the development and construc-
tion of a suitable model. In this section, we consider the fundamental problem
of statistical modeling, namely, our basic standpoint in statistical modeling,
particularly model evaluation.

1.1.1 Description of Stochastic Structures by Statistical Models

A statistical model is a probability distribution that uses observed data to
approximate the true distribution of probabilistic events. As such, the pur-
pose of statistical modeling is to construct a model that approximates the
true structure as accurately as possible through the use of available data
(Figure 1.1). This is a natural requirement for practitioners who are engaged
in data analysis. For example, in fitting a regression model, this assumption
involves detecting the “true set of explanatory variables.” In fitting polynomial
regression models or autoregressive models, it entails selecting the true order.
This appears to be a natural requirement, and in conventional mathematical
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Fig. 1.1. Estimation of a true structure based on statistical modeling.

statistics it is only considered as background for problem settings. In prac-
tice, however, it is rare that linear regression models with a finite number of
explanatory variables or AR models with a finite order can represent the true
structure. Therefore, these models must be considered as an approximation
that represents only one aspect of complex phenomena.

The important issue here is whether we should pursue a structure that is
as close as possible to the true model. In other words, the critical question is
whether the evaluation of a model should be performed under the requirement
that models should be unbiased.

1.1.2 Predictions by Statistical Models

Based on the previous discussion, the question arises as to whether the objec-
tive of selecting a correct order or a correct model is fraught with problems.
To answer this question, we need to consider the following questions: “What
is the purpose of modeling?” and “What is the model to be used for?” As a
critical point of view for statistical models, Akaike singled out the problem of
prediction [Akaike (1974, 1985)]. Akaike considered that the purpose of statis-
tical modeling is not to accurately describe current data or to infer the “true
distribution.” Rather, he thought that the purpose of statistical modeling is
to predict future data as accurately as possible. In this book, we refer to this
viewpoint as the predictive point of view.

There may be no significant difference between the point of view of infer-
ring the true structure and that of making a prediction if an infinitely large
quantity of data is available or if the data are noiseless. However, in modeling
based on a finite quantity of real data, there is a significant gap between these
two points of view, because an optimal model for prediction purposes may
differ from one obtained by estimating the “true model.”

In fact, as indicated by the information criteria given in this book for
evaluating models intended for making predictions, simple models, even those
containing biases, are often capable of giving better predictive distributions
than models obtained by estimating the true structure.
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Fig. 1.2. Statistical modeling and the predictive point of view.

Fig. 1.3. Statistical modeling for extracting information.

1.1.3 Extraction of Information by Statistical Models

Another important point of view is the extraction of information. Many con-
ventional statistical inferences assume that the “true” model that governs the
object of modeling is a known entity, or at least that a “true” model exists.
Also, conventional statistical inferences have adopted the approach of defin-
ing a problem as that of estimating a small number of unknown parameters
based on data, given that the “true” model exists and that these parameters
are contained in the model. However, a recent trend that has been gaining
popularity is the idea that models are tools of convenience that are used for
extracting information and discovering knowledge.

In this viewpoint, a statistical model is not something that exists in the
objective world; rather, it is something that is constructed based on the prior
knowledge and expectations of the analyst concerning the modeling objective,
e.g., his knowledge based on past experience and data and based on the pur-
pose of the analysis, such as the specific type of information to be extracted
from the data and what is to be accomplished by the analysis. Therefore,
if a specific model is obtained as a result of statistical modeling, we do not
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necessarily believe that the actual phenomenon behaves in accordance with
the model in the strict sense. Actual events are complex, containing vari-
ous kinds of nonlinearities and nonstationarities. Furthermore, in many cases
they should be considered to be subject to the influence of other variables.
Even in such situations, however, a relatively simple model often proves to be
more appropriate for achieving a specific purpose. The crux of the matter is
not whether a given statistical model accurately represents the true structure
of a phenomenon, but whether it is suitable as a tool for extracting useful
information from data.

1.2 Constructing Statistical Models

1.2.1 Evaluation of Statistical Models–Road to the Information
Criterion

If the role of a statistical model is understood as being a tool for extracting
information, it follows that a model is not something that is uniquely deter-
mined for a given object, but rather that it can assume a variety of forms
depending on the viewpoint of the modeler and the available information. In
other words, the purpose of statistical modeling is not to estimate or identify
the “unique” or “perfect” model, but rather to construct a “good” model as
a tool for extracting information according to the characteristics of the object
and the purpose of the modeling [Akaike and Kitagawa (1998), Chapter 23].

This means that, as a general rule, the results of inference and evaluation
will vary according to the specific model. A good model will generally yield
good results; however, one cannot expect to obtain good results when using an
inappropriate model. Herein lies the importance of model evaluation criteria
for assessing the “goodness” of a subjective model.

How shall we set about evaluating the goodness of a model? In consider-
ing the circumstances under which statistical models are actually used, Akaike
considered that a model should be evaluated in terms of the goodness of the
results when the model is used for prediction. Furthermore, for the general
evaluation of the goodness of a statistical model, he thought that it is impor-
tant to assess the closeness between the predictive distribution f(x) defined
by the model and the true distribution g(x), rather than simply minimizing
the prediction error. Based on this concept, he proposed evaluating statistical
models in terms of Kullback–Leibler information (divergence) [Akaike (1973)].
In this book, we refer to the model evaluation criterion derived from this fun-
damental model evaluation concept based on Kullback–Leibler information
as the information criterion. This information criterion is derived from three
fundamental concepts: (1) a prediction-based viewpoint of modeling; (2) eval-
uation of prediction accuracy in terms of distributions; and (3) evaluation of
the closeness of distributions in terms of Kullback–Leibler information.
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1.2.2 Modeling Methodology

The information criterion suggests several concrete methods for developing
good models based on a limited quantity of data. First, it is obvious that
the larger its log-likelihood, the better the model. The information criterion
indicates, however, that given a finite quantity of data available for modeling,
a model having an excessively high degrees of freedom will lead to an increase
in the instability of the estimated model, and this will result in a reduced
prediction ability. In other words, it is not beneficial to needlessly increase
the number of free parameters without any restriction. Under these consider-
ations, several methods are appropriate for assessing a good model based on
a given set of data.

(1) Point estimation and model selection The first such method in-
volves applying the information criterion directly to determine the number of
unknown parameters to be estimated and to select the specific model to use.
In this method, many alternative models M1, . . . , Mk are considered, and the
unknown parameters θ1, . . . ,θk associated with these models are estimated
using the maximum likelihood method or another estimation method such as
the robust estimation method. In this case, since the corresponding informa-
tion criterion represents the goodness (or badness) of each model, the best
model in terms of the information criterion can be obtained by selecting the
model that minimizes the information criterion.

A simple and popular model selection method is order selection. If we
assume a model with parameters (θ1, . . . , θp), and if we denote the restricted
model assuming that θk+1 = · · · = θp = 0 by Mk, then hierarchical models
satisfying the relationship M0 ⊂ M1 ⊂ · · · ⊂ Mp can be obtained. In this
case, a good model that strikes an acceptable balance between increasing the
log-likelihood attained by increasing the number of parameters and increasing
the number of the penalty terms can be obtained by selecting the order that
minimizes the information criterion.

(2) Regularization and Bayesian modeling Another method for obtain-
ing a good model involves imposing appropriate restrictions on parameters
using a large number of parameters, without restricting the number of pa-
rameters. This strategy requires the integration of various types of informa-
tion, such as the information from data xn, the modeling objective, empirical
knowledge and tentative models based on past data, the theory related to the
subject, and the purpose of the analysis. This information can be integrated
using methods such as a regularization method or a maximum penalized like-
lihood method that maximizes the quantity

log f(xn|θ) − Q(θ) , (1.1)
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including the addition to the log-likelihood function of regularization terms
or penalty terms, which is equivalent to imposing restrictions on the number
of parameters.

It has been suggested that in many cases these model construction methods
can be implemented in terms of a Bayesian model that combines information
from prior distribution and data [Akaike (1980)]. In Bayesian modeling, a
model can be constructed by obtaining the posterior distribution

π(θ|xn) =
f(xn|θ)π(θ)

∫

f(xn|θ)π(θ)dθ

, (1.2)

by introducing an appropriate prior distribution π(θ) for an unknown para-
meter vector θ that defines the data distribution f(x|θ).

(3) Hierarchical Bayesian modeling By generalizing Bayesian modeling,
we can consider the situation in which multiple Bayesian models M1, . . . , Mk

exist. If P (Mj) denotes the prior probability of model Mj , f(x|θj ,Mj) denotes
a data distribution, and π(θj |Mj) denotes the prior distribution of parameters,
then the posterior probability of the models can be defined as

P (Mj |xn) ∝ P (Mj)p(xn|Mj) , (1.3)

where p(xn|Mj) is the likelihood of model Mj defined as

p(xn|Mj) =

n
∏

α=1

∫

f(xα|θj ,Mj)π(θj |Mj)dθj . (1.4)

Suppose that the posterior predictive distribution of model Mj is defined by

p(z|xn,Mj) =

∫

f(z|θj ,Mj)π(θj |xn,Mj)dθj , (1.5)

where π(θj |xn,Mj) is the posterior distribution of θj defined by (1.2). Then
the predictive distribution based on all of the models is given by

p(z|xn) =
k

∑

j=1

P (Mj |xn)p(z|xn,Mj) . (1.6)

In constructing a hierarchical Bayesian model, if the prior distribution of
parameters is improper, it is not possible to determine the likelihood of the
Bayesian model, p(xn|Mj), based on its definition. However, if IC(Mj) denotes
an appropriately defined information criterion, the likelihood of the model can
be defined as [Akaike (1978, 1980a)]

exp

{

−1

2
IC(Mj)

}

. (1.7)
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Fig. 1.4. Various information criteria and the organization of this book.

1.3 Organization of This Book

The main aim of this book is to explain the information criteria that play
a critical role in statistical modeling as has been described in the previous
subsections. Chapter 2 discusses the main subject of this book, namely the
question “What is a statistical model?” and introduces probability distribu-
tion models employed as the base for statistical models. In addition, Chapter 2
also shows that using conditional distributions is essential for utilizing various
forms of information in real-world modeling and describes linear and nonlin-
ear regression, time series, and spatial models as specific forms of conditional
distributions.

Chapter 3 provides the basis of this book. First, Kullback–Leibler
information is used as a criterion for evaluating the goodness of a statistical
model that approximates the true distribution, which generates the data, and
in consequence the log-likelihood and the maximum likelihood estimates are
demonstrated to derive naturally from this criterion. Second, the AIC is de-
rived by showing that when estimating the Kullback–Leibler information, bias
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correction of the log-likelihood is essential in order to compare multiple mod-
els. Chapter 4 gives various examples of statistical modeling based on the
AIC.

The AIC is a criterion for evaluating models estimated using the maximum
likelihood method. With the development of modeling techniques, it has be-
come necessary to construct criteria that enable us to evaluate various types of
statistical models. Chapter 5 presents a unified information-theoretic approach
to statistical model evaluation problems in terms of statistical functionals and
introduces a generalized information criterion (GIC) [Konishi and Kitagawa
(1996)] for evaluating a broad class of models, including models estimated us-
ing robust procedures, maximum penalized likelihood methods and the Bayes
approach. In Chapter 6, the use of the GIC is illustrated through nonlinear
statistical modeling in regression and discriminant analyses. Chapter 7 gives
the derivation of the GIC and investigates its asymptotic properties with the-
oretical and numerical improvements.

Chapter 8 discusses the use of the bootstrap [Efron (1979)] in model evalu-
ation problems by emphasizing the functional approach. Whereas the deriva-
tion of information criteria up to Chapter 7 involves analytical evaluation of
the bias of the log-likelihood, Chapter 8 describes a numerical approach for
evaluating biases by using the bootstrap method. Chapter 8 also presents a
modified bootstrap method that performs second-order bias corrections along
with a method, referred to as the variance reduction procedure, that substan-
tially reduces the variance associated with bootstrap simulations.

Chapter 9 discusses model selection and evaluation criteria within the
Bayesian framework, in which we consider Schwarz’s (1978) Bayesian infor-
mation criterion, Akaike’s (1980b) Bayesian information criterion (ABIC), a
predictive information criterion (PIC) [Kitagawa (1997)] as a criterion for
evaluating the prediction likelihood of the Bayesian model, and a deviance
information criterion (DIC) [Spiegelhalter et al. (2002)]. Furthermore, the
BIC is extended in such a way that it can be used to evaluate models esti-
mated by the maximum penalized likelihood method. Chapter 10 introduces
various model selection and evaluation criteria as related topics. Specifically,
we briefly touch upon cross-validation [Stone (1974)], final prediction error
[Akaike (1969)], Mallows’ (1973) Cp, Hannan–Quinn’s (1979) criterion, and
the information measure of model complexity (ICOMP) [Bozdogan (1988)].



2

Statistical Models

In this chapter, we describe probability distributions, which provide funda-
mental tools for statistical models, and show that conditional distributions are
used to acquire various types of information in the model-building process. By
using regression and time series models as specific examples, we also discuss
why evaluation of statistical models is necessary.

2.1 Modeling of Probabilistic Events and Statistical
Models

Before considering statistical models, let us first discuss how to represent
events that we know occur in a deterministic way. In the simple case in which
an event is fixed and invariable, the state of the event can be expressed in the
form x = a. In general, however, x varies depending on some factor. If x is
dependent on an external factor u, then it can be expressed as a function of
u, e.g., x = h(u). In some cases, x is determined according to past events or
based on the present state, in which case x can be expressed as some function
of the factor.

Most real-life events, however, contain uncertainty, and in many cases our
information about external factors is incomplete. In such cases, the value of
x cannot be specified as a fixed value or a deterministic function of factors,
and in such cases we use a probability distribution.

Given a random variable X defined on the sample space Ω, for any real
value x(∈ R), the probability Pr({ω ∈ Ω ;X(ω) ≤ x}) of an event such that
X(ω) ≤ x can be determined. If we regard such a probability as a function of
x and express it as

G(x) = Pr({ω ∈ Ω ;X(ω) ≤ x})
= Pr(X ≤ x) , (2.1)
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then the function G(x) is referred to as the distribution function of X. By
determining the distribution function G(x), we can characterize the random
variable X. In particular, if there exists a nonnegative function g(t) ≥ 0 that
satisfies

G(x) =

∫ x

−∞

g(t)dt, (2.2)

then X is said to be continuous, and the function g(t) is called a probabil-
ity density function. A continuous probability distribution can be defined by
determining the density function g(t).

On the other hand, if the random variable X takes either a finite or a
countably infinite number of discrete values x1, x2, . . ., then the variable X
is said to be discrete. The probability of taking a discrete point X = xi is
determined by

gi = g(xi) = Pr({ω ∈ Ω ;X(ω) = xi})
= Pr(X = xi), i = 1, 2, . . . , (2.3)

where g(x) is called a probability function, for which the distribution function
is given by G(x) =

∑

{i;xi≤x} g(xi), where
∑

{i;xi≤x} represents the sum of
the discrete values such that xi ≤ x.

If we assume that the observations xn = {x1, x2, . . . , xn} are generated
from the distribution function G(x), then G(x) is referred to as the true dis-
tribution, or the true model. On the other hand, the distribution function
F (x) used to approximate the true distribution is referred to as a model and
is assumed to have either a density function or a probability function f(x). If
a model is specified by p-dimensional parameters θ = (θ1, θ2, . . . , θp)

T , then
the model can be written as f(x|θ). If the parameters are represented as a
point in the set Θ ⊂ Rp, then {f(x|θ);θ ∈ Θ} is called a parametric family
of probability distributions or models.

An estimated model f(x|θ̂) obtained by replacing an unknown parameter

θ with an estimator θ̂ is referred to as a statistical model. The process of con-
structing a model that appropriately represents some phenomenon is referred
to as modeling. In statistical modeling, it is necessary to estimate unknown
parameters. However, settng up an appropriate family of probability models
prior to estimating the parameters is of greater importance.

We first describe some probability distributions as fundamental models.
After that, we will show that the mechanism of incorporating information from
other variables can be represented in the form of a conditional distribution
model.

2.2 Probability Distribution Models

The most fundamental form of a model is the probability distribution model
or the probability model. More sophisticated models, such as conditional
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distribution models described in the next section, are also constructed using
the probability distribution model.

Example 1 (Normal distribution model) The most widely used con-
tinuous probability distribution model is the normal distribution model, or
Gaussian distribution model. The probability density function for the normal
distribution is given by

f(x|µ, σ2) =
1√

2πσ2
exp

{

− (x − µ)2

2σ2

}

, −∞ < x < ∞ . (2.4)

This distribution is completely specified by the two parameters µ and σ2,
which are the mean and the variance, respectively. A probability distribution
model, such as the normal distribution model, that can be expressed in a
specific functional form containing a finite number of parameters θ = (µ, σ2)T

is called a parametric probability distribution model.
In addition to the normal distribution model, the following parametric

probability distribution models are well known:

Example 2 (Cauchy distribution model) If the probability density func-
tion is given by

f(x|µ, τ2) =
1

π

τ

(x − µ)2 + τ2
, −∞ < x < ∞ , (2.5)

then the distribution is called a Cauchy distribution. The parameters µ and
τ2 define the center of the distribution and the spread of the distribution,
respectively. While the Cauchy distribution is symmetric with respect to the
mode at µ, its mean and variance are not well-defined.

Example 3 (Laplace distribution model) A random variable X is said
to have a Laplace distribution if its probability density function is

f(x|µ, τ) =
1

2τ
exp

(

−|x − µ|
τ

)

, −∞ < x < ∞, (2.6)

where −∞ < µ < ∞ and τ > 0. The mean and variance are respectively
given by E[X] = µ and V (X) = 2τ2. The distribution function of the Laplace
random variable is

F (x|µ, τ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2
exp

(

x − µ

τ

)

, x ≤ µ,

1 − 1

2
exp

(

−x − µ

τ

)

, x > µ.
(2.7)

Example 4 (Pearson’s family of distributions model) If the probability
density function is given by
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f(x|µ, τ2, b) =
Γ (b)τ2b−1

Γ (b − 1
2 )Γ ( 1

2 )

1

{(x − µ)2 + τ2}b
, −∞ < x < ∞ , (2.8)

then the distribution is known as a Pearson’s family of distributions, in which
the quantities µ and τ2 are referred to as the center and dispersion parameters,
as in the case of the Cauchy distribution. The quantity b is a parameter
that specifies the shape of the distribution. By varying the value of b, it is
possible to represent a variety of distributions. When b = 1, the distribution
is Cauchy, and when b = (k + 1)/2 where k is an integer, the distribution is
a t-distribution with k degrees of freedom. Also, the distribution becomes a
normal distribution when b → ∞.

Example 5 (Mixture of normal distributions model) If the density
function can be represented by

f(x|m,θ) =

m
∑

j=1

αj
1

√

2πσ2
j

exp

{

− (x − µj)
2

2σ2
j

}

, −∞ < x < ∞, (2.9)

then the distribution is called a mixture of normal distributions, where θ

= (µ1, . . . , µm, σ2
1 , . . . , σ2

m, α1, . . . , αm−1)
T and

∑m
j=1 αj = 1. A mixture of

normal distributions is constructed by combining m normal distributions with
weights αj , in which case m is referred to as the number of components. A
wide range of probability distribution models can be expressed by appropriate
selection of the parameters m, αj , µj , and σ2

j .

Figure 2.1 shows various examples of probability distribution models. The
model in the upper left panel is the standard normal distribution model with
mean 0 and variance 1. The model in the upper right panel is a Cauchy distri-
bution model with µ = 0 and τ2 = 1. One feature of this model is that it has
fatter left and right tails. By using a Cauchy distribution rather than a nor-
mal distribution, it is possible to model a phenomenon in which large absolute
values have small but nonnegligible probabilities. This property can be used
to detect outliers, perform a robust estimation, or detect jumps in a trend.
The lower left panel shows Pearson distributions with b = 0.6, 0.75, 1, 1.5, and
3. By varying the value of b, it is possible to continuously represent various
distributions, ranging from distributions that have even fatter tails than the
Cauchy distribution to the normal distribution. The lower right panel shows
an example of a mixture of normal distributions, which is capable of repre-
senting complex distributions even in the simplest case when m = 2.

Example 6 (Binomial distribution model) Let X be a binary random
variable taking the values of either 0 or 1, and let the probability of an event’s
occurring be given by

Pr(X = 1) = p, Pr(X = 0) = 1 − p, (0 < p < 1) . (2.10)
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Fig. 2.1. Various examples of probability distributions: standard normal distribu-
tion (upper left); Cauchy distribution with m = 0 and τ2 = 1 (upper right); Pearson
distributions with b = 0.6, 0.75, 1, 1.5, and 3 (lower left); and a mixture of normal
distributions (lower right).

This probability distribution is referred to as a Bernoulli distribution, and its
probability function is given by

f(x|p) = px(1 − p)1−x, x = 0, 1 . (2.11)

We further assume that the sequence of random variables X1, X2, . . . , Xn

is independently distributed having the same Bernoulli distribution. Then the
random variable X = X1 +X2 + · · · +Xn denotes the number of occurrences
of an event in n trials, and its probability function is given by

f(x|p) = nCxpx(1 − p)n−x, x = 0, 1, 2, . . . , n . (2.12)

Such a probability distribution is called a binomial distribution with parame-
ters n and p. The mean and variance are E[X] = np and V (X) = np(1 − p),
respectively.

Example 7 (Poisson distribution model) When very rare events are
observed in short intervals, the distribution of the number of events is given
by

f(x|λ) =
λx

x!
e−λ, x = 0, 1, 2, . . . (0 < λ < ∞) . (2.13)

This distribution is called a Poisson distribution. The mean and variance are
E[X] = λ and V (X) = λ. The Poisson distribution is derived as an approx-
imation to the binomial distribution by writing np = λ for the probability
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Fig. 2.2. Poisson distributions: left: λ = 1; right: λ = 2.

Fig. 2.3. A continuous distribution model and its approximation by a histogram.

function of the binomial distribution, while keeping λ constant. In fact, if n
tends to infinity and p approaches 0, then for a fixed integer x,

nCxpx(1 − p)n−x =
n!

(n − x)!

λx

x!

(

1 − λ

n

)n (

1 − λ

n

)−x

→ λx

x!
e−λ.

(2.14)
Figure 2.2 shows Poisson distributions for the cases when the parame-

ter λ is 1 and 2. Discrete distributions of various shapes can be represented
depending on the value of λ.

Example 8 (Histogram model) A histogram can be obtained by dividing
the domain xmin ≤ X ≤ xmax of the random variable into appropriate in-
tervals B1, . . . , Bk, determining the frequencies n1, . . . , nk of the observations
that fall in the intervals Bj = {x;xj−1 ≤ x < xj}, and graphing the results.
If we set n = n1 + · · · + nk, and define the relative frequency as fj = nj/n,
a histogram can be thought of as defining the discrete distribution model
f = {f1, . . . , fk} that is obtained by converting a continuous variable into a
discrete variable. On the other hand, if the histogram is thought of as approx-
imating a density function with a stepwise function, the histogram itself can
be regarded as a type of continuous distribution model (Figure 2.3).

Example 9 (Probability model) A wide variety of phenomena can be
expressed in terms of probability distributions according to the underlying
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Fig. 2.4. The distribution of the velocities of 82 galaxies [Roeder (1990)]. Data
(top left), the histogram (top right), and a mixture of normal distributions model
(bottom left: m = 2; bottom right: m = 3).

problem. The problem is how to construct a probability model based on ob-
served data.

Figure 2.4 shows the observed velocities, x, of 82 galaxies [Roeder (1990)].
Let us approximate the distribution of galaxy velocities using the mixture of
normal distributions model in (2.9). If we estimate the parameters for the
mixture of normal distributions based on observed data and replace the un-
known parameters with estimated values, then the resulting density function
f(x|m, θ̂) is a statistical model. A critical issue in fitting the mixture of nor-
mal distributions model is the selection of the number of components, m. A
two-component model has five parameters, while a three-component model
has eight parameters. We must determine which model among the various
candidate models best describes the probabilistic structure of the random
variable X. Essential to answering this question is the criteria for evaluating
the goodness of a statistical model.

Thus far, we have considered univariate random variables. There are many
real-world situations, however, in which several variables must be consid-
ered simultaneously, for example, temperature and pressure in meteorological
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data, or interest rate and GDP in economic data. In such cases, X =
(X1, . . . , Xp)

T becomes a multivariate random vector, for which the distri-
bution function is defined as a function of p variables that are given in terms
of x = (x1, . . . , xp)

T ∈ Rp,

G(x1, . . . , xp) = Pr({ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp})
= Pr(X1 ≤ x1, . . . , Xp ≤ xp) . (2.15)

In parallel with the univariate case, a density function for the multivariate dis-
tribution can be defined. For a continuous distribution, a nonnegative function
f(x1, . . . , xp) ≥ 0 that satisfies

∫ ∞

−∞

· · ·
∫ ∞

−∞

f(x1, . . . , xp)dx1 · · · dxp = 1,

G(x1, · · · , xp) =

∫ x1

−∞

· · ·
∫ xp

−∞

f(t1, . . . , tp)dt1 · · · dtp (2.16)

is called the probability density function of the multivariate random vector X.
Consider a discrete case, in which a p-dimensional random vector X =

(X1, · · · , Xp)
T assumes either a finite or a countably infinite number of dis-

crete values x1,x2, . . ., where xi = (xi1, . . . , xip)
T , i = 1, 2, . . .. Then the

probability function of the random vector X is defined by

g(xi) = Pr(X1 = xi1, . . . , Xp = xip), i = 1, 2, . . . . (2.17)

The probability function satisfies

g(xi) ≥ 0, i = 1, 2, . . . , and
∞
∑

i=1

g(xi) = 1, (2.18)

and the distribution function can be expressed as

G(x1, · · · , xp) =
∑

{i;xi1≤x1}

. . .
∑

{i;xip≤xp}

g(xi1, . . . , xip). (2.19)

Example 10 (Multivariate normal distribution) A p-dimensional ran-
dom vector X = (X1, . . . , Xp)

T is said to have a p-variate normal distribution
with mean vector µ and variance covariance matrix Σ if its probability density
function is given by

f(x|µ, Σ) =
1

(2π)p/2|Σ|1/2
exp

{

−1

2
(x − µ)T Σ−1(x − µ)

}

, (2.20)

where µ = (µ1, . . . , µp)
T and Σ is a p × p symmetric positive definite matrix

whose (i, j)th component is given by σij . We write X ∼ Np(µ, Σ).
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Example 11 (Multinomial distribution) Suppose that there exist k + 1

possible outcomes E1, . . ., Ek+1 in a trial. Let P(Ei) = pi, where
∑k+1

i=1 pi = 1,
and let Xi (i = 1, . . . , k+1) denote the number of times outcome Ei occurs in

n trials, where
∑k+1

i=1 Xi = n. If the trials are repeated independently, then a
multinomial distribution with parameters n, p1, . . ., pk is defined as a discrete
distribution having the probability function

Pr(X1 = x1, . . . , Xk = xk) =
n!

k+1
∏

i=1

xi!

k+1
∏

i=1

pxi

i , (2.21)

where xi = 0, 1, . . . , n (note that xk+1 = n − ∑k
i=1 xi). The mean, variance,

and covariance are respectively given by E[Xi] = npi, i = 1, . . . , k, V (Xi) =
npi(1 − pi), and Cov(Xi, Xj) = −npipj (i 
= j).

2.3 Conditional Distribution Models

From the viewpoint of statistical modeling, the probability distribution is
the most fundamental model in the situation in which the distribution of
the random variable X is independent of various other factors. In practice,
however, information associated with these variables can be used in various
ways. The essence of statistical modeling lies in finding such information and
incorporating it into a model in an appropriate form. In the following, we
consider cases in which a random variable depends on other variables, on past
history, on a spatial pattern, or on prior information. The important thing
is that such modeling approaches can be considered as essentially estimating
conditional distributions. Thus, the essence of statistical modeling can be
thought of as obtaining an appropriate conditional distribution.

In general, if the distribution of the random variable Y is determined in a
manner that depends on a p-dimensional variable x = (x1, x2, . . . , xp)

T , then
the distribution of Y is expressed as F (y|x) or f(y|x), and this is called a
conditional distribution model. There are several ways in which the random
variable depends on the other variables x. In the following, we consider typical
conditional distribution models.

2.3.1 Regression Models

The regression model is used to model the relationship between a response
variable y and several explanatory variables x = (x1, x2, . . . , xp)

T . This is
equivalent to assuming that the probability distribution of the response vari-
able y varies depending on the explanatory variables x and that a conditional
distribution is given in the form of f(y|x).



18 2 Statistical Models

Fig. 2.5. Regression model (left) and conditional distribution model (right) in which
the mean of the response variable varies as a function of the explanatory variable x.

Let {(yα,xα); α = 1, 2, . . . , n} be n sets of data obtained in terms of the
response variable y and p explanatory variables x. Then the model

yα = u(xα) + εα, α = 1, 2, . . . , n , (2.22)

of the observed data is called a regression model, where u(x) is a function of
the explanatory variables x, and the error terms or noise εα are assumed to
be independently distributed with mean E[εα] = 0 and variance V (εα) = σ2.
We often assume that the noise εα follows the normal distribution N(0, σ2).
In such a case, yα has the normal distribution N(u(xα), σ2) with mean u(xα)
and variance σ2, and its density function is given by

f(yα|xα) =
1√

2πσ2
exp

{

− (yα − u(xα))2

2σ2

}

, α = 1, 2, . . . , n . (2.23)

This distribution is a type of conditional distribution model in which the mean
varies according to E[Y |x] = u(x) in a manner that depends on the values of
the explanatory variables x.

The left panel in Figure 2.5 shows 11 observations and the mean function
u(x) of the one-dimensional explanatory variable x and the response variable
y. The data yα at a given point xα are observed as

yα = µα + εα, α = 1, 2, . . . , 11 , (2.24)

with true mean value E[Yα|xα] = µα and noise εα. The quantity u(x) rep-
resents the mean structure of the event, and εα is the noise that induces
probabilistic fluctuations in the data yα. The right panel in Figure 2.5 shows
a conditional distribution determined using a regression model. Fixing the
value of the explanatory variable x gives the probability distribution f(y|x),
for which the mean is u(x). Therefore, the regression model in (2.23) deter-
mines a class of distributions that move in parallel with the value of x.
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Example 12 (Linear regression model) If the regression function or the
mean function u(x) can be approximated by a linear function of x, then the
model in (2.22) can be expressed as

yα = β0 + β1xα1 + · · · + βpxαp + εα

= xT
αβ + εα, α = 1, 2, . . . , n , (2.25)

with β = (β0, β1, . . . , βp)
T , xα = (1, xα1, xα2, . . . , xαp)

T and is referred to
as a linear regression model. A linear regression model with Gaussian noise
can be expressed by the density function

f(yα|xα;θ) =
1√

2πσ2
exp

{

− (yα − x′
αβ)

2

2σ2

}

, α = 1, 2, . . . , n , (2.26)

where the unknown parameters in the model are θ = (βT , σ2)T . In the linear
regression model, the critical issue is to determine a set of explanatory vari-
ables that appropriately describes changes in the distribution of the response
variable y; this problem is referred to as the variable selection problem.

Example 13 (Polynomial regression model) A polynomial regression
model with Gaussian noise,

yα = β0 + β1xα + · · · + βmxm
α + εα, εα ∼ N(0, σ2), (2.27)

assumes that the regression function u(x) can be approximated by β0 + β1x
+β2x

2 + · · ·+βmxm with respect to the one-dimensional explanatory variable
x. For each order m, the parameters of the polynomial regression model are
β = (β0, β1, . . . , βm)T and the error variance is σ2. In a polynomial regression
model, the crucial task is determining the order m, which is referred to as
the order selection problem. As shown in Example 16, a model having an
order that is too low cannot adequately represent the data structure. On
the other hand, a model with an order that is too high causes the model
to react excessively to random variations in the data, masking the essential
relationship.

Various functions in addition to polynomials are used to represent a
regression function. Trigonometric function models are expressed as

yα = a0 +

m
∑

j=1

{aj cos(jωxα) + bj sin(jωxα)} + εα . (2.28)

In addition, various forms of other orthogonal functions can be used to
approximate the regression function.

Example 14 (Nonlinear regression models) Thus far, given a regression
function E[Y |x] = u(x), we have constructed models by assuming functional
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Fig. 2.6. Motorcycle impact data.

forms such as polynomials. The analysis of complex and diverse phenomena,
however, requires developing more flexible models. Figure 2.6, for example,
plots the measured acceleration Y (g ; gravity) of the crash dummy’s head at a
time X (ms, millisecond) from the moment of collision in repeated motorcycle
collision experiments [Härdle (1990)]. Neither polynomial models nor models
using specific nonlinear functions are adequate for describing the structure of
phenomena characterized by data that exhibit this type of complex nonlinear
structure.

It is assumed that at each point xα, yα is observed as yα = µα + εα,
α = 1, 2, . . . , n, with noise εα. In order to approximate µα, α = 1, 2, . . . , n,
in a way that reflects the structure of the phenomenon, we use a regression
model

yα = u(xα;θ) + εα, α = 1, 2, . . . , n . (2.29)

For u(x;θ), various models are used depending on the analysis objective,
including (1) splines [Green and Silverman (1994)], (2) B-splines [de Boor
(1978), Imoto (2001)], (3) kernel functions [Simonoff (1996)], and (4) multi-
layer neural network models [Bishop (1995), Ripley (1996)]. Our purpose here
is to identify the mean structure of a phenomenon from data based on these
flexible models.

Example 15 (Changing variance model) Whereas in the regression mod-
els described above, only the mean structure changes as a function of the ex-
planatory variables x, in changing variance models the variance of the response
variable y also changes as a function of x, and such a change is expressed in
the form σ2(x). In this case, the conditional distribution of y is given by
N(u(x), σ2(x)). Figure 2.7 shows an example of a conditional distribution de-
termined by a changing variance model in which it has a constant mean. It
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Fig. 2.7. Conditional distributions of changing variance models.

shows that the variance of the distribution changes depending on the value
of x. These types of changing variance models are important for analyzing
earthquake data and financial data.

Generally, a regression model is composed of a model that approximates
the mean function E[Y |x] representing the structure of phenomenon and a
probability distribution model that describes the probabilistic fluctuation of
the data. Since models that approximate the mean function depend on several
parameters, we write u(x;β). Observed data with Gaussian noise are then
given as

yα = u(xα;β) + εα, α = 1, 2, . . . , n , (2.30)

and are represented by the density function

f(yα|xα;θ) =
1√

2πσ2
exp

{

− (yα − u(xα;β))2

2σ2

}

, α = 1, 2, . . . , n ,

(2.31)
where θ = (βT , σ2)T .

In the case of a regression model expressed by a density function, we
estimate the parameter vector θ of the model by using the maximum likelihood

method, and we denote it as θ̂ = (β̂
T
, σ̂2)T . Then the density function in

which the unknown parameters in (2.31) are replaced with their corresponding
estimators,

f(yα|xα; θ̂) =
1√

2πσ̂2
exp

{

− (yα − u(xα; β̂))2

2σ̂2

}

, α = 1, 2, . . . , n ,

(2.32)
is called a statistical model.

Although the main focus in regression models tends to be modeling for
expected values, the distributions of error terms are also important. For a
given regression function, different models can be obtained by changing the
value of the variance. In addition, models that assume distributions other than
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Fig. 2.8. Fitting polynomial regression models of order 3 (solid), 8 (broken), and
12 (dotted).

the normal distribution for the error terms (e.g., Cauchy distribution) are also
conceivable.

Example 16 (Fitting a polynomial regression model) Figure 2.8 shows
a plot of 15 observations obtained with respect to the explanatory variable
x and the response variable y. By ordering the data as {(xα, yα); α = 1, 2,
. . . , 15}, we fit the polynomial regression model in (2.27).

For each order m, we estimate the parameters β = (β0, β1, . . . , βm)T of
the polynomial regression model by using either the least square method or
the maximum likelihood method that maximizes the log-likelihood function

n
∑

α=1

log f(yα|xα;β, σ2) (2.33)

= −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

{yα − (β0 + β1xα + · · · + βmxm
α )}2

and denote the results as β̂ = (β̂0, β̂1, . . . , β̂m)T . The figure shows the esti-
mated polynomial regression curves for orders 3, 8, and 12; it shows that esti-
mated polynomials can vary greatly depending on the assumed order. Thus,
the problem is deciding the order of the polynomial that should be adopted
in the model.

If we consider the problem of order selection from the viewpoint of the
goodness of fit of data in an estimated model, that is, from the standpoint of
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minimizing the squared sum of residuals

n
∑

α=1

(yα − ŷα)
2

=

n
∑

α=1

{

yα −
(

β̂0 + β̂1xα + · · · + β̂mxm
α

)}2

, (2.34)

then the higher the order of the model, the smaller the value will be. As a
result, we select the highest order [i.e., the (n − 1)th order] polynomial that
passes through all data points. If the data are free of errors, the error term εα

in (2.27) will be superfluous, in which case it is sufficient to select the most
complex model out of the class of models expressed by a large number of
parameters. However, for data that contain intrinsic or observational errors,
models that overfit the observed data tend to model the errors excessively
and do not adequately approximate the true structure of the phenomenon.
Consequently, such models do not predict future events well.

In general, a model that is too complex overadjusts for the random fluc-
tuation in the data, while, on the other hand, overly simplistic models fail to
adequately describe the structure of the phenomenon being modeled. There-
fore, the key to evaluating a model is to strike a balance between, badness of
fit of the data and the model complexity.

Example 17 (Spline functions) Assume that in the data {(yα, xα);α =
1, 2, . . . , n} observed with respect to a response variable y and an explanatory
variable x, n observations, x1, x2, . . . , xn, are ordered in ascending order in
the interval [a, b] as follows:

a < x1 < x2 < · · · < xn < b. (2.35)

The essential idea in spline function fitting is to divide the interval containing
the data {x1, . . . , xn} into several subintervals and to fit a polynomial model in
a segment-by-segment manner, rather than fitting a single polynomial model
to n sets of observed data.

Let ξ1 < ξ2 < · · · < ξm denote the m points that divide (x1, xn). These
points are referred to as knots. A commonly used spline function in practical
applications is the cubic spline, in which a third-order polynomial is fitted
segment by segment over the subintervals [a, ξ1], [ξ1, ξ2], . . . , [ξm, b], and the
polynomials are smoothly connected at the knots. In other words, the model is
fitted under the restriction that at each knot, the first and second derivatives
of the third-order polynomial are continuous. As a result, the cubic spline
function having the knots ξ1 < ξ2 < · · · < ξm is given by

u(x;θ) = β0 + β1x + β2x
2 + β3x

3 +
m

∑

i=1

θi(x − ξi)
3
+ , (2.36)

where θ = (θ1, θ2, . . . , θm, β0, β1, β2, β3)
T and (x − ξi)+ = max{0, x − ξi}.

It is commonly known, however, that it is not appropriate to fit a cubic
polynomial near a boundary since the estimated curve will vary excessively. In
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order to address this difficulty, the natural cubic spline specifies that the cubic
spline be a linear function at the two ends of the interval (−∞, ξ1], [ξm,+∞),
so that the natural cubic spline is given by

u(x;θ) = β0 + β1x +

m−2
∑

i=1

θi {di(x) − dm−1(x)} , (2.37)

where θ = (θ1, θ2, . . . , θm−2, β0, β1)
T and

di(x) =
(x − ξi)

3
+ − (x − ξm)3+
ξm − ξi

.

When applying a spline in practical situations, we still need to determine
the number of knots and their positions. From a computational standpoint, it
is difficult to estimate the positions of knots as parameters. For this reason,
we estimate the parameters θ of the model by using the maximum penalized
likelihood method described in Subsection 5.2.4 or the penalized least squares
method discussed in Section 6.5. These topics are covered in Chapters 5 and 6.
In the B-spline, a basis function is constructed by connecting the segment-
wise polynomials, and it can substantially reduce the number of parameters
in a model. This topic will be discussed in Section 6.2.

2.3.2 Time Series Model

Observed data, x1, . . . , xN , for events that vary with time are referred to as
a time series. The vast majority of real-world data, including meteorological
data, environmental data, financial or economic data, and time-dependent ex-
perimental data, constitutes time series. The main aim of time series analysis
is to identify the structure of the phenomenon represented by a sequence of
measurements and to predict future observations. To analyze such time series
data, we consider the conditional distribution

f(xn|xn−1, xn−2, . . .), (2.38)

given observations up to the time n − 1.

Example 18 (AR model and ARMA model) In particular, by assuming
a linear structure in finite dimensions, we obtain an autoregressive (AR) model
[Akaike (1969, 1970), Brockwell and Davis (1991)];

xn =

p
∑

j=1

ajxn−j + εn, εn ∼ N(0, σ2) , (2.39)

where p denotes the order and indicates which information, obtained up to
what time in the past, must be used in order to determine a future predictive
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Fig. 2.9. Predictive distribution of time series.

Table 2.1. Residual variances and prediction error variances of AR models with a
variety of orders.

p σ̂2
p PEVp p σ̂2

p PEVp p σ̂2
p PEVp

0 6.3626 8.0359 7 0.3477 0.3956 14 0.3206 0.3802

1 1.1386 1.3867 8 0.3397 0.3835 15 0.3204 0.3808
2 0.3673 0.4311 9 0.3313 0.3817 16 0.3202 0.3808
3 0.3633 0.4171 10 0.3312 0.3812 17 0.3188 0.3823
4 0.3629 0.4167 11 0.3250 0.3808 18 0.3187 0.3822
5 0.3547 0.4030 12 0.3218 0.3797 19 0.3187 0.3822
6 0.3546 0.4027 13 0.3218 0.3801 20 0.3186 0.3831

distribution. A particular case is that of p = 0, which is called white noise
if xn is uncorrelated with its own past history. An AR model means that
a conditional distribution (also referred to as a predictive distribution) of
xn can be given by the normal distribution having mean

∑p
j=1 ajxn−j and

variance σ2.
Similar to the polynomial models, the selection of an appropriate order is

an important problem in AR models. When time series data x1, . . . , xn are
given, the coefficients aj and the prediction error variance σ2 are estimated
using the least squares method or the maximum likelihood method. However,
the estimated prediction error variance, σ̂2

p, of the AR model of order p is a
monotonically decreasing function of p. Therefore, if the AR order is deter-
mined by this criterion, the maximum order will always be selected, which
corresponds to the order selection for the polynomial model in Example 16.
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The second column in Table 2.1 indicates the change in σ̂2
p when AR

models up to order 20 are fitted to the observations of the rolling angle of a
ship [n = 500, Kitagawa and Gersch (1996)]. Here, σ̂2

p decreases rapidly up
to p = 2 and diminishes gradually thereafter. The third column in the table
gives the prediction error variance

PEVp =
1

500

1000
∑

i=501

(xi − x̂p
i )

2 , (2.40)

when the subsequent data x501, . . . , x1000 are predicted by

x̂p
i =

p
∑

j=1

âp
jxi−j (i = 501, . . . , 1000), (2.41)

based on the estimated model of order p, where âp
j is an estimate of the j-th

coefficient aj for the AR model of order p. The value of PEVp is smallest at
p = 12, and for higher orders, rather than decreasing, the prediction error
variance increases.

Even when the time series has a complex structure and the AR model
requires a high order p, in some cases an appropriate model can be obtained
with fewer parameters by using past values of εn together with past values of
the time series. The following model is referred to as an autoregressive moving
average (ARMA) model:

xn =

p
∑

j=1

ajxn−j + εn −
q

∑

j=1

bjεn−j . (2.42)

In general, if the conditional distribution of a time series xn is represented
by nonlinear functions of the series xn−1, xn−2, . . . and noise (also called “in-
novation”), εn, εn−1, . . ., then the corresponding model is called a nonlinear
time series model. If the time series xn is a vector and the components are
interrelated, a multivariate time series model is used for forecasting.

Example 19 (State-space models) A wide variety of time series models
such as the ARMA model, trend model, seasonal adjustment model, and time-
varying model can be represented using a state-space model. In a state-space
model, the time series is expressed by using an unknown m-dimensional state
vector αn as follows:

αn = Fnαn−1 + Gnvn,

xn = Hnαn + wn , (2.43)

where vn and wn are white noises that have the normal distributions Nn(0, Qn)
and N(0, σ2

n), respectively. Concerning the state-space model, the Kalman fil-
ter algorithm is known to efficiently calculate the conditional distributions
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f(αn|xn−1, xn−2, . . .) and f(αn|xn, xn−1, . . .) of the unknown state αn from
observed time series; these conditional distributions are referred to as a state
prediction distribution and a filter distribution, respectively. Many important
problems in time series analysis, such as prediction and control, computation
of likelihood, and decomposition into several components, can be solved by
using the estimated state vector.

The generalized state-space model is a generalization of the state-space
model [Kitagawa (1987)]. It represents the time series as follows:

αn ∼ F (αn|αn−1),

xn ∼ H(xn|αn) , (2.44)

where F and H denote appropriately specified conditional probability distrib-
utions. In other words, generalized state-space models directly model the two
conditional distributions that are essential in time series modeling. This con-
ditional distribution model can also be applied when observed data or states
are discrete variables. It can be shown that the hidden Markov model is actu-
ally a special case of the generalized state-space model. Recently, a sequential
Monte Carlo method for recursive estimation of unknown parameters of the
generalized state-space models has been developed [see for example, Durbin
and Koopman (2001), Harvey (1989), and Kitagawa and Gersch (1996)].

This method can thus be used to estimate the unknown state vector if the
(general) state-space model is specified. Since the log-likelihood of the state-
space model can be computed by using the predictive distribution of the state,
unknown parameters of the model can be estimated using the maximum like-
lihood method. However, the state-space model is a very flexible model that
is capable of expressing a very wide range of time series models. Therefore, in
actual time series modeling, we have to compare a large variety of time series
models and select an appropriate one.

2.3.3 Spatial Models

The spatial model represents the distribution of data by associating a spatial
arrangement with it. For the case when data are arranged in a regular lattice,
as depicted in the left plot of Figure 2.10, a model such as

p(xij |xi,j−1, xi,j+1, xi−1,j , xi+1,j) , (2.45)

that represents the data xij at point (i, j), for example, can be constructed as
a conditional distribution of the surrounding four points. As a simple example,
a model

xij =
1

4
(xi,j−1 + xi,j+1 + xi−1,j + xi+1,j) + εij (2.46)

is conceivable in which εij is a normal distribution with mean 0 and
variance σ2.
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Fig. 2.10. An example of a prediction model for lattice data and spatial data.

On the other hand, in the general case in which the pointwise arrangement
of data is not necessarily a lattice pattern, as illustrated in the right plot of
Figure 2.10, a model that describes an equilibrium state can be obtained by
modeling the local interaction of the points called particles.

Let us assume that the pointwise arrangement x = {x1, x2, . . . , xn} of n
particles is given. If we define a potential function φ(x, y) that models the
force acting between two points, the sum of the potential energy at the point
arrangement x can be given by

H(x) =
∑

1≤i≤j≤n

φ(xi, xj) . (2.47)

Then the Gibbs distribution is defined by

f(x) = C exp{−H(x)} , (2.48)

where C is a normalization constant defined such that the integration over the
entire space is 1. In this method, models on spatial data can be obtained by
establishing concrete forms of the potential function φ(x, y). For the analysis
of spatial data, see Cressie (1991).
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Information Criterion

In this chapter, we discuss using Kullback–Leibler information as a criterion
for evaluating statistical models that approximate the true probability distri-
bution of the data and its properties. We also explain how this criterion for
evaluating statistical models leads to the concept of the information criterion,
AIC. To this end, we explain the basic framework of model evaluation and
the derivation of AIC by adopting a unified approach.

3.1 Kullback–Leibler Information

3.1.1 Definition and Properties

Let xn = {x1, x2, . . . , xn} be a set of n observations drawn randomly (inde-
pendently) from an unknown probability distribution function G(x). In the
following, we refer to the probability distribution function G(x) that generates
data as the true model or the true distribution. In contrast, let F (x) be an
arbitrarily specified model. If the probability distribution functions G(x) and
F (x) have density functions g(x) and f(x), respectively, then they are called
continuous models (or continuous distribution models). If, given either a finite
set or a countably infinite set of discrete points {x1, x2, . . ., xk, . . .}, they are
expressed as probabilities of events

gi = g(xi) ≡ Pr({ω; X(ω) = xi}),
fi = f(xi) ≡ Pr({ω; X(ω) = xi}), i = 1, 2, . . . , (3.1)

then these models are called discrete models (discrete distribution models).
We assume that the goodness of the model f(x) is assessed in terms of

the closeness as a probability distribution to the true distribution g(x). As
a measure of this closeness, Akaike (1973) proposed the use of the follow-
ing Kullback–Leibler information [or Kullback–Leibler divergence, Kullback–
Leibler (1951), hereinafter abbreviated as “K-L information”]:
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I(G;F ) = EG

[

log

{

G(X)

F (X)

}]

, (3.2)

where EG represents the expectation with respect to the probability distrib-
ution G.

If the probability distribution functions are continuous models that have
the density functions g(x) and f(x), then the K-L information can be
expressed as

I(g; f) =

∫ ∞

−∞

log

{

g(x)

f(x)

}

g(x)dx. (3.3)

If the probability distribution functions are discrete models for which the
probabilities are given by {g(xi); i = 1, 2, . . .} and {f(xi); i = 1, 2, . . .}, then
the K-L information can be expressed as

I(g; f) =

∞
∑

i=1

g(xi) log

{

g(xi)

f(xi)

}

. (3.4)

By unifying the continuous and discrete models, we can express the K-L
information as follows:

I(g ; f) =

∫

log

{

g(x)

f(x)

}

dG(x)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫ ∞

−∞

log

{

g(x)

f(x)

}

g(x)dx, for continuous model,

∞
∑

i=1

g(xi) log

{

g(xi)

f(xi)

}

, for discrete model.

(3.5)

Properties of K-L information. The K-L information has the following
properties:

(i) I(g; f) ≥ 0,
(ii) I(g; f) = 0 ⇐⇒ g(x) = f(x).

In view of these properties, we consider that the smaller the quantity of
K-L information, the closer the model f(x) is to g(x).

Proof. First, let us consider the function K(t) = log t − t + 1, which is
defined for t > 0. In this case, the derivative of K(t), K ′(t) = t−1−1, satisfies
the condition K ′(1) = 0, and K(t) takes its maximum, K(1) = 0, at t = 1.
Therefore, the inequality K(t) ≤ 0 holds for all t such that t > 0. The equality
holds only for t = 1, which means that the relationship

log t ≤ t − 1 (the equality holds only when t = 1)

holds.
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For the continuous model, by substituting t = f(x)/g(x) into this expres-
sion, we obtain

log
f(x)

g(x)
≤ f(x)

g(x)
− 1.

By multiplying both sides of the equation by g(x) and integrating them, we
obtain

∫

log

{

f(x)

g(x)

}

g(x)dx ≤
∫ {

f(x)

g(x)
− 1

}

g(x)dx

=

∫

f(x)dx −
∫

g(x)dx = 0.

This gives
∫

log

{

g(x)

f(x)

}

g(x)dx = −
∫

log

{

f(x)

g(x)

}

g(x)dx ≥ 0,

thus demonstrating (i). Clearly, the equality holds only when g(x) = f(x).
For the discrete model, it suffices to replace the density functions g(x) and

f(x) by the probability functions g(xi) and f(xi), respectively, and sum the
terms over i = 1, 2, . . . instead of integrating.

Measures of the similarity between distributions. As a measure of the
closeness between distributions, the following quantities have been proposed
in addition to the K-L information [Kawada (1987)]:

χ2(g; f) =

k
∑

i=1

g2
i

fi
− 1 =

k
∑

i=1

(fi − gi)
2

fi
χ2-statistics,

IK(g; f) =

∫

{

√

f(x) −
√

g(x)
}2

dx Hellinger distance,

Iλ(g; f) =
1

λ

∫ {(

g(x)

f(x)

)λ

− 1

}

g(x)dx Generalized information,

D(g; f) =

∫

u

(

g(x)

f(x)

)

g(x)dx Divergence,

L1(g; f) =

∫

|g(x) − f(x)|dx L1-norm,

L2(g; f) =

∫

{g(x) − f(x)}2dx L2-norm.

In the above divergence, D(g; f), letting u(x) = log x produces K-L in-
formation I(g; f); similarly, letting u(x) = λ−1(xλ − 1) produces generalized
information Iλ(g; f). In Iλ(g; f), when λ → 0, we obtain K-L information
I(g; f). In this book, following Akaike (1973), the model evaluation criterion
based on the K-L information will be referred to generically as an information
criterion.
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3.1.2 Examples of K-L Information

We illustrate K-L information by using several specific examples.

Example 1 (K-L information for normal models) Suppose that the true
model g(x) and the specified model f(x) have normal distributions N(ξ, τ2)
and N(µ, σ2), respectively. If EG is an expectation with respect to the true
model, the random variable X is distributed according to N(ξ, τ2), and there-
fore, the following equation holds:

EG

[

(X − µ)2
]

= EG

[

(X − ξ)2 + 2(X − ξ)(ξ − µ) + (ξ − µ)2
]

= τ2 + (ξ − µ)2. (3.6)

Thus, for the normal distribution f(x) = (2πσ2)−
1

2 exp
{

−(x − µ)2/(2σ2)
}

,
we obtain

EG [log f(X)] = EG

[

−1

2
log(2πσ2) − (X − µ)2

2σ2

]

= −1

2
log(2πσ2) − τ2 + (ξ − µ)2

2σ2
. (3.7)

In particular, if we let µ = ξ and σ2 = τ2 in this expression, it follows that

EG [log g(X)] = −1

2
log(2πτ2) − 1

2
. (3.8)

Therefore, the K-L information of the model f(x) with respect to g(x) is given
by

I(g ; f) = EG [log g(X)] − EG [log f(X)]

=
1

2

{

log
σ2

τ2
+

τ2 + (ξ − µ)2

σ2
− 1

}

. (3.9)

Example 2 (K-L information for normal and Laplace models) Assume
that the true model is a two-sided exponential (Laplace) distribution g(x) =
1
2 exp(−|x|) and that the specified model f(x) is N(µ, σ2). In this case, we
obtain

EG [log g(X)] = − log 2 − 1

2

∫ ∞

−∞

|x|e−|x|dx

= − log 2 −
∫ ∞

0

xe−xdx

= − log 2 − 1, (3.10)

EG [log f(X)] = −1

2
log(2πσ2) − 1

4σ2

∫ ∞

−∞

(x − µ)2e−|x|dx

= −1

2
log(2πσ2) − 1

4σ2
(4 + 2µ2). (3.11)
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Then the K-L information of the model f(x) with respect to g(x) is given by

I(g ; f) =
1

2
log(2πσ2) +

2 + µ2

2σ2
− log 2 − 1. (3.12)

Example 3 (K-L information for two discrete models) Assume that
two dice have the following probabilities for rolling the numbers one to six:

fa = {0.2, 0.12, 0.18, 0.12, 0.20, 0.18},
fb = {0.18, 0.12, 0.14, 0.19, 0.22, 0.15}.

In this case, which is the fairer die? Since an ideal die has the probabilities
g = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}, we take this to be the true model.
When we calculate the K-L information, I(g; f), the die that gives the smaller
value must be closer to the ideal fair die. Calculating the value of

I(g; f) =
6

∑

i=1

gi log
gi

fi
, (3.13)

we obtain I(g ; fa) = 0.023 and I(g ; fb) = 0.020. Thus, in terms of K-L
information, it must be concluded that die fb is the fairer of the two.

3.1.3 Topics on K-L Information

Boltzmann’s entropy. The negative of the K-L information, B(g ; f) =
−I(g ; f), is referred to as Boltzmann’s entropy. In the case of the discrete
distribution model f = {f1, . . . , fk}, the entropy can be interpreted as a
quantity that varies proportionally with the logarithm of the probability W in
which the relative frequency of the sample obtained from the specified model
agrees with the true distribution.

Proof. Suppose that we have n independent samples from a distribution
that follows the model f , and assume that either a frequency distribution
{n1, . . . , nk} (n1 + n2 + · · · + nk = n) or a relative frequency {g1, g2, . . . ,gk}
(gi = ni/n) is obtained. Since the probability with which such a frequency
distribution {n1, . . . , nk} is obtained is

W =
n!

n1! · · ·nk!
fn1

1 · · · fnk

k , (3.14)

we take the logarithm of this quantity, and, using Stirling’s approximation
(log n! ∼ n log n − n), we obtain

log W = log n! −
k

∑

i=1

log ni! +
k

∑

i=1

ni log fi
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∼ n log n − n −
k

∑

i=1

ni log ni +
k

∑

i=1

ni +
k

∑

i=1

ni log fi

= −
k

∑

i=1

ni log

{

ni

n

}

+
k

∑

i=1

ni log fi

=
k

∑

i=1

ni log

{

fi

gi

}

= n
k

∑

i=1

gi log

{

fi

gi

}

= n · B(g ; f).

Hence, it follows that B(g ; f) ∼ n−1 log W ; that is, B(g; f) is approximately
proportional to the logarithm of the probability of which the relative fre-
quency of the sample obtained from the specified model agrees with the true
distribution.

We notice that, in the above statement, the K-L information is not the
probability of obtaining the distribution defined by a model from the true dis-
tribution. Rather, it is thought of as the probability of obtaining the observed
data from the model.

On the functional form of K-L information. If the differentiable function
F defined on (0,∞) satisfies the relationship

k
∑

i=1

giF (fi) ≤
k

∑

i=1

giF (gi) (3.15)

for any two probability functions {g1, . . . , gk} and {f1, . . . , fk}, then F (g) =
α + β log g for some α, β with β > 0.

Proof. In order to demonstrate that F (g) = α + β log g, it suffices to show
that gF ′(g) = β > 0 and hence that ∂F/∂g = β/g. Let h = (h1, . . . , hk)T

be an arbitrary vector that satisfies
∑k

i=1 hi = 0 and |hi| ≤ max{gi, 1 − gi}.
Since g + λh is a probability distribution, it follows from the assumption that

ϕ(λ) ≡
k

∑

i=1

giF (gi + λhi) ≤
k

∑

i=1

giF (gi) = ϕ(0).

Therefore, since

ϕ′(λ) =

k
∑

i=1

giF
′(gi + λhi)hi, ϕ′(0) =

k
∑

i=1

giF
′(gi)hi = 0

are always true, by writing h1 = C, h2 = −C, hi = 0 (i = 3, . . . , k), we have

g1F
′(g1) = g2F

′(g2) = const = β.
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The equality for other values of i can be shown in a similar manner.
This result does not imply that the measure that satisfies I(g : f) ≥ 0 is

intrinsically limited to the K-L information. Rather, as indicated by (3.16) in
the next section, the result shows that any measure that can be decomposed
into two additive terms is limited to the K-L information.

3.2 Expected Log-Likelihood and Corresponding
Estimator

The preceding section showed that we can evaluate the appropriateness of a
given model by calculating the K-L information. However, K-L information
can be used in actual modeling only in limited cases, since K-L information
contains the unknown distribution g, so that its value cannot be calculated
directly.

K-L information can be decomposed into

I(g ; f) = EG

[

log

{

g(X)

f(X)

}]

= EG [log g(X)] − EG [log f(X)] . (3.16)

Moreover, because the first term on the right-hand side is a constant that
depends solely on the true model g, it is clear that in order to compare different
models, it is sufficient to consider only the second term on the right-hand side.
This term is called the expected log-likelihood. The larger this value is for a
model, the smaller its K-L information is and the better the model is.

Since the expected log-likelihood can be expressed as

EG [log f(X)] =

∫

log f(x)dG(x)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫ ∞

−∞

g(x) log f(x)dx, for continuous models,

∞
∑

i=1

g(xi) log f(xi), for discrete models,

(3.17)

it still depends on the true distribution g and is an unknown quantity that
eludes explicit computation. However, if a good estimate of the expected log-
likelihood can be obtained from the data, this estimate can be used as a
criterion for comparing models. Let us now consider the following problem.

Let xn = {x1, x2, . . . , xn} be data observed from the true distribution
G(x) or g(x). An estimate of the expected log-likelihood can be obtained by
replacing the unknown probability distribution G contained in (3.17) with an
empirical distribution function Ĝ based on data xn. The empirical distribution
function is the distribution function for the probability function ĝ(xα)= 1/n
(α = 1, 2, . . . , n) that has the equal probability 1/n for each of n observations
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{x1, x2, . . . , xn} (see Section 5.1). In fact, by replacing the unknown probabil-
ity distribution G contained in (3.17) with the empirical distribution function
Ĝ(x), we obtain

EĜ [log f(X)] =

∫

log f(x)dĜ(x)

=

n
∑

α=1

ĝ(xα) log f(xα) (3.18)

=
1

n

n
∑

α=1

log f(xα).

According to the law of large numbers, when the number of observations,
n, tends to infinity, the mean of the random variables Yα = log f(Xα) (α =
1, 2,. . . , n) converges in probability to its expectation, that is, the convergence

1

n

n
∑

α=1

log f(Xα) −→ EG [log f(X)] , n → +∞, (3.19)

holds. Therefore, it is clear that the estimate based on the empirical distrib-
ution function in (3.18) is a natural estimate of the expected log-likelihood.
The estimate of the expected log-likelihood multiplied by n, i.e.,

n

∫

log f(x)dĜ(x) =
n

∑

α=1

logf(xα), (3.20)

is the log-likelihood of the model f(x). This means that the log-likelihood,
frequently used in statistical analyses, is clearly understood as being an ap-
proximation to the K-L information.

Example 4 (Expected log-likelihood for normal models) Let both
of the continuous models g(x) and f(x) be the standard normal distribution
N(0, 1) with mean 0 and variance 1. Let us generate n observations, {x1, x2,
. . . , xn}, from the true model g(x) to construct the empirical distribution
function Ĝ. In the next step, we calculate the value of (3.18),

EĜ [log f(X)] = −1

2
log(2π) − 1

2n

n
∑

α=1

x2
α.

Table 3.1 shows the results of obtaining the mean and the variance of
EĜ[log f(X)] by repeating this process 1,000 times.

Since the average of the 1,000 trials is very close to the true value, that is,
the expected log-likelihood

EG[log f(X)] =

∫

g(x) log f(x)dx = −1

2
log(2π) − 1

2
= −1.4189,
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Table 3.1. Distribution of the log-likelihood of a normal distribution model. The
mean, variance, and standard deviation are obtained by running 1,000 Monte Carlo
trials. The expression EG[log f(X)] represents the expected log-likelihood.

n 10 100 1,000 10,000 EG[log f(X)]

Mean −1.4188 −1.4185 −1.4191 −1.4189 −1.4189

Variance 0.05079 0.00497 0.00050 0.00005 —–

Standard deviation 0.22537 0.07056 0.02232 0.00696 —–

the results suggest that even for a small number of observations, the log-
likelihood has little bias. By contrast, the variance decreases in inverse pro-
portion to n.

3.3 Maximum Likelihood Method and Maximum
Likelihood Estimators

3.3.1 Log-Likelihood Function and Maximum Likelihood
Estimators

Let us consider the case in which a model is given in the form of a probability
distribution f(x|θ)(θ ∈ Θ ⊂ Rp), having unknown p-dimensional parameters
θ = (θ1, θ2, . . . , θp)

T . In this case, given data xn= {x1, x2, . . . , xn}, the log-
likelihood can be determined for each θ ∈ Θ. Therefore, by regarding the
log-likelihood as a function of θ ∈ Θ, and representing it as

ℓ(θ) =
n

∑

α=1

log f(xα|θ), (3.21)

the log-likelihood is referred to as the log-likelihood function. A natural esti-
mator of θ is defined by finding the maximizer θ ∈ Θ of the ℓ(θ), that is, by
determining θ that satisfies the equation

ℓ(θ̂) = max
θ∈Θ

ℓ(θ). (3.22)

This method is called the maximum likelihood method, and θ̂ is called the max-
imum likelihood estimator. If the data used in the estimation must be specified
explicitly, then the maximum likelihood estimator is denoted by θ̂(xn). The

model f(x|θ̂) determined by θ̂ is called the maximum likelihood model, and

the term ℓ(θ̂) =
∑n

α=1 log f(xα|θ̂) is called the maximum log-likelihood.
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3.3.2 Implementation of the Maximum Likelihood Method
by Means of Likelihood Equations

If the log-likelihood function ℓ(θ) is continuously differentiable, the maximum

likelihood estimator θ̂ is given as a solution of the likelihood equation

∂ℓ(θ)

∂θi
= 0, i = 1, 2, . . . , p or

∂ℓ(θ)

∂θ
= 0, (3.23)

where ∂ℓ(θ)/∂θ is a p-dimensional vector, the ith component of which is given
by ∂ℓ(θ)/∂θi, and 0 is the p-dimensional zero vector, all the components
of which are 0. In particular, if the likelihood equation is a linear equation
having p-dimensional parameters, the maximum likelihood estimator can be
expressed explicitly.

Example 5 (Normal model) Let us consider the normal distribution model
N(µ, σ2) with respect to the data {x1, x2,. . . , xn}. Since the log-likelihood
function is given by

ℓ(µ, σ2) = −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

(xα − µ)2, (3.24)

the likelihood equation takes the form

∂ℓ(µ, σ2)

∂µ
=

1

σ2

n
∑

α=1

(xα − µ) =
1

σ2

( n
∑

α=1

xα − nµ

)

= 0,

∂ℓ(µ, σ2)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n
∑

α=1

(xα − µ)2 = 0.

It follows, then, that the maximum likelihood estimators for µ and σ2 are

µ̂ =
1

n

n
∑

α=1

xα, σ̂2 =
1

n

n
∑

α=1

(xα − µ̂)2. (3.25)

For the following 20 observations

−7.99 −4.01 −1.56 −0.99 −0.93 −0.80 −0.77 −0.71 −0.42 −0.02
0.65 0.78 0.80 1.14 1.15 1.24 1.29 2.81 4.84 6.82

the maximum likelihood estimates of µ and σ2 are calculated as

µ̂ =
1

n

n
∑

α=1

xα = 0.166, σ̂2 =
1

n

n
∑

α=1

(xα − µ̂)2 = 8.545, (3.26)

and the maximum log-likelihood is

ℓ(µ̂, σ̂2) = −n

2
log(2πσ̂2) − n

2
= −49.832. (3.27)
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Example 6 (Bernoulli model) The log-likelihood function based on n
observations {x1, x2, . . . , xn} drawn from the Bernoulli distribution f(x|p) =
px(1 − p)1−x (x = 0, 1) is

ℓ(p) = log

{

n
∏

α=1

pxα(1 − p)1−xα

}

=

n
∑

α=1

xα log p +

(

n −
n

∑

α=1

xα

)

log(1 − p). (3.28)

Consequently, the likelihood equation is

∂ℓ(p)

∂p
=

1

p

n
∑

α=1

xα − 1

1 − p

(

n −
n

∑

α=1

xα

)

= 0. (3.29)

Thus, the maximum likelihood estimator for p is given by

p̂ =
1

n

n
∑

α=1

xα. (3.30)

Example 7 (Linear regression model) Let {yα, xα1, xα2, . . . , xαp} (α =
1, 2, . . . , n) be n sets of data that are observed with respect to a response
variable y and p explanatory variables {x1, x2, . . . , xp}. In order to describe the
relationship between the variables, we assume the following linear regression
model with Gaussian noise:

yα = xT
αβ + εα, εα ∼ N(0, σ2), α = 1, 2, . . . , n, (3.31)

where xα = (1, xα1, xα2,. . . , xαp)
T and β= (β0, β1,. . . ,βp)

T . Since the proba-
bility density function of yα is

f(yα|xα;θ) =
1√

2πσ2
exp

{

− 1

2σ2

(

yα − xT
αβ

)2
}

, (3.32)

the log-likelihood function is expressed as

ℓ(θ) =

n
∑

α=1

log f(yα|xα;θ)

= −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

(

yα − xT
αβ

)2
(3.33)

= −n

2
log(2πσ2) − 1

2σ2
(y − Xβ)T (y − Xβ),

where y = (y1, y2, . . . , yn)T and X = (x1,x2, . . . , xn)T . By taking partial
derivatives of the above equation with respect to the parameter vector θ

= (βT , σ2)T , the likelihood equation is given by
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∂ℓ(θ)

∂β
= − 1

2σ2

(

−2XT y + 2XT Xβ
)

= 0,

∂ℓ(θ)

∂σ2
= − n

2σ2
+

1

2σ4
(y − Xβ)T (y − Xβ) = 0. (3.34)

Consequently, the maximum likelihood estimators for β and σ2 are given by

β̂ = (XT X)−1XT y, σ̂2 =
1

n
(y − Xβ̂)T (y − Xβ̂). (3.35)

3.3.3 Implementation of the Maximum Likelihood Method
by Numerical Optimization

Although in the preceding section we showed cases in which it was possible
to obtain an explicit solution to the likelihood equations, in general likelihood
equations are complex nonlinear functions of the parameter vector θ. In this
subsection, we describe how to obtain the maximum likelihood estimator in
such situations.

When a given likelihood equation cannot be solved explicitly, a numerical
optimization method is frequently employed, which involves starting from an
appropriately chosen initial value θ0 and successively generating quantities
θ1,θ2, . . . , in order to cause convergence to the solution θ̂. Assuming that
the estimated value θk can be determined at some stage, we determine the
next point, θk+1, which yields a larger likelihood, using the method described
below.

In the maximum likelihood method, in order to determine the θ̂ that
maximizes ℓ(θ), we find θ that satisfies the necessary condition, namely the
likelihood equation ∂ℓ(θ)/∂θ = 0. However, since θk does not exactly satisfy
∂ℓ(θ)/∂θ = 0, we generate the next point, θk+1, in order to approximate 0
closer. For this purpose, we first perform a Taylor series expansion of ∂ℓ(θ)/∂θ

in the neighborhood of θk,

∂ℓ(θ)

∂θ
≈ ∂ℓ(θk)

∂θ
+

∂2ℓ(θk)

∂θ∂θT
(θ − θk). (3.36)

Then by writing

g(θ) =

(

∂ℓ(θ)

∂θ1
,
∂ℓ(θ)

∂θ2
, · · · , ∂ℓ(θ)

∂θp

)T

,

H(θ) =
∂2ℓ(θ)

∂θ∂θT
=

(

∂2ℓ(θ)

∂θi∂θj

)

, i, j = 1, 2, . . . , p, (3.37)

in terms of θ that satisfies ∂ℓ(θ)/∂θ = 0, we obtain

0 = g(θ) ≈ g(θk) + H(θk)(θ − θk), (3.38)
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where the quantity g(θk) is a gradient vector and H(θk) is a Hessian matrix.
By virtue of (3.38), it follows that θ ≈ θk −H(θk)−1g(θk). Therefore, using

θk+1 ≡ θk − H(θk)−1g(θk),

we determine the next point, θk+1. This technique, called the Newton–
Raphson method, is known to converge rapidly near the root, or in other
words, provided an appropriate initial value is chosen.

Thus, while the Newton–Raphson method is considered to be an efficient
technique, several difficulties may be encountered when it is applied to max-
imum likelihood estimation: (1) in many cases, it may prove difficult to cal-
culate the Hessian matrix, which is the 2nd-order partial derivative of the
log-likelihood; (2) for each matrix, the method requires calculating the in-
verse matrix of H(θk); and (3) depending on how the initial value is selected,
the method may converge very slowly or even diverge.

In order to mitigate these problems, a quasi-Newton method is employed.
This method does not involve calculating the Hessian matrix and automati-
cally generates the inverse matrix, H−1(θk). In addition, step widths can be
introduced either to accelerate convergence or to prevent divergence. Specif-
ically, the following algorithm is employed in order to successively generate
θk+1:

(i) Determine a search (descending) direction vector dk = −H−1
k gk.

(ii) Determine the optimum step width λk that maximizes ℓ(θk + λdk).
(iii) By taking θk+1 ≡ θk + λkdk, determine the next point, θk+1, and set

yk ≡ g(θk+1) − g(θk).
(iv) Update an estimate of H(θk)−1 by using either the Davidon–Fletcher–

Powell (DFP) algorithm or the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm:

H−1
k+1= H−1

k +
sksT

k

sT
k yk

− H−1
k ykyT

k H−1
k

yT
k H−1

k yk

, (3.39)

H−1
k+1= H−1

k +
skyT

k H−1
k

sT
k yk

− H−1
k yksT

k

sT
k yk

+

{

1 +
ykH−1

k yT
k

sT
k yk

}

sksT
k

sT
k yk

,

where sk = θk+1 − θk.
When applying the quasi-Newton method, one starts with appropriate

initial values, θ0 and H−1
0 , and successively determines θk and H−1

k . As an
initial value for H−1

0 , the identity matrix I, an appropriately scaled matrix of
the unit matrix, or an approximate value of H(θ0)

−1 is used. In situations in
which it is also difficult to calculate the gradient vector g(θ) of a log-likelihood
function, g(θ) can be determined solely from the log-likelihood by numerical
differentiation.

Other methods besides the Newton–Raphson method and the quasi-
Newton method described above (for example, the simplex method) can be
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used to obtain the maximum likelihood estimate, since it suffices to determine
θ that maximizes the log-likelihood function.

Example 8 (Cauchy distribution model) Consider the Cauchy distrib-
ution model expressed by

f(x|µ, τ2) =

n
∑

α=1

log f(xα|µ, τ2) =
1

π

τ

(y − µ)2 + τ2
(3.40)

for the data shown in Example 5. The log-likelihood of the Cauchy distribution
model is given by

ℓ(µ, τ2) =
n

2
log τ2 − n log π −

n
∑

α=1

log
{

(xα − µ)2 + τ2
}

. (3.41)

Then the first derivatives of ℓ(µ, τ2) with respect to µ and τ2 are

∂ℓ

∂µ
= 2

n
∑

α=1

xα − µ

(xα − µ)2 + τ2
,

∂ℓ

∂τ2
=

n

2τ2
−

n
∑

α=1

1

(xα − µ)2 + τ2
. (3.42)

The maximum likelihood estimates of the parameters µ and τ2 are then
obtained by maximizing the log-likelihood using the quasi-Newton method.
Table 3.2 shows the results of the quasi-Newton method when the initial
estimates are set to θ0 = (µ0, τ

2
0 )T = (0, 1)T . The quasi-Newton method only

required five iterations to find the maximum likelihood estimates.

Table 3.2. Estimation of the parameters of the Cauchy distribution model by a
quasi-Newton algorithm.

k µk τ2

k ℓ(θk) ∂ℓ/∂µ ∂ℓ/∂τ2

0 0.00000 1.00000 48.12676 −0.83954 −1.09776
1 0.23089 1.30191 47.87427 0.18795 −0.14373
2 0.17969 1.35705 47.86554 −0.04627 −0.04276
3 0.18940 1.37942 47.86484 0.00244 −0.00106
4 0.18886 1.38004 47.86484 −0.00003 −0.00002
5 0.18887 1.38005 47.86484 0.00000 0.00000

Example 9 (Time series model) In general, the time series are mutually
correlated and the log-likelihood of the time series model cannot be expressed
as the sum of the logarithms of the density function of each observation.
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However, the likelihood can generally be expressed by using the conditional
distributions as follows:

L(θ) = f(y1, . . . , yN |θ) =
N
∏

n=1

f(yn|y1, . . . , yn−1). (3.43)

Here, for some simple models, each conditional distribution on the right-hand
side of the above expression can be obtained from the specified model. For
example, for the autoregressive model,

yn =

m
∑

j=1

ajyn−j + εn, εn ∼ N(0, σ2), (3.44)

for n > m, the conditional distribution is obtained by

f(yn|y1, . . . , yn−1) =
1√

2πσ2
exp

⎧

⎨

⎩

− 1

2σ2

(

yn −
m

∑

j=1

ajyn−j

)2
⎫

⎬

⎭

. (3.45)

By ignoring the first m conditional distributions, the log-likelihood of an AR
model can be approximated by

ℓ(θ) = −N − m

2
log(2πσ2) − 1

2σ2

N
∑

n=m+1

(

yn −
m

∑

j=1

ajyn−j

)2

, (3.46)

where θ = (a1, . . . , am, σ2)T . The least squares estimates of the parameters
of the AR model are easily obtained by maximizing the approximate log-
likelihood. However, for exact maximum likelihood estimation, we need to use
the state-space representation of the model shown below.

In general, we assume that the time series yn is expressed by a state-space
model

xn = Fnxn−1 + Gnvn,

yn = Hnxn + wn, (3.47)

where xn is a properly defined k-dimensional state vector; Fn, Gn, and Hn are
k×k, k×ℓ, and 1×k matrices; and vn ∼ Nℓ(0, Qn) and wn ∼ N(0, σ2). Then
the one-step-ahead predictor xn|n−1 and its variance covariance matrix Vn|n−1

of the state vector xn given the observations y1, ..., yn−1 can be obtained very
efficiently by using the Kalman filter recursive algorithm as follows [Anderson
and Moore (1979) and Kitagawa and Gersch (1996)]:

One-step-ahead prediction

xn|n−1 = Fnxn−1|n−1,

Vn|n−1 = FnVn−1|n−1F
T
n + GnQnGT

n . (3.48)
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Filter

Kn = Vn|n−1H
T
n (HnVn|n−1H

T
n + σ2)−1,

xn|n = xn|n−1 + Kn(yn − Hnxn|n−1), (3.49)

Vn|n = (I − KnHn)Vn|n−1.

Then the one-step-ahead predictive distribution of the observation yn given
{y1, . . . , yn−1} can be expressed as

p(yn|y1, . . . , yn−1) =
1√

2πrn
exp

{

− (yn − Hnxn|n−1)
2

2rn

}

(3.50)

with rn = HnVn|n−1H
T
n +Rn. Therefore, if the model contains some unknown

parameter vector θ, the log-likelihood of the time series model expressed in
the state-space model is given by

ℓ(θ) = −1

2

{

N log 2π +
N

∑

n=1

log rn +
N

∑

n=1

(yn − Hnxn|n−1)
2

rn

}

. (3.51)

The maximum likelihood estimate of the parameter θ̂ is obtained by max-
imizing (3.51) with respect to those parameters used in a numerical optimiza-
tion method.

3.3.4 Fluctuations of the Maximum Likelihood Estimators

Assume that the true distribution g(x) that generates data is the standard
normal distribution N(0 , 1) with mean 0 and variance 1 and that the specified
model f(x|θ) is a normal distribution in which either the mean µ or the
variance σ2 is unknown. Figures 3.1 and 3.2 are plots of the log-likelihood
function

ℓ(µ) = −n

2
log(2π) − 1

2

n
∑

α=1

(xα − µ)2, (3.52)

based on n observations with an unknown mean µ and the variance σ2 = 1.
The horizontal axis represents the value of µ, and the vertical axis repre-
sents the corresponding value of ℓ(µ). Figures 3.1 and 3.2 show log-likelihood
functions based on n = 10 and n = 100 observations, respectively. In these
figures, random numbers are used to generate 10 sets of observations {x1, x2,
. . . , xn} following the distribution N(0 , 1), and the log-likelihood functions
ℓ(µ) (−2 ≤ µ ≤ 2) calculated from the observation sets are overlaid. The value
of µ that maximizes these functions is the maximum likelihood estimate of the
mean, which is plotted on the horizontal axis with lines pointing downward
from the axis. The estimator has a scattered profile depending on the data
involved. In the figures, the bold curves represent the expected log-likelihood
function
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Fig. 3.1. Distributions of expected log-likelihood (bold lines), log-likelihood (thin
lines), and maximum likelihood estimators with respect to the mean µ of normal
distributions; n = 10.

Fig. 3.2. Distributions of the expected log-likelihood (bold), log-likelihood (thin),
and maximum likelihood estimator with respect to the mean µ of the normal distri-
bution; n = 100.

nEG [log f(X|µ)] = n

∫

g(x) log f(x|µ)dx = −n

2
log(2π) − n(1 + µ2)

2
,

and the values of the true parameter µ0 corresponding to the function are
plotted as dotted lines. The difference between these values and the maximum
likelihood estimate is the estimation error of µ. The histogram in the figure,
which shows the distribution of the maximum likelihood estimates resulting
from similar calculations repeated 1,000 times, indicates that the maximum
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Fig. 3.3. Distributions of the expected log-likelihood (bold), log-likelihood (thin),
and maximum likelihood estimator with respect to the variance σ2 of the normal
distribution; n = 10.

likelihood estimator has a distribution over a range of ±1 in the case of n = 10,
and ±0.3 in the case of n = 100.

Figures 3.3 and 3.4 show 10 overlaid plots of the following log-likelihood
function, obtained from n = 10 and n = 100 observations, respectively, with
unknown variance σ2 and the mean µ = 0:

ℓ(σ2) = −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

x2
α.

In this case, ℓ(σ2) is an asymmetric function of σ2, and the corresponding
distribution of the maximum likelihood estimator is also asymmetric. In this
case, too, the figures suggest that the distribution of the estimators converges
to the true value as n increases. In the figures, the bold curve represents the
expected log-likelihood function

nEG

[

log f(X|σ2)
]

= n

∫

g(x) log f(x|σ2)dx = −n

2
log(2πσ2) − n

2σ2
,

and the value of the corresponding true parameter is shown by the dotted line.
The difference between this value and the maximum likelihood estimator is
the estimation error of σ2. The histograms in the figures show the distribution
of the maximum likelihood estimator when the same calculations are repeated
1,000 times.
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Fig. 3.4. Distributions of the expected log-likelihood (bold), log-likelihood (thin),
and maximum likelihood estimator with respect to the variance σ2 of the normal
distribution; n = 100.

3.3.5 Asymptotic Properties of the Maximum Likelihood
Estimators

This section discusses the asymptotic properties of the maximum likelihood
estimator of a continuous parametric model {f(x|θ); θ ∈ Θ ⊂ Rp} with
p-dimensional parameter vector θ.

Asymptotic normality. Assume that the following regularity condition
holds for the density function f(x|θ):

(1) The function log f(x|θ) is three times continuously differentiable with
respect to θ = (θ1, θ2, . . . , θp)

T .
(2) There exist integrable functions on R, F1(x), and F2(x) and a function

H(x) such that

∫ ∞

−∞

H(x)f(x|θ)dx < M,

for an appropriate real value M , and the following inequalities hold for
any θ ∈ Θ:

∣

∣

∣

∣

∂ log f(x|θ)

∂θi

∣

∣

∣

∣

< F1(x),

∣

∣

∣

∣

∂2 log f(x|θ)

∂θi∂θj

∣

∣

∣

∣

< F2(x),

∣

∣

∣

∣

∂3 log f(x|θ)

∂θi∂θj∂θk

∣

∣

∣

∣

< H(x), i, j, k = 1, 2, . . . , p.



48 3 Information Criterion

(3) The following inequality holds for an arbitrary θ ∈ Θ:

0 <

∫ ∞

−∞

f(x|θ)
∂ log f(x|θ)

∂θi

∂ log f(x|θ)

∂θj
dx < ∞, i, j = 1, . . . , p.

(3.53)

Then, under the above conditions the following properties can be derived:
(a) Assume that θ0 is a solution of

∫

f(x|θ)
∂ log f(x|θ)

∂θ
dx = 0 (3.54)

and that data xn = {x1, x2,. . . ,xn} are obtained according to the density

function f(x|θ0). In addition, let θ̂n be the maximum likelihood estimator
based on n observations. Then the following properties hold:

(i) The likelihood equation

∂ℓ(θ)

∂θ
=

n
∑

α=1

∂ log f(xα|θ)

∂θ
= 0 (3.55)

has a solution that converges to θ0.
(ii) The maximum likelihood estimator θ̂n converges in probability to θ0

when n → +∞.
(iii) The maximum likelihood estimator θ̂n has asymptotic normality, that is,

the distribution of
√

n(θ̂n − θ0) converges in law to the p-dimensional
normal distribution Np(0, I(θ0)

−1) with the mean vector 0 and the vari-
ance covariance matrix I(θ0)

−1, where the matrix I(θ0) is the value of
the matrix I(θ) at θ = θ0, which is given by

I(θ) =

∫

f(x|θ)
∂ log f(x|θ)

∂θ

∂ log f(x|θ)

∂θT
dx. (3.56)

This matrix I(θ), with (i, j)th component given as (3.53) under condition
(3), is called the Fisher information matrix.

Although the asymptotic normality stated above assumes the existence of
θ0 ∈ Θ that satisfies the assumption g(x) = f(x|θ0), similar results, given
below, can also be obtained even when the assumption does not hold:

(b) Assume that θ0 is a solution of

∫

g(x)
∂ log f(x|θ)

∂θ
dx = 0 (3.57)

and that data xn = {x1, x2, · · · , xn} are observed according to the distribution
g(x). In this case, the following statements hold with respect to the maximum

likelihood estimator θ̂n:
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(i) The maximum likelihood estimator θ̂n converges in probability to θ0 as
n → +∞.

(ii) The distribution of
√

n(θ̂n − θ0) with respect to the maximum likeli-

hood estimator θ̂n converges in law to the p-dimensional normal dis-
tribution with the mean vector 0 and the variance covariance matrix
J−1(θ0)I(θ0)J

−1(θ0) as n → +∞. In other words, when n → +∞, the
following holds:

√
n(θ̂n − θ0) → Np

(

0, J−1(θ0)I(θ0)J
−1(θ0)

)

, (3.58)

where the matrices I(θ0) and J(θ0) are the p × p matrices evaluated at
θ= θ0 and are given by the following equations:

I(θ) =

∫

g(x)
∂ log f(x|θ)

∂θ

∂ log f(x|θ)

∂θT
dx

=

(∫

g(x)
∂ log f(x|θ)

∂θi

∂ log f(x|θ)

∂θj
dx

)

, (3.59)

J(θ) = −
∫

g(x)
∂2 log f(x|θ)

∂θ∂θT
dx

= −
(∫

g(x)
∂2 log f(x|θ)

∂θi∂θj
dx

)

, i, j = 1, . . . , p.

(3.60)

Outline of the Proof. By using a Taylor expansion of the first derivative of
the maximum log-likelihood ℓ(θ̂n) =

∑n
α=1 log f(xα|θ̂n) around θ0, we obtain

0 =
∂ℓ(θ̂n)

∂θ
=

∂ℓ(θ0)

∂θ
+

∂2ℓ(θ0)

∂θ∂θT
(θ̂n − θ0) + · · · . (3.61)

From the Taylor series expansion formula, the following approximation for the
maximum likelihood estimator θ̂n can be obtained:

−∂2ℓ(θ0)

∂θ∂θT
(θ̂n − θ0) =

∂ℓ(θ0)

∂θ
. (3.62)

By the law of large numbers, when n → +∞, it can be shown that

− 1

n

∂2ℓ(θ0)

∂θ∂θT
= − 1

n

n
∑

α=1

∂2

∂θ∂θT
log f(xα|θ)

∣

∣

∣

∣

θ0

→ J(θ0), (3.63)

where |θ0

is the value of the derivative at θ = θ0.
By virtue of the fact that when the p-dimensional random vector is written

as Xα = ∂ log f(Xα|θ)/∂θ|θ0

in the multivariate central limit theorem of
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Remark 1 below and the right-hand side of (3.62) is EG[Xα] = 0, EG[XαXT
α ]

= I(θ0), it follows that

√
n

1

n

∂ℓ(θ0)

∂θ
=

√
n

1

n

n
∑

α=1

∂

∂θ
log f(xα|θ)

∣

∣

∣

∣

θ0

→ Np(0, I(θ0)). (3.64)

Then it follows from (3.62), (3.63), and (3.64) that, when n → +∞, we obtain

√
nJ(θ0)(θ̂ − θ0) −→ Np(0, I(θ0)). (3.65)

Therefore, the convergence in law

√
n(θ̂ − θ0) −→ Np

(

0, J−1(θ0)I(θ0)J
−1(θ0)

)

(3.66)

holds as n tends to infinity. In fact, it has been shown that this asymptotic
normality holds even when the existence of higher-order derivatives is not
assumed [Huber (1967)].

If the distribution g(x) that generated the data is included in the class of
parametric models {f(x|θ);θ ∈ Θ ⊂ Rp}, from Remark 2 shown below, the
equality I(θ0) = J(θ0) holds, and the asymptotic variance covariance matrix

for
√

n(θ̂ − θ0) becomes

J−1(θ0)I(θ0)J
−1(θ0) = I(θ0)

−1, (3.67)

and the result (a) (iii) falls out.

Remark 1 (Multivariate central limit theorem) Let {X1,X2, . . .,
Xn, . . .} be a sequence of mutually independent random vectors drawn from a
p-dimensional probability distribution and that have mean vector E[Xα] = µ

and variance covariance matrix E[(Xα−µ)(Xα−µ)T ] = Σ. Then the distrib-
ution of

√
n(X−µ) with respect to the sample mean vector X = 1

n

∑n
α=1 Xα

converges in law to a p-dimensional normal distribution with mean vector 0
and variance covariance matrix Σ when n → +∞. In other words, when
n → +∞, it holds that

1√
n

n
∑

α=1

(Xα − µ) =
√

n(X − µ) → Np(0, Σ). (3.68)

Remark 2 (Relationship between the matrices I(θ) and J(θ)) The fol-
lowing equality holds with respect to the second derivative of the log-likelihood
function:

∂2

∂θi∂θj
log f(x|θ)

=
∂

∂θi

{

∂

∂θj
log f(x|θ)

}
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=
∂

∂θi

{

1

f(x|θ)

∂

∂θj
f(x|θ)

}

=
1

f(x|θ)

∂2

∂θi∂θj
f(x|θ) − 1

f(x|θ)2
∂

∂θi
f(x|θ)

∂

∂θj
f(x|θ)

=
1

f(x|θ)

∂2

∂θi∂θj
f(x|θ) − ∂

∂θi
log f(x|θ)

∂

∂θj
log f(x|θ).

By taking the expectation of the both sides with respect to the distribution
G(x), we obtain

EG

[

∂2

∂θi∂θj
log f(x|θ)

]

= EG

[

1

f(x|θ)

∂2

∂θi∂θj
f(x|θ)

]

− EG

[

∂

∂θi
log f(x|θ)

∂

∂θj
log f(x|θ)

]

.

Hence, in general, we know that I(θ) 
= J(θ). However, if there exists a
parameter vector θ0 ∈ Θ such that g(x) = f(x|θ0), the first term on the
right-hand side becomes

EG

[

1

f(x|θ0)

∂2

∂θi∂θj
f(x|θ0)

]

=

∫

∂2

∂θi∂θj
f(x|θ0)dx

=
∂2

∂θi∂θj

∫

f(x|θ0)dx = 0,

and therefore the equality Iij(θ0) = Jij(θ0) (i, j = 1, 2, . . . , p) holds; hence,
we have I(θ0) = J(θ0).

3.4 Information Criterion AIC

3.4.1 Log-Likelihood and Expected Log-Likelihood

The argument that has been presented thus far can be summarized as fol-
lows. When we build a model using data, we assume that the data xn= {x1,
x2, . . . , xn} are generated according to the true distribution G(x) or g(x). In
order to capture the structure of the given phenomena, we assume a para-
metric model {f(x|θ); θ ∈ Θ ⊂ Rp} having p-dimensional parameters, and
we estimate it by using the maximum likelihood method. In other words, we
construct a statistical model f(x|θ̂) by replacing the unknown parameter θ

contained in the probability distribution by the maximum likelihood estimator
θ̂. Our purpose here is to evaluate the goodness or badness of the statistical
model f(x|θ̂) thus constructed. We now consider the evaluation of a model
from the standpoint of making a prediction.

Our task is to evaluate the expected goodness or badness of the estimated
model f(z|θ̂) when it is used to predict the independent future data Z = z
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generated from the unknown true distribution g(z). The K-L information
described below is used to measure the closeness of the two distributions:

I{g(z); f(z|θ̂)} = EG

[

log

{

g(Z)

f(Z|θ̂)

}]

= EG

[

log g(Z)
]

− EG

[

log f(Z|θ̂)
]

, (3.69)

where the expectation is taken with respect to the unknown probability dis-
tribution G(z) by fixing θ̂ = θ̂(xn).

In view of the properties of the K-L information, the larger the expected
log-likelihood

EG

[

log f(Z|θ̂)
]

=

∫

log f(z|θ̂)dG(z) (3.70)

of the model is, the closer the model is to the true one. Therefore, in the
definition of the information criterion, the crucial issue is to obtain a good
estimator of the expected log-likelihood. One such estimator is

EĜ

[

log f(Z|θ̂)
]

=

∫

log f(z|θ̂)dĜ(z)

=
1

n

n
∑

α=1

log f(xα|θ̂), (3.71)

in which the unknown probability distribution G contained in the expected
log-likelihood is replaced with an empirical distribution function Ĝ. This is the
log-likelihood of the statistical model f(z|θ̂) or the maximum log-likelihood

ℓ(θ̂) =

n
∑

α=1

log f(xα|θ̂). (3.72)

It is worth noting here that the estimator of the expected log-likelihood
EG[log f(Z|θ̂)] is n−1ℓ(θ̂) and that the log-likelihood ℓ(θ̂) is an estimator

of nEG[log f(Z|θ̂)].

3.4.2 Necessity of Bias Correction for the Log-Likelihood

In practical situations, it is difficult to precisely capture the true structure of
given phenomena from a limited number of observed data. For this reason, we
construct several candidate statistical models based on the observed data at
hand and select the model that most closely approximates the mechanism of
the occurrence of the phenomena. In this subsection, we consider the situation
in which multiple models {fj(z|θj); j = 1, 2, . . . ,m} exist, and the maximum

likelihood estimator θ̂j has been obtained for the parameters of the model,
θj .
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Fig. 3.5. Use of data in the estimations of the parameter of a model and of the
expected log-likelihood.

From the foregoing argument, it appears that the goodness of the model
specified by θ̂j , that is, the goodness of the maximum likelihood model

fj(z|θ̂j), can be determined by comparing the magnitudes of the maximum

log-likelihood ℓj(θ̂j). However, it is known that this approach does not provide

a fair comparison of models, since the quantity ℓj(θ̂j) contains a bias as an

estimator of the expected log-likelihood nEG[log fj(z|θ̂j)], and the magnitude
of the bias varies with the dimension of the parameter vector.

This result may seem to contradict the fact that generally ℓ(θ) is a good es-
timator of nEG[log f(Z|θ)]. However, as is evident from the process by which
the log-likelihood in (3.71) was derived, the log-likelihood was obtained by
estimating the expected log-likelihood by reusing the data xn that were ini-
tially used to estimate the model in place of the future data (Figure 3.5). The
use of the same data twice for estimating the parameters and for estimating
the evaluation measure (the expected log-likelihood) of the goodness of the
estimated model gives rise to the bias.

Relationship between log-likelihood and expected log-likelihood.
Figure 3.6 shows the relationship between the expected log-likelihood function
and the log-likelihood function
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Fig. 3.6. Log-likelihood and expected log-likelihood.

nη(θ) = nEG [log f(Z|θ)] , ℓ(θ) =

n
∑

α=1

log f(xα|θ), (3.73)

for a model f(x|θ) with a one-dimensional parameter θ. The value of θ that
maximizes the expected log-likelihood is the true parameter θ0. On the other
hand, the maximum likelihood estimator θ̂(xn) is given as the maximizer

of the log-likelihood function ℓ(θ). The goodness of the model f(z|θ̂) de-

fined by θ̂(xn) should be evaluated in terms of the expected log-likelihood

EG[log f(Z|θ̂)]. However, in actuality, it is evaluated using the log-likelihood

ℓ(θ̂) that can be calculated from data. In this case, as indicated in Figure

3.6, the true criterion should give EG[log f(Z|θ̂)] ≤EG[log f(Z|θ0)] (see Sub-

section 3.1.1). However, in the log-likelihood, the relationship ℓ(θ̂) ≥ ℓ(θ0)
always holds.

The log-likelihood function fluctuates depending on data, and the geome-
try between the two functions also varies; however, the above two inequalities
always hold. If the two functions have the same form, then the log-likelihood
is actually inferior to the extent that it appears to be better than the true
model. The objective of the bias evaluation is to compensate for this phenom-
enon of reversal. Therefore, the prerequisite for a fair comparison of models
is evaluation of and correction for the bias. In this subsection, we define an
information criterion as a bias-corrected log-likelihood of the model.

Let us assume that n observations xn generated from the true distribution
G(x) or g(x) are realizations of the random variable Xn = (X1, X2, · · · , Xn)T ,
and let
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ℓ(θ̂) =

n
∑

α=1

log f(xα|θ̂(xn)) = log f(xn|θ̂(xn)) (3.74)

represent the log-likelihood of the statistical model f(z|θ̂(xn)) estimated by
the maximum likelihood method. The bias of the log-likelihood as an estimator
of the expected log-likelihood given in (3.70) is defined by

b(G) = EG(xn)

[

log f(Xn|θ̂(Xn)) − nEG(z)

[

log f(Z|θ̂(Xn))
]]

, (3.75)

where the expectation EG(xn) is taken with respect to the joint distribution,
∏n

α=1 G(xα) = G(xn), of the sample Xn, and EG(z) is the expectation on
the true distribution G(z). We see that the general form of the information
criterion can be constructed by evaluating the bias and correcting for the bias
of the log-likelihood as follows:

IC(Xn; Ĝ) = −2(log-likelihood of statistical model − bias estimator)

= −2
n

∑

α=1

log f(Xα|θ̂) + 2 {estimator for b(G)} . (3.76)

In general, the bias b(G) can take various forms depending on the rela-
tionship between the true distribution generating the data and the specified
model and on the method employed to construct a statistical model. In the
following, we derive an information criterion for evaluating statistical models
constructed by the maximum likelihood method.

3.4.3 Derivation of Bias of the Log-Likelihood

The maximum likelihood estimator θ̂ is given as the p-dimensional parameter
θ that maximizes the log-likelihood function ℓ(θ)=

∑n
α=1 log f(Xα|θ) or by

solving the likelihood equation

∂ℓ(θ)

∂θ
=

n
∑

α=1

∂

∂θ
log f(Xα|θ) = 0. (3.77)

Further, by taking the expectation, we obtain

EG(xn)

[

n
∑

α=1

∂

∂θ
log f(Xα|θ)

]

= nEG(z)

[

∂

∂θ
log f(Z|θ)

]

. (3.78)

Therefore, for a continuous model, if θ0 is a solution of the equation

EG(z)

[

∂

∂θ
log f(Z|θ)

]

=

∫

g(z)
∂

∂θ
log f(z|θ)dz = 0, (3.79)
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Fig. 3.7. Decomposition of the bias term.

it can be shown that the maximum likelihood estimator θ̂ converges in prob-
ability to θ0 when n → +∞. For a discrete model, see (3.17).

Using the above results, we now evaluate the bias

b(G) = EG(xn)

[

log f(Xn|θ̂(Xn)) − nEG(z)

[

log f(Z|θ̂(Xn))
]

]

(3.80)

when the expected log-likelihood is estimated using the log-likelihood of the
statistical model. To this end, we first decompose the bias as follows (Figure
3.7):

EG(xn)

[

log f(Xn|θ̂(Xn)) − nEG(z)

[

log f(Z|θ̂(Xn))
]

]

= EG(xn)

[

log f(Xn|θ̂(Xn)) − log f(Xn|θ0)
]

+EG(xn)

[

log f(Xn|θ0) − nEG(z)

[

log f(Z|θ0)
]

]

(3.81)

+EG(xn)

[

nEG(z)

[

log f(Z|θ0)
]

− nEG(z)

[

log f(Z|θ̂(Xn))
]

]

= D1 + D2 + D3.

Notice that θ̂ = θ̂(Xn) depends on the sample Xn. In the next step, we
calculate separately the three expectations D1, D2, and D3.
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(1) Calculation of D2 The easiest case is the evaluation of D2, which
does not contain an estimator. It can easily be seen that

D2 = EG(xn)

[

log f(Xn|θ0) − nEG(z)

[

log f(Z|θ0)
]

]

= EG(xn)

[ n
∑

α=1

log f(Xα|θ0)

]

− nEG(z)

[

log f(Z|θ0)
]

= 0. (3.82)

This implies that in Figure 3.7, although D2 varies randomly depending on
the data, its expectation becomes 0.

(2) Calculation of D3 First, we write

η(θ̂) := EG(z)

[

log f(Z|θ̂)
]

. (3.83)

By performing a Taylor series expansion of η(θ̂) around θ0 given as a solution
to (3.79), we obtain

η(θ̂) = η(θ0) +

p
∑

i=1

(θ̂i − θ
(0)
i )

∂η(θ0)

∂θi
(3.84)

+
1

2

p
∑

i=1

p
∑

j=1

(θ̂i − θ
(0)
i )(θ̂j − θ

(0)
j )

∂2η(θ0)

∂θi∂θj
+ · · · ,

where θ̂ = (θ̂1, θ̂2, . . . , θ̂p)
T and θ0 = (θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
p )T . Here, by virtue

of the fact that θ0 is a solution of (3.79), it holds that

∂η(θ0)

∂θi
= EG(z)

[

∂

∂θi
log f(Z|θ)

∣

∣

∣

∣

θ0

]

= 0, i = 1, 2, . . . , p, (3.85)

where |θ0

is the value of the partial derivative at the point θ = θ0.

Therefore, (3.84) can be approximated as

η(θ̂) = η(θ0) −
1

2
(θ̂ − θ0)

T J(θ0)(θ̂ − θ0), (3.86)

where J(θ0) is the p × p matrix given by

J(θ0) = −EG(z)

[

∂2 log f(Z|θ)

∂θ∂θT

∣

∣

∣

∣

θ0

]

= −
∫

g(z)
∂2 log f(z|θ)

∂θ∂θT

∣

∣

∣

∣

θ0

dz

(3.87)

such that its (a, b)th element is given by
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jab = −EG(z)

[

∂2 log f(Z|θ)

∂θa∂θb

∣

∣

∣

∣

θ0

]

= −
∫

g(z)
∂2 log f(z|θ)

∂θa∂θb

∣

∣

∣

∣

θ0

dz. (3.88)

Then, because D3 is the expectation of η(θ0) − η(θ̂) with respect to G(xn),
we obtain approximately

D3 = EG(xn)

[

nEG(z)

[

log f(Z|θ0)
]

− nEG(z)

[

log f(Z|θ̂)
]

]

=
n

2
EG(xn)

[

(θ̂ − θ0)
T J(θ0)(θ̂ − θ0)

]

=
n

2
EG(xn)

[

tr
{

J(θ0)(θ̂ − θ0)(θ̂ − θ0)
T
}]

(3.89)

=
n

2
tr

{

J(θ0)EG(xn)

[

(θ̂ − θ0)(θ̂ − θ0)
T
]}

.

By substituting the (asymptotic) variance covariance matrix [see (3.58)]

EG(xn)

[

(θ̂ − θ0)(θ̂ − θ0)
T
]

=
1

n
J(θ0)

−1I(θ0)J(θ0)
−1 (3.90)

of the maximum likelihood estimator θ̂ into (3.89), we have

D3 =
1

2
tr

{

I(θ0)J(θ0)
−1

}

, (3.91)

where J(θ0) is given in (3.87) and I(θ0) is the p × p matrix given by

I(θ0) = EG(z)

[

∂ log f(Z|θ)

∂θ

∂ log f(Z|θ)

∂θT

∣

∣

∣

∣

θ0

]

=

∫

g(z)
∂ log f(z|θ)

∂θ

∂ log f(z|θ)

∂θT

∣

∣

∣

∣

θ0

dz. (3.92)

All that remains to do be done now is to calculate D1.

(3) Calculation of D1 By writing ℓ(θ) = log f(Xn|θ) and by applying

a Taylor series expansion around the maximum likelihood estimator θ̂, we
obtain

ℓ(θ) = ℓ(θ̂) + (θ − θ̂)T ∂ℓ(θ̂)

∂θ
+

1

2
(θ − θ̂)T ∂2ℓ(θ̂)

∂θ∂θT
(θ − θ̂) + · · · . (3.93)

Here, the quantity θ̂ satisfies the equation ∂ℓ(θ̂)/∂θ = 0 by virtue of the
maximum likelihood estimator given as a solution of the likelihood equation
∂ℓ(θ)/∂θ = 0.

We see that the quantity
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1

n

∂2ℓ(θ̂)

∂θ∂θT
=

1

n

∂2 log f(Xn|θ̂)

∂θ∂θT
(3.94)

converges in probability to J(θ0) in (3.87) when n tends to infinity. This can

be derived from the fact that the maximum likelihood estimator θ̂ converges
to θ0 and from the result of (3.63), which was obtained based on the law of
large numbers. Using these results, we obtain the approximation

ℓ(θ0) − ℓ(θ̂) ≈ −n

2
(θ0 − θ̂)T J(θ0)(θ0 − θ̂) (3.95)

for (3.93). Based on this result and the asymptotic variance covariance matrix
(3.90) of the maximum likelihood estimator, D1 can be calculated approxi-
mately as follows:

D1 = EG(xn)

[

log f(Xn|θ̂(Xn)) − log f(Xn|θ0)
]

=
n

2
EG(xn)

[

(θ0 − θ̂)T J(θ0)(θ0 − θ̂)
]

=
n

2
EG(xn)

[

tr
{

J(θ0)(θ0 − θ̂)(θ0 − θ̂)T
}]

(3.96)

=
n

2
tr

{

J(θ0)EG(xn)[(θ̂ − θ0)(θ̂ − θ0)
T ]

}

=
1

2
tr

{

I(θ0)J(θ0)
−1

}

.

Therefore, combining (3.82), (3.91), and (3.96), the bias resulting from the
estimation of the expected log-likelihood using the log-likelihood of the model
is asymptotically obtained as

b(G) = D1 + D2 + D3

=
1

2
tr

{

I(θ0)J(θ0)
−1

}

+ 0 +
1

2
tr

{

I(θ0)J(θ0)
−1

}

(3.97)

= tr
{

I(θ0)J(θ0)
−1

}

,

where I(θ0) and J(θ0) are respectively given in (3.92) and (3.87).

(4) Estimation of bias Because the bias depends on the unknown
probability distribution G that generated the data through I(θ0) and J(θ0),
the bias must be estimated based on observed data. Let Î and Ĵ be the
consistent estimators of I(θ0) and J(θ0). In this case, we obtain an estimator
of the bias b(G) using

b̂ = tr(Î Ĵ−1). (3.98)

Thus, if we determine the asymptotic bias of the log-likelihood as an estimator
of the expected log-likelihood of a statistical model, then the information
criterion
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TIC = −2

{ n
∑

α=1

log f(Xα|θ̂) − tr(Î Ĵ−1)

}

= −2

n
∑

α=1

log f(Xα|θ̂) + 2tr(Î Ĵ−1) (3.99)

is derived by correcting the bias of the log-likelihood of the model in the
form shown in (3.76). This information criterion, which was investigated by
Takeuchi (1976) and Stone (1977), is referred to as the “TIC.”

Notice that the matrices I(θ0) and J(θ0) can be estimated by replacing
the unknown probability distribution G(z) or g(z) by an empirical distribution
function Ĝ(z) or ĝ(z) based on the observed data as follows:

I(θ̂) =
1

n

n
∑

α=1

∂ log f(xα|θ)

∂θ

∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

∣ˆθ

, (3.100)

J(θ̂) = − 1

n

n
∑

α=1

∂2 log f(xα|θ)

∂θ∂θT

∣

∣

∣

∣

∣ˆθ

. (3.101)

The (i, j)th elements of these matrices are

Iij(Ĝ) =
1

n

n
∑

α=1

∂ log f(Xα|θ)

∂θi

∂ log f(Xα|θ)

∂θj

∣

∣

∣

∣

∣ˆθ

, (3.102)

Jij(Ĝ) = − 1

n

n
∑

α=1

∂2 log f(Xα|θ)

∂θi∂θj

∣

∣

∣

∣

∣ˆθ

, (3.103)

respectively.

3.4.4 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) has played a significant role in solving
problems in a wide variety of fields as a model selection criterion for analyzing
actual data. The AIC is defined by

AIC = −2(maximum log-likelihood) + 2(number of free parameters).

(3.104)

The number of free parameters in a model refers to the dimensions of the
parameter vector θ contained in the specified model f(x|θ).

The AIC is an evaluation criterion for the badness of the model whose pa-
rameters are estimated by the maximum likelihood method, and it indicates
that the bias of the log-likelihood (3.80) approximately becomes the “number
of free parameters contained in the model.” The bias is derived under the
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assumption that the true distribution g(x) is contained in the specified para-
metric model {f(x|θ);θ ∈ Θ ⊂ Rp}, that is, there exists a θ0 ∈ Θ such that
the equality g(x) = f(x|θ0) holds.

Let us now assume that the parametric model is {f(x|θ);θ ∈ Θ ⊂ Rp}
and that the true distribution g(x) can be expressed as g(x) = f(x|θ0) for
properly specified θ0 ∈ Θ. Under this assumption, the equality I(θ0) = J(θ0)
holds for the p × p matrix J(θ0) given in (3.87) and the p × p matrix I(θ0)
given in (3.92), as stated in Remark 2 of Subsection 3.3.5. Therefore, the bias
(3.97) of the log-likelihood is asymptotically given by

EG(xn)

[

n
∑

α=1

log f(Xα|θ̂) − nEG(z) log f(Z|θ̂)

]

= tr
{

I(θ0)J(θ0)
−1

}

= tr(Ip) = p, (3.105)

where Ip is the identity matrix of dimension p. Hence, the AIC

AIC = −2
n

∑

α=1

log f(Xα | θ̂) + 2p (3.106)

can be obtained by correcting the asymptotic bias p of the log-likelihood.
The AIC does not require any analytical derivation of the bias correction

terms for individual problems and does not depend on the unknown proba-
bility distribution G, which removes fluctuations due to the estimation of the
bias. Further, Akaike (1974) states that if the true distribution that generated
the data exists near the specified parametric model, the bias associated with
the log-likelihood of the model based on the maximum likelihood method can
be approximated by the number of parameters. These attributes make the
AIC a highly flexible technique from a practical standpoint.

Findley and Wei (2002) provided a derivation of AIC and its asymptotic
properties for the case of vector time series regression model [see also Find-
ley (1985), Bhansali (1986)]. Burnham and Anderson (2002) provided a nice
review and explanation of the use of AIC in the model selection and evalua-
tion problems [see also Linhart and Zucchini (1986), Sakamoto et al. (1986),
Bozdogan (1987), Kitagawa and Gersch (1996), Akaike and Kitagawa (1998),
McQuarrie and Tsai (1998), and Konishi (1999, 2002)]. Burnham and An-
derson (2002) also discussed modeling philosophy and perspectives on model
selection from an information-theoretic point of view, focusing on the AIC.

Example 10 (TIC for normal model) We assume a normal distribution
for the model

f(x|µ, σ2) =
1√

2πσ2
exp

{

− (x − µ)2

2σ2

}

. (3.107)

We start by deriving TIC in (3.99) for any g(x). Given n observations
{x1, x2, . . . , xn} that are generated from the true distribution g(x), the sta-
tistical model is given by
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f(x|µ̂, σ̂2) =
1√

2πσ̂2
exp

{

− (x − µ̂)2

2σ̂2

}

, (3.108)

with the maximum likelihood estimators µ̂ = n−1
∑n

α=1 xα and σ̂2=n−1
∑n

α=1

(xα − µ̂)2. Therefore, the bias associated with the estimation of the expected
log-likelihood using the log-likelihood of the model,

EG

[

1

n

n
∑

α=1

log f(Xα|µ̂, σ̂2) −
∫

g(z) log f(z|µ̂, σ̂2)dz

]

, (3.109)

can be calculated using the matrix I(θ) of (3.92) and the matrix J(θ) of
(3.87). This involves performing the following calculations:

For the log-likelihood function

log f(x|θ) = −1

2
log

(

2πσ2
)

− (x − µ)2

2σ2
,

the expected value is obtained by

EG[log f(x|θ)] = −1

2
log(2πσ2) − σ2(G) +

(µ − µ(G))2

σ2
,

where µ(G) and σ2(G) are the mean and the variance of the true distribution
g(x), respectively. Therefore, the “true” parameters of the model are given by
θ0 = (µ(G), σ2(G)).

The partial derivatives with respect to µ and σ2 are

∂

∂µ
log f(x|θ) =

x − µ

σ2
,

∂

∂σ2
log f(x|θ) = − 1

2σ2
+

(x − µ)2

2σ4
,

∂2

∂µ2
log f(x|θ) = − 1

σ2
,

∂2

∂µ∂σ2
log f(x|θ) = −x − µ

σ4
,

∂2

(∂σ2)2
log f(x|θ) =

1

2σ4
− (x − µ)2

σ6
.

Then the 2 × 2 matrices I(θ0) and J(θ0) are given by

J(θ) = −

⎡

⎢

⎢

⎣

EG

[

∂2

∂µ2
log f(X|θ)

]

EG

[

∂2

∂σ2∂µ
log f(X|θ)

]

EG

[

∂2

∂µ∂σ2
log f(X|θ)

]

EG

[

∂2

(∂σ2)2
log f(X|θ)

]

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1

σ2

EG[X − µ]

σ4

EG(X − µ)2

σ6

EG[X − µ]

σ4

EG[(X − µ)2]

σ6
− 1

2σ4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎣

1

σ2
0

0
1

2σ4

⎤

⎥

⎦
,
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I(θ) = EG

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

X − µ

σ2

− 1

2σ2
+

(X − µ)2

2σ4

⎞

⎟

⎟

⎠

(

X − µ

σ2
,− 1

2σ2
+

(X − µ)2

2σ4

)

⎤

⎥

⎥

⎦

= EG

⎡

⎢

⎢

⎣

(X − µ)2

σ4
−X − µ

2σ4
+

(X − µ)3

2σ6

−X − µ

2σ4
+

(X − µ)3

2σ6

1

4σ4
− (X − µ)2

4σ6
+

(X − µ)4

4σ8

⎤

⎥

⎥

⎦

=

⎡

⎢

⎣

1

σ2

µ3

2σ6

µ3

2σ6

µ4

4σ8
− 1

4σ4

⎤

⎥

⎦
,

where µj = EG[(X − µ)j ] (j = 1, 2, . . .) is the jth-order centralized moment
of the true distribution g(x). We note here that, in general, I(θ0) 
= J(θ0).

From the above preparation, the bias correction term can be calculated as
follows:

I(θ)J(θ)−1 =

⎡

⎢

⎣

1

σ2

µ3

2σ6

µ3

2σ6

µ4

4σ8
− 1

4σ4

⎤

⎥

⎦

⎡

⎣

σ2 0

0 2σ4

⎤

⎦

=

⎡

⎢

⎣

1
µ3

σ2

µ3

2σ4

µ4

2σ4
− 1

2

⎤

⎥

⎦
.

Therefore,

tr
{

I(θ)J(θ)−1
}

= 1 +
µ4

2σ4
− 1

2
=

1

2

(

1 +
µ4

σ4

)

.

This result is generally not equal to the number of parameters, i.e. two in this
case. However, if there exists a θ0 that satisfies f(x|θ0) = g(x), then g(x) is a
normal distribution, and we have µ3 = 0 and µ4 = 3σ4. Hence, it follows that

1

2
+

µ4

2σ4
=

1

2
+

3σ4

2σ4
=

1

2
+

3

2
= 2.

Given the data, the estimator for the bias is obtained using

1

n
tr(Î Ĵ−1) =

1

n

{

1

2
+

µ̂4

2σ̂4

}

, (3.110)

where σ̂2 = n−1
∑n

α=1(xα − x)2 and µ̂4 = n−1
∑n

α=1(xα − x)4. Consequently,
the information criteria TIC and AIC are given by the following formulas,
respectively:
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TIC = −2

n
∑

α=1

log f(xα|µ̂, σ̂2) + 2

(

1

2
+

µ̂4

2σ̂4

)

, (3.111)

AIC = −2

n
∑

α=1

log f(xα|µ̂, σ̂2) + 2 × 2, (3.112)

where the maximum log-likelihood is given by

n
∑

α=1

log f(xα|µ̂, σ̂2) = −n

2
log(2πσ̂2) − n

2
.

Table 3.3. Change of the bias correction term 1

2
(1 + µ̂4/σ̂4) of the TIC when the

true distribution is assumed to be a mixed normal distribution (ξ1 = ξ2 = 0, σ2

1 =
1, σ2

2 = 3); ε denotes the mixing ratio and n is the number of observations. The
mean and standard deviation of the estimated bias correction term for each value
of ε and n are shown.

ε n = 25 n = 100 n = 400 n = 1600

0.00 1.89 (0.37) 1.97 (0.23) 1.99 (0.12) 2.00 (0.06)
0.01 2.03 (0.71) 2.40 (1.25) 2.67 (1.11) 2.78 (0.71)
0.02 2.14 (0.83) 2.73 (1.53) 3.18 (1.38) 3.33 (0.81)
0.05 2.44 (1.13) 3.45 (1.78) 4.02 (1.35) 4.24 (0.80)
0.10 2.74 (1.24) 3.87 (1.56) 4.42 (1.09) 4.60 (0.60)
0.15 2.87 (1.18) 3.96 (1.34) 4.38 (0.89) 4.49 (0.46)
0.20 2.91 (1.09) 3.84 (1.12) 4.16 (0.69) 4.24 (0.37)
0.30 2.85 (0.94) 3.48 (0.82) 3.67 (0.48) 3.73 (0.25)
0.40 2.68 (0.80) 3.14 (0.65) 3.26 (0.37) 3.29 (0.19)
0.50 2.52 (0.69) 2.84 (0.50) 2.92 (0.28) 2.95 (0.15)
0.60 2.37 (0.60) 2.61 (0.44) 2.67 (0.24) 2.68 (0.12)
0.70 2.22 (0.53) 2.40 (0.36) 2.45 (0.20) 2.46 (0.10)
0.80 2.10 (0.47) 2.23 (0.30) 2.27 (0.16) 2.28 (0.08)
0.90 1.98 (0.41) 2.09 (0.26) 2.12 (0.14) 2.12 (0.07)
1.00 1.88 (0.36) 1.97 (0.23) 1.99 (0.12) 2.00 (0.06)

Example 11 (TIC for normal model versus mixture of two normal
distributions) Let us assume that the true distribution generating data is
a mixture of two normal distributions

g(x) = (1 − ε)φ(x|ξ1, σ
2
1) + εφ(x|ξ2, σ

2
2) (0 ≤ ε ≤ 1), (3.113)

where φ(x|ξi, σ
2
i ) (i = 1, 2) is the probability density function of the normal

distribution with mean ξi and variance σ2
i . We assume the normal model
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N(µ, σ2) for the model. Table 3.3 shows the mean and the standard deviation
of 10,000 simulation runs of the TIC bias correction term 1

2 (1 + µ̂4/σ̂4) in
(3.111), which were obtained by varying the mixing ratio and the number of
observations in a mixed normal distribution. When n is small and ε is equal
to either 0 or 1, the result is smaller than the bias correction term 2 of the
AIC. The bias correction term is maximized when the value of ε is in the
neighborhood of 0.1 to 0.2. Notice that in the region in which the correction
term in the TIC is large, the standard deviation is also large.

Table 3.4. Estimated bias correction terms of TIC and their standard deviations
when normal distribution models are fitted to simulated data from the t-distribution.

df n = 25 n = 100 n = 400 n = 1, 600

∞ 1.89 (0.37) 1.98 (0.23) 2.00 (0.12) 2.00 (0.06)
9 2.12 (0.62) 2.42 (0.69) 2.54 (0.52) 2.58 (0.34)
8 2.17 (0.66) 2.51 (0.82) 2.67 (0.86) 2.73 (0.63)
7 2.21 (0.72) 2.64 (0.99) 2.85 (1.05) 2.95 (0.91)
6 2.29 (0.81) 2.85 (1.43) 3.20 (1.81) 3.36 (1.46)
5 2.43 (1.00) 3.21 (1.96) 3.87 (3.21) 4.28 (4.12)
4 2.67 (1.23) 3.94 (3.01) 5.49 (6.37) 7.46 (15.96)
3 3.06 (1.62) 5.72 (5.38) 10.45 (14.71) 19.79 (41.12)
2 4.01 (2.32) 10.54 (9.39) 30.88 (35.67) 101.32 (138.74)
1 6.64 (3.17) 25.27 (13.94) 100.14 (56.91) 404.12 (232.06)

Example 12 (TIC for normal model versus t-distribution) Table 3.4
shows the means and the standard deviations of the estimated bias correction
term of the TIC, 1

2 (1 + µ̂4/σ̂4) in (3.111), when it is assumed that the true
distribution is the t-distribution with degrees of freedom df ,

g(x|df) =
Γ

(

df+1
2

)

√
dfπΓ

(

df
2

)

(

1 +
x2

df

)− 1

2
(df+1)

, (3.114)

which were obtained by repeating 10,000 simulation runs. Four data lengths
(n= 25, 100, 400, and 1,600) and 10 different values for the degrees of freedom
[1 to 9 and the normal distribution (df = ∞)] were examined.

When the degrees of freedom df is small and the number of observations is
large, the results differ significantly from the correction term 2 of the AIC. No-
tice that in this case, the standard deviation is also extremely large, exceeding
the value of the bias in some cases.

Example 13 (Polynomial regression models) Assume that the following
20 observations, (x, y), are observed in experiments (Figure 3.8):
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Fig. 3.8. Twenty observations used for polynomial regression models.

(0.00, 0.854), (0.05, 0.786), (0.10, 0.706), (0.15, 0.763), (0.20, 0.772),
(0.25, 0.693), (0.30, 0.805), (0.35, 0.739), (0.40, 0.760), (0.45, 0.764),
(0.50, 0.810), (0.55, 0.791), (0.60, 0.798), (0.65, 0.841), (0.70, 0.882),
(0.75, 0.879), (0.80, 0.863), (0.85, 0.934), (0.90, 0.971), (0.95, 0.985).

A polynomial regression model is then fitted to these 20 observations;
specifically, to the following model:

y = β0 + β1x + β2x
2 + · · · + βpx

p + ε, ε ∼ N(0, σ2). (3.115)

Here we write θ = (β0, β1, . . . , βp, σ
2)T and when data {(yα, xα), α = 1, . . . , n}

are given, the log-likelihood function can be written as

ℓ(θ) = −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

(

yα −
p

∑

j=0

βjx
j
α

)2

. (3.116)

Therefore, the maximum likelihood estimators β̂0, β̂1, . . . , β̂p for the coeffi-
cients can be obtained by minimizing the following term:

n
∑

α=1

(

yα −
p

∑

j=0

βjx
j
α

)2

. (3.117)

In addition, the maximum likelihood estimator of the error variance is
given by

σ̂2 =
1

n

n
∑

α=1

(

yα −
p

∑

j=0

β̂jx
j
α

)2

. (3.118)

By substituting this expression into (3.116), we obtain the maximum log-
likelihood

ℓ(θ̂) = −n

2
log

(

2πσ̂2
)

− n

2
. (3.119)

Further, because the number of parameters contained in this model is p +
2, that is, for β0, β1, . . . , βp and σ2, the AIC for evaluating the pth order
polynomial regression model is given by
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Table 3.5. Results of estimating polynomial regression models.

Order σ̂2 Log-Likelihood AIC AIC Difference

— 0.678301 −24.50 50.99 126.49
0 0.006229 22.41 −40.81 34.68
1 0.002587 31.19 −56.38 19.11
2 0.000922 41.51 −75.03 0.47
3 0.000833 42.52 −75.04 0.46
4 0.000737 43.75 −75.50 —
5 0.000688 44.44 −74.89 0.61
6 0.000650 45.00 −74.00 1.49
7 0.000622 45.45 −72.89 2.61
8 0.000607 45.69 −71.38 4.12
9 0.000599 45.83 −69.66 5.84

AICp = n(log 2π + 1) + n log σ̂2 + 2(p + 2). (3.120)

Table 3.5 summarizes the results obtained by fitting polynomials up to
order nine to this set of data. As the order increases, the residual variance
reduces, and the log-likelihood increases monotonically. The AIC attains a
minimum at p = 4, and the model

yj = 0.835 − 1.068xj + 3.716x2
j − 4.573x3

j + 2.141x4
j + εj ,

εj ∼ N(0, 0.737 × 10−3), (3.121)

is selected as the best model.
In order to demonstrate the importance of order selection in a regres-

sion model, Figure 3.9 shows the results of running Monte Carlo experiments.
Using different random numbers, 20 observations were generated according
to (3.115), and using the data, 2nd-, 4th-, and 9th-order polynomials were
estimated. Figure 3.9 shows the 10 regression curves that were obtained by
repeating these operations 10 times, along with the “true” regression poly-
nomial that was used for generating the data. In the case of the 2nd-order
polynomial regression model, while the width of the fluctuations is small, the
low order of the polynomial results in a large bias in the regression curves.
For the 4th-order polynomial, the 10 estimated values cover the true regres-
sion polynomial. By contrast, for the 9th-order polynomial, although the true
regression polynomial is covered, the large fluctuations indicate that the esti-
mated values are highly unstable.

Example 14 (Factor analysis model) Suppose that x = (x1, . . . , xp)
T

is an observable random vector with mean vector µ and variance covariance
matrix Σ. The factor analysis model is

x = µ + Lf + ε, (3.122)
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Fig. 3.9. Fluctuations in estimated polynomials for (3.115). Upper left: p = 2;
lower-left: p = 4; right: p = 9.

where L is a p × m matrix of factor loadings, and f = (f1, . . . , fm)T and
ε = (ε1, . . . , εp)

T are unobservable random vectors. The elements of f are
called common factors while the elements of ε are referred to as specific or
unique factors. It is assumed that

E[f ] = 0, Cov(f) = E[ffT ] = Im,

E[ε] = 0, Cov(ε) = E[εεT ] = Ψ = diag[ψ1, · · · , ψp], (3.123)

Cov(f , ε) = E[fεT ] = 0,

where Im is the identity matrix of order m and Ψ is a p × p diagonal matrix
with ith diagonal element ψi (> 0). It then follows from (3.122) and (3.123)
that Σ can be expressed as

Σ = LLT + Ψ. (3.124)

Assume that the common factors f and the specific factors ε are nor-
mally distributed. Let x and S be, respectively, the sample mean vector and
sample covariance matrix based on a set of n observations {x1, . . ., xn} on
x. It is known [see, for example, Lawley and Maxwell (1971) and Anderson
(2003)] that the maximum likelihood estimates, L̂ and Ψ̂ , of the matrix L of
factor loadings and the covariance matrix Ψ of specific factors are obtained
by minimizing the discrepancy function

Q(L, Ψ) = log |Σ| − log |S| + tr
(

Σ−1S
)

− p, (3.125)

subject to the condition that LT Ψ−1L is a diagonal matrix. Then, the AIC is
defined by
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AIC = n
{

p log(2π) + log |Σ̂| + tr
(

Σ̂−1S
)}

+ 2

{

p(m + 1) − 1

2
m(m − 1)

}

,

(3.126)

where Σ̂ = L̂L̂T + Ψ̂ .
The use of the AIC in the factor analysis model was considered by Akaike

(1973, 1987). Ichikawa and Konishi (1999) derived the TIC for a covariance
structure analysis model and investigated the performance of three informa-
tion criteria, namely the AIC, the TIC, and the bootstrap information criteria
(introduced in Chapter 8). The use of AIC-type criteria for selecting variables
in principal component, canonical correlation, and discriminant analyses was
discussed, in relation to the likelihood ratio tests, by Fujikoshi (1985) and
Siotani et al. (1985, Chapter 13).

3.5 Properties of MAICE

The estimators and models selected by minimizing the AIC are referred to as
MAICE (minimum AIC estimators). In this section, we discuss several topics
related to the properties of MAICE.

3.5.1 Finite Correction of the Information Criterion

In Section 3.4, we derived the AIC for general statistical models estimated
using the maximum likelihood method. In contrast, information criterion for
particular models such as normal distribution models can be derived directly
and analytically by calculating the bias, without having to resort to asymp-
totic theories such as the Taylor series expansion or the asymptotic normality.
Let us first consider a simple normal distribution model, N(µ, σ2).

Since the logarithm of the probability density function is

log f(x|µ, σ2) = −1

2
log(2πσ2) − (x − µ)2

2σ2
,

the log-likelihood of the model based on the data, xn = {x1, x2, . . . , xn}, is
given by

ℓ(µ, σ2) = −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

(xα − µ)2.

By substituting the maximum likelihood estimators

µ̂ =
1

n

n
∑

α=1

xα, σ̂2 =
1

n

n
∑

α=1

(xα − µ̂)2,

into this expression, we obtain the maximum log-likelihood
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ℓ(µ̂, σ̂2) = −n

2
log(2πσ̂2) − n

2
.

If the data set is obtained from the same normal distribution N(µ, σ2), then
the expected log-likelihood is given by

EG

[

log f(Z|µ̂, σ̂2)
]

= −1

2
log(2πσ̂2) − 1

2σ̂2

{

σ2 + (µ − µ̂)2
}

,

where G(z) is the distribution function of the normal distribution N(µ, σ2).
Therefore, the difference between the two quantities is

ℓ(µ̂, σ̂2) − nEG

[

log f(Z|µ̂, σ̂2)
]

=
n

2σ̂2

{

σ2 + (µ − µ̂)2
}

− n

2
.

By taking the expectation with respect to the joint distribution of n observa-
tions distributed as the normal distribution N(µ, σ2), and using

EG

[

σ2

σ̂2(xn)

]

=
n

n − 3
, EG

[

{µ − µ̂(xn)}2
]

=
σ2

n
,

we obtain the bias correction term for a finite sample as

b(G) =
n

2

n

(n − 3)σ2

(

σ2 +
σ2

n

)

− n

2
=

2n

n − 3
. (3.127)

Here we used the fact that for a χ2 random variable with degrees of freedom
r, χ2

r, we have E[1/χ2
r] = 1/(r − 2). Therefore, the information criterion (IC)

for the normal distribution model is given by

IC = −2ℓ(µ̂, σ̂2) +
4n

n − 3
. (3.128)

Table 3.6 shows changes in this bias term b(G) with respect to several
values of n. This table shows that b(G) approaches the correction term 2 of
the AIC as the number of observations increases.

Table 3.6. Changes of the bias b(G) for normal distribution model as the number
of the observations increases.

n 4 6 8 12 18 25 50 100

b(G) 8.0 4.0 3.2 2.7 2.4 2.3 2.1 2.1

The topic of a finite correction of the AIC for more general Gaussian linear
regression models will be discussed in Subsection 7.2.2.
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3.5.2 Distribution of Orders Selected by AIC

Let us consider the problem of order selection in an autoregressive model

yn =

m
∑

j=1

ajyn−j + εn, εn ∼ N(0, σ2). (3.129)

In this case, an asymptotic distribution of the number of orders is obtained
when the number of orders is selected using the AIC minimization method
[Shibata (1976)]. We now define pj and qj (j = 1, . . . , M) by setting αi =
Pr(χ2

i > 2i), p0 = q0 = 1, with respect to the χ2-variate with i degrees of
freedom according to the following equations:

pj =
∑

{

j
∏

i=1

1

ri!

(αi

i

)ri

}

, (3.130)

qj =
∑

{

j
∏

i=1

1

ri!

(

1 − αi

i

)ri

}

, (3.131)

where
∑

is the sum of all combinations of (r1, . . . , rj) that satisfy the equation
r1 + 2r2 + · · · + nrj = j. In this case, according to Shibata (1976), if the AR
model with order m0 is the true model, and if the order 0 ≤ m ≤ M of the
AR model is selected using the AIC, then the asymptotic distribution of m̂
can be obtained as

lim
n→+∞

Pr(m̂ = m) =

{

pm−m0
qM−m for m0 ≤ m ≤ M,

0 for m < m0.
(3.132)

This result shows that the probability of selecting the true order using the
minimum AIC procedure is not unity even as n → +∞. In other words, the
order selection using the AIC is not consistent. At the same time, since the
distribution of the selected order has an asymptotic distribution, the result
indicates that it will not spread as n increases.

In general, under the assumptions that the true model is of finite dimension
and it is included in the class of candidate models, a criterion that identifies
the correct model asymptotically with probability one is said to be consistent.
The consistency has been investigated by Shibata (1976, 1981), Nishii (1984),
Findley (1985), etc. A review of consistency on model selection criteria was
provided by Rao and Wu (2001) and Burnham and Anderson (2002, Section
6.3).

Example 15 (Order selection in linear regression models) Figure
3.10 shows the distribution of the number of explanatory variables that are
selected using the AIC for the case of an ordinary regression model

yi = a1xi1 + · · · + akxik + εi, εi ∼ N(0, σ2).
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Fig. 3.10. Distributions of orders selected by AIC. The upper left, upper right,
lower left, and lower right plots represent the cases in which the true order is 0, 1,
2, and 3, respectively.

It will be demonstrated by simulations that even for the ordinary regression
case, we can obtain results that are qualitatively similar to those for the
autoregression case.

For simplicity, we assume that xij (j = 1, . . . , 20, i = 1, . . . , n) are ortho-
normal variables. We also assume that the true model that generates data is
given by σ2 = 0.01 and

a∗
j =

{

0.7j for j = 1, . . . , k∗,
0 for j = k∗ + 1, . . . , 20 .

(3.133)

Figure 3.10 shows the distributions of orders obtained by generating data
with n = 400 and by repeating 1,000 times the process of selecting orders
using the AIC. The upper left plot represents the case in which the true order
is defined as k∗ = 0. Similarly, the upper right, lower left, and lower right
plots represent the cases for which k∗ = 1, 2, 3, respectively. These results also
indicate that when the number of observations involved is relatively large (for
example, n = 400) for both the regression model and autoregressive models,
the probability with which the true order is obtained is approximately 0.7,
which means that the order is overestimated with a probability of 0.3. In
this distribution, varying the true order k∗ only shifts the location of the
maximum probability to the right, while only slightly modifying the shape of
the distribution.

Figure 3.11 shows the results of examining changes in distribution as a
function of the number of observations for the case k∗ = 1. The graph on the
left shows the case when n = 100, while the graph on the right shows the
case when n = 1, 600. The results suggest that when the true order is a finite
number, the distribution of orders converges to a certain distribution when
the size of n becomes large. Figure 3.12 shows the case for k∗ = 20, in which
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Fig. 3.11. Change in distribution of order selected by the AIC, for different number
of observations. Left graph: n = 100; right graph: n = 1, 600.
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Fig. 3.12. Distributions of orders selected by AIC when the true coefficient de-
cays with the order. The upper left, upper right, lower left, and lower right graphs
represent the cases in which the number of observations is 50, 100, 400, and 1,600,
respectively.

all of the coefficients are nonzero. The results indicate that the distribution’s
mode shifts to the right as the number of observations, n, increases and that
when complex phenomena are approximated using a relatively simple model,
the order selected by the AIC increases with the number of observations.

3.5.3 Discussion

Here we summarize several points regarding the selection of a model using
the AIC. The AIC has been criticized because it does not yield a consistent
estimator with respect to the selection of orders. Such an argument is fre-
quently misunderstood, and we attempt to clarify these misunderstandings in
the following.

(1) First, the objective of our modeling is to obtain a “good” model, rather
than a “true” model. If one recalls that statistical models are approxima-
tions of complex systems toward certain objectives, the task of estimating
the true order is obviously not an appropriate goal. A true model or order
can be defined explicitly only in a limited number of situations, such as
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when running simulation experiments. From the standpoint that a model
is an approximation of a complex phenomenon, the true order can be
infinitely large.

(2) Even if a true finite order exists, the order of a good model is not neces-
sarily equal to the true order. In situations where there are only a small
number of observations, considering the instability of the parameters be-
ing estimated, the AIC reveals the possibility that a higher prediction
accuracy can be obtained using models having lower orders.

(3) Shibata’s (1976) results described in the previous section indicate that if
the true order is assumed, the asymptotic distribution of orders selected
by the AIC can be a fixed distribution that is determined solely by the
maximum order and the true order of a family of models. This indicates
that the AIC does not provide a consistent estimator of orders. It should
be noted, however, that when the true order is finite, the distribution of
orders that is selected does not vary when the number of observations
is increased. It should also be noted that in this case, even if a higher
order is selected, when the number of observations is large, each coefficient
estimate of a regressor with an order greater than the true order converges
to the true value 0 and that a consistent estimator can be obtained as a
model.

(4) Although the information criterion makes automatic model selection pos-
sible, it should be noted that the model evaluation criterion is a relative
evaluation criterion. This means that selecting a model using an informa-
tion criterion is only a selection from a family of models that we have
specified. Therefore, the critical task for us is to set up more appropriate
models by making use of knowledge regarding that object.



4

Statistical Modeling by AIC

The majority of the problems in statistical inference can be considered to
be problems related to statistical modeling. They are typically formulated as
comparisons of several statistical models. In this chapter, we consider using
the AIC for various statistical inference problems such as checking the equality
of distributions, determining the bin size of a histogram, selecting the order
for regression models, detecting structural changes, determining the shape of
a distribution, and selecting the Box-Cox transformation.

4.1 Checking the Equality of Two Discrete Distributions

Assume that we have two sets of data each having k categories and that the
number of observations in each category is given as follows [Sakamoto et al.
(1986)]:

Category 1 2 · · · k

Data set 1 n1 n2 · · · nk

Data set 2 m1 m2 · · · mk

where the total numbers of observations are n1 + · · · + nk = n and m1 +
· · ·+mk = m, respectively. We further assume that these data sets follow the
multinomial distributions with k categories

p(n1, . . . , nk|p1, . . . , pk) =
n!

n1! . . . nk!
pn1

1 · · · pnk

k , (4.1)

p(m1, . . . , mk|q1, . . . , qk) =
m!

m1! . . . mk!
qm1

1 · · · qmk

k , (4.2)

where pj and qj denote the probabilities that each event in Data set 1 and
Data set 2 results in the category j, and p = (p1, . . . , pk) and q = (q1, . . . , qk)
satisfy pi > 0 and qi > 0 for all i.
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The log-likelihood of the model consisting of two individual models for
Data set 1 and Data set 2 is defined as

ℓ2(p1, . . . , pk, q1, . . . , qk) = log n! −
k

∑

j=1

log nj ! +

k
∑

j=1

nj log pj

+ log m! −
k

∑

j=1

log mj ! +
k

∑

j=1

mj log qj . (4.3)

Therefore, the maximum likelihood estimates of pj and qj are given by

p̂j =
nj

n
, q̂j =

mj

m
, (4.4)

and the maximum log-likelihood of the model is

ℓ2(p̂1, . . . , p̂k, q̂1, . . . , q̂k)

= C +

k
∑

j=1

nj log
(nj

n

)

+

k
∑

j=1

mj log
(mj

m

)

, (4.5)

where C = log n! + log m! +
∑k

j=1(log nj ! + log mj !) is a constant term that
is independent of the parameters. Since the number of free parameters of the
model is 2(k − 1), the AIC is given by

AIC = −2ℓ2(p̂1, . . . , p̂k, q̂1, . . . , q̂k) + 2 × 2(k − 1) (4.6)

= −2

{

C +
k

∑

j=1

nj log
(nj

n

)

+
k

∑

j=1

mj log
(mj

m

)

}

+ 4(k − 1).

On the other hand, if we assume the two distributions are equal, it holds
that pj = qj ≡ rj , and the log-likelihood can be expressed as

ℓ1(r1, . . . , rk) = C +

k
∑

j=1

(nj + mj) log rj . (4.7)

Then we have the maximum likelihood estimates of rj as

r̂j =
nj + mj

n + m
, (4.8)

and the maximum log-likelihood of the model is given by

ℓ1(p̂1, . . . , p̂k) = C +
k

∑

j=1

(nj + mj) log

(

nj + mj

n + m

)

. (4.9)

Since the number of free parameters of the model is k − 1, the AIC of this
model is obtained as
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AIC = −2ℓ1(p̂1, . . . , p̂k) + 2(k − 1)

= −2

{

C +

k
∑

j=1

(nj + mj) log

(

nj + mj

n + m

)}

+ 2(k − 1). (4.10)

Example 1 (Equality of two multinomial distributions) The following
table shows two sets of survey data each having five categories.

Category C1 C2 C3 C4 C5

First survey 304 800 400 57 323
Second survey 174 509 362 80 214

From this table we can obtain the maximum likelihood estimates of the
parameters of the multinomial distribution; p̂j and q̂j indicate the estimated
parameters of each model, while r̂j expresses the estimated parameters ob-
tained by assuming that the two distributions are equal.

Category C1 C2 C3 C4 C5

p̂j 0.16 0.42 0.21 0.03 0.17
q̂j 0.13 0.38 0.27 0.06 0.16

r̂j 0.148 0.406 0.236 0.043 0.167

From this table, ignoring the common constant C, the maximum log-
likelihoods of the models are obtained as

Model 1 :

k
∑

j=1

nj log
(nj

n

)

+

k
∑

j=1

mj log
(mj

m

)

= −2628.644 − 1938.721

= −4567.365,

Model 2 :

k
∑

j=1

(nj + mj) log

(

nj + mj

n + m

)

= −4585.612. (4.11)

Since the number of free parameters of the models is 2(k − 1) = 8 in Model 1
and k−1 = 4 in Model 2, by ignoring the common constant C, the AICs of the
models are given as 9,150.731 and 9,179.223, respectively. Namely, the AIC
indicates that the two data sets were obtained from different distributions.

4.2 Determining the Bin Size of a Histogram

Histograms are used for representing the properties of a set of observations
obtained from either a discrete distribution or a continuous distribution. As-
sume that we have a histogram {n1, n2, . . . , nk}; here k is referred to as the
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bin size. It is well known that if the bin size is too large, the corresponding
histogram may become too sensitive and it is difficult to capture the char-
acteristics of the true distribution. In such a case, we may consider using a
histogram having a smaller bin size. However, it is obvious that if we use a bin
size that is too small, the histogram cannot capture the shape of the true dis-
tribution. Therefore, the selection of an appropriate bin size is an important
problem.

A histogram with k bins can be considered as a model specified by a
multinomial distribution with k parameters:

P (n1, . . . , nk|p1, . . . , pk) =
n!

n1! · · ·nk!
pn1

1 · · · pnk

k , (4.12)

where n1 + · · ·+ nk = n and p1 + · · ·+ pk = 1 [Sakamoto et al. (1986)]. Then
the log-likelihood of the model can be written as

ℓ(p1, . . . , pk) = C +

k
∑

j=1

nj log pj , (4.13)

where C = log n!−∑k
j=1 log nj ! is a constant term that is independent of the

values of the parameters pj . Therefore, the maximum likelihood estimate of
pj is

p̂j =
nj

n
. (4.14)

Since the number of free parameters is k − 1, the AIC is given by

AIC = (−2)

{

C +

k
∑

j=1

nj log
(nj

n

)

}

+ 2(k − 1). (4.15)

To compare this histogram model with a simpler one, we may consider the
model obtained by assuming the restriction p2j−1 = p2j for j = 1, . . . , m. Here,
for simplicity, we assume that k = 2m. The maximum likelihood estimates of
this restricted model are

p̂2j−1 = p̂2j =
n2j−1 + n2j

2n
, (4.16)

and the AIC is given by

AIC = (−2)

{

C +

m
∑

j=1

(n2j−1 + n2j) log

(

n2j−1 + n2j

2n

)}

+ 2(m − 1).

(4.17)

Similarly, we can compute the AICs for histograms with smaller bin sizes such
as k/4.
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Fig. 4.1. Histogram of galaxy data. Bin size m = 28.

Table 4.1. Log-likelihoods and the AICs for three different bin sizes, k = 28, 14,
and 7.

Bin Size Log-Likelihood AIC

28 −189.18942 432.37884
14 −197.71509 421.43018
7 −209.51501 431.03002

Example 2 (Histogram of galaxy data) The following table shows the
number of observations in the galaxy data [Roeder (1990)] that fall in the
interval [6 + i, 7 + i), i = 1, . . . , 28. Figure 4.1 shows the original histogram
(see Example 9 in Section 2.2).

0 5 2 0 0 0 0 0 2 0 4 18 13 6
11 9 6 1 2 0 0 0 0 0 2 0 1 0

Table 4.1 shows the log-likelihoods and the AICs of the original histogram
with bin size k = 28 and the ones with k = 14 and k = 7. The AIC is mini-
mized at k = 14, suggesting that the original histogram is too fine and that
a histogram with only 7 bins is too coarse. Figure 4.2 shows two histograms
for k = 14 and 7.

4.3 Equality of the Means and/or the Variances
of Normal Distributions

Assume that two sets of data {y1, . . . , yn} and {yn+1, . . . , yn+m} are given.
To check the equality of these two data sets, we consider the model composed
of two normal distributions, y1, . . . , yn ∼ N(µ1, τ

2
1 ) and yn+1, . . . , yn+m ∼

N(µ2, τ
2
2 ), i.e.,
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Fig. 4.2. Histogram of galaxy data. Bin sizes k = 14 and 7.

f(yi|µ1, σ
2
1) =

1
√

2πσ2
1

exp

{

− (y − µ1)
2

2σ2
1

}

, i = 1, . . . , n,

f(yi|µ2, σ
2
2) =

1
√

2πσ2
2

exp

{

− (y − µ2)
2

2σ2
2

}

, i = n+1, . . . , n+m. (4.18)

Given the above data, the log-likelihood of the model is

ℓ(µ1, µ2, σ
2
1 , σ2

2) = −n

2
log(2πσ2

1) − 1

2σ2
1

n
∑

j=1

(yj − µ1)
2

−m

2
log(2πσ2

2) − 1

2σ2
2

n+m
∑

j=n+1

(yj − µ2)
2. (4.19)

By maximizing the log-likelihood function, we have the maximum likelihood
estimates of the models

µ̂1 =
1

n

n
∑

j=1

yj , σ̂2
1 =

1

n

n
∑

j=1

(yj − µ̂1)
2,

µ̂2 =
1

m

n+m
∑

j=n+1

yj , σ̂2
2 =

1

n

n+m
∑

j=n+1

(yj − µ̂2)
2. (4.20)

The maximum log-likelihood is

ℓ(µ̂1, µ̂2, σ̂
2
1 , σ̂2

2) = −n

2
log(2πσ̂2

1) − m

2
log(2πσ̂2

2) − n + m

2
, (4.21)

and since the number of unknown parameters is four, the AIC is given by

AIC = (n + m)(log 2π + 1) + n log σ̂2
1 + m log σ̂2

2 + 2 × 4. (4.22)

To check the homogeneity of the two data sets in question, we compare
this model with the following three restricted models:
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(1) µ1 = µ2 = µ and σ2
1 = σ2

2 = σ2,
(2) σ2

1 = σ2
2 = σ2,

(3) µ1 = µ2 = µ.

Assumption (1) is equivalent to having n + m observations y1, . . . , yn+m

from the same normal distribution model. The AIC of this model is given by

AIC = (n + m){log(2πσ̂2) + 1} + 2 × 2, (4.23)

where µ̂ and σ̂2 are defined by

µ̂ =
1

n + m

n+m
∑

j=1

yj , σ̂2 =
1

n + m

n+m
∑

j=1

(yj − µ̂)2. (4.24)

Under assumption (2), the log-likelihood of the model can be written as

ℓ2(µ1, µ2, σ
2) = −n + m

2
log(2πσ2) − 1

2σ2

n
∑

j=1

(yj − µ1)
2

− 1

2σ2

n+m
∑

j=n+1

(yj − µ2)
2. (4.25)

Therefore, we have the maximum likelihood estimates of the models

µ̂1 =
1

n

n
∑

j=1

yj , µ̂2 =
1

m

n+m
∑

j=n+1

yj ,

σ̂2 =
1

n + m

{ n
∑

j=1

(yj − µ̂1)
2 +

n+m
∑

j=n+1

(yj − µ̂2)
2

}

. (4.26)

The maximum log-likelihood is then given by

ℓ2(µ̂1, µ̂2, σ̂
2
2) = −n + m

2
log(2πσ̂2) − n + m

2
, (4.27)

and since the number of unknown parameters is three, the AIC is given by

AIC = (n + m){log(2πσ̂2) + 1} + 2 × 3. (4.28)

Similarly, under assumption (3), we have the log-likelihood of the model

ℓ3(µ, σ2
1 , σ2

2) = −n

2
log(2πσ2

1) − 1

2σ2
1

n
∑

j=1

(yj − µ)2

− m

2
log(2πσ2

2) − 1

2σ2
2

n+m
∑

j=n+1

(yj − µ)2. (4.29)
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The maximum likelihood estimates of the models are given as the solutions
of the likelihood equations

∂ℓ3
∂µ

= 0,
∂ℓ3
∂σ2

1

= 0,
∂ℓ3
∂σ2

2

= 0. (4.30)

From the equations, the maximum likelihood estimates of the variances are

σ̃2
1 =

1

n

n
∑

j=1

(yj − µ)2, σ̃2
2 =

1

m

n+m
∑

j=n+1

(yj − µ)2. (4.31)

Therefore, by substituting these into the likelihood equation for the mean, the
maximum likelihood estimate of the mean µ is obtained as the solution to the
equation

∂ℓ3
∂µ

=
1

σ̃2
1

n
∑

j=1

(yj − µ)2 +
1

σ̃2
2

n+m
∑

j=n+1

(yj − µ)2 = 0. (4.32)

From this, we obtain the equation

n
n

∑

j=1

(yj − µ)
n+m
∑

j=n+1

(yj − µ)2 + m
n+m
∑

j=n+1

(yj − µ)
n

∑

j=1

(yj − µ)2 = 0, (4.33)

which can be expressed by the cubic equation

µ3 + Aµ2 + Bµ + C = 0. (4.34)

Here the coefficients A, B, and C are defined by

A = −{(1 + w2)µ̂1 + (1 + w1µ̂2)},
B = 2µ̂1µ̂2 + w2s

2
1 + w1s

2
2, (4.35)

C = −(w1µ̂1s
2
2 + w2µ̂2s

2
1),

with w1 = n/(n + m), w2 = m/(n + m), and

s2
1 =

1

n

n
∑

j=1

y2
j , s2

2 =
1

m

n+m
∑

j=n+1

y2
j . (4.36)

The solution to this cubic equation can be obtained using the Cardano formula
shown below. Then the AIC is obtained by

AIC = (n + m)(log 2π + 1) + n log σ̃2
1 + m log σ̃2

2 + 2 × 3. (4.37)

Remark (Cardano’s formula) The cubic equation

µ3 + Aµ2 + Bµ + C = 0 (4.38)



4.3 Equality of the Means and/or the Variances of Normal Distributions 83

Table 4.2. Comparison of four normal distribution models.

Restriction ℓ AIC µ̂1 µ̂2 σ̂2

1 σ̂2

2

none −48.411 104.823 0.310 0.857 1.033 3.015

σ2

1 = σ2

2 −50.473 106.946 0.310 0.857 1.694 1.694

µ1 = µ2 −48.852 103.703 0.438 0.438 1.049 3.191

µ1 = µ2, σ
2

1 = σ2

2 −51.050 106.101 0.492 0.492 1.760 1.760

can be transformed to a reduced form

λ3 + 3pλ + q = 0 (4.39)

by λ = µ + A/3, p = (3B − C2)/9, and q = (2A3 − 9AB + 27C)/27. The
solutions to this equation are then

λ = 3
√

α + 3

√

β, ω 3
√

α + ω2 3

√

β, ω2 3
√

α + ω 3

√

β, (4.40)

where α, β, and ω are given by

ω =
−1 +

√
3i

2
,

α, β =
−q ±

√

q2 + 4p3

2
. (4.41)

Example 3 (Numerical result for the equality of two normal distri-
butions) Consider the two sets of data:

Data set 1

0.26 −1.33 1.07 1.78 −0.16 0.03 −0.79 −1.55 1.27 0.56
−0.95 0.60 0.27 1.67 0.60 −0.42 1.87 0.65 −0.75 1.52

Data set 2

1.70 0.84 1.34 0.11 −0.88 −1.43 3.52 2.69 2.51 −1.83

The sample sizes of Data sets 1 and 2 are n = 20 and m = 10, respectively.
The four models presented above were fitted and the results summarized in
Table 4.2. The estimated variance of Data set 2 is about three times larger
than that of Data set 1, but the difference in their means is not so large.
Therefore, the AIC of the model that assumes equality of the variances is
larger than that of the two-normal model without any restrictions. However,
the AIC of the model that assumes the equality of the mean values is smaller
than the AIC of the no-restriction model. The AIC of the model with the
restriction that µ1 = µ2, σ

2
1 = σ2

2 is larger than that of the no-restriction
model.
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4.4 Variable Selection for Regression Model

Suppose we have a response variable y and m explanatory variables x1, . . . , xm.
The linear regression model is

y = a0 + a1x1 + · · · + amxm + ε, (4.42)

where the residual term ε is assumed to be a normal random variable with
mean zero and variance σ2.

The conditional distribution of the response variable y given the explana-
tory variables is

p(y|x1, . . . , xm) = (2πσ2)−
1

2 exp

{

− 1

2σ2

(

y − a0 −
m

∑

j=1

ajxj

)2}

. (4.43)

Therefore, given a set of n independent observations {(yi, xi1, . . . , xim); i =
1, . . . , n}, the likelihood of the regression model is

L(a0, a1, . . . , am, σ2) =

n
∏

i=1

p(yi|xi1, . . . , xim). (4.44)

Thus, the log-likelihood is given by

ℓ(a0, a1, . . . , am, σ2)

= −n

2
log(2πσ2) − 1

2σ2

n
∑

i=1

(

yi − a0 −
m

∑

j=1

ajxij

)2

, (4.45)

and the maximum likelihood estimators â0, â1, . . . , âm of the regression co-
efficients a0, a1, . . . , am are obtained as the solution to the system of linear
equations

XT Xa = XT y, (4.46)

where a = (a0, a1, . . . , am)T and the n× (m+1) matrix X and n-dimensional
vector y are defined by

X =

⎡

⎢

⎢

⎢

⎣

1 x11 · · · x1m

1 x21 · · · x2m

...
...

. . .
...

1 xn1 · · · xnm

⎤

⎥

⎥

⎥

⎦

, y =

⎡

⎢

⎢

⎢

⎣

y1

y2

...
yn

⎤

⎥

⎥

⎥

⎦

. (4.47)

The maximum likelihood estimate σ̂2 is

σ̂2 =
1

n

n
∑

i=1

{yi − (â0 + â1xi1 + · · · + âmxim)}2. (4.48)
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Substituting this into (4.45) yields the maximum log-likelihood

ℓ(â0, â1, . . . , âm, σ̂2) = −n

2
log 2π − n

2
log d(x1, . . . , xm) − n

2
, (4.49)

where d(x1, . . . , xm) is the estimate of the residual variance σ2 of the model
given by (4.48).

Since the number of free parameters contained in the multiple regression
model is m + 2, the AIC for this model is

AIC = n(log 2π + 1) + n log d(x1, . . . , xm) + 2(m + 2). (4.50)

In multiple regression analysis, all of the given explanatory variables may
not be necessarily effective for predicting the response variable. An estimated
model with an unnecessarily large number of explanatory variables may be un-
stable. By selecting the model having the minimum AIC for different possible
combinations of the explanatory variables, we expect to obtain a reasonable
model.

Example 4 (Daily temperature data) Table 4.3 shows the daily mini-
mum temperatures in January averaged from 1971 through 2000, yi, the lati-
tudes, xi1, longitudes, xi2, and altitudes, xi3, of 25 cities in Japan. A similar
data set was analyzed in Sakamoto et al. (1986). To predict the average daily
minimum temperature in January, we consider the multiple regression model

yi = a0 + a1xi1 + a2xi2 + a3xi3 + εi, (4.51)

where the residual εi is assumed to be a normal random variable with mean
zero and variance σ2.

Given a set of n (=25) observations {(yi, xi1, xi2, xi3); i = 1, . . . , n}, the
likelihood of the multiple regression model is defined by

L(a0, a1, a2, a3, σ
2)

=

(

1

2πσ2

)
n
2

exp

{

− 1

2σ2

n
∑

i=1

(

yi − a0 −
3

∑

j=1

ajxij

)2}

. (4.52)

The log-likelihood is then given by

ℓ(a0, a1, a2, a3, σ
2)=−n

2
log(2πσ2)− 1

2σ2

n
∑

i=1

(

yi−a0−
3

∑

j=1

ajxij

)2

, (4.53)

and the estimators â0, â1, . . . , âm of the regression coefficients a0, a1, a2, a3

are obtained by the maximum likelihood or least squares method. Then the
maximum likelihood estimate of the residual variance, σ̂2, is obtained by

σ̂2 =
1

n

{ n
∑

i=1

(

yi − â0 −
3

∑

j=1

âjxij

)2}

. (4.54)
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Table 4.3. Average daily minimum temperatures (in Celsius) for 25 cities in Japan.

n Cities
Temp.

(y)
Latitude

(x1)
Longitude

(x2)
Altitude

(x3)

1 Wakkanai −7.6 45.413 141.683 2.8
2 Sapporo −7.7 43.057 141.332 17.2
3 Kushiro −11.4 42.983 144.380 4.5
3 Nemuro −7.4 43.328 145.590 25.2
4 Akita −2.7 39.715 140.103 6.3
5 Morioka −5.9 39.695 141.168 155.2
6 Yamagata −3.6 38.253 140.348 152.5
7 Wajima 0.1 37.390 136.898 5.2
8 Toyama −0.4 36.707 137.205 8.6
9 Nagano −4.3 36.660 138.195 418.2

10 Mito −2.5 36.377 140.470 29.3
11 Karuizawa −9.0 36.338 138.548 999.1
12 Fukui 0.3 36.053 136.227 8.8
13 Tokyo 2.1 35.687 139.763 6.1
14 Kofu −2.7 35.663 138.557 272.8
15 Tottori 0.7 35.485 134.240 7.1
16 Nagoya 0.5 35.165 136.968 51.1
17 Kyoto 1.1 35.012 135.735 41.4
18 Shizuoka 1.6 34.972 138.407 14.1
19 Hiroshima 1.7 34.395 132.465 3.6
20 Fukuoka 3.2 33.580 130.377 2.5
21 Kochi 1.3 33.565 133.552 0.5
22 Shionomisaki 4.7 33.448 135.763 73.0
23 Nagasaki 3.6 32.730 129.870 26.9
24 Kagoshima 4.1 31.552 130.552 3.9
25 Naha 14.3 26.203 127.688 28.1

(Source: Chronological Scientific Tables of 2004.)

Substituting this into (4.53), the maximum log-likelihood is given by

ℓ(â0, â1, â2, â3, σ̂
2) = −n

2
log 2π − n

2
log σ̂2 − n

2
. (4.55)

In actual modeling, in addition to this full-order model, we also consider
the subset regression models, i.e., the models defined by using a subset of
regressors. This is equivalent to assuming that the regression coefficients of
excluded variables are zero. Since the number of free parameters contained in
the subset regression model is k + 2, where k is the number of actually used
variables or nonzero coefficients, the AIC is defined by

AIC(x1, . . . , xm) = n(log 2π + 1) + n log σ̂2 + 2(k + 2). (4.56)

Table 4.4 summarizes the estimated residual variances and coefficients and
AICs of various models. It shows that the model having the latitude and the



4.4 Variable Selection for Regression Model 87

Table 4.4. Subset regression models: AICs and estimated residual variances and
coefficients.

Explanatory Residual Regression coefficients
No. variables variance k AIC a0 a1 a2 a3

1 x1, x3 1.490 2 88.919 40.490 −1.108 — −0.010
2 x1, x2, x3 1.484 3 90.812 44.459 −1.071 — −0.010
3 x1, x2 5.108 2 119.715 71.477 −0.835 −0.305 —
4 x1 5.538 1 119.737 40.069 −1.121 — —
5 x2, x3 5.693 2 122.426 124.127 — −0.906 −0.007
6 x2 7.814 1 128.346 131.533 — −0.965 —
7 x3 19.959 1 151.879 0.382 — — −0.010
8 none 24.474 0 154.887 −0.580 — — —

Fig. 4.3. Decrease of AIC values by adding regressors.

altitude as explanatory variables has the smallest value for the AIC. The AIC
of the model with all three explanatory variables is larger than that of the
model having the lowest value for the AIC. This is because the reduction in
the residual variance of the former model is miniscule compared to that of the
model having the lowest value of the AIC, and it indicates that knowledge of
the longitude x2 is of little value if we already know the latitude and altitude
(x1 and x3).

Figure 4.3 shows the change in the AIC value when only one explana-
tory variable is incorporated in a subset regression model. It is interesting
to note that when only one explanatory variable is used, x3 (altitude) gives
the smallest reduction in the AIC value. However, when the models with two
explanatory variables are considered, the inclusion of x3 is very effective in
reducing the AIC value, and the AIC best model out of these models had the
explanatory variables of x1 and x3, i.e., the latitude and the altitude. The
AIC of the model with x1 and x2 is the same as that of the model with x1.
These suggest that x1 and x2 contain similar information, whereas x3 has in-
dependent information. This can be understood from Figure 4.4, which shows
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Fig. 4.4. Scatterplot: latitude vs. longitude.

the longitude vs. latitude scatterplot. Since the four main islands of Japan are
located along a line that runs from northeast to southwest, x1 and x2 have
a strong positive correlation. Thus, the information about the longitude of a
city has a similar predictive ability for temperature as that of the latitude.
However, when the latitude is known, knowledge of the longitude is almost
redundant, whereas knowledge of the altitude is very useful and the residual
variance becomes less than one third when the altitude is included.

The minimum AIC model is given by

yi = 40.490 − 1.108xi1 − 0.010xi3 + εi,

with εi ∼ N(0, 1.490). The regression coefficient for the altitude x3,−0.010, is
about 50% larger than the common knowledge that the temperature should
drop by about 6 degrees with a rise in altitude of 1, 000 meters.

Note that when the number of explanatory variables is large, we need
to exercise care when comparing subset regression models having a different
number of nonzero coefficients. This problem will be considered in section
8.5.2.

4.5 Generalized Linear Models

This section considers various types of regression models in the context of
generalized linear models [Nelder and Wedderburn (1972), McCullagh and
Nelder (1989)] and introduces a general framework for constructing the AIC.
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Suppose that we have n independent observations y1, . . . , yn correspond-
ing to (p + 1)-dimensional design points xα = (1, xα1, . . . , xαp)

T for α = 1,
. . . , n. Regression models, in general, consist of a random component and
a systematic component. The random component specifies the distribution
of the response variable Yα, while the systematic component represents the
mean structure E[Yα|xα] = µα, α = 1, . . . , n. In generalized linear models,
the responses Yα are assumed to be drawn from the exponential family of
distributions with densities

f(yα|xα; θα, ψ) = exp

{

yαθα − b(θα)

ψ
+ c(yα, ψ)

}

, α = 1, . . . , n,

(4.57)

where b(·) and c(·, ·) are specific functions and ψ is a scale parameter. The
conditional expectation µα is related to the predictor ηα by h(µα) = ηα,
where h(·) is a monotone differentiable function called a link function. The
linear predictor is given by ηα = xT

αβ, where β is a (p+1)-dimensional vector
of unknown parameters.

Let ℓ(θα, ψ) be the log-likelihood function

ℓ(θα, ψ) = log f(yα|xα; θα, ψ)

=
yαθα − b(θα)

ψ
+ c(yα, ψ). (4.58)

From the well-known properties

E

[

∂ℓ(θα, ψ)

∂θα

]

= 0, E

[

{

∂ℓ(θα, ψ)

∂θα

}2
]

= −E

[

∂2ℓ(θα, ψ)

∂θ2
α

]

, (4.59)

it follows that

E[Yα] = µα = b′(θα), var(Yα) = b′′(θα)ψ =
∂µα

∂θα
ψ. (4.60)

Hence, we have

∂ℓ(θα, ψ)

∂θα
=

yα − b′(θα)

ψ
=

yα − µα

var(Yα)

∂µα

∂θα
. (4.61)

Since the linear predictor is related by

ηα = h(µα) = h(b′(θα)) = xT
αβ, (4.62)

it can be readily seen that

∂µα

∂ηα
=

1

h′(µα)
,

∂ηα

∂βi
= xαi, i = 0, 1, . . . , p, (4.63)

where xα0 = 1.
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Therefore, it follows from (4.61) and (4.63) that differentiation of the log-
likelihood (4.58) with respect to each βi gives

∂ℓ(θα, ψ)

∂βi
=

∂ℓ(θα, ψ)

∂θα

∂θα

∂µα

∂µα

∂ηα

∂ηα

∂βi

=
yα − µα

var(Yα)

∂µα

∂θα

∂θα

∂µα

1

h′(µα)
xαi

=
yα − µα

var(Yα)

1

h′(µα)
xαi. (4.64)

Consequently, given the observations y1, . . . , yn, the maximum likelihood es-
timator of β is given by the solution of the equations

n
∑

α=1

∂ℓ(θα, ψ)

∂βi
=

n
∑

α=1

yα − µα

var(Yα)

1

h′(µα)
xαi = 0, i = 0, 1, . . . , p. (4.65)

If the link function has the form of h(·) = b′−1(·), which is the inverse of
b′(·), then it follows from (4.62) that

ηα = h(µα) = h(b′(θα)) = θα = xT
αβ. (4.66)

Hence, this special link function, known as the canonical link function, re-
lates the parameter θα in the exponential family (4.57) directly to the linear
predictor and leads to

f(yα|xα;β, ψ) = exp

{

yαxT
αβ − b(xT

αβ)

ψ
+ c(yα, ψ)

}

, (4.67)

for α = 1, . . . , n. By replacing the unknown parameters β and ψ with the
corresponding maximum likelihood estimates β̂ and ψ̂, we have the statistical
model f(yα|xα; β̂, ψ̂). The AIC for evaluating the statistical model is then
given by

AIC = −2

n
∑

α=1

{

yαxT
α β̂ − b(xT

α β̂)

ψ̂
+ c(yα, ψ̂)

}

+ 2(p + 2). (4.68)

Example 5 (Gaussian linear regression model) Suppose that the ob-
servations yα are independently and normally distributed with mean µα and
variance σ2. Then the density function of yα can be rewritten as

f(yα|µα, σ2) =
1√

2πσ2
exp

{

− (yα − µα)2

2σ2

}

= exp

{

yαµα − µ2
α/2

σ2
− y2

α

2σ2
− 1

2
log(2πσ2)

}

. (4.69)
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Comparing this density function with the exponential family of densities in
(4.57) yields the relations

θα = µα, b(µα) =
µ2

α

2
, ψ = σ2,

c(yα, σ2) = − y2
α

2σ2
− 1

2
log(2πσ2). (4.70)

By taking

µ̂α = xT
α β̂, b(xT

α β̂) =
1

2

(

xT
α β̂

)2

,

c(yα, σ̂2) = − y2
α

2σ̂2
− 1

2
log(2πσ̂2) (4.71)

in (4.68), we have that the AIC for a Gaussian linear regression model is given
by

AIC = n log(2πσ̂2) + n + 2(p + 2), (4.72)

where σ̂2 =
∑n

α=1(yα − xT
α β̂)2/n.

Example 6 (Linear logistic regression model) Let y1, . . . , yn be an
independent sequence of binary random variables taking values 0 and 1 with
conditional probabilities

Pr(Y = 1|xα) = π(xα) and Pr(Y = 0|xα) = 1 − π(xα), (4.73)

where xα = (1, xα1, . . . , xαp)
T for p explanatory variables. It is assumed that

π(xα) =
exp(xT

αβ)

1 + exp(xT
αβ)

. (4.74)

The yα have a Bernoulli distribution with mean µα = π(xα), and its density
function is given by

f(yα|π(xα)) = π(xα)yα(1 − π(xα))1−yα (4.75)

= exp

{

yα log
π(xα)

1 − π(xα)
+ log(1 − π(xα))

}

, yα = 0, 1.

By comparing with (4.57), it is easy to see that

θα = h(π(xα)) = log
π(xα)

1 − π(xα)
= xT

αβ, ψ = 1, c(yα, ψ) = 0. (4.76)

Noting that π(xα) = exp(θα)/{1 + exp(θα)}, we have

b(θα) = − log(1 − π(xα)) = log {1 + exp(θα)} . (4.77)
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Therefore, taking b(xT
αβ) = log

{

1 + exp(xT
αβ)

}

in (4.68) and replacing β

with the maximum likelihood estimate β̂, we have the AIC for evaluating the
statistical model f(yα|xα; β̂) in the form

AIC = 2

n
∑

α=1

[

log
{

1 + exp(xT
α β̂)

}

− yαxT
α β̂

]

+ 2(p + 1). (4.78)

4.6 Selection of Order of Autoregressive Model

A sequence of observations of a phenomenon that fluctuates with time is
called a time series. The most fundamental model in time series analysis is
the autoregressive (AR) model. For simplicity, we consider here a univariate
time series yt, t = 1, . . . , n. The AR model expresses the present value of a
time series as a linear combination of past values and a random component,

yt =

m
∑

i=1

aiyt−i + εt, (4.79)

where m is called the order of the AR model, and the ai are called the AR
coefficients. The random variable εt is assumed to be a normal random vari-
able with mean 0 and variance σ2. In other words, given the past values,
yt−m, . . . , yt−1, the yt are distributed with a normal distribution with mean
a1yt−1 + · · · + amyt−m and variance σ2.

For simplicity, assuming that y1−m, . . . , y0 are known, the likelihood of the
model given data y1, . . . , yn is obtained by

L(a1, . . . , am, σ2) = f(y1, . . . , yn|y1−m, . . . , y0)

=

n
∏

i=1

f(yt|yt−m, . . . , yt−1). (4.80)

Here f(yt|yt−m, . . . , yt−1) is the conditional density of yt given yt−m, . . . , yt−1

and is a normal density with mean a1yt−1 + · · · + amyn−m and variance σ2,
i.e.,

f(yt|yt−m, . . . , yt−1) =
1√

2πσ2
exp

{

− 1

2σ2

(

yt −
m

∑

i=1

aiyt−i

)2}

. (4.81)

Thus, assuming that y1−m, . . . , y0 are known, the likelihood of the AR model
with order m can be written as

L(a1, . . . , am, σ2) =

(

1

2πσ2

)n/2

exp

{

− 1

2σ2

n
∑

i=1

(

yt −
m

∑

i=1

aiyt−i

)2}

.(4.82)

By taking logarithms of both sides, the log-likelihood of the model can be
expressed as
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ℓ(a1, . . . , am, σ2) = −n

2
log(2πσ2) − 1

2σ2

n
∑

t=1

(

yt −
m

∑

i=1

aiyt−i

)2

. (4.83)

The maximum likelihood estimators of a1, . . . , am and σ2 are obtained by
solving the system of equations

∂ℓ

∂a1
=

1

σ2

n
∑

t=1

yt−1

(

yt −
m

∑

i=1

aiyt−i

)

= 0,

... (4.84)

∂ℓ

∂am
=

1

σ2

n
∑

t=1

yt−m

(

yt −
m

∑

i=1

aiyt−i

)

= 0,

∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4

n
∑

t=1

(

yt −
m

∑

i=1

aiyt−i

)2

= 0.

Thus, likeotherregressionmodels,themaximumlikelihoodestimators â1, . . . , âm

are obtained as the solution to the normal equation

⎡

⎢

⎣

C(1, 1) · · · C(1,m)
...

. . .
...

C(m, 1) · · · C(m,m)

⎤

⎥

⎦

⎡

⎢

⎣

a1

...
am

⎤

⎥

⎦
=

⎡

⎢

⎣

C(1, 0)
...

C(m, 0)

⎤

⎥

⎦
, (4.85)

where C(i, j) =
∑n

t=1 yt−iyt−j . The maximum likelihood estimator σ2 is

σ̂2 =
1

n

n
∑

t=1

(

yt −
m

∑

i=1

âiyt−i

)2

=
1

n

(

C(0, 0) −
m

∑

i=1

âiC(i, 0)

)

. (4.86)

Substitution of this result into (4.83) yields the maximum log-likelihood

ℓ(â1, . . . , âm, σ̂2) = −n

2
log(2πσ̂2) − n

2
. (4.87)

Since the autoregressive model with order m has m + 1 free parameters, the
AIC is given by

AIC(m) = −2ℓ(â1, . . . , âm, σ̂2) + 2(m + 1)

= n(log 2π + 1) + n log σ̂2 + 2(m + 1). (4.88)

Example 7 (Canadian lynx data) The logarithms of the annual num-
bers of Canadian lynx trapped from 1821 to 1934 recorded by the Hudson
Bay Company are shown next [Kitagawa and Gersch (1996)]. The number of
observations is N = 114.
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2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411
2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531

We considered the AR models up to order 20. To apply the least squares
method, the first 20 observations are treated as given in (4.80) and (4.81).
Table 4.5 shows the innovation variances and the AIC of the AR models up to
order 20. The model with m = 0 is the white noise model. The AIC attained
is smallest at m = 11. Figure 4.5 shows the power spectra obtained using

p(f) = σ̂2

∣

∣

∣

∣

1 −
m

∑

j=1

âje
−2πijf

∣

∣

∣

∣

−2

, 0 ≤ f ≤ 0.5. (4.89)

The left plot shows the spectrum obtained from the AR model having the
lowest AIC value, m = 11, while the right plot shows the spectra obtained
from the AR models with orders 0 to 20. The spectrum of the AR model with
m = 11 is shown using a bold curve. It can be seen that depending on the
order of the AR model, the estimated spectrum may become too smooth or
too erratic, demonstrating the importance of selecting an appropriate order.

Table 4.5. AR models fitted to Canadian lynx data. m is the order of the AR
model, and σ2

m is the estimated innovation variance of the AR model with order m.

m σ2
m AIC m σ2

m AIC

0 0.31607 −106.268 11 0.03319 −296.130
1 0.11482 −199.453 12 0.03255 −295.943
2 0.04847 −278.512 13 0.03248 −294.157
3 0.04828 −276.886 14 0.03237 −292.467
4 0.04657 −278.289 15 0.03235 −290.533
5 0.04616 −277.112 16 0.03187 −289.920
6 0.04512 −277.254 17 0.03183 −288.042
7 0.04312 −279.505 18 0.03127 −287.721
8 0.04201 −279.963 19 0.03088 −286.902
9 0.04128 −279.613 20 0.02998 −287.679

10 0.03829 −284.677
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Fig. 4.5. Power spectrum estimates from AR models. Horizontal axis: frequency f ,
0 ≤ f ≤ 0.5. Vertical axis: logarithm of power spectrum, log p(f). Left plot: using
the AR model with lowest AIC value, m = 11. Right plot: spectra obtained by the
AR model with orders up to 20.

In the analysis done so far, the least squares method was used to estimate
the AR model. This is a computationally efficient method and has several
advantages. However, it uses the initial portion of the data, y1−m, . . . , y0,
only for initialization, that may result in poor estimation for very limited
amounts of data. We note here, the exact maximum likelihood estimates of
the AR model can be obtained by using the state-space representation with
the Kalman filter.

We define the m×m matrix F and the m-dimensional vectors G, xn and
H by

F =

⎡

⎢

⎢

⎢

⎣

a1 a2 · · · am

1
. . .

1

⎤

⎥

⎥

⎥

⎦

, G =

⎡

⎢

⎢

⎢

⎣

1
0
...
0

⎤

⎥

⎥

⎥

⎦

, xn =

⎡

⎢

⎢

⎢

⎣

yn

yn−1

...
yn−m+1

⎤

⎥

⎥

⎥

⎦

, (4.90)

H = [ 1 0 · · · 0 ].

Then the AR model can be expressed in a state-space model without obser-
vation noise as

xn = Fxn−1 + Gεn,

yn = Hxn. (4.91)

As shown in Subsection 3.3.3, the likelihood of the state-space model can
be obtained by using the output of the Kalman filter. The estimates of the
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Table 4.6. AR models estimated by the exact maximum likelihood method. m is
the order of the AR model, and σ2

m is the estimated innovation variance of the AR
model with order m.

m σ2
m AIC m σ2

m AIC

0 0.30888 −115.479 8 0.43017 −296.616
1 0.11695 −210.602 9 0.42580 −295.638
2 0.05121 −291.185 10 0.39878 −300.192
3 0.50575 −290.430 11 0.34580 −312.448
4 0.48525 −292.568 12 0.34081 −311.903
5 0.47426 −292.858 13 0.34009 −310.114
6 0.46962 −291.840 14 0.34002 −308.135
7 0.44137 −296.046

unknown parameters in the AR model, â1, . . . , âm and σ̂2
m, are obtained by

numerically maximizing the log-likelihood function by applying the quasi-
Newton method. Table 4.6 shows the exact maximum likelihood estimates of
σ2

m and the AIC for various orders. Again, order 11 is found to give the lowest
AIC order.

4.7 Detection of Structural Changes

In statistical data analysis, we sometimes encounter the situation in which
the stochastic structure of the data changes at a certain time or location. We
consider here estimation of this change point by the statistical modeling based
on the AIC. Hereafter we shall consider the comparatively simple problem of
estimating the time point of a level shift of the normal distribution and a
more realistic problem of estimating the arrival time of a seismic signal.

4.7.1 Detection of Level Shift

Consider a normal distribution model, yn ∼ N(µn, σ2), or, equivalently,

p(yn|µn, σ2) = (2πσ2)−
1

2 exp

{

− (yn − µn)2

2σ2

}

. (4.92)

We assume that for some unknown change point k, µn = θ1 for n < k and
µn = θ2 for n ≥ k. The integer k is called the change point. Given data
y1, . . . , yN , the likelihood of the model is expressed as

L(θ1, θ2, σ
2
k) =

k−1
∏

n=1

p(yn|θ1, σ
2
k)

N
∏

n=k

p(yn|θ2, σ
2
k). (4.93)
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Fig. 4.6. Artificially generated data. Mean value was increased by one at n = 50.

Therefore, the log-likelihood is defined by

ℓ(θ1, θ2, σ
2
k) = −N

2
log(2πσ2

k)

− 1

2σ2
k

{k−1
∑

n=1

(yn − θ1)
2 +

N
∑

n=k

(yn − θ2)
2

}

. (4.94)

It is easy to see that the maximum likelihood estimates are given by

θ̂1 =
1

k − 1

k−1
∑

n=1

yn, θ̂2 =
k

N − k + 1

N
∑

n=k

yn,

σ̂2
k =

1

N

{k−1
∑

n=1

(yn − θ̂1)
2 +

N
∑

n=k

(yn − θ̂2)
2

}

. (4.95)

The maximum log-likelihood is

ℓ(θ̂1, θ̂2, σ̂
2
k) = −N

2
log(2πσ̂2

k) − N

2
,

and then the AIC is given by

AICk = N log(2πσ̂2
k) + N + 2 × 3. (4.96)

The change point k can be automatically determined by finding the value
of k that gives the smallest AICk. Note that in the change point problem,
the number of parameters does not vary with k; however, the concept of the
AIC provides the foundation for estimating the change point by using the
likelihood.

Example 8 (Estimating a change point) Figure 4.6 shows a set of data
artificially generated using a normal random variable with variance 1. The
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Fig. 4.7. AIC of the level shift model. The black curve shows the AIC of the three-
parameter model and the gray curve that of the four-parameter model.

Table 4.7. Results of fitting level shift models.

k µ1 µ2 σ2

1 σ2

2 σ2 AIC’ AIC

40 0.276 0.713 0.877 1.247 1.103 300.127 299.562
41 0.271 0.723 0.856 1.261 1.099 299.474 299.226
42 0.255 0.742 0.846 1.260 1.090 298.577 298.446
43 0.234 0.766 0.843 1.250 1.079 297.564 297.405
44 0.225 0.782 0.827 1.257 1.072 296.641 296.730
45 0.261 0.764 0.863 1.260 1.086 298.272 297.999
46 0.273 0.763 0.851 1.283 1.089 298.247 298.289
47 0.260 0.783 0.841 1.283 1.080 297.295 297.469
48 0.244 0.807 0.835 1.276 1.069 296.237 296.441
49 0.215 0.845 0.857 1.226 1.049 294.972 294.564
50 0.207 0.865 0.842 1.229 1.040 293.902 293.670
51 0.188 0.897 0.843 1.202 1.022 292.423 291.993
52 0.180 0.920 0.829 1.200 1.011 291.183 290.881
53 0.203 0.910 0.841 1.220 1.023 292.320 292.054
54 0.246 0.877 0.920 1.193 1.049 295.681 294.527
55 0.252 0.883 0.905 1.218 1.049 295.470 294.567
56 0.260 0.888 0.892 1.244 1.050 295.309 294.687
57 0.250 0.914 0.881 1.242 1.039 294.190 293.657
58 0.247 0.934 0.866 1.254 1.032 293.286 292.985
59 0.252 0.944 0.852 1.279 1.031 292.817 292.858
60 0.285 0.913 0.902 1.269 1.053 295.479 294.913

mean is 0 for n = 1, . . . , 50 and 1 for n = 51, . . . , 100. Figure 4.7 shows the
assumed change point k versus AIC values. Only 26 ≤ k ≤ 75 were compared.
The solid curve indicates the AIC of the above level shift model with three
unknown parameters. On the other hand, the dotted curve shows the AIC of
the four-parameter model, which is simply obtained by summing the AICs of
two normal distribution models fitted to two data segments. Both AICs have
minima at k = 52, which is one point away from the true change point.
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Table 4.7 shows the estimated mean values µ1 and µ2, individual variances
σ2

1 and σ2
2 , and the common variance σ2 and AICs of the four-parameter

model (denoted as AIC’) and the three-parameter (level-shift) model (AIC)
for 40 ≤ k ≤ 60. In most cases, the AIC of the three-parameter model is
less than that of the four-parameter model. This reflects the fact that in
generating the data, the variance of the series was set to one for the entire
interval. Actually, the estimates of the variance by the three-parameter model
were closer to the true value.

4.7.2 Arrival Time of a Signal

The location of the epicenter of an earthquake can be estimated based on the
arrival times of the seismic signals at several different locations. To utilize
the information from the seismic signals to minimize the damage caused by a
tsunami or to shut down dangerous industrial plants or to reduce the speed of
rapid modes of public transportation, it is necessary to determine the arrival
time very quickly. Therefore, development of computationally efficient proce-
dures for automatic estimation of the arrival time of seismic signal is a very
important problem.

When an earthquake signal arrives, the characteristics of the time series,
such as its variance and spectrum, change abruptly. To estimate the arrival
time of a seismic signal, it is assumed that each of the time series before and
after the arrival of the seismic signal is stationary and can be expressed by
using an autoregressive model as follows [Takanami and Kitagawa (1991)];

Background Noise Model

yn =
m

∑

i=1

aiyn−i + vn, vn ∼ N(0, τ2), n = 1, . . . , k, (4.97)

Seismic Signal Model

yn =

ℓ
∑

i=1

biyn−i + wn, wn ∼ N(0, σ2), n = k + 1, . . . , N, (4.98)

where the change point k (precisely k + 1), the autoregressive orders m
and ℓ, the autoregressive coefficients a1, . . . , am, b1, . . . , bℓ, and the inno-
vation variances τ2 and σ2 are all unknown parameters. Given m and ℓ,
the vector consisting of the unknown parameters is denoted by θmℓ =
(a1, . . . , am, τ2, b1, . . . , bℓ, σ

2)T . These two models constitute a simple ver-
sion of a locally stationary AR model [Ozaki and Tong (1975), Kitagawa
and Akaike (1978)].

For simplicity, we assume that the “initial data” y1−M , . . . , y0 are given,
where M is the highest possible AR order. Then given the observations,
y1−M , . . . , yN , the likelihood of the model with respect to the observations
y1, . . . , yN is defined by
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L(θmℓ) = p(y1, . . . , yN |θmℓ, y1−M , . . . , y0)

= p(y1, . . . , yk|y1−M , . . . , y0,θmℓ)p(yk+1, . . . , yN |y1, . . . , yk,θmℓ)

=
k

∏

n=1

p(yn|yn−1, . . . , yn−m,θmℓ)
N
∏

n=k+1

p(yn|yn−1, . . . , yn−ℓ,θmℓ).

(4.99)

Therefore, under the assumption of normality of the innovations vn and wn,
the log-likelihood can be expressed as

ℓ(k,m, ℓ,θmℓ) = ℓB(k,m, a1, . . . , am, τ2) + ℓS(k, ℓ, b1, . . . , bℓ, σ
2)

= −k

2
log(2πτ2) − 1

2τ2

k
∑

n=1

(

yn −
m

∑

j=1

ajyn−j

)2

(4.100)

− N − k

2
log(2πσ2) − 1

2σ2

N
∑

n=k+1

(

yn −
ℓ

∑

j=1

bjyn−j

)2

,

where ℓB and ℓS denote the log-likelihoods of the background noise model
and the seismic signal model, respectively.

The maximum likelihood estimators θ̂mℓ = (â1, . . . , âm, b̂1, . . . , b̂ℓ, τ̂
2, σ̂2)T

are obtained by maximizing this log-likelihood function. In actual computa-
tions, the parameters of the background model, a1, . . . , am and τ2, and those
of the signal model, b1, . . . , bℓ and σ2, can be estimated independently by
maximizing ℓB and ℓS , respectively.

For a given value of k, the AIC of the current model is given by

AICk = min
m

AICB
k (m) + min

ℓ
AICS

k (ℓ), (4.101)

where AICB
k (m) and AICS

k (ℓ) are the AICs of the background noise model
with order m and the seismic signal model with order ℓ, respectively. They
are defined by

AICB
k (m) = k log(2πτ̂2

m) + 2(m + 1),

AICS
k (ℓ) = (N − k) log(2πσ̂2

ℓ ) + 2(ℓ + 1), (4.102)

where τ̂2
m and σ̂2

ℓ are the maximum likelihood estimates of the innovation
variances of the background noise model with order m and the seismic signal
model with order ℓ, respectively. The arrival time of the seismic signal can
be estimated by finding the minimum of the AICk on a specified interval, say
k ∈ {L, . . . , L + K}.

In order to determine the arrival time by the minimum AIC procedure,
we have to fit and compare (K + 1)(M + 1)2 models. Kitagawa and Akaike
(1978) developed a very computationally efficient least squares method based
on the Householder transformation [Golub (1965)]. The number of necessary
computations of this method is only a few times greater than that of fitting
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Fig. 4.8. Seismogram and changes of the AIC of the model for estimating the
arrival time of a seismic signal. Top plot: east-west component of a seismogram. S
wave signal arrives at the middle of the series. Bottom plot: plot of AIC value vs.
arrival time.

a single AR model of order M to the entire time series. Namely, the number
of necessary computations of this method is reduced to the order of NM2.
Note that if M = 10 and K = 1, 000, the number of necessary computations
is reduced to about 1/10, 000 that of the simplistic method.

Example 9 (Detection of a micro earthquake) The top plot of Figure 4.8
shows a portion of the east-west component of a seismogram [Takanami and
Kitagawa (1991)] observed at Hokkaido, Japan, yk, k = 3200, . . . , 3600, where
the S wave arrived in the middle of the series. The sampling interval is ∆T =
0.01 second. The bottom plot shows the change of AICk for k = 3200, . . . , 3600
when arrival time models are fitted to the data yj , j = 2800, . . . , 4200. From
this figure, it can be seen that the AIC has a minimum at k = 3393. There
are eight other local minima. However, the variation in the AIC is quite large.

4.8 Comparison of Shapes of Distributions

Assume that we have the 20 observations shown below.

−7.99 −4.01 −1.56 −0.99 −0.93 −0.80 −0.77 −0.71 −0.42 −0.02
0.65 0.78 0.80 1.14 1.15 1.24 1.29 2.81 4.84 6.82
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We consider here Pearson’s family of distributions

f(y|µ, τ2, b) =
C

(y2 + τ2)b
, (4.103)

where 1/2 < b ≤ ∞ and µ, τ2, and b are called the central parameter, dis-
persion parameter, and shape parameter, respectively. C is the normalizing
constant given by C = τ2b−1Γ (b)/Γ

(

b − 1
2

)

Γ
(

1
2

)

. By adjusting the shape
parameter b, the Pearson’s family of distributions can express a broad class of
distributions, including Cauchy distribution (b = 1), t-distribution with k de-
grees of freedom [where b = (k + 1)/2] and normal distribution in its limiting
case (b = ∞).

Given n observations, y1, . . . , yN , the log-likelihood of the Pearson’s family
of distributions is given by

ℓ(µ, τ2, b) =

N
∑

n=1

log f(yn|µ, τ2, b)

= N
{

(b − 1
2 ) log τ2 + log Γ (b) − log Γ (b − 1

2 ) − log Γ
(

1
2

)}

−b
N

∑

n=1

log
{

(yn − µ)2 + τ2
}

. (4.104)

It is possible to obtain the maximum likelihood estimate of the shape para-
meter b by using the quasi-Newton method. However, for simplicity, here we
shall consider only seven candidates b = 0.6, 0.75, 1, 1.5, 2, 2.5, 3, and ∞. Note
that b = 1, 1.5, 2, 2.5, 3, and ∞ correspond to the Cauchy distribution, the t-
distribution with the degrees of freedom 2, 3, 4, 5, and a normal distribution,
respectively. Given a value of b, the first derivative of ℓ(µ, τ2, b) with respect
to µ and τ2 is, respectively,

∂ℓ

∂µ
= 2b

N
∑

n=1

yn − µ

(yn − µ)2 + τ2
,

∂ℓ

∂τ2
=

N(b − 1/2)

τ2
− b

N
∑

n=1

1

(yn − µ)2 + τ2
. (4.105)

For fixed b, the maximum likelihood estimates of µ and τ2 can be easily
obtained using the quasi-Newton method. Table 4.8 shows the maximum like-
lihood estimates of µ, τ2, the maximum log-likelihood, and the AIC for each
b. Note that for b = ∞, the distribution becomes normal and the estimate of
the variance, σ̂2, is shown instead of the dispersion parameter. As shown in
Example 5 of Chapter 3, for the normal distribution model, the mean and the
variance are estimated as

µ̂ =
1

N

N
∑

n=1

yn = 0.166, σ̂2 =
1

N

N
∑

n=1

(yn − µ̂)2 = 8.545, (4.106)
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Fig. 4.9. Estimated Pearson’s family of distributions for b = 0.75, 1.5, 2.5 and the
normal distribution. The bold curve indicates the optimal shape parameter (b = 1.5).
The circles below the x-axis indicate the 20 observations.

with N = 20, and the maximum log-likelihood is given by

ℓ(µ̂, σ̂2) = −N

2
log(2πσ̂2) − N

2
= −49.832. (4.107)

It can be seen that the AIC selects b = 1.5 as the optimum shape parameter.

Table 4.8. Seven different distributions of Pearson’s family of distributions. The
maximum likelihood estimates of the central and dispersion parameters, the maxi-
mum log-likelihoods, and the AICs are shown. b = ∞ shows the normal distribution
model.

b µ̂b τ̂2

b ℓ AIC

0.60 0.8012 0.0298 −58.843 121.685
0.75 0.5061 0.4314 −51.397 106.793
1.00 0.1889 1.3801 −47.865 99.730
1.50 0.1853 4.1517 −47.069 98.137
2.00 0.2008 8.3953 −47.428 98.856
2.50 0.2140 13.8696 −47.816 99.633
3.00 0.2224 20.2048 −48.124 100.248

∞ 0.1660 8.5445 -49.832 103.663
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Fig. 4.10. Wholesale hardware data.

4.9 Selection of Box–Cox Transformations

The observations obtained by counting the number of occurrences of a certain
event, the number of peoples, or the amount of sales take positive values.
These data sets usually have a common feature that the variance increases as
the mean value increases. For such data sets, standard statistical models may
not fit well because some characteristics of the distribution change depending
on the location or the distribution may deviate considerably from the normal
distribution.

Figure 4.10 shows the monthly wholesale hardware data published by the
U.S. Census Bureau. The annual seasonal variation obviously increases with
an increase in the level. For such counted time series, additive seasonal models
are usually fit after taking the logarithmic transformation. Here we consider
selecting the optimal parameter of the Box–Cox transformation using the AIC.

The Box–Cox transformation [Box and Cox (1964)] is defined by

zn =

{

λ−1(yλ
n − 1), for λ 
= 0,

log yn, for λ = 0.
(4.108)

It can express various data transformations such as logarithmic transformation
and square root transformation by appropriate selection of the value of λ.
Except for an additive constant, the Box–Cox transformation becomes the
logarithm for λ = 0, the inverse for λ = −1, and the square root for λ = 0.5;
it leaves the original data unchanged for λ = 1.0.

Obviously, the log-likelihood and the AIC values of the transformed data
cannot be compared with each other. However, by appropriately compensating
the effect of the transformation, we can define the AIC of the model at the
original data space. By using this corrected AIC, we can select the optimal
value of the transformation parameter λ.

Assume that the data zn = hλ(yn) obtained by the Box–Cox transfor-
mation follows the probability density function f(z), the probability density
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Fig. 4.11. Transformation of the probability density function by a Box–Cox trans-
formation.

function for the original data yn is given by

g(y) =

∣

∣

∣

∣

dhλ

dy

∣

∣

∣

∣

f(h(y)). (4.109)

Here |dhλ/dy| is referred to as the Jacobian of the transformation. Equation
(4.109) indicates that the model of the transformed data automatically spec-
ifies a model of the original data.

Thus, if, for example, the AICs of the normal distribution models obtained
for the original data yn and the transformed data zn are denoted as AICy and
AICz, respectively, then by comparing the value of

AIC′
z = AICz − 2 log

∣

∣

∣

∣

dhλ

dy

∣

∣

∣

∣

(4.110)

with AICy, we can determine which of the original data or the transformed
data can be approximated well by the normal distribution model. Specifi-
cally, if AICy < AIC′

z holds, it is concluded that the original data are better
expressed by the normal distribution. On the other hand, if AICy > AIC′

z,
then the transformed data are considered to be better. Further, by finding
the minimum of AIC′

z, we can determine the best value of λ for the Box–Cox
transformation. Note that in the actual statistical modeling, it is necessary to
make this correction of the AIC of the fitted model by using the log Jacobian
of the Box–Cox transformation.

Table 4.9 shows the values of the log-likelihoods, the AICs, and the trans-
formed AICs for various values of λ. The log-likelihood is a decreasing func-
tion of the transformation parameter λ. Since the number of the parameters
in the transformed distribution is the same, the AIC takes its maximum at
the minimum of the λ, i.e., at λ = −1. However, the AIC

′

, the corrected AIC
obtained by adding the correction term for the data transformation, attains
its minimum at λ = 0.1. This indicates that for the current data set, the best

transformation is obtained by yn = x
1/10
n . Figure 4.12 shows the Box–Cox

transformation of the monthly wholesale hardware data with this AIC best
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Table 4.9. Log-likelihoods and the AICs of Box–Cox transformations for various
values of λ.

λ Log-Likelihood AIC AIC
′

1.0 −1645.73 3295.45 3295.45
0.9 −1492.01 2988.02 3290.76
0.8 −1338.56 2681.13 3286.62
0.7 −1185.39 2374.78 3283.01
0.6 −1032.49 2068.99 3279.96
0.5 −879.88 1763.75 3277.47
0.4 −727.54 1459.08 3275.54
0.3 −575.49 1154.98 3274.18
0.2 −423.72 851.44 3273.40
0.1 −272.24 548.49 3273.19
0.0 −121.06 246.11 3273.55

−0.1 29.84 −55.68 3274.50
−0.2 180.45 −356.90 3276.03
−0.3 330.76 −657.53 3278.15
−0.4 480.79 −957.57 3280.85
−0.5 630.52 −1257.04 3284.13
−0.6 779.96 −1555.92 3287.99
−0.7 929.11 −1854.22 3292.43
−0.8 1077.98 −2151.95 3297.44
−0.9 1226.55 −2449.11 3303.03
−1.0 1374.85 −2745.70 3309.19

Fig. 4.12. Box–Cox transformation of the wholesale hardware data. The transfor-
mation parameter λ selected by the AIC is 0.1.

parameter λ = 0.1. From this Box–Cox transformation, it can be seen that
the variance of the time series becomes almost homogeneous.
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Generalized Information Criterion (GIC)

We have so far considered the evaluation of statistical models estimated us-
ing the maximum likelihood method, for which the AIC is a useful tool for
evaluating the estimated models. However, statistical models are constructed
to obtain information from observed data in a variety of ways. So if models
are developed that employ estimation procedures other than the method of
maximum likelihood, how should we construct an information criterion for
evaluating such statistical models? With the development of other modeling
techniques, it has been necessary to construct information criteria that relax
the assumptions imposed on the AIC.

In this chapter, we describe a general framework for constructing informa-
tion criteria in the context of functional statistics and introduce a generalized
information criterion, GIC [Konishi and Kitagawa (1996)]. The GIC can be
applied to evaluate statistical models constructed by various types of estima-
tion procedures including the robust estimation procedure and the maximum
penalized likelihood procedure. Section 5.1 describes the fundamentals of a
functional approach using a probability model having one parameter. In Sec-
tion 5.2 and subsequent sections, we introduce the generalized information
criterion for evaluating statistical models constructed in various ways. We
also discuss the relationship among the AIC, TIC, and GIC. Various applica-
tions of the GIC to statistical modeling are shown in Chapter 6. Chapter 7
gives the derivation of information criteria and investigates their asymptotic
properties with theoretical and numerical improvements.

5.1 Approach Based on Statistical Functionals

5.1.1 Estimators Defined in Terms of Statistical Functionals

The process of statistical inference generally involves building a model that ex-
presses the population distribution or making an inference on the parameters
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of a specific population distribution, such as a normal distribution. In prac-
tice, however, it is difficult to precisely represent the probabilistic mechanism
of data generation based on a finite number of observations. Hence, one usu-
ally selects an approximating parametric family of probability distributions
{f(x|θ); θ ∈ Θ ⊂ R} to the true distribution G(x) [or a density function, g(x)]
that generates the data. This requires making the assumption that a specified
parametric family of probability distributions either does or does not contain
the true distribution. A model parameter is, therefore, estimated based on
data from the true distribution G(x), but not from f(x|θ).

From this point of view, we assume that the parameter θ is expressed in
the form of a real-valued function of the distribution G, that is, the functional
T (G), where T (G) is a real-valued function defined on the set of all distribu-
tions on the sample space and does not depend on the sample size n. Then,
given data {x1, . . . , xn}, the estimator θ̂ for θ is given by

θ̂ = θ̂(x1, . . . , xn) = T (Ĝ) (5.1)

in which G is replaced with the empirical distribution function Ĝ, by inserting
probability n−1 at each observation (see Remark 1). This equation indicates
that the estimator depends on data only through the empirical distribution
function Ĝ. Such a functional is referred to as a statistical functional.

Since various types of estimators, including the maximum likelihood es-
timator, can be defined in terms of a statistical functional, an information-
theoretic approach can provide a unified basis for treating the problem of
evaluating statistical models.

Example 1 (Sample mean) If the functional can be written in the form
of T (G) =

∫

u(x)dG(x), then the corresponding estimator is given as

T (Ĝ) =

∫

u(x)dĜ(x) =

n
∑

α=1

ĝ(xα)u(xα) =
1

n

n
∑

α=1

u(xα), (5.2)

by replacing the unknown probability distribution G with the empirical dis-
tribution function Ĝ and its probability function ĝ(xα) = n−1 at each of the
observations {x1, . . . , xn} [for the notation dG(x), see (3.5) in Chapter 3].

In particular, the mean µ of a probability distribution function G(x) can
be expressed as

µ =

∫

xdG(x) ≡ Tµ(G). (5.3)

By replacing the distribution function G with the empirical distribution func-
tion Ĝ, we obtain the estimator for the mean µ:

Tµ(Ĝ) =

∫

xdĜ(x) =
1

n

n
∑

α=1

xα = x, (5.4)

thus obtaining the sample mean.
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Example 2 (Sample variance) The functional that defines the variance is
given by

Tσ2(G) =

∫

(x − Tµ(G))
2
dG(x)

=

∫ (

x −
∫

ydG(y)

)2

dG(x) (5.5)

=
1

2

∫ ∫

(x − y)2dG(x)dG(y),

where Tµ is the functional that defines the mean. In this case, by replacing the

distribution function G with the empirical distribution function Ĝ in the first
expression of (5.5), the sample variance can be obtained in a natural form as
follows:

Tσ2(Ĝ) =

∫

(

x − Tµ(Ĝ)
)2

dĜ(x) =
1

n

n
∑

α=1

(xα − x)2. (5.6)

In addition, from the third expression of (5.5), the well-known formula for the
sample variance can be obtained:

Tσ2(Ĝ) =
1

2

{∫

x2dG(x) − 2

∫ ∫

xydG(x)dG(y) +

∫

y2dG(y)

}

=

∫

x2dĜ(x) −
(∫

xdĜ(x)

)2

=
1

n

n
∑

α=1

x2
α −

(

1

n

n
∑

α=1

xα

)2

. (5.7)

Example 3 (Maximum likelihood estimator) Consider a probability dis-
tribution f(x|θ) (θ ∈ Θ ⊂ R) as a candidate model. The unknown parameter
θ is then estimated based on the n observations generated from an unknown
true distribution G(x). The maximum likelihood estimator, θ̂ML, is given as
the solution of the likelihood equation

n
∑

α=1

∂ log f(Xα|θ)
∂θ

∣

∣

∣

∣

∣

θ=θ̂ML

= 0. (5.8)

The solution θ̂ML can be written as θ̂ML = TML(Ĝ), where TML is the func-
tional implicitly defined by

∫

∂ log f(z|θ)
∂θ

∣

∣

∣

∣

θ=TML(G)

dG(z) = 0. (5.9)
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Example 4 (M-estimator) Huber (1964) generalized the maximum like-

lihood estimator to a more general estimator, θ̂M , defined as the solution of
the equation

n
∑

α=1

ψ(Xα, θ̂M ) = 0 (5.10)

with ψ being some function on X × Θ (Θ ⊂ R), where X is the sample
space. The estimator given as a solution of this implicit equation is referred
to as the M -estimator [Huber (1981), Hampel et al. (1986)]. The maximum
likelihood estimator can be considered as a special case of an M -estimator,
corresponding to

ψ(x, θ) =
∂

∂θ
log f(x|θ). (5.11)

The M -estimator θ̂M can be expressed as θ̂M = TM (Ĝ) for the functional
TM (G) given by

∫

ψ(z, TM (G))dG(z) = 0, (5.12)

corresponding to the functional TML(G) in (5.9) for the maximum likelihood
estimator.

We see that Eqs. (5.8) and (5.10) can be respectively obtained by replacing
G in (5.9) and (5.12) by the empirical distribution function Ĝ.

Remark 1 (Empirical distribution function) For any real value a,
a function I(x; a) defined as follows is referred to as an indicator function
(Figure 5.1):

I(x; a) =

{

1 if x ≥ a,
0 if x < a .

(5.13)

Given n observations {x1, x2, . . . , xn}, Ĝ(x) is defined as

Ĝ(x) =
1

n

n
∑

α=1

I(x;xα), (5.14)

and then Ĝ(x) is a step function that jumps by n−1 at each observation
xα. The function Ĝ(x) is an approximation of G(x) and is referred to as

Fig. 5.1. Indicator function.
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Fig. 5.2. True distribution function and the empirical distribution function. The
upper left graph in Fig. 5.2 shows a density function and the 10 observations gener-
ated from the distribution. The curve in the upper right graph shows the distribution
function that is obtained by integrating the density function in the upper left graph.
The stepwise function plotted using a bold line represents an empirical distribution
function based on 10 observations. The lower left and lower right graphs show em-
pirical distribution functions obtained from 100 and 1,000 observations, respectively.

an empirical distribution function. An empirical distribution function is a
distribution function of the probability function ĝ(xα) = n−1 (α = 1, 2, . . . , n),
which has an equal probability n−1 at each of the n observations.

Figure 5.2 shows that as the number of observations increases, the empir-
ical distribution function approaches the true distribution function and pro-
vides a good approximation of the true distribution function that generates
data.

In the case of a multivariate distribution function for general p-dimensional
random variables X = (X1, X2, . . . , Xp)

T , for any a such that a = (a1, a2,
. . . , ap)

T ∈ Rp, the indicator function in p-dimensional space is defined by

I(x;a) =

{

1 if xi ≥ ai for all i,
0 otherwise.

(5.15)

5.1.2 Derivatives of the Functional and the Influence Function

Given the functional T (G), the directional derivative with respect to the distri-
bution function G is defined as a real-valued function T (1)(x;G) that satisfies
the equation

lim
ε→0

T ((1 − ε)G + εH) − T (G)

ε
=

∂

∂ε
{T ((1 − ε)G + εH)}

∣

∣

∣

∣

ε=0

=

∫

T (1)(x;G)d{H(x)−G(x)} (5.16)
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for any distribution function H(x) [von Mises (1947)]. Further, in order to
ensure uniqueness, the following equation must hold:

∫

T (1)(x;G)dG(x) = 0. (5.17)

Then, Eq. (5.16) can be written as

lim
ε→0

T ((1 − ε)G + εH) − T (G)

ε
=

∂

∂ε
{T ((1 − ε)G + εH)}

∣

∣

∣

∣

ε=0

=

∫

T (1)(x;G)dH(x). (5.18)

By taking the distribution function H as a delta function δx that has a
probability of 1 at point x in (5.18), we have

lim
ε→0

T ((1 − ε)G + εδx) − T (G)

ε
=

∂

∂ε
{T ((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

=

∫

T (1)(x;G)dδx

= T (1)(x;G). (5.19)

This function, which is called an influence function, is used to describe the
effect of an infinitesimal contamination at the point x in the robust estima-
tion procedure. The influence function plays a critical role in constructing a
generalized information criterion.

Example 5 (Influence function for the sample mean) For the functional
that can be represented in the form of T (G) =

∫

u(x)dG(x), we have

T ((1 − ε)G + εδx) =

∫

u(y)d{(1 − ε)G(y) + εδx(y)}

= (1 − ε)T (G) + εu(x). (5.20)

Then the influence function can be obtained easily as follows:

lim
ε→0

T ((1 − ε)G + εδx) − T (G)

ε

= lim
ε→0

(1 − ε)T (G) + εu(x) − T (G)

ε
(5.21)

= u(x) − T (G).

As a direct consequence of this result, the influence function of the functional
Tµ(G) =

∫

xdG(x) that defines the mean µ is given by

T (1)
µ (x;G) = x − Tµ(G). (5.22)
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Example 6 (Influence function for the sample variance) Consider an
influence function for the functional Tσ2(G) in (5.5) that defines a variance.
Noting that

Tσ2(G) =

∫

(y − Tµ(G))
2
dG(y)

=
1

2

∫ ∫

(y − z)2dG(y)dG(z), (5.23)

we have

Tσ2((1 − ε)G + εδx)

= (1 − ε)2Tσ2(G) + ε(1 − ε)

∫

(y − x)2dG(y). (5.24)

Hence, by using

∫

(y − x)2dG(y) =

∫

{(y − Tµ(G)) + (Tµ(G) − x)}2dG(y)

=

∫

(y − Tµ(G))2dG(y) + (Tµ(G) − x)2 (5.25)

= Tσ2(G) + (Tµ(G) − x)2,

we obtain the influence function as follows:

T
(1)
σ2 (x;G)= lim

ε→0

Tσ2((1 − ε)G + εδx) − Tσ2(G)

ε

= lim
ε→0

(1−ε)2Tσ2(G)+ε(1−ε){Tσ2(G)+(Tµ(G)−x)2}−Tσ2(G)

ε

=−2Tσ2(G) + Tσ2(G) + (x − Tµ(G))2

=(x−Tµ(G))
2−Tσ2(G). (5.26)

Example 7 (Influence function for the M-estimator) We obtain an
influence function for a statistical functional defined by an implicit equation,
such as the M -estimator. It is assumed that the functional TM (G) is given as
a solution of the implicit equation

∫

ψ(x, TM (G))dG(x) = 0. (5.27)

We directly calculate the derivative

∂

∂ε
{TM ((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

(5.28)
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for the functional TM (G).
First, by substituting (1 − ε)G + εδx for G in (5.27), we have

∫

ψ(y, TM ((1 − ε)G + εδx))d{(1 − ε)G(y) + εδx(y)} = 0. (5.29)

Differentiating both sides of the equation with respect to ε and setting ε = 0
yield

∫

ψ(y, TM (G))d{δx(y) − G(y)} (5.30)

+

∫

∂

∂θ
ψ(y, θ)

∣

∣

∣

∣

θ=TM (G)

dG(y) · ∂

∂ε
{TM ((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

= 0.

Consequently, the influence function, T
(1)
M (x;G), of the functional that defines

the M -estimator is given by

∂

∂ε
{TM ((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

= −
{

∫

∂

∂θ
ψ(y, θ)

∣

∣

∣

∣

θ=TM (G)

dG(y)

}−1

ψ(x, TM (G)) (5.31)

≡ T
(1)
M (x;G).

Example 8 (Influence function for the maximum likelihood estima-
tor) Given a parametric model, f(x|θ) (θ ∈ Θ ⊂ R), the functional TML(G)
for the maximum likelihood estimator of θ is given as the solution of the
equation

∫

∂ log f(z|θ)
∂θ

∣

∣

∣

∣

θ=TML(G)

dG(z) = 0, (5.32)

corresponding to (5.9). Therefore, by taking

ψ(x, θ) =
∂

∂θ
log f(x|θ) (5.33)

in (5.31), it can be readily shown that the influence function, T
(1)
ML(x;G), of

the functional TML(G) is given by

T
(1)
ML(x;G) = J(G)−1 ∂

∂θ
log f(x|θ)

∣

∣

∣

∣

θ=TML(G)

, (5.34)

where

J(G) = −
∫

∂2

∂θ2
log f(x|θ)

∣

∣

∣

∣

θ=TML(G)

dG(x). (5.35)
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5.1.3 Extension of the Information Criteria AIC and TIC

We have shown that various estimators, including maximum likelihood esti-
mators, can be addressed within the framework of functionals. The following
problem arises: How do we construct an information criterion in the context
of statistical functional? Before answering this question theoretically, we shall
re-examine, using functionals, the information criteria AIC and TIC, which
provide criteria for statistical models estimated by the maximum likelihood
method.

Let f(x|θ̂ML) be a statistical model fitted to the observed data drawn from
the true distribution G by the method of maximum likelihood. The maximum
likelihood estimator θ̂ML can be expressed as θ̂ML = TML(Ĝ) for the functional
given in (5.32). As discussed in Chapter 3, the essential idea in constructing

an information criterion is a bias correction for the log-likelihood of f(x|θ̂ML)

in estimating the expected log-likelihood EG

[

log f(Z|θ̂ML)
]

, and from (3.97)

its bias was given by

EG

[

n
∑

α=1

log f(Xα|θ̂ML) − n

∫

log f(z|θ̂ML)dG(z)

]

= J(G)−1I(G) + O(n−1), (5.36)

where

J(G) = −
∫

∂2

∂θ2
log f(x|θ)

∣

∣

∣

∣

θ=TML(G)

dG(x), (5.37)

I(G) =

∫ {

∂ log f(x|θ)
∂θ

}2
∣

∣

∣

∣

∣

θ=TML(G)

dG(x). (5.38)

Using the influence function for the maximum likelihood estimator given by
(5.34), we can rewrite the bias as

J(G)−1I(G) =

∫

J(G)−1

{

∂ log f(x|θ)
∂θ

}2
∣

∣

∣

∣

∣

θ=TML(G)

dG(x)

=

∫

J(G)−1 ∂ log f(x|θ)
∂θ

∂ log f(x|θ)
∂θ

∣

∣

∣

∣

θ=TML(G)

dG(x)

=

∫

T
(1)
ML(x;G)

∂ log f(x|θ)
∂θ

∣

∣

∣

∣

θ=TML(G)

dG(x). (5.39)

This implies that the (asymptotic) bias can be represented as the integral of
the product of the influence function for the maximum likelihood estimator
and the score function for the probability model f(x|θ).

More generally, we consider a statistical model f(x|θ̂) fitted to the data

from G(x), where the estimator is given by using the functional T (G) as θ̂
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= T (Ĝ). It is then expected that the bias of the log-likelihood for the model

f(x|θ̂) in estimating the expected log-likelihood will be

EG

[

n
∑

α=1

log f(Xα|θ̂) − n

∫

log f(z|θ̂)dG(z)

]

=

∫

T (1)(x;G)
∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=T (G)

dG(x) + O(n−1). (5.40)

This conjecture is, in fact, correct, as will be shown in Section 7.1. The as-
ymptotic bias of the log-likelihood for the model with the estimator defined
by a functional is generally given in the form of the integral of the product
of an influence function, T (1)(x;G), of the estimator and the score function,
∂ log f(x|θ)/∂θ, of a specified model.

By replacing the unknown distribution G by the empirical distribution Ĝ
in (5.40) and subtracting the asymptotic bias estimate from the log-likelihood,

we have an information criterion for the statistical model f(x|θ̂) with func-
tional estimator in the following:

GIC = −2

n
∑

α=1

log f(xα|θ̂) +
2

n

n
∑

α=1

T (1)(xα; Ĝ)
∂ log f(xα|θ)

∂θ

∣

∣

∣

∣

∣

θ=T (Ĝ)

.(5.41)

This information criterion is more general than the AIC and TIC, enabling
evaluation of the model whose parameter θ is estimated by θ̂ = T (Ĝ) in terms
of a statistical functional T (G).

Example 9 (Information criterion for a model estimated by

M-estimation) Consider a statistical model f(x|θ̂M ) estimated using the
M -estimation procedure. It follows from (5.31) that the influence function for
the M -estimator is given by

T
(1)
M (x;G) = R(ψ,G)−1ψ(x, TM (G)), (5.42)

where

R(ψ,G) = −
∫

∂

∂θ
ψ(x, θ)

∣

∣

∣

∣

θ=TM (G)

dG(x). (5.43)

Substituting the influence function into (5.40) gives the bias of the log-

likelihood of f(x|θ̂M ) as follows:

EG

[

n
∑

α=1

log f(Xα|θ̂M ) − n

∫

log f(z|θ̂M )dG(z)

]

= R(ψ,G)−1Q(ψ,G) + O(n−1), (5.44)

where
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Q(ψ,G) =

∫

ψ(x, θ)
∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=TM (G)

dG(x). (5.45)

By replacing the unknown distribution G by the empirical distribution Ĝ
in (5.44) and subtracting the asymptotic bias estimate from the log-likelihood,
we have an information criterion for evaluating a model estimated by the M -
estimation procedure as follows:

GICM = −2
n

∑

α=1

log f(xα|θ̂M ) + 2R(ψ, Ĝ)−1Q(ψ, Ĝ), (5.46)

where

R(ψ, Ĝ) = − 1

n

n
∑

α=1

∂ψ(xα, θ)

∂θ

∣

∣

∣

∣

∣

θ=θ̂M

,

Q(ψ, Ĝ) =
1

n

n
∑

α=1

ψ(xα, θ)
∂ log f(xα|θ)

∂θ

∣

∣

∣

∣

∣

θ=θ̂M

. (5.47)

Fisher consistency. We now consider the situation that the specified para-
metric family of probability distributions {f(x|θ); θ ∈ Θ ⊂ R} includes the
true density g(x) within the framework of the functional approach. Let Fθ(x)
be the distribution function of the specified model f(x|θ). Assuming that the
functional T (G) that gives the estimator of an unknown parameter θ satisfies
the condition T (Fθ) = θ at G = Fθ, the estimator T (F̂θ) is an asymptoti-
cally natural estimator for θ, where F̂θ is the empirical distribution function.
Generally, if the equation

T (Fθ) = θ (5.48)

holds for any θ in the parameter space Θ, the functional T (G) is said to be
Fisher consistent [Kallianpur and Rao (1955), Hampel et al. (1986, p. 83)].
For example, for the functional Tµ(G)=

∫

xdG(x), we have

Tµ(Fµ) =

∫

xdFµ(x) = µ for any µ ∈ Θ ⊂ R, (5.49)

where Fµ is a normal distribution function with mean µ.

We assume that the functional TM (G) for an M -estimator is Fisher con-
sistent, so that TM (Fθ) = θ for all θ ∈ Θ, where Fθ is the distribution function
of f(x|θ). It then follows from (5.27) that

∫

ψ(x, θ)dFθ(x) = 0, (5.50)
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for any θ. Differentiating both sides of this equation with respect to θ yields
∫

∂

∂θ
ψ(x, θ)dFθ(x) +

∫

ψ(x, θ)d

{

∂

∂θ
Fθ(x)

}

= 0. (5.51)

By using

d

{

∂

∂θ
Fθ(x)

}

=
∂

∂θ
f(x|θ)dx

=
∂

∂θ
{log f(x|θ)} f(x|θ)dx

=
∂

∂θ
log f(x|θ)dFθ(x), (5.52)

Eq. (5.51) can be rewritten as
∫

∂

∂θ
ψ(x, θ)dFθ(x) = −

∫

ψ(x, θ)
∂

∂θ
log f(x|θ)dFθ(x). (5.53)

Therefore, under the assumption that the true model is contained in the
specified parametric model, it follows from (5.31) that the influence function
of the functional for the M -estimator can be written as

T
(1)
M (x;Fθ) = R(ψ, Fθ)

−1ψ(x, θ), (5.54)

where

R(ψ, Fθ) = −
∫

∂

∂θ
ψ(x, θ)dFθ(x)

=

∫

ψ(x, θ)
∂

∂θ
log f(x|θ)dFθ(x) (5.55)

= Q(ψ, Fθ).

By substituting this influence function into (5.40) and noting that R(ψ, Fθ)
= Q(ψ, Fθ) holds in (5.44) when G = Fθ, we see that the information criterion
(5.46) can be reduced to

GICM = −2

n
∑

α=1

log f(xα|θ̂M ) + 2 × 1. (5.56)

We thus observe that the AIC may be used directly for evaluating statistical
models estimated using the M -estimation procedure, since there is only one
free parameter in the model f(x|θ).

5.2 Generalized Information Criterion (GIC)

In the preceding section, we introduced the fundamentals of functional ap-
proach by using a probability model with one parameter, and the AIC can
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be extended naturally to a more general information criterion by relaxing the
assumptions that (i) estimation is by maximum likelihood, and that (ii) this
is carried out in a parametric family of distributions including the true model.

In this section, we demonstrate that within the framework of statistical
functionals, the information criteria for evaluating models estimated by maxi-
mum likelihood, by maximum penalized likelihood, and by robust procedures
can be derived in a unified manner, and we introduce the generalized in-
formation criterion (GIC) that can be used to evaluate a variety of models.
Examples are given to illustrate how to construct criteria for models estimated
by a variety of estimation procedures including the maximum likelihood and
maximum penalized likelihood methods.

5.2.1 Definition of the GIC

Let G(x) be the true distribution function with density g(x) that generated
data, and let Ĝ(x) be the empirical distribution function based on n observa-
tions, xn = {x1, x2, . . . , xn}, drawn from G(x). On the basis of the information
contained in the observations, we choose a parametric model that consists of
a family of probability distributions {f(x|θ); θ ∈ Θ ⊂ Rp}, where θ = (θ1,
. . . , θp)

T is the p-dimensional vector of unknown parameters and Θ is an open
subset of Rp. This specified family of probability distributions may or may
not contain the true density g(x), but it is expected that its deviation from
the parametric model will not be too large. The adopted parametric model
is estimated by replacing the unknown parameter vector θ by some estimate
θ̂, for which maximum likelihood, penalized likelihood, or robust procedures
may be used for estimating parameters.

In order to construct an information criterion that enables us to evaluate
various types of statistical models, we employ a functional estimator that is
Fisher consistent. Let us assume that the estimator θ̂i for the ith parameter
θi is given by

θ̂i = Ti(Ĝ), i = 1, 2, . . . , p, (5.57)

for a functional Ti(·). If we write the p-dimensional functional vector with
Ti(G) as the ith element by

T (G) = (T1(G), T2(G), . . . , Tp(G))
T

, (5.58)

then the p-dimensional estimator can be expressed as

θ̂ = T (Ĝ) =
(

T1(Ĝ), T2(Ĝ), . . . , Tp(Ĝ)
)T

. (5.59)

Given a functional Ti(G) (i = 1, 2, . . . , p), the influence function, which is
the directional derivative of the functional at the distribution G, is defined by

T
(1)
i (x;G) = lim

ǫ→0

Ti((1 − ǫ)G + ǫ δx) − Ti(G)

ǫ
, (5.60)
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where δx is a distribution function having a probability of 1 at point x. As
shown in Section 5.1, the influence function plays an essential role in the
derivation of an information criterion. We define the p-dimensional vector of

influence function having T
(1)
i (x;G) as the ith element by

T (1)(x;G) =
(

T
(1)
1 (x;G), T

(1)
2 (x;G), . . . , T (1)

p (x;G)
)T

. (5.61)

Then the asymptotic bias in (5.40) for a statistical model with one parameter
may be extended to the following:

Bias of the log-likelihood. The bias of the log-likelihood for the model
f(x|θ̂) in estimating the expected log-likelihood is given by

b(G) = EG

[

n
∑

α=1

logf(Xα|θ̂) − n

∫

log f(z|θ̂)dG(z)

]

(5.62)

= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

θ=T (G)

dG(z)

}

+ O(n−1),

where ∂/∂θ = (∂/∂θ1, ∂/∂θ2, . . . , ∂/∂θp)
T . The integrand function is a p × p

matrix, and the integral of the matrix function is defined as the integral of
each element

∫

T
(1)
i (x;G)

∂ log f(z|θ)

∂θj

∣

∣

∣

∣

θ=T (G)

dG(z). (5.63)

The asymptotic bias of the log-likelihood can be estimated by replacing the
unknown probability distribution G with an empirical distribution function
Ĝ based on the observed data, eliminating the need to determine the integral
analytically, and we thus obtain the following result:

Generalized information criterion (GIC). An information criterion for

evaluating the statistical model f(x|θ̂) with a p-dimensional functional esti-

mator θ̂ = T (Ĝ) is given by

GIC = −2
n

∑

α=1

log f(xα|θ̂)

+
2

n

n
∑

α=1

tr

{

T (1)(xα; Ĝ)
∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

θ=θ̂

}

, (5.64)

where T (1)(xα; Ĝ) = (T
(1)
1 (xα; Ĝ), . . . , T

(1)
p (xα; Ĝ))T and T

(1)
i (xα; Ĝ) is the

empirical influence function defined by
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T
(1)
i (xα; Ĝ) = lim

ε→0

Ti((1 − ε)Ĝ + εδxα
) − Ti(Ĝ)

ε
, (5.65)

with δxα
being a point mass at xα.

When selecting the best model from various different models, we select the
model for which the value of the information criterion GIC is smallest.

By rewriting the asymptotic bias in the GIC, we have

n
∑

α=1

tr

{

T (1)(xα; Ĝ)
∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

θ=θ̂

}

=

p
∑

i=1

n
∑

α=1

T
(1)
i (xα; Ĝ)

∂ log f(xα|θ)

∂θi

∣

∣

∣

∣

θ=θ̂
. (5.66)

This implies that the asymptotic bias is given as the sum of products of the

empirical influence function T
(1)
i (xα; Ĝ) of the estimator θ̂i and the estimated

score function of the model.
The generalized information criterion (GIC) is used to evaluate statistical

models constructed by various estimation procedures including the maximum
likelihood and maximum penalized likelihood methods, and even the Bayesian
approach. Detailed derivations and applications of GIC are given in Konishi
and Kitagawa (1996, 2003), and Konishi (1999, 2002).

Example 10 (Normal model) Suppose that n independent observations
{x1, . . . , xn} are generated from the true distribution G(x) having the density
function g(x). Consider, as a candidate model, a parametric family of normal
densities

f(x|θ) =
1

σ
φ

(

x − µ

σ

)

=
1√

2πσ2
exp

{

− (x − µ)2

2σ2

}

, θ = (µ, σ2)T ∈ Θ. (5.67)

If the parametric model is correctly specified, the family {f(x|θ); θ ∈ Θ ⊂ Rp}
contains the true density as an element g(x) = σ−1

0 φ((x−µ0)/σ0) for some θ0

= (µ0, σ
2
0)T ∈ Θ. The statistical model estimated by the method of maximum

likelihood is

f(x|θ̂) =
1

σ̂
φ

(

x − x

σ̂

)

=
1√

2πσ̂2
exp

{

− (x − x)2

2σ̂2

}

, θ̂ = (x, σ̂2)T , (5.68)

where x and σ̂2 are the sample mean and the sample variance, respectively.
Then the log-likelihood of the statistical model is given by
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n
∑

α=1

log f(xα|θ̂) = −n

2

{

1 + log(2π) + log σ̂2
}

. (5.69)

As shown in (5.3) and (5.5) in the preceding section, the sample mean and
the sample variance are defined, respectively, by the functionals

Tµ(G) =

∫

xdG(x) and Tσ2(G) =

∫

(x − Tµ(G))2dG(x). (5.70)

Recall that it was shown in (5.22) and (5.26) that these influence functions
are given by

T (1)
µ (x;G) = x − Tµ(G),

T
(1)
σ2 (x;G) = (x − Tµ(G))2 − Tσ2(G). (5.71)

On the other hand, the partial derivative of the log-likelihood function is

∂ log f(x|µ, σ2)

∂µ

∣

∣

∣

∣

θ=T (G)

=
x − Tµ(G)

Tσ2(G)
,

∂ log f(x|µ, σ2)

∂σ2

∣

∣

∣

∣

θ=T (G)

= − 1

2Tσ2(G)
+

(x − Tµ(G))2

2Tσ2(G)2
, (5.72)

where θ = (µ, σ2)T and T (G) = (Tµ(G), Tσ2(G))T .
By substituting these results into (5.62), the (asymptotic) bias of the log-

likelihood can be obtained as

b(G) =

∫

T (1)
µ (x;G)

∂ log f(x|µ, σ2)

∂µ

∣

∣

∣

∣

θ=T (G)

dG(x)

+

∫

T
(1)
σ2 (x;G)

∂ log f(x|µ, σ2)

∂σ2

∣

∣

∣

∣

θ=T (G)

dG(x) (5.73)

=
1

2

{

1 +
µ4(G)

Tσ2(G)2

}

,

where µ4(G) is defined by

µ4(G) =

∫

(x − Tµ(G))4dG(x). (5.74)

By replacing the unknown distribution G in the bias correction term with the
empirical distribution function Ĝ, we have

b(Ĝ) =
1

2

{

1 +
µ4(Ĝ)

σ̂4

}

, (5.75)

where
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µ4(Ĝ) =

∫

(x − Tµ(Ĝ))4dĜ(x)

=
1

n

n
∑

α=1

(xα − x)4. (5.76)

Hence, it follows from (5.64) that the GIC is given by

GIC = n
{

1 + log(2π) + log σ̂2
}

+ 2

{

1

2
+

1

2nσ̂4

n
∑

α=1

(xα − x)4

}

. (5.77)

In a particular situation where the normal model contains the true density,
that is, g(x) = σ−1

0 φ((x − µ0)/σ0) for some θ = (µ0, σ
2
0)T ∈ Θ, the fourth

central moment µ4 equals 3σ4
0 , and hence we have

b(G) =
1

2
+

µ4

2σ4
0

= 2, (5.78)

the asymptotic bias for the AIC.

Example 11 (Numerical comparison) Suppose that the true density g(x)
and the parametric model f(x|θ) are respectively

g(x) = (1 − ε)
1

σ01
φ

(

x − µ01

σ01

)

+ ε
1

σ02
φ

(

x − µ02

σ02

)

, 0 ≤ ε ≤ 1, (5.79)

f(x|θ) =
1

σ
φ

(

x − µ

σ

)

, θ = (µ, σ2)T , (5.80)

where φ(x) denotes the density function of a standard normal distribution.
The statistical model is constructed based on n independent observations from
the mixture distribution g(x) and is given by (5.68).

Under this situation, the expected log-likelihood for f(z|x, σ̂2) can be writ-
ten as

∫

g(z) log f(z|x, σ̂2)dz = −1

2
log(2π) − 1

2
log σ̂2 − 1

2σ̂2

∫

(z − x)2g(z)dz

= −1

2
log(2π) − 1

2
log σ̂2

− 1

2σ̂2

[

(1 − ε)
{

σ2
01 + (µ01 − x)2

}

+ ε
{

σ2
02 + (µ02 − x)2

}]

. (5.81)

From the results of Example 10, the bias of the log-likelihood in estimating
this expected log-likelihood is approximated by
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b(G) = EG

[

n
∑

α=1

log f(Xα|X, σ̂2) − n

∫

g(z) log f(z|X, σ̂2)dz

]

= EG

[

−n

2
+

n

2σ̂2

{

(1 − ε)
(

σ2
01 + (µ01 − X)2

)

+ ε
(

σ2
02 + (µ02 − X)2

)}

]

≈ 1

2
+

µ4(G)

2σ4(G)
, (5.82)

where σ2(G) and µ4(G) are the variance and the fourth central moment of
the mixture distribution g(x), respectively. Hence, we have the bias estimate

b(Ĝ) ≈ 1

2
+

1

2nσ̂4

n
∑

α=1

(xα − x)4. (5.83)

A Monte Carlo simulation was performed to examine the accuracy of the
asymptotic bias. Repeated random samples were generated from a mixture of
normal distributions g(x) in (5.79) for different combinations of parameters,
in which we took (i) (µ01, µ02, σ01, σ02) = (0, 0, 1, 3) in the left panels of
Figure 5.3 and (ii) (µ01, µ02, σ01, σ02) = (0, 5, 1, 1) in the right panels of
Figure 5.3.

Figure 5.3 shows a plot of the true bias b(G) and the asymptotic bias esti-
mate b(Ĝ) given by (5.83) with standard errors for various values of the mixing
proportion ε. The quantities are estimated by a Monte Carlo simulation with
100,000 repetitions.

It can be seen from the figure that the log-likelihood of a fitted model has
a significant bias as an estimate of the expected log-likelihood and that the
bias is considerably larger than 2, the approximation of the AIC, if the values
of the mixing proportion ε are around 0.05 ∼ 0.1. In the case that ε = 0 or 1,
the true distribution g(x) belongs to the specified parametric model and the
bias is approximated well by the number of estimated parameters. We also
see that for larger sample sizes, the true bias and the estimated asymptotic
bias (5.83) coincide well. On the other hand, for smaller sample sizes such as
n = 25, the estimated asymptotic bias underestimates the true bias.

5.2.2 Maximum Likelihood Method: Relationship Among AIC,
TIC, and GIC

According to the assumptions made for model estimation and the relationship
between the specified model and the true model, the GIC in (5.64) takes
a different form, and consequently we obtain the AIC and TIC proposed
previously.

Let us assume that the maximum likelihood method is used for estimating
a specified model f(x|θ) based on the observed data from G(x). The maximum

likelihood estimator, θ̂ML, is defined as a solution of the equation
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Fig. 5.3. Comparison of the true bias b(G) (bold curve) and the estimated as-
ymptotic bias b(Ĝ) (thin curve) with standard errors (· · · · · ·) for the sample sizes
n = 25, 100, and 200. (a), (c), (e) (µ01, µ02, σ01, σ02) = (0, 0, 1, 3) and (b), (d), (f)
(µ01, µ02, σ01, σ02) = (0, 5, 1, 1).
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n
∑

α=1

∂ log f(xα|θ)

∂θ
= 0, (5.84)

where ∂/∂θ = (∂/∂θ1, . . . , ∂/∂θp)
T and 0 is the p-dimensional null vector. For

any distribution function G, the solution can be expressed as θ̂ML = T ML(Ĝ)
with respect to the p-dimensional functional T ML(G) implicitly defined by

∫

∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=T ML(G)

dG(x) = 0. (5.85)

Hence, under certain regularity conditions, the maximum likelihood estimator
converges almost surely to the solution T ML(G) of (5.85) as the sample size
tends to infinity, that is,

lim
n→+∞

T ML(Ĝ) = T ML(G). (5.86)

This is equivalent to convergence almost surely to the value that minimizes
the Kullback–Leibler information.

The influence function for the maximum likelihood estimator can be ob-
tained as follows: By replacing the distribution function G in (5.85) with
(1 − ε)G +εδx, we have

∫

∂ log f(y|T ML((1 − ε)G + εδx))

∂θ
d {(1 − ε)G(y) + εδx(y)} = 0. (5.87)

Differentiating both sides with respect to ε and setting ε = 0 yield
∫

∂ log f(y|T ML(G))

∂θ
d {δx(y) − G(y)} (5.88)

+

∫

∂2 log f(y|T ML(G))

∂θ∂θT
dG(y) · ∂

∂ε
{T ML((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

= 0,

where, given the log-likelihood function ℓ(θ) of the p-dimensional parameter
vector θ, the second-order partial derivative with respect to θ is defined as a
p × p symmetric matrix

∂2ℓ(θ)

∂θ∂θT
=

[

∂2ℓ(θ)

∂θi∂θj

]

, i, j = 1, 2, . . . , p. (5.89)

Consequently, by noting that
∫

∂ log f(y|T ML(G))

∂θ
dδx(y) =

∂ log f(x|T ML(G))

∂θ
(5.90)

and using (5.85), we obtain the following result:

Influence function for a maximum likelihood estimator. From (5.88),
we have the p-dimensional influence function for the maximum likelihood es-
timator θ̂ML = T ML(Ĝ) in the form
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∂

∂ε
{T ML((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

= J(G)−1 ∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=T ML(G)

≡ T
(1)
ML(x;G), (5.91)

where J(G) is a p × p matrix given by

J(G) = −
∫

∂2 log f(x|θ)

∂θ∂θT

∣

∣

∣

∣

θ=T ML(G)

dG(x). (5.92)

By replacing the influence function T (1)(x;G) in (5.62) with the influence
function for the maximum likelihood estimator, we obtain the asymptotic bias
of the log-likelihood for the estimated model f(x|θ̂ML):

bML(G) = tr

{

∫

T
(1)
ML(x;G)

∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T ML(G)

dG(x)

}

= tr

{

J(G)−1

∫

∂ log f(x|θ)

∂θ

∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T ML(G)

dG(x)

}

= tr
{

J(G)−1I(G)
}

, (5.93)

where the p × p matrix I(G) is given by

I(G) =

∫

∂ log f(x|θ)

∂θ

∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T ML(G)

dG(x). (5.94)

Therefore, for the model f(x|θ̂ML) estimated by the maximum likelihood
method, the generalized information criterion in (5.64) is reduced to

TIC = −2

n
∑

α=1

log f(xα|θ̂ML) + 2tr
{

J(Ĝ)−1I(Ĝ)
}

, (5.95)

which agrees with the TIC [Takeuchi (1976)] given by (3.99) in Subsection
3.4.3.

We now consider the case where the true probability distribution G(x)
[or the density g(x)] is contained in the specified parametric model {f(x|θ);
θ ∈ Θ ⊂ Rp}. Let f(x|θ) and Fθ be, respectively, the true density and its
distribution function generating the data. It is assumed that the functional
T ML(G) in (5.85) for the maximum likelihood estimator is Fisher consistent,
that is,

T ML(Fθ) = θ for all θ ∈ Θ ⊂ Rp (5.96)

[for Fisher consistency, see (5.48) in the preceding section]. Under this as-
sumption, (5.85) can be rewritten as
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∫

∂ log f(x|θ)

∂θ
dFθ(x) = 0. (5.97)

Differentiating both sides of this equality with respect to θ gives

∫

∂2 log f(x|θ)

∂θ∂θT
dFθ(x) +

∫

∂ log f(x|θ)

∂θ

∂ log f(x|θ)

∂θT
dFθ(z) = 0. (5.98)

Hence, we have I(Fθ) = J(Fθ), called the Fisher information matrix, and

then the bias of the log-likelihood for f(x|θ̂ML) in (5.93) is further reduced to

bML(Fθ) = tr
{

J(Fθ)−1I(Fθ)
}

= p, (5.99)

the number of estimated parameters in the specified model f(x|θ). Therefore,
we obtain the AIC:

AIC = −2
n

∑

α=1

log f(xα|θ̂ML) + 2p. (5.100)

Thus, by determining an influence function from the functional that defines
a maximum likelihood estimator, it can be shown that the GIC is reduced to
the TIC, and by assuming Fisher consistency for the functional, the GIC is
further reduced to the AIC.

5.2.3 Robust Estimation

In this subsection, we derive an information criterion for evaluating a statis-
tical model estimated by robust procedures, using the GIC in (5.64).

Suppose that f(x|θ̂M ) is the estimated model based on data drawn from

the true distribution G(x), where θ̂M is a p-dimensional M -estimator defined
as the solution of the system of implicit equations

n
∑

α=1

ψi(xα, θ̂M ) = 0, i = 1, . . . , p, (5.101)

or, in vector notation,

n
∑

α=1

ψ(xα, θ̂M ) = 0. (5.102)

Here, ψi(x,θ) is a real-valued function defined on the product space of the
sample and parameter spaces, and ψ = (ψ1, ψ2, . . . , ψp)

T is referred to as a ψ-

function. The M -estimator θ̂M is given by θ̂M = T M (Ĝ) for the p-dimensional
functional vector T M (G) defined as the solution of the implicit equations

∫

ψi(x,T M (G))dG(x) = 0, i = 1, . . . , p, (5.103)
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or, in vector notation,
∫

ψ(x,T M (G))dG(x) = 0. (5.104)

In order to apply the GIC of (5.64), we employ arguments similar to those
used in the previous subsection to obtain the influence function for the M -
estimator θ̂M . We first replace the distribution function G with (1−ε)G+εδx

in (5.104) as follows:
∫

ψ(y,T M ((1 − ε)G + εδx) d {(1 − ε)G(y) + εδx(y)} = 0. (5.105)

Differentiating both sides of this equation with respect to ε and setting ε = 0,
we have

∫

ψ(y,T M (G))d {δx(y) − G(y)} (5.106)

+

∫

∂ψ(y,T M (G))T

∂θ
dG(y) · ∂

∂ε
{T M ((1 − ε)G + εδx)}

∣

∣

∣

∣

ε=0

= 0,

where ψ(y,T M (G))T represents a p-dimensional row vector.
Consequently, by making use of (5.104) and

∫

ψ(y,T M (G))dδx(y) = ψ(x,T M (G)), (5.107)

we have the following result:

Influence function for the M-estimator. The p-dimensional influence

function, T
(1)
M (x;G), for the M -estimator is given by

∂

∂ε
{T M ((1 − ε)G + εδx)}ε=0 = R(ψ, G)−1ψ(x,T M (G))

≡ T
(1)
M (x;G), (5.108)

where R(ψ, G) is defined as a p × p matrix given by

R(ψ, G) = −
∫

∂ψ(x,θ)T

∂θ

∣

∣

∣

∣

θ=TM (G)

dG(x), (5.109)

with the (i, j)th element

−
∫

∂ψj(x,θ)

∂θi

∣

∣

∣

∣

θ=TM (G)

dG(x), i, j = 1, . . . , p. (5.110)

Substituting this influence function T
(1)
M (x;G) into (5.62), we have the

asymptotic bias of the log-likelihood of the model f(x|θ̂M ) in estimating the
expected log-likelihood in the form
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bM (G) = tr

{

∫

T
(1)
M (x;G)

∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T M (G)

dG(x)

}

= tr

{

R(ψ, G)−1

∫

ψ(x,T M (G))
∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T M (G)

dG(x)

}

= tr
{

R(ψ, G)−1Q(ψ, G)
}

, (5.111)

where Q(ψ, G) is a p × p matrix defined by

Q(ψ, G) =

∫

ψ(x,T M (G))
∂ log f(x|θ)

∂θT

∣

∣

∣

∣

θ=T M (G)

dG(x), (5.112)

with the (i, j)th element

∫

ψi(x,T M (G))
∂ log f(x|θ)

∂θj

∣

∣

∣

∣

θ=T M (G)

, i, j = 1, . . . , p. (5.113)

Then, by using the GIC in (5.64), we have the following result:

Information criterion for a model estimated by a robust procedure.
An information criterion for evaluating the statistical model f(x|θ̂M ) with

the M -estimator θ̂M is given by

GICM = −2

n
∑

α=1

log f(xα|θ̂M ) + 2tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

, (5.114)

where R(ψ, Ĝ) and Q(ψ, Ĝ) are p × p matrices given by

R(ψ, Ĝ) = − 1

n

n
∑

α=1

∂ψ(xα,θ)T

∂θ

∣

∣

∣

∣

∣

θ=θ̂

,

Q(ψ, Ĝ) =
1

n

n
∑

α=1

ψ(xα, θ̂)
∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

∣

θ=θ̂

. (5.115)

The maximum likelihood estimator is an M -estimator, corresponding to
ψ(x|θ) = ∂ log f(x|θ)/∂θ. By taking this ψ-function in (5.109) and (5.112),
we have

R(ψ, Ĝ) = J(G) and Q(ψ, Ĝ) = I(G), (5.116)

where J(G) and I(G) are respectively given by (5.92) and (5.94). Therefore,
we know that the information criterion GICM produces in a simple way the
TIC given in (5.95).
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We now consider the situation in which the parametric family of prob-
ability distributions {f(x|θ); θ ∈ Θ ⊂ Rp} contains the true distribution
g(x) and the functional T M defined by (5.104) is Fisher consistent, so that
T M (Fθ) = θ for all θ ∈ Θ ⊂ Rp, where Fθ(x) is the distribution function of
f(x|θ). It is then easy to see that (5.104) can be expressed as

∫

ψ(x,θ)dFθ(x) = 0. (5.117)

By differentiating both sides of the equation with respect to θ, we have
∫

∂ψ(x,θ)T

∂θ
dFθ(x) +

∫

ψ(x,θ)
∂ log f(x|θ)

∂θT
dFθ(x) = 0. (5.118)

[See also the result of (5.98) in the preceding section.] It therefore follows that
Q(ψ, Fθ) = R(ψ, Fθ), so that the asymptotic bias in (5.111) can be further
reduced to

bM (Fθ) = tr
{

R(ψ, Fθ)−1Q(ψ, Fθ)
}

= p. (5.119)

Hence, we have

AIC = −2

n
∑

α=1

log f(xα|θ̂M ) + 2p. (5.120)

This implies that the AIC can be applied directly to evaluate statistical models
within the framework of M -estimation.

Example 12 (Normal model estimated by a robust procedure) Con-
sider the parametric model Fθ(x) = Φ((x − µ)/σ), where Φ is the standard
normal distribution function. It is assumed that the parametric family of dis-
tributions {Fθ(x); θ ∈ Θ ⊂ R2} (θ = (µ, σ)T ) contains the true distribution
generating the data {x1, . . . , xn}. The location and scale parameters are re-
spectively estimated by the median, µ̂m, and the median absolute deviation,
σ̂m, given by

µ̂m = medi{xi} and σ̂m =
1

c
medi{|xi − medj(xj)|}, (5.121)

where c = Φ−1(0.75) is chosen to make σ̂m Fisher consistent for Φ. The M -
estimators µ̂m and σ̂m are defined by the ψ-function vector

ψ(z;µ, σ) =
(

sign(z − µ), c−1sign(|z − µ| − cσ)
)T

, (5.122)

and their influence functions are

T (1)
µ (z;Fθ) =

sign(z − µ)

2φ(0)
,

T (1)
σ (z;Fθ) =

sign(|z − µ| − cσ)

4cφ(c)
, (5.123)
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where φ is the standard normal density function [see Huber (1981, p. 137)].
Then, in estimating the expected log-likelihood

∫

1

σ̂m
φ

(

x − µ̂m

σ̂m

)

dΦ(x), (5.124)

the bias correction term (5.111) for the log-likelihood

n
∑

α=1

log

{

1

σ̂m
φ

(

xα − µ̂m

σ̂m

)}

(5.125)

is [writing y = (z − µ)/σ]

∫

sign(y)

2φ(0)
ydΦ(y) +

∫

sign(|y| − c)

4cφ(c)
(y2 − 1)dΦ(y) = 2,

which is the number of estimated parameters in the normal model and yields
the result given in (5.120). We observe that the AIC also holds within the
framework of the robust procedure.

Example 13 (M-estimation for linear regression) Let {(yα,xα); α =
1, . . . , n} (yα ∈ R, xα ∈ Rp) be a sample of independent, identically dis-
tributed random variables with common distribution G(y,x) having density
g(y,x). Consider the linear model

yα = xT
αβ + εα, α = 1, . . . , n, (5.126)

where β is a p-dimensional parameter vector. Let F (y,x|β) be a model dis-
tribution with density f(y,x|β) = f1(y−xT β)f2(x), in which the error εα is
assumed to be independent of xα and its scale parameter is ignored.

For the linear regression model, we use M -estimates of the regression co-
efficients β given as the solution of the system of equations

n
∑

α=1

ψ(yα − xT
α β̂R)xα = 0, (5.127)

where ψ(·) is a real-valued function. The influence function of the M -estimator
defined by the above equation at the distribution G is

T
(1)
R (G)=

{∫

ψ′(y − xT T R(G))xxT dG

}−1

ψ(y − xT T R(G))x, (5.128)

where ψ′(z) = ∂ψ(z)/∂z and T R(G) is the functional given by

∫

ψ(y − xT T R(G))xdG = 0. (5.129)
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It then follows from (5.111) that the asymptotic bias of the log-likelihood of

f(y,x|β̂R) is

b
(1)
R (G) = tr

(

[∫

ψ′
(

y − xT T R(G)
)

xxT dG

]−1

(5.130)

×
∫

ψ
(

y − xT T R(G)
)

x
∂ log f(y,x|β)

∂βT

∣

∣

∣

∣

β=T R(G)

dG

)

.

Suppose that the true density g can be written in the form g(y,x) =
g1(y−xT β)g2(x) and that the M -estimator defined by (5.127) is the maximum
likelihood estimator for the model f(y,x|β), that is, ∂ log f(y,x|β)/∂β =

ψ(y − xT β)x. Then the asymptotic bias b
(1)
R (G) in (5.130) can be reduced to

Eg1
(ψ′)−1Eg1

(ψ2)p, which agrees with the result given by Ronchetti (1985,
p. 23).

Example 14 (Numerical comparison) Consider the normal model Fθ(x)
= Φ((x − µ)/σ) having the density f(x|θ) = σ−1φ((x − µ)/σ), where θ =
(µ, σ)T . It is assumed that the parametric family of distributions {Fθ(x);
θ ∈ Θ ⊂ R2} contains the true distribution that generates the data. The
location and scale parameters are respectively estimated by the median,
µ̂m = medi{xi}, and the median absolute deviation, σ̂m = (1/c)medi{|xi −
medj(Xj)|}, where c = Φ−1(0.75) is chosen to make σ̂m Fisher consistent for
Φ.

Table 5.1. Biases of the log-likelihoods for the M -estimators and the maximum
likelihood estimators.

n 25 50 100 200 400 800 1600

M -estimators 3.839 2.569 2.250 2.125 2.056 2.029 2.012

MLE 2.229 2.079 2.047 2.032 2.014 2.002 2.003

Table 5.1 compares the finite-sample biases b(G) of (5.62) of the log-
likelihoods for the M -estimator (µ̂m, σ̂m) and the maximum likelihood esti-
mator (µ̂, σ̂2) obtained by averaging over 100,000 repeated Monte Carlo trials.
Note that the bias for the maximum likelihood estimator is analytically given
by b(G) = 2n/(n − 3) as shown in (3.127).

From the table it may be observed that in the case of the maximum like-
lihood estimator, the biases are relatively close to 2, which is the asymptotic
bias, even when the number of observations involved is small. In contrast, in
the case of the M -estimator, the bias is considerably large when n = 25. Both



134 5 Generalized Information Criterion (GIC)

of the biases actually converge to the asymptotic bias, 2, as the sample size
n becomes large and the convergence of the bias of the robust estimator is
slower than that of the maximum likelihood estimator.

5.2.4 Maximum Penalized Likelihood Methods

Nonlinear statistical modeling has received considerable attention in various
fields of research such as statistical science, information science, engineering,
and artifical intelligence. Nonlinear models are generally characterized by in-
cluding a large number of parameters. Since maximum likelihood methods
yield unstable parameter estimates, the adopted model is usually estimated
using the maximum penalized likelihood method or the method of regular-
ization [Good and Gaskins (1971, 1980), Green and Silverman (1994)]. We
introduce an information criterion for statistical models constructed by regu-
larization through the case of a regression model and discuss the choice of a
smoothing parameter.

Suppose that we have n observations {(yα,xα); α = 1, · · · , n}, where yα

are independent random response variables, xα are vectors of explanatory
variables, and yα are generated from an unknown true distribution G(y|x)
having a probability density g(y|x). Regression models, in general, consist
of a random component and a systematic component. The random compo-
nent specifies the distribution of the response variable y, while the systematic
component represents the mean structure

E[Yα|xα] = u(xα), α = 1, 2, . . . , n. (5.131)

Regression models are used for determining the structure of systems, and
such models are generally represented as

u(xα;w), α = 1, 2, . . . , n, (5.132)

where w is a vector consisting of the unknown parameters contained in each
model. The following models are used as regression functions that approxi-
mate the mean structure: (i) linear regression, (ii) polynomial regression, (iii)
natural cubic splines given by piecewise polynomials [Green and Silverman
(1994, p. 12)], (iv) B-splines [de Boor (1978), Imoto (2001), Imoto and Kon-
ishi (2003)], (v) kernel functions [Simonoff (1996)], and (vi) neural networks
[Bishop (1995), Ripley (1996)].

Let f(yα|xα;θ) be a specified parametric model, where θ is a vector of
unknown parameters included in the model. For example, a regression model
with Gaussian noise is expressed as

f(yα|xα;θ) =
1√

2πσ2
exp

[

−{yα − u(xα;w)}2

2σ2

]

, (5.133)

where θ = (wT , σ2)T . The parametric model may be estimated by various pro-
cedures including maximum likelihood, robust procedures for handling outliers
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[Huber (1981), Hampel et al. (1986)]. Shrinkage estimators provide an alterna-
tive estimation method that may be used to advantage when the explanatory
variables are highly correlated or when the number of explanatory variables
is relatively large compared with the number of observations.

In the estimation of nonlinear regression models for analyzing data with
complex structure, the maximum likelihood method often yields unstable pa-
rameter estimates and complicated regression curves or surfaces. Instead of
maximizing the log-likelihood function, we choose the values of unknown pa-
rameters to maximize the penalized log-likelihood function (or the regularized
log-likelihood function)

ℓλ(θ) =

n
∑

α=1

log f(yα|xα;θ) − n

2
λH(w). (5.134)

This estimation procedure is referred to as the maximum penalized likelihood
method or the regularization method.

The first term in (5.134) is a measure of goodness of fit to the data, while
the second term penalizes the roughness of the regression function. The pa-
rameter λ (> 0), called a smoothing parameter or a regularization parameter,
performs the function of controlling the trade-off between the smoothness of
the function and the goodness of fit to the data. A crucial aspect of model
construction is the choice of the smoothing parameter λ. We consider the use
of the GIC as a smoothing parameter selector.

The method based on maximizing the penalized log-likelihood function
was originally introduced by Good and Gaskins (1971) in the context of den-
sity estimation. The Bayesian justification of the method and its relation to
shrinkage estimators have been investigated by many authors [Wahba (1978,
1990), Akaike (1980b), Silverman (1985), Shibata (1989), and Kitagawa and
Gersch (1996)].

Candidate penalties or regularization terms H(w) with an m-dimensional
parameter vector w (i) are the discrete approximation of the integration of a
second-order derivative that takes the curvature of the function into account,
(ii) are finite differences of the unknown parameters, and (iii) sum of squares
of wi are used, depending on the regression functions and data structure under
consideration. These are given, respectively, by

(i) H1(w) =
1

n

n
∑

α=1

p
∑

i=1

{

∂2u(xα;w)

∂x2
i

}2

,

(ii) H2(w) =

m
∑

i=k+1

(∆kwi)
2, (5.135)

(iii) H3(w) =
m

∑

i=1

w2
i ,

where ∆ represents the difference operator such that ∆wi = wi − wi−1.
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The regularization term can often be represented as the quadratic function
wT Kw of the parameter vector w, where K is a known m × m nonnegative
definite matrix. For example, using the m × m identity matrix Im, we can
write H3(w) as H3(w) = wT Imw. Similarly, the regularization term H2(w)
based on the difference operator can be represented as

H2(w) = wT DT
k Dkw = wT Kw, (5.136)

where Dk is an (m − k) × m matrix given by

Dk =

⎡

⎢

⎢

⎢

⎢

⎣

kC0 −kC1 · · · (−1)k
kCk 0 · · · 0

0 kC0 −kC1 · · · (−1)k
kCk

. . .
...

...
. . .

. . .
. . .

. . . 0 0
0 · · · 0 kC0 −kC0 · · · (−1)k

kCk

⎤

⎥

⎥

⎥

⎥

⎦

(5.137)

with the binomial coefficient kCi. A regularization term frequently used in
practice is a second-order difference term given by

D2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1

⎤

⎥

⎥

⎥

⎥

⎦

. (5.138)

The use of difference penalties has been investigated by Whittaker (1923),
Green and Yandell (1985), O’Sullivan et al. (1986), and Kitagawa and Gersch
(1996).

We now consider the penalized log-likelihood function expressed as

ℓλ(θ) =

n
∑

α=1

log f(yα|xα;θ) − nλ

2
wT Kw. (5.139)

Let θ̂P be the estimator that maximizes the penalized log-likelihood function
(5.139). Then it can be seen that the estimator θ̂P is given as the solution of
the implicit equation

n
∑

α=1

ψP (yα,θ) = 0, (5.140)

where

ψP (yα,θ) =
∂

∂θ

{

log f(yα|xα;θ) − λ

2
wT Kw

}

. (5.141)

Therefore, an information criterion for evaluating the model f(y|x; θ̂P ) esti-
mated by regularization can be easily obtained within the framework of robust
estimation.
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In (5.114), by replacing the ψ-function with ψP given by (5.141), we obtain
the following result:

Information criterion for a model estimated by regularization. An
information criterion for the model f(y|x; θ̂P ) with θ̂P obtained by maximiz-
ing (5.139) is given by

GICP =−2
n

∑

α=1

log f(yα|xα; θ̂P )+2tr
{

R(ψP , Ĝ)−1Q(ψP , Ĝ)
}

, (5.142)

where R(ψP , Ĝ) and Q(ψP , Ĝ) are (m + 1) × (m + 1) matrices respectively
given by

R(ψP , Ĝ) = − 1

n

n
∑

α=1

∂ψP (yα,θ)T

∂θ

∣

∣

∣

∣

∣

θ=θ̂P

,

Q(ψP , Ĝ) =
1

n

n
∑

α=1

ψP (yα,θ)
∂ log f(yα|xα;θ)

∂θT

∣

∣

∣

∣

∣

θ=θ̂P

. (5.143)

Furthermore, by setting ℓα(θ) = log f(yα|xα;θ) with θ = (wT , σ2)T , these
matrices can be expressed as follows:

∂ψP (yα,θ)T

∂θ
=

⎡

⎢

⎢

⎢

⎣

∂2ℓα(θ)

∂w∂wT
− λK

∂2ℓα(θ)

∂w∂σ2

∂2ℓα(θ)

∂σ2∂wT

∂2ℓα(θ)

∂σ2∂σ2

⎤

⎥

⎥

⎥

⎦

, (5.144)

ψP (yα,θP )
∂ log f(yα|xα;θ)

∂θT
(5.145)

=

⎡

⎢

⎢

⎢

⎣

∂ℓα(θ)

∂w

∂ℓα(θ)

∂wT
− λKw

∂ℓα(θ)

∂wT

∂ℓα(θ)

∂w

∂ℓα(θ)

∂σ2
− λKw

∂ℓα(θ)

∂σ2

∂ℓα(θ)

∂σ2

∂ℓα(θ)

∂wT

{

∂ℓα(θ)

∂σ2

}2

⎤

⎥

⎥

⎥

⎦

.

A crucial issue with nonlinear modeling is the choice of a smoothing param-
eter, since the estimated model f(y|x; θ̂P ) depends on a smoothing parameter
λ. Selection of the smoothing parameter in the modeling process can be viewed
as a model selection and evaluation problem. Therefore, an information crite-
rion for evaluating the model f(y|x; θ̂P ) estimated by regularization may be
used as a smoothing parameter selector. By evaluating statistical models de-
termined according to the various values of the smoothing parameter, we take



138 5 Generalized Information Criterion (GIC)

the optimal value of the smoothing parameter λ to be that which minimizes
the value of GICP .

Shibata (1989) introduced an information criterion for evaluating models
estimated by regularization and called RIC for regularized information cri-
terion. In neural network models Murata et al. (1994) proposed a network
information criterion (NIC) as an estimator of the expected loss for a loss
function −ℓ(θ) +λH(θ), where H(θ) is a regularization term.



6

Statistical Modeling by GIC

The current wide availability of fast and inexpensive computers enables us
to construct various types of nonlinear models for analyzing data having a
complex structure. Crucial issues associated with nonlinear modeling are the
choice of adjusted parameters including the smoothing parameter, the number
of basis functions in splines and B-splines, and the number of hidden units in
neural networks. Selection of these parameters in the modeling process can be
viewed as a model selection and evaluation problem. This chapter addresses
these issues as a model selection and evaluation problem and provides criteria
for evaluating various types of statistical models.

6.1 Nonlinear Regression Modeling via Basis Expansions

In this section, we consider the problem of evaluating nonlinear regression
models constructed by the method of regularization. The information criterion
GIC is applied to the choice of smoothing parameters and the number of basis
functions in the model building process.

Suppose we have n independent observations {(yα,xα); α = 1, 2, . . . , n},
where yα are random response variables and xα are p-dimensional vectors of
the explanatory variables. In order to extract information from the data, we
use the Gaussian nonlinear regression model

yα = u(xα) + εα, α = 1, 2, . . . , n, (6.1)

where u(·) is an unknown smooth function and the errors εα are independently,
normally distributed with mean zero and variance σ2. The problem to be
considered is estimating the function u(·) from the observed data, for which
we use a regression function expressed as a linear combination of a prescribed
set of m basis functions in the following:

u(xα) ≈ u(xα;w) =
m

∑

i=1

wibi(xα), (6.2)



140 6 Statistical Modeling by GIC

where bi(x) are real-valued functions of a p-dimensional vector of explanatory
variables x = (x1, x2, . . . , xp)

T .
For example, a linear regression model can be expressed as

p
∑

i=0

wibi(x) = w0 + w1x1 + w2x2 + · · · + wpxp, (6.3)

by putting either b1(x) = 1, bi(x) = xi−1 (i = 2, 3, . . . , p + 1), or bi(x)
= xi (i = 1, 2, . . . , p) and adding a basis function b0(x) ≡ 1 for the intercept
w0. Similarly, the polynomial regression of an explanatory variable x can be
expressed as

m
∑

i=0

wibi(x) = w0 + w1x + w2x
2 + · · · + wmxm,

by adding the basis function b0(x) = 1 for the intercept w0 and setting bi(x) =
xi.

The Fourier series is the most popular source of basis functions and is
defined by b0(x) =

√

1/T and

bj(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

2

T
sin(wjx), wj =

(j + 1)π

T
if j is odd,

√

2

T
cos(wjx), wj =

jπ

T
if j is even,

(6.4)

for j = 1, 2, . . . , m and the interval [0, T ]. The Fourier series is useful for basis
functions if the observed data are periodic and have sinusoidal features. The
natural cubic spline given in Example 17 in Subsection 2.3.1 is also represented
by basis functions. Other basis functions, such as the B-spline and radial basis
functions, are described in Section 6.2. For basis expansions, we refer to Hastie
et al. (2001, Chapter 5).

The regression model based on the basis expansion is represented by

yα =

m
∑

i=1

wibi(xα) + εα

= wT b(xα) + εα, α = 1, 2, . . . , n, (6.5)

where b(x) = (b1(x), b2(x), . . . , bm(x))T is an m-dimensional vector of basis
functions and w = (w1, w2, . . . , wm)T is an m-dimensional vector of unknown
parameters. Then a regression model with Gaussian noise is expressed as a
probability density function

f(yα|xα;θ) =
1√

2πσ2
exp

[

−
{

yα − wT b(xα)
}2

2σ2

]

, (6.6)
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where θ = (wT , σ2)T .
The unknown parameter vector θ is estimated by maximizing the penalized

log-likelihood function:

ℓλ(θ) =
n

∑

α=1

log f(yα|xα;θ) − nλ

2
wT Kw (6.7)

= −n

2
log(2πσ2) − 1

2σ2

n
∑

α=1

{

yα − wT b(xα)
}2 − nλ

2
wT Kw

= −n

2
log(2πσ2) − 1

2σ2
(y − Bw)T (y − Bw) − nλ

2
wT Kw,

where y = (y1, y2, . . . , yn)T and B is an n × m matrix composed of the fol-
lowing basis functions:

B =

⎡

⎢

⎢

⎢

⎣

b(x1)
T

b(x2)
T

...
b(xn)T

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

b1(x1) b2(x1) · · · bm(x1)
b1(x2) b2(x2) · · · bm(x2)

...
...

. . .
...

b1(xn) b2(xn) · · · bm(xn)

⎤

⎥

⎥

⎥

⎦

. (6.8)

By differentiating ℓλ(θ) with respect to θ = (βT , σ2)T and setting the result
equal to 0, we have the maximum penalized likelihood estimators for w and
σ2 respectively given by

ŵ = (BT B + nλσ̂2K)−1BT y and σ̂2 =
1

n
(y − Bŵ)T (y − Bŵ). (6.9)

Since the estimator ŵ in (6.9) depends on the variance estimator σ̂2, in
practice it is calculated using the following method. First, put β = λσ̂2 and
determine ŵ = (BT B + nβ0K)−1BT y for a given β = β0. Then, after deter-
mining the variance estimator σ̂2, obtain the value of the smoothing parameter
as λ = β/σ̂2.

The statistical model is obtained by replacing the unknown parameters w

and σ2 in (6.6) with their estimators ŵ and σ̂2 and is of the form

f(yα|xα; θ̂P ) =
1√

2πσ̂2
exp

⎡

⎢

⎣
−

{

yα − ŵ
T
b(xα)

}2

2σ̂2

⎤

⎥

⎦
. (6.10)

The estimators ŵ and σ̂2 depend on the smoothing parameter λ (or β) and
also the number m of basis functions. The optimal values of these adjusted
parameters have to be chosen by a suitable criterion, for which we use an
information criterion for evaluating the statistical model f(yα|xα; θ̂P ).

Writing log f(yα|xα;θ) = ℓα(θ), the first and second partial derivatives
with respect to θ = (wT , σ2)T are given by
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∂ℓα(θ)

∂σ2
= − 1

2σ2
+

1

2σ4
{yα − wT b(xα)}2,

∂ℓα(θ)

∂w
=

1

σ2
{yα − wT b(xα)}b(xα), (6.11)

and

∂2ℓα(θ)

∂σ2∂σ2
=

1

2σ4
− 1

σ6
{yα − wT b(xα)}2,

∂2ℓα(θ)

∂w∂wT
= − 1

σ2
b(xα)b(xα)T ,

∂2ℓα(θ)

∂σ2∂w
= − 1

σ4
{yα − wT b(xα)}b(xα). (6.12)

From the results (5.142), (5.144), and (5.145), we have the following:

Information criterion for a statistical model constructed by regular-
ized basis expansions. Suppose that f(yα|xα;θ) in (6.10) is the Gaussian
nonlinear regression model based on basis functions. Then an information
criterion for the model f(yα|xα; θ̂P ) estimated by regularization is given by

GICPB =n(log 2π+1) + n log(σ̂2) + 2tr
{

R(ψP , Ĝ)−1Q(ψP , Ĝ)
}

, (6.13)

where σ̂2 is given in (6.9), and the (m + 1)× (m + 1) matrices R(ψP , Ĝ) and
Q(ψP , Ĝ) are, respectively,

R(ψP , Ĝ) =
1

nσ̂2

⎡

⎢

⎣

BT B + nλσ̂2K
1

σ̂2
BT Λ1n

1

σ̂2
1T

nΛB
n

2σ̂2

⎤

⎥

⎦
, (6.14)

Q(ψP , Ĝ) =
1

nσ̂2

⎡

⎢

⎣

1

σ̂2
BT Λ2B − λKw1T

nΛB
1

2σ̂4
BT Λ31n − 1

2σ̂2
BT Λ1n

1

2σ̂4
1T

nΛ3B − 1

2σ̂2
1T

nΛB
1

4σ̂6
1T

nΛ41n − n

4σ̂2

⎤

⎥

⎦
,

where 1n = (1, 1, . . . , 1)T is an n-dimensional vector, the elements of which
are all 1, and Λ is an n × n diagonal matrix defined by

Λ = diag
[

y1 − ŵ
T
b(x1), y2 − ŵ

T
b(x2), . . . , yn − ŵ

T
b(xn)

]

. (6.15)

With respect to the number m of basis functions and the values of the
smoothing parameter λ (or β), we select the values of (m̂, λ̂) that minimize the
information criterion GICPB as the optimal values. In applying this technique
to practical problems, the smoothness can also be controlled using λ, by fixing
the number of basis functions.
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6.2 Basis Functions

6.2.1 B-Splines

Suppose that we have n sets of observations {(yα, xα); α = 1, 2, . . . , n} and
that the responses yα are generated from an unknown true distribution G(y|x)
having probability density g(y|x). It is assumed that the observations on the
explanatory variable are sorted by magnitude as x1 < x2 < · · · < xn.@

Consider the regression model based on B-spline basis functions

yα =

m
∑

i=1

wibi(xα) + εα

= wT b(xα) + εα, α = 1, 2, . . . , n, (6.16)

where b(x) = (b1(x), b2(x), . . . , bm(x))T is an m-dimensional vector of B-
spline basis functions and w = (w1, w2, . . . , wm)T is an m-dimensional vector
of unknown parameters. We consider B-splines of degree 3, constructed from
polynomial functions. The B-spline basis function bj(x) is composed of known
piecewise polynomials that are smoothly connected at points ti, called knots
[see de Boor (1978), Eilers and Marx (1996), Imoto (2001), and Imoto and
Koishi (2003)].

Let us set up the knots required to construct m basis functions {b1(x), b2(x),
. . . , bm(x)} as follows:

t1 < t2 < t3 < t4 = x1 < · · · < tm+1 = xn < · · · tm+4. (6.17)

By setting the knots in this way, the n observations are partitioned into m−3
intervals [t4, t5], [t5, t6], . . ., [tm, tm+1]. Furthermore, each interval [ti, ti+1]
(i = 4, . . . , m) is covered by four B-spline basis functions. The algorithm
developed by de Boor (1978) can be conveniently used in constructing the
B-spline basis functions.

Generally, we write a B-spline function of degree r as bj(x; r). First, let us
define a B-spline function of degree 0 as follows:

bj(x; 0) =

{

1, for tj ≤ x < tj+1,
0, otherwise.

(6.18)

Starting from the B-spline function of degree 0, a B-spline function of degree
r can be obtained using the recursive formula:

bj(x; r) =
x − tj

tj+r − tj
bj(x; r − 1) +

tj+r+1 − x

tj+r+1 − tj+1
bj+1(x; r − 1). (6.19)

Let bj(x) = bj(x; 3) be the B-spline basis function of degree 3. Then
the Gaussian nonlinear regression model based on a cubic B-splines can be
expressed as
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Fig. 6.1. B-spline bases and the true (dashed line) and smoothed (solid line) curves.

f(yα|xα;θ) =
1√

2πσ2
exp

{

−
(

yα − wT b(xα)
)2

2σ2

}

, (6.20)

where b(xα) = (b1(xα; 3), b2(xα; 3), . . . , bm(xα; 3))T and θ = (wT , σ2)T .
Estimating the unknown parameters θ by the regularization method, we
obtain the nonlinear regression model and the predicted values as follows:

y = ŵ
T
b(x) and ŷ = B(BT B + nλσ̂2K)−1BT y. (6.21)

Example 1 (Numerical result) For illustration, data {(yα, xα), α = 1,
. . . , 100} were generated from the true model

yα = exp {−xα sin(2πxα)} + 1 + εα, (6.22)

with Gaussian noise N(0, 0.32), where the design points are uniformly distrib-
uted in [0, 1]. Figure 6.1 gives B-spline basis functions of degree 3 with knots
0.0, 0.1, . . . , 1.0 and the true and fitted curves. We see that B-splines give a
good representation of the underlying function over the region [0, 1] by taking
the number of basis functions and the value of the smoothing parameter.
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Fig. 6.2. Data and B-spline function

Example 2 (Motorcycle impact data) The motorcycle impact data
[Härdle (1990)] were simulated to investigate the efficiency of crash helmets
and comprise a series of measurements of the head acceleration in units of
gravity (g) as a function of the time in milliseconds (ms) after impact. Figure
6.2 shows a plot of 133 observations. When dealing with data containing such
a complex nonlinear structure, polynomial models or models that use specific
nonlinear functions are not flexible enough to effectively capture the struc-
ture of the phenomena at hand. When addressing data containing a complex,
nonlinear structure, we need to set up a model that provides flexibility in
describing the true structure. The solid curve in Figure 6.2 shows the fitted
model based on cubic B-splines. Selecting the number of basis functions and
the value of the smoothing parameter using the GICPB in (6.13) yields m = 16
and λ = 7.74 × 10−7.

Example 3 (The role of the smoothing parameter) Figure 6.3 shows the
role of the smoothing parameter in the regularization method for curve fitting.
The figure shows that as λ becomes large, the penalty term in the second term
also increases considerably. In order to increase the regularized log-likelihood
function ℓλ(θ), the B-spline function approaches a linear function. When the
value of λ is small, the term containing the log-likelihood function dominates,
and the function passes through the vicinity of the data even at the expense
of increase of variation in the curve. See Eilers and Marx (1996) and Imoto
and Konishi (2003) for regression models based on B-splines.
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Fig. 6.3. The effect of the smoothing parameter in the regularization method.
λ = 0.00001 yields the best estimate.

6.2.2 Radial Basis Functions

Given n sets of data {(yα,xα); α =1, 2, . . . , n} observed on a response variable
y and a p-dimensional vector of explanatory variables x, a regression model
based on radial basis functions is generally given by

yα = w0 +

m
∑

i=1

wiφ (||xα − µi||) + εα, α = 1, 2, . . . , n (6.23)

[Bishop (1995, Chapter 5), Ripley (1996, Section 4.2), and Webb (1999, Chap-
ter 5)], where µi is a p-dimensional vector of centers that determines the po-
sition of the basis function, and || · || is the Euclidean norm. The following
Gaussian basis function is frequently employed in practice:
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φi(x) = exp

(

−||x − µi||2
2h2

i

)

, i = 1, 2, . . . ,m, (6.24)

where h2
i is a quantity that represents the spread of the function.

The unknown parameters included in the nonlinear regression model with
Gaussian basis functions are {µ1, . . . , µm, h2

1, . . . , h2
m} in addition to the

coefficients {w0, w1, . . . , wm}. Although a method of simultaneously estimat-
ing these parameters is conceivable, the multiplicity of local maxima causes
problems when performing numerical optimization. Furthermore, when the
number of basis functions involved and the problem of selecting regulariza-
tion parameters are taken into consideration, the number of computations
required becomes enormous.

A useful technique from a practical point of view for overcoming these
problems is the method of determining basis functions on an a priori basis
by first applying a clustering technique to the data related to explanatory
variables [Moody and Darken (1989)]. In the first stage, the centers µi and
width parameters h2

i are determined by using only the input data set {xα;
α = 1, . . . , n} for explanatory variables. In the second stage, the weights
wi are estimated using appropriate estimation procedures like the method of
regularization.

Among the various possible strategies for determining the centers and
widths of the basis functions, we use a k-means clustering algorithm. This
algorithm divides the input data set {xα; α = 1, . . . , n} into m clusters C1,
. . . , Cm that correspond to the number of the basis functions. The centers
and width parameters are then determined using

µ̂i =
1

ni

∑

xα∈Ci

xα and ĥ2
i =

1

ni

∑

xα∈Ci

||xα − µ̂i||2, (6.25)

where ni is the number of the observations that belong to the ith cluster Ci.
Substituting these estimates into the Gaussian basis function (6.24) gives us
a set of m basis functions

φi(x) ≡ exp

(

−||x − µ̂i||2

2ĥ2
i

)

, i = 1, 2, . . . , m. (6.26)

We use the nonlinear regression model with the Gaussian basis functions
given by

yα = w0 +
m

∑

i=1

wiφi(xα) + εα

= wT φ(xα) + εα, α = 1, 2, . . . , n, (6.27)

where φ(x) = (1, φ1(x), φ2(x), . . . , φm(x))T is an (m+1)-dimensional vector
of the Gaussian bases and w = (w0, w1, . . . , wm)T is an (m + 1)-dimensional
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vector of unknown parameters. Then the nonlinear regression model with
Gaussian noise can be expressed as a probability density function

f(yα|xα;θ) =
1√

2πσ2
exp

{

−
(

yα − wT φ(xα)
)2

2σ2

}

, (6.28)

where θ = (wT , σ2)T .
By estimating the unknown parameter vector θ using the regularization

method, we obtain the special case of (6.9)

ŵ = (BT B + nλσ̂2K)−1BT y, σ̂2 =
1

n
(y − Bŵ)T (y − Bŵ), (6.29)

in which B is an n× (m+1) matrix consisting of values of the Gaussian basis
functions in (6.26):

B =

⎡

⎢

⎢

⎢

⎣

φ(x1)
T

φ(x2)
T

...
φ(xn)T

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 φ1(x1) φ2(x1) · · · φm(x1)
1 φ1(x2) φ2(x2) · · · φm(x2)

...
...

. . .
...

1 φ1(xn) φ2(xn) · · · φm(xn)

⎤

⎥

⎥

⎥

⎦

. (6.30)

In addition, the information criterion for evaluating the statistical model con-
structed by the regularized Gaussian basis expansion is given by a formula in
which matrix B in (6.14) is replaced with the Gaussian basis function matrix
(6.30).

The radial basis functions overlap each other to capture the information
from the input data, and the width parameters control the amount of over-
lapping between basis functions. Hence, the values of width parameters play
an essential role in determining the smoothness of the estimated regression
function.

Moody and Darken (1989) used k-means clustering algorithm and adopted
the P nearest neighbor heuristically, determining the width as the average
Euclidean distance of the P nearest neighbor of each basis function. The
maximum Euclidean distance among the selected centers of the basis functions
was also employed by Broomhead and Lowe (1988), where they randomly
selected the centers from the input data set. Such a heuristic approach does
not always yield sufficiently accurate results [Ando et al. (2005)]. To overcome
this problem, Ando et al. (2005) introduced the Gaussian basis functions with
hyperparameter ν given by the following:

φi(x;µi, σi, ν) = exp

(

−||x − µi||2
2νσ2

i

)

, i = 1, . . . , m. (6.31)

The hyperparameter ν adjusts the amount of overlapping between basis func-
tions so that the estimated regression function captures the structure in the
data over the region of the input space and incorporates this information in
the response variables.
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Fujii and Konishi (2006) proposed a regularized wavelet-based method for
nonlinear regression modeling when design points are not equally spaced and
derived an information criterion to choose smoothing parameters, using GICP

in (5.142). Regularized local likelihood method for nonlinear regression model-
ing was investigated by Nonaka and Konishi (2005), in which they used GICP

in (5.142) for selecting the degree of polynomial and a smoothing parameter.
For local likelihood estimation, we refer to Fan and Gijbels (1996) and Loader
(1999).

6.3 Logistic Regression Models for Discrete Data

The logistic model is used to predict a discrete outcome from a set of ex-
planatory variables that may be continuous and/or categorical. The response
variable is generally dichotomous such as success or failure and takes the
value 1 with probability of success π or the value 0 with probability of failure
1 − π. Logistic modeling enables us to model the relationship between the
explanatory and response variables.

6.3.1 Linear Logistic Regression Model

Suppose that we have n sets of observations {(yα,xα); α = 1, . . . , n}, where
yα are independent random variables coded as either 0 or 1 and xα = (1, xα1,
xα2, . . . , xαp)

T is a vector of p covariates. The logistic model assumes that

Pr(Yα = 1|xα) = π(xα) and Pr(Yα = 0|xα) = 1 − π(xα), (6.32)

where Yα is a random variable distributed according to the Bernoulli distrib-
ution

f(yα|xα;β) = π(xα)yα {1 − π(xα)}1−yα , yα = 0, 1. (6.33)

The linear logistic model further assumes that

π(xα) =
exp(xT

αβ)

1 + exp(xT
αβ)

or log
π(xα)

1 − π(xα)
= xT

αβ, (6.34)

which links level xα stimuli to the conditional probability π(xα), where xT
αβ

= β0 +β1xα1 +β2xα2 + · · · +βpxαp. Under this model, the log-likelihood
function for yα in terms of β is

ℓ(β) =
n

∑

α=1

[yα log π(xα) + (1 − yα) log {1 − π(xα)}]

=

n
∑

α=1

[

yα log
π(xα)

1 − π(xα)
+ log {1 − π(xα)}

]

(6.35)

=

n
∑

α=1

[

yαxT
αβ − log{1 + exp(xT

αβ)}
]

.
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The maximum likelihood method frequently yields unstable parameter es-
timates with significant variation when the explanatory variables are highly
correlated or when there are an insufficient number of observations relative to
the number of explanatory variables. In such a case, the (p+1)-dimensional pa-
rameter vector β may be estimated by maximizing the penalized log-likelihood
function:

ℓλ(β) =
n

∑

α=1

[

yαxT
αβ − log

{

1 + exp(xT
αβ)

}]

− nλ

2
βT Kβ, (6.36)

where K is a (p + 1) × (p + 1) nonnegative definite matrix (see Subsection
5.2.4). The shrinkage estimator can be obtained by setting K = Ip+1.

The optimization process with respect to unknown parameter vector β is
nonlinear, and the equation does not have an explicit solution. The solution,
β̂, in this case may be obtained using an iterative algorithm.

Fisher’s scoring method. The first and second derivatives of the penalized
log-likelihood function with respect to β are given by

∂ℓλ(β)

∂β
=

n
∑

α=1

{yα − π(xα)}xα − nλKβ

= XT Λ1n − nλKβ, (6.37)

∂2ℓλ(β)

∂β∂βT
= −

n
∑

α=1

π(xα){1 − π(xα)}xαxT
α − nλK

= −XT Π(In − Π)X − nλK, (6.38)

where X = (x1,x2, . . . ,xn)T is an n× (p + 1) matrix, In is an n× n identity
matrix, 1n = (1, 1, . . . , 1)T is an n-dimensional vector, the elements of which
are all 1, and Λ and Π are n × n diagonal matrices defined as

Λ = diag [y1 − π(x1), y2 − π(x2), . . . , yn − π(xn)] ,

Π = diag [π(x1), π(x2), . . . , π(xn)] . (6.39)

Starting from an initial value, we numerically obtain a solution using the
following update formula:

βnew = βold −
[

E

{

∂2ℓλ(β)

∂β∂βT

}]−1
∂ℓλ(βold)

∂β
. (6.40)

This update formula is referred to as Fisher’s scoring algorithm [Nelder and
Wedderburn (1972), Green and Silverman (1994)], and the (r+1)st estimator,

β̂
(r+1)

, is updated by

β̂
(r+1)

=
{

XT Π(r)(In − Π(r))X+nλK
}−1

XT Π(r)(In − Π(r))ξ(r), (6.41)
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where ξ(r) = Xβ(r) + {Π(r)(In −Π(r))}−1(y −Π(r)1n) and Π(r) is an n× n

diagonal matrix having π(xα) for the rth estimator β̂
(r)

in the αth diagonal
element.

Thus, the statistical model is obtained by substituting the estimator β̂ de-
termined by the numerical optimization procedure into the probability model
of (6.33)

f(yα|xα; β̂) = π̂(xα)yα{1 − π̂(xα)}1−yα , (6.42)

where

π̂(xα) =
exp(xT

α β̂)

1 + exp(xT
α β̂)

. (6.43)

The statistical model (6.42) estimated by maximizing the penalized log-
likelihood function depends on the regularization parameter λ. The problem is
how to select the optimal value of λ by using a suitable criterion. We overcome
this problem by obtaining a criterion within the framework of an M -estimator.

Noting that the derivative of the penalized log-likelihood function with
respect to β is

∂ℓλ(β)

∂β
=

n
∑

α=1

{yα − π(xα)}xα − nλKβ, (6.44)

we see that the regularized estimator β̂ is given as the solution of the implicit
equation

∂ℓλ(β)

∂β
=

n
∑

α=1

ψL(yα,β) = 0, (6.45)

where

ψL(yα,β) = {yα − π(xα)}xα − λKβ. (6.46)

By taking ψL(yα,β) as the ψ-function in (5.143), the two matrices re-
quired in the calculation of the bias correction term can be obtained as

R(ψL, Ĝ) = − 1

n

n
∑

α=1

∂ψL(yα,β)T

∂β

∣

∣

∣

∣

∣

β̂

=
1

n

n
∑

α=1

π̂(xα){1 − π̂(xα)}xαxT
α + λK

=
1

n
XT Π̂(In − Π̂)X + λK, (6.47)
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Q(ψL, Ĝ) =
1

n

n
∑

α=1

ψL(yα,β)
∂ log f(yα|xα;β)

∂βT

∣

∣

∣

∣

∣

β̂

=
1

n

n
∑

α=1

[

{yα − π̂(xα)}xα − λKβ̂
]

{yα − π̂(xα)}xT
α

=
1

n

{

XT Λ̂2X − λKβ̂1T
n Λ̂X

}

, (6.48)

where Λ̂ and Π̂ are n × n diagonal matrices defined by

Λ̂ = diag [y1 − π̂(x1), y2 − π̂(x2), . . . , yn − π̂(xn)] ,

Π̂ = diag [π̂(x1), π̂(x2), . . . , π̂(xn)] . (6.49)

We then have the following result:

Information criterion for a linear logistic model estimated by reg-
ularization. Let f(y|x;β) be a linear logistic model given in (6.33) and

(6.34). Then an information criterion for evaluating the model f(y|x; β̂) in
(6.42) estimated by regularization is given by the following:

GICL = −2

n
∑

α=1

[yα log π̂(xα) + (1 − yα) log {1 − π̂(xα)}]

+ 2tr
{

R(ψL, Ĝ)−1Q(ψL, Ĝ)
}

, (6.50)

where R(ψL, Ĝ) and Q(ψL, Ĝ) are (p+1)×(p+1) matrices given, respectively,
by

R(ψL, Ĝ) =
1

n
XT Π̂(In − Π̂)X + λK,

Q(ψL, Ĝ) =
1

n

{

XT Λ̂2X − λKβ̂1T
n Λ̂X

}

, (6.51)

with Λ̂ and Π̂ given by (6.49).

We choose the value of the regularization parameter λ that minimizes
the information criterion GICL for various statistical models determined in
correspondence to the values of λ.

6.3.2 Nonlinear Logistic Regression Models

We now extend the linear logistic model developed in the previous section into
a model having a more complex nonlinear structure using a basis expansion
method.

Let y1, . . . , yn be an independent sequence of binary random variables
taking values of 0 and 1 with conditional probabilities
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Pr(Y = 1|xα) = π(xα) and Pr(Y = 0|xα) = 1 − π(xα), (6.52)

where xα are vectors of p explanatory variables. Using the basis expansions as
a device to approximate the mean structure, we consider the nonlinear logistic
model

log
π(xα)

1 − π(xα)
= w0 +

m
∑

i=1

wibi(xα), (6.53)

where bi(xα) is a basis function. The conditional probability π(xα) can be
rewritten as

π(xα) =
exp

{

wT b(xα)
}

1 + exp {wT b(xα)} , (6.54)

where w = (w0, . . . , wm)T and b(xα) = (1, b1(xα), . . . , bm(xα))T . The non-
linear logistic model can be expressed as the probability model

f(yα|xα;w) = π(xα)yα {1 − π(xα)}1−yα , yα = 0, 1. (6.55)

Hence, the log-likelihood function for yα in terms of w = (w0, . . . , wm)T is

ℓ(w) =

n
∑

α=1

{yα log π(xα) + (1 − yα) log(1 − π(xα))}

= −
n

∑

α=1

[

log
{

1 + exp(wT b(xα))
}

− yαwT b(xα)
]

. (6.56)

The unknown parameter vector w is estimated by maximizing the penal-
ized log-likelihood

ℓλ(w) = ℓ(w) − nλ

2
wT Kw, (6.57)

where the penalty term is given by (5.135). The optimization process with
respect to the unknown parameter vector w is nonlinear and the equation
does not have an explicit solution. The solution w = ŵλ, which maximizes
ℓλ(w) with respect to a given λ, is estimated using the numerical optimization
method described in Subsection 6.3.1. In the estimation process, the following
substitutions are made in (6.37) and (6.38):

β ⇒ w, X ⇒ B,

π(xα) =
exp(xT

αβ)

1 + exp(xT
αβ)

⇒ π(xα) =
exp

{

wT b(xα)
}

1 + exp {wT b(xα)} , (6.58)

where B is an n×(m+1) basis function matrix B = (b(x1), b(x2), . . . , b(xn))T .
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Substituting the estimator ŵλ obtained by the numerical optimization
method into the probability model (6.55), we obtain the following statistical
model:

f(yα|xα; ŵλ) = π̂(xα)yα{1 − π̂(xα)}1−yα , (6.59)

where

π̂(xα) =
exp

{

ŵ
T
λ b(xα)

}

1 + exp
{

ŵ
T
λ b(xα)

} . (6.60)

An information criterion for the statistical model estimated by the regular-
ization method can easily be determined within the framework of
M -estimation. Specifically, it can be seen from (6.56) and (6.57) that the
estimator ŵλ can be given as the solution of the implicit equation

∂ℓλ(w)

∂w
=

n
∑

α=1

ψLB(yα,w) = 0, (6.61)

where

ψLB(yα,w) = {yα − π(xα)} b(xα) − λKw. (6.62)

Taking ψLB(yα,w) as the ψ-function in (5.143) gives the matrices required
for calculating the bias correction term in the form

R(ψLB , Ĝ) = − 1

n

n
∑

α=1

∂ψLB(yα,w)T

∂w

∣

∣

∣

∣

∣

ŵλ

=
1

n

n
∑

α=1

π̂(xα){1 − π̂(xα)}b(xα)b(xα)T + λK

=
1

n
BT Π̂(In − Π̂)B + λK, (6.63)

Q(ψLB , Ĝ) =
1

n

n
∑

α=1

ψLB(yα,w)
∂ log f(yα|xα;w)

∂wT

∣

∣

∣

∣

∣

ŵλ

=
1

n

n
∑

α=1

[{yα − π̂(xα)}b(xα) − λKŵλ] {yα − π̂(xα)}b(xα)T

=
1

n

{

BT Λ̂2B − λKŵλ1
T
n Λ̂B

}

, (6.64)

where Λ̂ and Π̂ are n × n diagonal matrices defined by

Λ̂ = diag [y1 − π̂(x1), y2 − π̂(x2), . . . , yn − π̂(xn)] ,

Π̂ = diag [π̂(x1), π̂(x2), . . . , π̂(xn)] , (6.65)
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with π̂(xα) given by (6.60). Then we have the following result:

Information criterion for a nonlinear logistic model by regularized
basis expansions. Let f(yα|xα;w) be the nonlinear logistic model in (6.55).
Then an information criterion for the statistical model f(yα|xα; ŵλ) in (6.59)
constructed by the regularized basis expansion is given by

GICLB = −2
n

∑

α=1

[yα log π̂(xα) + (1 − yα) log {1 − π̂(xα)}]

+ 2tr
{

R(ψLB, Ĝ)−1Q(ψLB, Ĝ)
}

, (6.66)

where

R(ψLB, Ĝ) =
1

n
BT Π̂(In − Π̂)B + λK,

Q(ψLB, Ĝ) =
1

n

{

BT Λ̂2B − λKŵλ1
T
n Λ̂B

}

, (6.67)

with n × n diagonal matrices Λ̂ and Π̂ defined by (6.65).
Out of the statistical models generated by the various values of the smooth-

ing parameter λ, the optimal value is selected by minimizing the information
criterion GICLB.

Example 4 (Probability of occurrence of kyphosis) Figure 6.4 shows
a plot of data for 83 patients who received laminectomy, in terms of their age
(x, in months) at the time of operation, and Y = 1 if the patient developed
kyphosis and Y = 0 otherwise [Hastie and Tibshirani (1990, p. 301)]. The ob-
jective here is to predict a decrease in the probability of the onset of kyphosis,
Pr(Y = 1|x) = π(x), as a function of the time of laminectomy.

If the probability of onset of kyphosis was monotonic with respect to the
age of the patients in months, it would suffice to assume the logistic model:

log
π(xα)

1 − π(xα)
= β0 + β1xα, α = 1, 2, . . . , 83.

However, as the figure indicates, the probability of onset is not necessarily
monotone with respect to age expressed in months.

Therefore, let us consider fitting the following logistic model based on a
B-spline:

log

{

π(xα)

1 − π(xα)

}

=
m

∑

i=1

wibi(xα), α = 1, 2, . . . , 83. (6.68)

We estimated the parameters w = (w1, w2, . . . , wm)T using the regular-
ization method with a difference matrix of degree 2 given by (5.138) as a
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Fig. 6.4. Probability of onset of kyphosis.

regularization term. By applying the information criterion GICLB given by
(6.66), we determined the optimum number of basis functions m to be 10,
and the value of the smoothing parameter is λ = 0.0159. The corresponding
logistic curve is given by

y =

exp

( m
∑

i=1

ŵibi(x)

)

1 + exp

( m
∑

i=1

ŵibi(x)

)

. (6.69)

The estimates of the coefficients of the basis functions were ŵ = (−2.48,
−1.59, −0.92, −0.63, −0.84, −1.60, −2.65, −3.76, −4.88, −6.00)T . The curve
in the figure represents the estimated curve. It can be seen from the estimated
logistic curve that while the rate of onset increases with the patient’s age in
months at the time of surgery, a peak occurs at approximately 100 months,
and the rate of onset begins to decrease thereafter.

6.4 Logistic Discriminant Analysis

Classification or discrimination techniques are some of the most widely used
statistical tools in various fields of natural and social sciences. The primary
aim in discriminant analysis is to assign an individual to one of two or more
groups on the basis of measurements on feature variables. In recent years,
several techniques have been proposed for analyzing multivariate observations
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with complex structure [see, for example, Hastie et al. (2001) and McLachlan
(2004)].

This section introduces linear and nonlinear discriminant analyses using
basis expansions with the help of regularization. We consider the two-group
discrimination. It is designed to construct a decision rule based on a set of
training data, each of which is assigned to one of two groups.

6.4.1 Linear Logistic Discrimination

Suppose we have n independent observations {(xα, gα); α = 1, 2, . . . , n},
where xα = (xα1, xα2, . . . , xαp)

T are the p-dimensional observed feature vec-
tors and gα are indicators of the group membership. A Bayes rule of allocation
is to assign xα to group Gk (k = 1, 2) with maximum posterior probability
Pr(g = k|xα). We first consider the log-odds of the posterior probabilities
given by the linear combination of p feature variables

log
Pr(g = 1|xα)

Pr(g = 2|xα)
= w0 +

p
∑

i=1

wixαi. (6.70)

Denote the posterior probability Pr(g = 1|xα) = π(xα), so that Pr(g = 2|xα)
= 1 − π(xα). The log-odds model (6.70) can then be written as

log
π(xα)

1 − π(xα)
= w0 +

p
∑

i=1

wixαi. (6.71)

We define the binary variable yα coded as either 0 or 1 to indicate the
group membership of the αth observed feature vector xα, that is,

yα = 1 if gα = 1 and yα = 0 if gα = 2. (6.72)

The group-indicator variables y1, y2, . . . , yn are distributed independently ac-
cording to the Bernoulli distribution

f(yα|xα;w) = π(xα)yα {1 − π(xα)}1−yα , yα = 0, 1, (6.73)

conditional on xα, where

π(xα) =

exp

(

w0 +

p
∑

i=1

wixαi

)

1 + exp

(

w0 +

p
∑

i=1

wixαi

)

. (6.74)

By maximizing the log-likelihood function

l(w) =

n
∑

α=1

[yα log π(xα) + (1 − yα) log{1 − π(xα)}] , (6.75)
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we obtain the maximum likelihood estimates of the unknown parameters
{w0, w1, w2, . . . , wp}.

Often the maximum likelihood method yields unstable estimates of weight
parameters and so leads to large errors in predicting future observations. In
such cases, the regularization method is used for parameter estimation in lo-
gistic modeling. We obtain the solution by employing a nonlinear optimization
scheme discussed in Subsection 6.3.1, and the value of a smoothing parameter
is chosen as the minimizer of GICL in (6.50).

The estimated posterior probabilities of group membership for the future
observation z = (z1, z2, . . . , zp)

T are given by

Pr(g = 1|z) = π̂(z) =

exp

(

ŵ0 +

p
∑

i=1

ŵizi

)

1 + exp

(

ŵ0 +

p
∑

i=1

ŵizi

)

,

Pr(g = 2|z) = 1 − π̂(z) =
1

1 + exp

(

ŵ0 +

p
∑

i=1

ŵizi

)

, (6.76)

where π̂(z) is the estimated conditional probability. Allocation is then carried
out by evaluating the posterior probabilities, and the future observation z is
assigned according to the following decision rule:

assign z to G1 if Pr(g = 1|z) ≥ Pr(g = 2|z),

assign z to G2 if Pr(g = 1|z) < Pr(g = 2|z). (6.77)

By taking the logit transformation

log
π̂(z)

1 − π̂(z)
= ŵ0 +

p
∑

i=1

ŵizi, (6.78)

we see that the decision rule is equivalent to the rule

assign z to G1 if ŵ0 +

p
∑

i=1

ŵizi ≥ 0,

assign z to G2 if ŵ0 +

p
∑

i=1

ŵizi < 0. (6.79)

In general, the function defined by a linear combination of the feature
variables is called a linear discriminant function. In practice, Fisher’s linear
discriminant analysis is a commonly used technique for data classification.
This approach involves maximizing the ratio of the between-groups sum of
square to the within-groups sum of square. In cases where a linear discriminant



6.4 Logistic Discriminant Analysis 159

rule is not suitable for allocating a randomly selected future observation, we
may use a nonlinear discriminant procedure. The linear logistic discriminant
analysis can be extended naturally for use in nonlinear discrimination via
basis expansions, which will be described in the next subsection.

6.4.2 Nonlinear Logistic Discrimination

We assume that the log-odds of the posterior probabilities are given by the
linear combination of basis functions as follows:

log
Pr(g = 1|xα)

Pr(g = 2|xα)
=

m
∑

i=1

wibi(xα) (6.80)

or, writing Pr(g = 1|xα) = π(xα),

log
π(xα)

1 − π(xα)
=

m
∑

i=1

wibi(xα). (6.81)

Since the group indicator variables y1, y2, . . . , yn defined in (6.72) are dis-
tributed independently according to the Bernoulli distribution, the nonlinear
logistic discrimination model can be expressed as

f(yα|xα;w) = π(xα)yα {1 − π(xα)}1−yα

=

{

exp

( m
∑

i=1

wibi(xα)

)}yα
{

1 + exp

( m
∑

i=1

wibi(xα)

)}−1

,

yα = 0, 1, (6.82)

conditional on xα. The statistical model is obtained by replacing the unknown
parameters with their estimates, and we have

f(yα|xα; ŵ) = π̂(xα)yα {1 − π̂(xα)}1−yα , (6.83)

where π̂(xα) is the estimated conditional probability given by

π̂(xα) =

exp

{ m
∑

i=1

ŵibi(xα)

}

1 + exp

{ m
∑

i=1

ŵibi(xα)

}

. (6.84)

The model estimated by the maximum likelihood method can be evaluated
by the AIC, and the number of basis functions is determined by minimizing
the value of the AIC. If the model is constructed by regularization, then the
number of basis functions and the value of a smoothing parameter are chosen
by evaluating the estimated model by GICLB in (6.66). The future observation
z is assigned by the nonlinear discriminant function as follows:
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assign z to G1 if

m
∑

i=1

ŵibi(x) ≥ 0,

assign z to G2 if
m

∑

i=1

ŵibi(x) < 0. (6.85)

Example 5 (Synthetic data) We illustrate the nonlinear logistic discrim-
inant analysis using synthetic data taken from Ripley (1994). The data are
generated from a mixture of two bivariate normal distributions N2(µ, Σ):

G1 : g1(x) = (1 − ε)N2(µ
(1)
1 , σ2I2) + εN2(µ

(1)
2 , σ2I2),

G2 : g2(x) = (1 − ε)N2(µ
(2)
1 , σ2I2) + εN2(µ

(2)
2 , σ2I2), (6.86)

where µ
(1)
1 = (−0.3, 0.7)T , µ

(1)
2 = (0.4, 0.7)T and µ

(2)
1 = (−0.7, 0.3)T , µ

(2)
2 =

(0.3, 0.3)T , with common variance σ2 = 0.03.
The decision boundaries in Figure 6.5 were constructed using the model

based on Gaussian basis functions:

log
π(xα)

1 − π(xα)
= w0 +

15
∑

i=1

wiφi(xα), (6.87)

with

φi(x) = exp

(

−||x − µ̂i||2

2 × 15ĥ2
i

)

, i = 1, 2, . . . , 15, (6.88)

where µ̂i is the two-dimensional vector that determines the location of the

basis function and 15ĥ2
i is the adjusted scale parameter (see Subsection 6.2.2

for the Gaussian basis functions). The model was estimated using the regular-
ization method. Figure 6.5 shows the decision boundaries for various values of
the smoothing parameter λ. The optimum value of λ was chosen by evaluat-
ing the estimated model by GICLB in (6.66), and the corresponding decision
boundary is given in Figure 6.5. We see that the nonlinearity of the deci-
sion boundary can be controlled by the smoothing parameter; the decision
boundary approaches a linear function for larger values of λ.

6.5 Penalized Least Squares Methods

Consider the regression model expressed as a linear combination of a pre-
scribed set of m basis functions as follows:

yα =
m

∑

i=1

wibi(xα) + εα, α = 1, 2, . . . , n, (6.89)
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Fig. 6.5. The role of a smoothing parameter in nonlinear logistic discriminant
analysis.

where yα are random response variables and xα are p-dimensional vectors
of explanatory variables. It is assumed that the noise εα are uncorrelated,
E[εα] = 0, and E[ε2

α] = σ2. The least squares estimates are those that mini-
mize the sum of squares of noise εα

S(w) =
n

∑

α=1

{

yα −
m

∑

i=1

wibi(xα)

}2

=

n
∑

α=1

{

yα − wT b(xα)
}2

(6.90)

= (y − Bw)T (y − Bw),

where B = (b(x1), b(x2), . . . , b(xn))T , and are given by ŵ = (BT B)−1BT y.
One conceivable approach for analyzing phenomena having a complex non-

linear structure is to capture the structure by increasing the number of basis
functions employed. However, increasing the number of basis functions can
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lead to overfitting of the model to the data as a result of the increase in
the number of parameters. In such cases, (BT B)−1 tends to be unstable and
is frequently not computable. In addition, as the number of basis functions
increases, the estimated curve or the surface passes through space closer to
the data, and the residual sum of squares gradually approaches 0. The fact
that the curve passes through space close to the data indicates that the curve
undergoes significant local variation (fluctuation).

In order to overcome these difficulties, the regression coefficients are es-
timated by adding a penalty term (regularization term) designed to increase
with decreasing smoothness when fitting. The solution for w is given by min-
imizing the penalized sum of squares

Sγ(w) = (y − Bw)T (y − Bw) + γwT Kw, (6.91)

where γ > 0 is referred to either as a smoothing parameter or as a regulariza-
tion parameter that can be used to adjust the goodness of fit of the model and
the roughness or local fluctuation of the curve. In addition, K is an m × m
nonnegative definite matrix (see Subsection 5.2.4 for a description of how to
set up this matrix). This method of estimation is referred to as either the
regularized least squares method or as the penalized least squares method, and
its solution is given by

ŵ = (BT B + γK)−1BT y. (6.92)

By taking K = Im in (6.92), we have the ridge regression estimate of w given
by

ŵ = (BT B + γIm)−1BT y. (6.93)

We also notice that the penalized log-likelihood function for the regression
model with Gaussian noise in (6.7) can be rewritten as

ℓλ(θ) = −n

2
log(2πσ2) − 1

2σ2
(y − Bw)T (y − Bw) − nλ

2
wT Kw

= −n

2
log(2πσ2)− 1

2σ2

{

(y −Bw)T(y −Bw)+nλσ2wTKw
}

.(6.94)

Therefore, by setting nλσ2 = γ, we see that maximizing the regularized log-
likelihood function is equivalent to minimizing the penalized sum of squares
Sγ(w) in (6.91).

6.6 Effective Number of Parameters

In Section 6.1, we discussed Gaussian regression modeling based on the basis
expansion
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yα =

m
∑

i=1

wibi(xα) + εα = wT b(xα) + εα, α = 1, . . . , n, (6.95)

where it is assumed that εα, α = 1, . . . , n, are independently distributed
according to the normal distribution N(0, σ2). The maximum likelihood esti-
mates of the unknown parameters w = (w1, w2, . . . , wm)T and σ2 are, respec-
tively,

ŵ = (BT B)−1BT y and σ̂2 =
1

n
(y − ŷ)T (y − ŷ), (6.96)

where y = (y1, y2, . . . , yn)T , B = (b(x1), b(x2), . . . , b(xn))T (n×m matrix),
and ŷ is an n-dimensional vector of predicted values given by

ŷ = Bŵ = B(BT B)−1BT y. (6.97)

In this case, the AIC is given by

AIC = n(log 2π + 1) + n log σ̂2 + 2(m + 1). (6.98)

The number of parameters or the degrees of freedom for the model is m + 1,
which is equal to the number m of basis functions plus 1, corresponding to
the error variance σ2. In particular, the model in (6.95) becomes complex as
the number of basis functions increases. The number of parameters related to
the basis functions gives an indication of the model complexity. For example,
the number of explanatory variables measures complexity for linear regres-
sion models, and the order of the polynomial measures the complexity for
polynomial models. By contrast, if a model is estimated using the regulariza-
tion method, then the model’s complexity is also controlled by a smoothing
parameter in addition to the number of basis functions involved. Hence, the
number of parameters is no longer adequate for characterizing the complexity
of the model. In view of this problem, Hastie and Tibshirani (1990) defined
the complexity of models controlled with smoothing parameters as follows [see
also Wahba (1990) and Moody (1992)]:

First, note that ŷ of (6.97) is the projection of y onto the m-dimensional
space that is spanned by the m column vectors of the n × m matrix B,

ŷ = Hy, H = B(BT B)−1BT , (6.99)

where H is the projection matrix. Next note that

number of free parameters=tr(H)=tr
{

B(BT B)−1BT
}

=m. (6.100)

On the other hand, the predicted values estimated by regularization are,
from (6.9),

ŷ = H(λ,m)y; H(λ,m) = B(BT B + nλσ̂2K)−1BT . (6.101)
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Hastie and Tibshirani (1990) defined the complexity of models controlled with
smoothing parameters as

enp = tr {H(λ,m)} = tr
{

B(BT B + nλσ̂2K)−1BT
}

(6.102)

and called it the effective number of parameters. Consequently, the informa-
tion criterion for the Gaussian nonlinear regression model (6.95) estimated by
regularization is given as

AICM = n(log 2π + 1) + n log(σ̂2)

+ 2
[

tr
{

B(BT B + nλσ̂2K)−1BT
}

+ 1
]

, (6.103)

in which the number m of basis functions of the AIC in (6.98) is formally
replaced with the effective number of parameters. An optimal model can be
obtained by selecting λ and m that minimize the information criterion AICM .

Generally, since H and H(λ,m) are matrices that transform the observa-
tion vector y into a predicted value vector ŷ, it is referred to as a hat matrix,
or for the estimation of a curve (or surface), this matrix is called a smoother
matrix. The use of the trace of the hat matrix as the effective number of
parameters has been investigated in smoothing methods [Wahba (1990)] and
generalized additive models [Hastie and Tibshirani (1990)]. Ye (1998) devel-
oped a concept of the effective number of parameters that is applicable to
complex modeling procedures.

Example 6 (Numerical result) Figure 6.6 shows a plot of 100 observations
that are generated according to the model

yα = sin(2πx3
α) + εα, εα ∼ N(0, 10−1.3),

where xα is generated by uniform random numbers over [0, 1). We fitted a
B-spline regression model with 10 basis functions to the simulated data. The
parameters of the model were estimated by using the regularization method
with a difference matrix of degree 2 given in Subsection 5.2.4 as the penalty
term. Figure 6.7 shows the relationship between the value of the smoothing
parameter λ and the effective number of parameters:

enp = tr
{

B(BT B + nλσ̂2DT
2 D2)

−1BT
}

.

It can be seen from Figure 6.7 that the effective number of parameters
becomes tr{B(BT B)−1BT } = 10 (number of basis functions) when the value
of the smoothing parameter is 0 and that the effective number of parame-
ters (enp) approaches 2 as the value of the smoothing parameter increases.
In Figure 6.6, the solid and dashed curves represent the estimated regression
curves corresponding to λ = 0 and λ = 80, respectively, and when λ is suffi-
ciently large, the model approximates a straight line (number of parameters:
2). Therefore, we see that the effective number of parameters is a real number
between 2 and the number of basis functions.
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7

Theoretical Development and Asymptotic
Properties of the GIC

Information criteria have been constructed as estimators of the Kullback–
Leibler information discrepancy between two probability distributions or,
equivalently, the expected log-likelihood of a statistical model for prediction.

In this chapter, we introduce a general framework for constructing
information criteria in the context of functional statistics and give technical
arguments and a detailed derivation of the generalized information criterion
(GIC) defined in (5.64). We also investigate the asymptotic properties of infor-
mation criteria in the estimation of the expected log-likelihood of a statistical
model.

7.1 Derivation of the GIC

7.1.1 Introduction

The GIC is a criterion for evaluating a statistical model f(x|θ̂), in which the
p-dimensional parameter vector θ included in the density function f(x|θ) is

replaced with a functional estimator θ̂. The statistical model is a fitted model
to the observed data xn = {x1, x2, . . . , xn} drawn from the true distribution
G(x) having density g(x).

The essential point in the derivation of the GIC is the bias correction of
the log-likelihood

n
∑

α=1

log f(xα|θ̂) ≡ log f(xn|θ̂) (7.1)

in estimating the expected log-likelihood defined by

n

∫

log f(z|θ̂)dG(z). (7.2)

In other words, the expectation of the difference between the log-likelihood
and the expected log-likelihood,
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D(Xn;G) = log f(Xn|θ̂) − n

∫

log f(z|θ̂)dG(z), (7.3)

is evaluated.
In order to construct an information criterion that enables the evaluation

of various types of statistical models, we employ a functional estimator with
Fisher consistency. It is assumed that the ith element θ̂i of the estimator θ̂

= (θ̂1, . . . , θ̂p)
T is given by

θ̂i = Ti(Ĝ), i = 1, 2, . . . , p, (7.4)

where Ti(·) is a functional defined on the set of all distributions and Ĝ is
the empirical distribution function based on the observed data. Writing the
p-dimensional functional vector with Ti(G) as the ith element as

T (G) = (T1(G), T2(G), . . . , Tp(G))
T

, (7.5)

the p-dimensional estimator can be expressed as

θ̂ = T (Ĝ) =
(

T1(Ĝ), T2(Ĝ), . . . , Tp(Ĝ)
)T

. (7.6)

We can then see that

lim
n→+∞

T (Ĝ) = T (G) (7.7)

in probability.
We first decompose D(Xn;G) in (7.3) into three terms as follows (Figure

7.1):

D(Xn;G) = log f(Xn|θ̂) − n

∫

log f(z|θ̂)dG(z),

= D1(Xn;G) + D2(Xn;G) + D3(Xn;G), (7.8)

where

D1(Xn;G) = log f(Xn|θ̂) − log f(Xn|T (G)),

D2(Xn;G) = log f(Xn|T (G)) − n

∫

log f(z|T (G))dG(z), (7.9)

D3(Xn;G) = n

∫

log f(z|T (G))dG(z) − n

∫

log f(z|θ̂)dG(z).

Since the expectation of the second term in (7.8) is

EG [D2(Xn;G)] = EG

[

log f(Xn|T (G)) − n

∫

log f(z|T (G))dG(z)

]

=
n

∑

α=1

EG [log f(X|T (G))] − n

∫

log f(z|T (G))dG(z)

= 0, (7.10)
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Fig. 7.1. Decomposition of the difference between the log-likelihood and the ex-
pected log-likelihood.

the bias calculation is reduced to

b(G) ≡ EG [D(Xn;G)]

= EG [D1(Xn;G)] + EG [D3(Xn;G)] , (7.11)

where the expectation is taken with respect to the joint distribution of Xn.
Therefore, as for the derivation of the AIC, only two terms, EG [D1(Xn;G)]
and EG [D3(Xn;G)], need to be evaluated.

Remark 1 The symbols O, Op, o, and op, which are frequently used in this
chapter, are defined as follows:

(i) O and o: Let {an}, {bn} be two sequences of real numbers. If |an/bn| is
bounded when n → +∞, we write an = O(bn). Similarly, if |an/bn| converges
to 0, we write an = o(bn).

(ii) Op and op: Given a sequence of random variables {Xn} and a sequence
of real numbers {bn}, if Xn/bn is bounded in probability when n → +∞, then
we write Xn = Op(bn). If Xn/bn converges in probability to 0, then we write
Xn = op(bn). Note that a term bounded in probability means that there exist
a constant cε and a natural number n0(ε) such that for any ε > 0,

Pr{|Xn| ≤ bncε} ≥ 1 − ε (7.12)

if n > n0(ε).
In discussions of asymptotic theory with regard to the number of observa-

tions n, the quantity bn becomes n−1/2 or n−1, which provides a good measure
of the speed of convergence to a limit distribution or of the evaluation of the
approximation accuracy.
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7.1.2 Stochastic Expansion of an Estimator

To evaluate the bias correction term (7.11) for the log-likelihood, we employ
the stochastic expansion of an estimator based on the functional Taylor se-
ries expansion. In this subsection, we drop the notational dependence on the
estimator θ̂i and consider the stochastic expansion of θ̂.

Given a real-valued function T (G) whose domain is the set of all distrib-
utions, for any distribution functions G and H, we write

h(ε) = T ((1 − ε)G + εH), 0 ≤ ε ≤ 1. (7.13)

The ith-order derivative of the functional T (·) at a point (z1, . . . , zi, G) is
then defined as the symmetric function T (i)(z1, . . . , zi;G) that satisfies the
following equation with respect to any distribution function H [von Mises
(1947), Withers (1983)]:

h(i)(0) =

∫

. . .

∫

T (i)(z1, . . . , zi;G)

i
∏

j=1

d {H(zj) − G(zj)} . (7.14)

Here, we impose the following condition to ensure the uniqueness of the deriv-
ative T (i)(z1, . . . , zi;G):

∫

T (i)(z1, . . . , zi;G)dG(zk) = 0, 1 ≤ k ≤ i. (7.15)

This permits the replacement of d {H(zj) − G(zj)} in (7.14) with dH(zj).
In the next step, we expand h(ε) in a Taylor series around ε = 0 in the

form

h(ε) = h(0) + εh′(0) +
1

2
ε2h′′(0) + · · · . (7.16)

Since h(1) = T (H) and h(0) = T (G), by formally putting ε = 1 the above
expansion is rewritten as

T (H) = T (G) +

∫

T (1)(z1;G)dH(z1)

+
1

2

∫ ∫

T (2)(z1, z2;G)dH(z1)dH(z2) + · · · . (7.17)

Since Ĝ is the empirical distribution function based on the observed data from
the true distribution G(x), Ĝ must converge to G as n tends to infinity. Thus,
by replacing H in (7.17) with the empirical distribution function Ĝ, we obtain

the stochastic expansion for the estimator θ̂ = T (Ĝ) defined by the functional
T (·) in the following:
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T (Ĝ) = T (G) +
1

n

n
∑

α=1

T (1)(xα;G)

+
1

2n2

n
∑

α=1

n
∑

β=1

T (2)(xα, xβ ;G) + · · · . (7.18)

In addition, it follows from this stochastic expansion that we have

√
n

(

T (Ĝ) − T (G)
)

≈ 1√
n

n
∑

α=1

T (1)(xα;G). (7.19)

Hence, it can be shown from the central limit theorem that
√

n(T (Ĝ) −T (G))
is asymptotically distributed as a normal distribution with mean 0 and vari-
ance

∫

{

T (1)(x;G)
}2

dG(x). (7.20)

In the next subsection, we derive the GIC by using the stochastic expansion
formula for an estimator θ̂i = Ti(Ĝ) (i = 1, . . . , p) defined by a statistical
functional Ti(·).

For theoretical work on the functional Taylor series expansion, we refer to
von Mises (1947), Filippova (1962), Reeds (1976), Serfling (1980), Fernholz
(1983), Withers (1983), Konishi (1991), etc.

7.1.3 Derivation of the GIC

We recall that an estimator θ̂ = (θ̂1, . . . , θ̂p)
T is a functional, for which

there exists a p-dimensional statistical functional T (·) such that θ̂ = T (Ĝ)
= (T1(Ĝ), . . . , Tp(Ĝ))T . Here, as given in (7.18), the stochastic expansion of

θ̂i = Ti(Ĝ) around Ti(G) up to the term of order n−1 is

θ̂i = Ti(G) +
1

n

n
∑

α=1

T
(1)
i (Xα;G)

+
1

2n2

n
∑

α=1

n
∑

β=1

T
(2)
i (Xα, Xβ ;G) + op(n

−1), (7.21)

where T
(1)
i (Xα;G) and T

(2)
i (Xα, Xβ ;G) are respectively the first- and second-

order derivatives defined in (7.14). We now express the stochastic expansion
formula in vector form as follows:

θ̂ = T (G) +
1

n

n
∑

α=1

T (1)(Xα;G)

+
1

2n2

n
∑

α=1

n
∑

β=1

T (2)(Xα, Xβ ;G) + op(n
−1), (7.22)
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where T (1)(Xα;G) and T (2)(Xα, Xβ ;G) are p-dimensional vectors given by

T (1)(Xα;G) =
(

T
(1)
1 (Xα;G), . . . , T (1)

p (Xα;G)
)T

,

T (2)(Xα, Xβ ;G) =
(

T
(2)
1 (Xα, Xβ ;G), . . . , T (2)

p (Xα, Xβ ;G)
)T

. (7.23)

Noting that from the condition (7.15),

EG

[

T (1)(Xα;G)
]

= 0 and EG

[

T (2)(Xα, Xβ ;G)
]

= 0, α 
= β, (7.24)

the expectation for the estimator θ̂ in (7.22) can be calculated as

EG

[

θ̂ − T (G)
]

=
1

2n2

n
∑

α=1

n
∑

β=1

EG

[

T (2)(Xα, Xβ ;G)
]

+ o(n−1)

=
1

2n2

n
∑

α=1

EG

[

T (2)(Xα, Xα;G)
]

+ o(n−1)

=
1

n
b + o(n−1), (7.25)

where b = (b1, b2, . . . , bp)
T is an asymptotic bias of the estimator given by

b =
1

2

∫

T (2)(z, z;G)dG(z) (7.26)

with ith element

bi =
1

2

∫

T
(2)
i (z, z;G)dG(z). (7.27)

The variance–covariance matrix of the estimator θ̂ is asymptotically given
by

EG

[

(

θ̂ − T (G)
) (

θ̂ − T (G)
)T

]

=
1

n2

n
∑

α=1

n
∑

β=1

EG

[

T (1)(Xα;G)T (1)(Xβ ;G)T
]

+ o(n−1)

=
1

n2

n
∑

α=1

EG

[

T (1)(Xα;G)T (1)(Xα;G)T
]

+ o(n−1)

=
1

n
Σ(G) + o(n−1), (7.28)

where

Σ(G) = (σij) =

∫

T (1)(z;G)T (1)(z;G)T dG(z) (7.29)



7.1 Derivation of the GIC 173

with (i, j)th element

σij =

∫

T
(1)
i (z;G)T

(1)
j (z;G)dG(z). (7.30)

Calculating the bias correction term D3(Xn;G). Since θ̂ = T (Ĝ) con-
verges to T (G) in probability as the sample size n tends to infinity, by ex-

panding log f(z|θ̂) in a Taylor series around T (G), we obtain the stochastic
expansion of the expected log-likelihood:

∫

log f(z|θ̂)dG(z)

=

∫

log f(z|T (G))dG(z) +
(

θ̂ − T (G)
)T

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z)

−1

2

(

θ̂ − T (G)
)T

J(G)
(

θ̂ − T (G)
)

+ · · · , (7.31)

where

J(G) = −
∫

∂2 log f(z|θ)

∂θ∂θT

∣

∣

∣

∣

T (G)

dG(z). (7.32)

Then, by substituting the stochastic expansion formula for the estimator in
(7.22) into (7.31), we have

∫

log f(z|θ̂)dG(z) −
∫

log f(z|T (G))dG(z)

=
1

n

n
∑

α=1

T (1)(Xα;G)T

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z)

+
1

2n2

n
∑

α=1

n
∑

β=1

T (2)(Xα, Xβ ;G)T

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z)

− 1

2n2

n
∑

α=1

n
∑

β=1

T (1)(Xα;G)T J(G)T (1)(Xβ ;G) + op(n
−1). (7.33)

Taking the expectation term by term and using the results in (7.25) and
(7.28), we obtain the expectation of D3(Xn;G) in (7.9):

EG [D3(Xn;G)]

= EG

[

n

∫

log f(z|T (G))dG(z) − n

∫

log f(z|θ̂)dG(z)

]

= − 1

n

n
∑

α=1

EG

[

1

2
T (2)(Xα, Xα;G)T

] ∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z)
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+
1

2n

n
∑

α=1

EG

[

T (1)(Xα;G)T J(G)T (1)(Xα;G)
]

+ o(1)

= −bT

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z) +
1

2
tr {J(G)Σ(G)} + o(1). (7.34)

Here, note that

EG

[

T (1)(Xα;G)T J(G)T (1)(Xα;G)
]

= tr
{

J(G)EG

[

T (1)(Xα;G)T (1)(Xα;G)T
]}

= tr {J(G)Σ(G)} . (7.35)

Calculating the bias correction term D1(Xn;G). Similarly, by expand-

ing the log-likelihood log f(Xn|θ̂) in a Taylor series around T (G), we obtain

log f(Xn|θ̂)

= log f(Xn|T (G)) +
(

θ̂ − T (G)
)T ∂ log f(Xn|θ)

∂θ

∣

∣

∣

∣

T (G)

(7.36)

+
1

2

(

θ̂ − T (G)
)T ∂2 log f(Xn|θ)

∂θ∂θT

∣

∣

∣

∣

T (G)

(

θ̂ − T (G)
)

+ op(1).

Then, by substituting the stochastic expansion formula of (7.22) for the esti-

mator θ̂, we obtain

log f(Xn|θ̂)−log f(Xn|T (G))

=
1

n

n
∑

α=1

n
∑

β=1

T (1)(Xα;G)T ∂ log f(Xβ |θ)

∂θ

∣

∣

∣

∣

T (G)

+
1

2n2

n
∑

α=1

n
∑

β=1

n
∑

γ=1

T (2)(Xα, Xβ ;G)T ∂ log f(Xγ |θ)

∂θ

∣

∣

∣

∣

T (G)

(7.37)

+
1

2n2

n
∑

α=1

n
∑

β=1

n
∑

γ=1

T (1)(Xα;G)T ∂2 log f(Xγ |θ)

∂θ∂θT

∣

∣

∣

∣

∣

T (G)

T (1)(Xβ ;G)+op(1).

By using (7.25) and (7.28), the expectation of each term in this stochastic
expansion formula can be calculated as follows:

1

n

n
∑

α=1

n
∑

β=1

EG

[

T (1)(Xα;G)T ∂ log f(Xβ |θ)

∂θ

∣

∣

∣

∣

T (G)

]

=

∫

T (1)(z;G)T ∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z)
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= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

T (G)

dG(z)

}

, (7.38)

1

2n2

n
∑

α=1

n
∑

β=1

n
∑

γ=1

EG

[

T (2)(Xα, Xβ ;G)T ∂ log f(Xγ |θ)

∂θ

∣

∣

∣

∣

T (G)

]

= bT

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z) + o(1), (7.39)

1

2n2

n
∑

α=1

n
∑

β=1

n
∑

γ=1

EG

[

T (1)(Xα;G)T ∂2 log f(Xγ |θ)

∂θ∂θT

∣

∣

∣

∣

T (G)

T (1)(Xβ ;G)

]

=
1

2
tr

{

EG

[

∂2 log f(Z|θ)

∂θ∂θT

∣

∣

∣

∣

T (G)

]

EG

[

T (1)(Z;G)T (1)(Z;G)T
]

}

+ o(1)

= −1

2
tr {J(G)Σ(G)} + o(1). (7.40)

Thus, the expectation of D1(Xn;G) in (7.9) is given by

EG [D1(Xn;G)]

= EG

[

log f(Xn|θ̂) − log f(Xn|T (G))
]

= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

T (G)

dG(z)

}

(7.41)

+ bT

∫

∂ log f(z|θ)

∂θ

∣

∣

∣

∣

T (G)

dG(z) − 1

2
tr {J(G)Σ(G)} + o(1).

Calculating the bias correction term D(Xn;G). It follows from (7.34)

and (7.41) that the asymptotic bias of the log-likelihood log f(Xn|θ̂) in esti-

mating the expected log-likelihood EG[log f(z|θ̂)] is

b(G) = EG [D(Xn;G)]

= EG [D1(Xn;G)] + EG [D3(Xn;G)] (7.42)

= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

T (G)

dG(z)

}

+ o(1).

The asymptotic bias correction term depends on the unknown distribution
G, and hence by replacing G with the empirical distribution function Ĝ, we
obtain the bias estimate:



176 7 Theoretical Development and Asymptotic Properties of the GIC

b(Ĝ) =
1

n

n
∑

α=1

tr

{

T (1)(xα;G)
∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

θ=
ˆθ

}

. (7.43)

By subtracting the asymptotic bias estimate b(Ĝ) from the log-likelihood, we
obtain the GIC given in (5.64):

GIC = −2
n

∑

α=1

log f(xα|θ̂)

+
2

n

n
∑

α=1

tr

{

T (1)(xα; Ĝ)
∂ log f(xα|θ)

∂θT

∣

∣

∣

∣

θ=θ̂

}

. (7.44)

Information criteria for stochastic processes were investigated by Uchida
and Yoshida (2001, 2004) [see also Yoshida (1997)].

7.2 Asymptotic Properties and Higher-Order Bias
Correction

7.2.1 Asymptotic Properties of Information Criteria

Information criteria were constructed as estimators of the Kullback–Leibler
information discrepancy between the true distribution g(z) and the statistical

model f(z|θ̂) or, equivalently, the expected log-likelihood EG(z)[log f(Z|θ̂)].

We estimate the expected log-likelihood by the log-likelihood f(xn|θ̂). The
bias correction for the log-likelihood of a statistical model in the estimation
of the expected log-likelihood is essential for constructing an information cri-
terion. The bias correction term is generally given as an asymptotic bias.
According to the assumptions made for model estimation and the relation-
ship between the specified model and the true distribution, the asymptotic
bias takes a different form, and consequently we can obtain the information
criteria introduced previously, including the AIC.

In this subsection, we discuss, within a general framework, the theoretical
evaluation of the asymptotic accuracy of an information criterion as an es-
timator of the expected log-likelihood. In the following, we assume that the
p-dimensional parameter vector for a model f(x|θ) is estimated by θ̂ = T (Ĝ)
for a suitable p-dimensional functional T (G). The aim is to estimate the ex-

pected log-likelihood of the statistical model f(x|θ̂) defined by

η(G; θ̂) ≡ EG(z)

[

log f(Z|θ̂)
]

=

∫

log f(z|θ̂)dG(z). (7.45)

The expected log-likelihood is conditional on the observed data xn and also
depends on the unknown distribution G generating the data.

We suppose that under certain regularity conditions, the expectation of
η(G; θ̂) over the sampling distribution G of Xn can be expanded in the form



7.2 Asymptotic Properties and Higher-Order Bias Correction 177

EG(x)

[

η(G; θ̂)
]

= EG(x)

[

EG(z)

[

log f(Z|θ̂)
]]

(7.46)

=

∫

log f(z|T (G))dG(z) +
1

n
η1(G) +

1

n2
η2(G) + O(n−3).

The objective is to estimate this quantity from observed data as accurately
as possible. In other words, we want to obtain an estimator η̂(Ĝ; θ̂) of η(G; θ̂)
that satisfies the condition

EG(x)

[

η̂(Ĝ; θ̂) − η(G; θ̂)
]

= O(n−j) (7.47)

for j as large as possible. For example, if j = 2, (7.46) indicates that the
estimator agrees up to a term of order 1/n.

An obvious estimator is the log-likelihood (× 1/n)

η(Ĝ; θ̂) ≡ 1

n

n
∑

α=1

log f(xα|θ̂), (7.48)

which is obtained by replacing the unknown probability distribution G of the
expected log-likelihood η(G; θ̂) with the empirical distribution function Ĝ. In
this subsection, because of the order of the expansion formula, we refer to the
above equation divided by n as the log-likelihood.

By using the stochastic expansion of a statistical functional, the expecta-
tion of the log-likelihood gives a valid expansion of the following form:

EG(x)

[

η(Ĝ; θ̂)
]

(7.49)

=

∫

log f(z|T (G))dG(z) +
1

n
L1(G) +

1

n2
L2(G) + O(n−3).

Therefore, the log-likelihood as an estimator of the expected log-likelihood
(7.46) only agrees in the first term, and the term of order 1/n remains as a
bias. Specifically, the asymptotic expansions in (7.46) and (7.49) differ in the
term of order n−1, namely,

EG(x)

[

η(Ĝ; θ̂) − η(G; θ̂)
]

=
1

n
{L1(G) − η1(G)} + O(n−2). (7.50)

In (7.42) in the preceding section, we showed that this bias is given by

b(G) = L1(G) − η1(G)

= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

T (G)

dG(z)

}

, (7.51)

within the framework of a regular functional.
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The asymptotic bias of the log-likelihood given by {L1(G)− η1(G)}/n (=
b1(G)/n) may be estimated by b1(Ĝ)/n = {L1(Ĝ) − η1(Ĝ)}/n, and the bias-
corrected version of the log-likelihood is

ηIC(Ĝ; θ̂) = η(Ĝ; θ̂) − 1

n
b1(Ĝ). (7.52)

Noting that the difference between EG[b1(Ĝ)] and b1(G) is usually of order
n−1, that is, EG(x)[b1(Ĝ)] = b1(G) +O(n−1), we have

EG

[

η(Ĝ; θ̂) − 1

n
b1(Ĝ) − η(G; θ̂)

]

= O(n−2). (7.53)

Hence, the bias-corrected log-likelihood ηbc(Ĝ; θ̂) is second-order correct or

accurate for η(G; θ̂) in the sense that the expectations of two quantities are
in agreement up to and including the term of order n−1 and that the order of
the remainder is n−2.

It can be readily seen that the −(2n)−1 times information criteria AIC,
TIC, and GIC are all second-order correct for the corresponding expected
log-likelihood. In contrast, the log-likelihood itself is only first-order correct.

If the specified parametric family of densities includes the true distribu-
tion and the maximum likelihood estimate is used to estimate the underlying
density, then the asymptotic bias of the log-likelihood is given by the number
of estimated parameters, giving AIC = −2n{η(F̂ ; θ̂ML) −p/n}. In this case,
the bias-corrected version of the log-likelihood is given by

ηML(F̂ ; θ̂ML) = η(F̂ ; θ̂ML) − 1

n
p − 1

n2
{L2(F̂ ) − η2(F̂ )}. (7.54)

It can be readily checked that

EF

[

ηML(F̂ ; θ̂ML) − η(F ; θ̂ML)
]

= O(n−3), (7.55)

which implies that ηML(F̂ ; θ̂ML) is third-order correct for η(F ; θ̂ML).
In practice, we need to derive the second-order bias-corrected term L2(F̂ )−

η2(F̂ ) analytically for each estimator, though it seems to be of no practical
use. In such cases, bootstrap methods may be applied to estimate the bias
of the log-likelihood, and the same asymptotic order as for ηML(F̂ ; θ̂ML) can

be achieved by bootstrapping η(F̂ ; θ̂ML)− p/n or equivalently η(F̂ ; θ̂ML) (see
Section 8.2).

7.2.2 Higher-Order Bias Correction

The information criteria are derived by correcting the asymptotic bias of the
log-likelihood in the estimation of the expected log-likelihood of a statistical
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model. Obtaining information criteria, as estimators for the expected log-
likelihood, that have higher orders of accuracy remains a problem. For partic-
ular situations when distributional and structural assumptions of the models
are made, Sugiura (1978), Hurvich and Tsai (1989, 1991, 1993), Fujikoshi
and Satoh (1997), Satoh et al. (1997), Hurvich et al. (1998), and McQuarrie
and Tsai (1998) have investigated the asymptotic properties of the AIC and
demonstrated the effectiveness of bias reduction in autoregressive time series
models and parametric and nonparametric regression models, both theoreti-
cally and numerically. Most of these studies employed the normality assump-
tion, and the proposed criteria were relatively simple and easy to apply in
practical situations.

Here we develop a general theory for bias reduction in evaluating the bias
of a log-likelihood in the context of smooth functional statistics and introduce
an information criterion that yields more refined results.

We showed in (7.53) that information criteria based on the asymptotic
bias-corrected log-likelihood are second-order correct for the expected log-
likelihood η(G; θ̂) in the sense that the expectations of η(Ĝ; θ̂) −b1(Ĝ)/n and

η(G; θ̂) are in agreement up to and including the term of order n−1, while the

expectations of η(Ĝ; θ̂) and η(G; θ̂) differ in the term of order n−1. We now
consider higher-order bias correction for information criteriaD

The bias of the asymptotic bias-corrected log-likelihood as an estimate of
the expected log-likelihood is given by

EG(x)

[

ηIC(Ĝ; θ̂) − η(G; θ̂)
]

= EG(x)

[

η(Ĝ; θ̂) − 1

n
b1(Ĝ) − η(G; θ̂)

]

(7.56)

= EG(x)

[

η(Ĝ; θ̂) − η(G; θ̂)
]

− 1

n
EG

[

b1(Ĝ)
]

.

The first term in the right-hand side is the bias of the log-likelihood and may
be expanded as

EG(x)

[

η(Ĝ; θ̂) − η(G; θ̂)
]

=
1

n
b1(G) +

1

n2
b2(G) + O(n−3), (7.57)

where b1(G) is the first-order or asymptotic bias correction term. The expected
value of b1(Ĝ) can also be expanded as

EG(x)

[

b1(Ĝ)
]

= b1(G) +
1

n
∆b1(G) + O(n−2). (7.58)

Hence, the bias of the asymptotic bias-corrected log-likelihood is given by

EG(x)

[

η(Ĝ; θ̂) − 1

n
b1(Ĝ) − η(G; θ̂)

]

=
1

n2
{b2(G) − ∆b1(G)} + O(n−3). (7.59)
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Konishi and Kitagawa (2003) have developed a general theory for bias
reduction in evaluating the bias of a log-likelihood in the context of smooth
functional estimators and derived the second-order bias correction term given
by

b2(G) − ∆b1(G)

= b1(G) +
1

2

{

p
∑

i=1

∫

T
(2)
i (z, z;G)dG(z)

∫

∂ log f(z|T (G))

∂θi
dG(z)

−
p

∑

i=1

∫

T
(2)
i (z, z;G)

∂ log f(z|T (G))

∂θi
dG(z) (7.60)

+

p
∑

i=1

p
∑

j=1

∫

T
(1)
i (z;G)T

(1)
j (z;G)dG(z)

∫

∂2 log f(z|T (G))

∂θi∂θj
dG(z)

−
p

∑

i=1

p
∑

j=1

∫

T
(1)
i (z;G)T

(1)
j (z;G)

∂2 log f(z|T (G))

∂θi∂θj
dG(z)

}

.

This second-order bias correction term is estimated by b2(Ĝ) − ∆b1(Ĝ), in
which the unknown probability distribution G is replaced by the empirical
distribution function Ĝ. Then, by further correcting the bias in the infor-
mation criterion ηIC(G; θ̂) with the first-order bias correction, we obtain the
following theorem:

GIC with a second-order bias correction. Assume that the statistical
model f(x|θ̂) is estimated with θ̂ = T (Ĝ) = (T1(Ĝ), T2(Ĝ), . . . , Tp(Ĝ))T ,
using the regular functional T (·). Then the generalized information criterion
with a second-order bias correction is given by

SGIC ≡ −2

n
∑

α=1

log f(Xα|θ̂) + 2

{

b1(Ĝ) +
1

n

(

b2(Ĝ) − ∆b1(Ĝ)
)

}

,

(7.61)

where b1(Ĝ) is the asymptotic bias term given in (7.43), and b2(Ĝ)−∆b1(Ĝ)
is the second-order bias correction term given in (7.60) with Ĝ.

It can be shown that the information criterion SGIC with a second-order
bias correction is third-order correct or accurate in the sense that the order of
(7.47) is O(n−3), that is, the expectations are in agreement up to the term of
order n−2 and that the order of the remainder is n−3.

Example 1 (Gaussian linear regression model) Suppose that we have
n observations {(yα,xα); α = 1, . . . , n} of a response variable y and a
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p-dimensional vector of explanatory variables x. The Gaussian linear regres-
sion model is

y = Xβ + ε, ε ∼ N(0, σ2In), (7.62)

where y = (y1, y2, . . . , yn)T , X is an n × p design matrix, and β is a p-
dimensional parameter vector. The maximum likelihood estimates of the pa-
rameters θ = (βT , σ2)T (∈ Θ ⊂ Rp+1) are given by

β̂ = (XT X)−1XT y and σ̂2 =
1

n
(y − Xβ̂)T (y − Xβ̂). (7.63)

Here we assume that the true distribution that generates the data is contained
in the specified parametric model. In other words, the true distribution is given
as an n-dimensional normal distribution with mean Xβ0 and variance covari-
ance matrix σ2

0In for some β0 and σ2
0 . Then, for an n-dimensional observation

vector z obtained randomly independent of y, the statistical model can be
expressed as

f(z|θ̂) =
(

2πσ̂2
)−n/2

exp

{

− (z − Xβ̂)T (z − Xβ̂)

2σ̂2

}

. (7.64)

The log-likelihood and the expected log-likelihood of this model are, re-
spectively, given by

log f(y|θ̂) = −n

2

{

log(2πσ̂2) + 1
}

,
∫

log f(z|θ̂)dG(z) = −n

2

{

log(2πσ̂2) +
σ2

0

σ̂2

+
(Xβ0 − Xβ̂)T (Xβ0 − Xβ̂)

nσ̂2

}

. (7.65)

In this case, the bias of the log-likelihood can be evaluated exactly using the
properties of the normal distribution, as discussed in Subsection 3.5.1, and it
is given by

EG

[

log f(y|θ̂) −
∫

log f(z|θ̂)dG(z)

]

=
n(p + 1)

n − p − 2
(7.66)

[Sugiura (1978)]. Hence, under the assumption that the true model that gen-
erates the data is contained in the specified Gaussian linear regression model,
we obtain the following information criterion for which the bias of the log-
likelihood is exactly corrected:

AICC = −2 log f(y|θ̂) + 2
n(p + 1)

n − p − 2

= n
{

log(2πσ̂2) + 1
}

+ 2
n(p + 1)

n − p − 2
. (7.67)
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On the other hand, recall that the AIC is

AIC = −2 log f(y|θ̂) + 2(p + 1), (7.68)

in which the number of free parameters for the model was adjusted to the
log-likelihood.

The exact bias correction term in (7.67) can be expanded as

n(p + 1)

n − p − 2
= (p + 1)

{

1 +
1

n
(p + 2) +

1

n2
(p + 2)2 + · · ·

}

. (7.69)

The p+1 factor in the first term on the right-hand side is the asymptotic bias.
Hence, for the AIC, the asymptotic bias for the log-likelihood of the model
is corrected. Although accurate bias corrections are thus possible for specific
models and estimation methods, they are difficult to discuss within a general
framework.

Example 2 (Normal model) Although the second-order bias correction
term b2(G) for the log-likelihood and bias ∆b1(G) take quite complex forms,
such as in (7.60), when determined within the framework of functionals, the
results of b2(G) − ∆b1(G) can be simplified substantially for specific models.
Here we give these correction terms for the normal model, N(µ, σ2). First, the
derivatives of statistical functionals Tµ(G) and Tσ2(G) are given as follows:

T (1)
µ (x;G) = x − µ, T (j)

µ (x1, . . . , xj ;G) = 0 (j ≥ 2),

T
(1)
σ2 (x;G) = (x − µ)2 − σ2,

T
(2)
σ2 (x, y;G) = −2(x − µ)(y − µ), (7.70)

T
(j)
σ2 (x1, . . . , xj ;G) = 0 (j ≥ 3).

Using these results, we can obtain the second-order bias correction terms:

b2(G) = 3 − µ4

σ4
− 1

2

µ6

σ6
+ 4

µ2
3

σ6
+

3

2

µ2
4

σ8
,

∆b1(G) = 3 − 3

2

µ4

σ4
− µ6

σ6
+ 4

µ2
3

σ6
+

3

2

µ2
4

σ8
, (7.71)

b2(G) − ∆b1(G) =
1

2

(µ4

σ4
+

µ6

σ6

)

,

where µj is the jth-order central moment of the true distribution G. These
results indicate that although b2(G) and ∆b1(G) are somewhat complex,
b2(G)−∆b1(G) has a relatively simple form. Consequently, the bias correction
term with third-order accuracy is given by

b1(G) − 1

n
∆b1(G) +

1

n
b2(G)

=
1

2

(

1 +
µ4

σ4

)

+
1

2n

(µ4

σ4
+

µ6

σ6

)

. (7.72)
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Table 7.1. Bias correction terms for the normal distribution model and Laplace
distribution model.

True bias b1(G) b1(G) +
1

n
b2(G)

1

n
∆b1(G)

Normal distribution 2 2 +
6

n
− 3

n

Laplace distribution 3.5 3.5 +
6

n
−42

n

Example 3 (Numerical results) We now show the results of Monte Carlo
experiments for two cases, the normal distribution and the Laplace distribu-
tion (two-sided exponential distribution):

g(x) =
1√
2π

exp

(

−x2

2

)

,

g(x) =
1

2
exp(−|x|). (7.73)

The specified model is a normal distribution {f(x|µ, σ2);(µ, σ2) ∈ Θ}, and
the unknown parameters µ and σ2 are estimated by the maximum likelihood
method. The central moments are µ3 = 0Cµ4 = 3, and µ6 = 15 if the true
model is a normal distribution and µ3 = 0C µ4 = 6, and µ6 = 90 if the true
model is a Laplace distribution.

Table 7.1 shows the asymptotic bias b1(G) of the log-likelihood, the second-
order correction term b1(G) + 1

nb2(G), and the bias 1
n∆b1(G) for the asymp-

totic bias of the maximum likelihood model f(x|µ̂, σ̂2) calculated using the
results in Example 2. If the true distribution is a normal distribution, then the
absolute value of ∆b1(G) is half b2(G). However, for a Laplace distribution, it
is more than seven times greater than b2(G). Therefore, in general, it would
be meaningless to correct for only b2(G). One of the advantages of the AIC
is that the bias correction term does not depend on the distribution G, and,
therefore, ∆bAIC(Ĝ) = 0.

Tables 7.2 and 7.3 show the values of b1(Ĝ)C b1(Ĝ) + 1
nb2(Ĝ), and b1(Ĝ)

+ 1
n (b2(Ĝ)−∆b1(Ĝ)) obtained by substituting the empirical distribution func-

tion Ĝ into the true bias b(G), asymptotic bias b1(G), and second-order correc-
tion terms b1(G)+ 1

nb2(G) by assuming that the true distribution is a normal
distribution (Table 7.2) and a Laplace distribution (Table 7.3). These values
were obtained by conducting 10,000 Monte Carlo iterations.

For n = 200 or higher, the bias correction term yields substantially good
estimators, not only for the case in which the true distribution G is used,
but also for the case in which the empirical distribution function Ĝ is used.
In contrast, for n = 25, the asymptotic bias is substantially underevaluated,
indicating the effectiveness of the second-order correction.
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Table 7.2. Bias correction terms and their estimates for normal distribution models.

Sample size n 25 50 100 200 400 800

True bias b(G) 2.27 2.13 2.06 2.03 2.02 2.01

b1(G) 2.00 2.00 2.00 2.00 2.00 2.00

b1(G) +
1

n
b2(G) 2.24 2.12 2.06 2.03 2.02 2.01

b1(Ĝ) 1.89 1.94 1.97 1.99 1.99 2.00

b1(Ĝ) +
1

n
b2(Ĝ) 2.18 2.08 2.04 2.02 2.01 2.00

b1(Ĝ) +
1

n
(b2(Ĝ) − ∆b1(Ĝ)) 2.18 2.10 2.06 2.03 2.01 2.01

In practical situations, G is unknown and we have to estimate the first- and
second-order bias correction terms. When the true distribution is assumed to
be a normal distribution, the estimator b1(Ĝ) of the asymptotic bias takes a
smaller value, 1.89, than the value corrected by the AIC, i.e., 2. The difference
−0.11 is in close agreement with the bias ∆b1(G)/n = −3/25 = −0.12. In
contrast, the second-order bias correction gives a good approximation to the
true bias.

If the true distribution is assumed to be a Laplace distribution, then the
correction terms b1(G) and b1(G) + 1

nb2(G) yield relatively good approxi-

mations to b(G). However, their estimates b1(Ĝ) and b1(Ĝ) + 1
nb2(Ĝ) have

significant biases because of the large value of the bias of the asymptotic bias
estimate b1(Ĝ), ∆b1(G)/n = −42/n. In fact, the bias correction b1(Ĝ)+(b2(Ĝ)
−∆b1(Ĝ))/n gives a remarkably accurate approximation to the true bias.

We notice that while the correction with ∆b1(G)/n works well when n = 50
or higher, it is virtually useless when n = 25. This is due to the poor estimation
accuracy of the first-order corrected bias and seems to indicate a limitation
of high-order correction techniques. A possible solution to this problem is the
bootstrap method shown in the next chapter.
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Table 7.3. Bias correction terms and their estimates for Laplace distribution mod-
els.

Sample size n 25 50 100 200 400 800

True bias b(G) 3.88 3.66 3.57 3.53 3.52 3.51

b1(G) 3.50 3.50 3.50 3.50 3.50 3.50

b1(G) +
1

n
b2(G) 3.74 3.62 3.56 3.53 3.52 3.51

b1(Ĝ) 2.59 2.93 3.17 3.31 3.40 3.45

b1(Ĝ) +
1

n
b2(Ĝ) 3.30 3.31 3.34 3.39 3.43 3.46

b1(Ĝ) +
1

n
(b2(Ĝ) − ∆b1(Ĝ)) 3.28 3.43 3.49 3.51 3.51 3.51
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Bootstrap Information Criterion

Advances in computing now allow numerical methods to be used for modeling
complex systems, instead of analytic methods. Complex Bayesian models can
now be used for practical applications by using numerical methods such as
the Markov chain Monte Carlo (MCMC) technique. Also, when the maximum
likelihood estimator cannot be obtained analytically, it is possible to obtain it
by a numerical optimization method. In conjunction with the development of
numerical methods, model evaluation must now deal with extremely complex
and increasingly diverse models. The bootstrap information criterion [Efron
(1983), Wong (1983), Konishi and Kitagawa (1996), Ishiguro et al. (1997),
Cavanaugh and Shumway (1997), and Shibata (1997)], obtained by apply-
ing the bootstrap methods originally proposed by Efron (1979), permits the
evaluation of models estimated through complex processes.

8.1 Bootstrap Method

The bootstrap method has received considerable interest due to its ability
to provide effective solutions to problems that cannot be solved by analytic
approaches based on theories or formulas. A salient feature of the bootstrap
method is that it uses massive iterative computer calculations rather than
analytic expressions. This makes the bootstrap method a flexible statistical
method that can be applied to complex problems employing very weak as-
sumptions.

As a solution to the problem of nonparametric estimation of the bias and
variance (or standard error) of an estimator, Efron (1979) introduced the
bootstrap method as a more effective technique than the traditional jackknife
method. As Efron showed, the bootstrap method can address the problems
of variance estimation for sample medians and the estimation of the predic-
tion error in discriminant analysis. Subsequently, the bootstrap method has
been applied to the estimation of percentile points in probability distributions
of estimators and to the construction of confidence intervals of parameters.
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Studies on improving the approximation accuracy of confidence intervals have
clarified the theoretical structure of the bootstrap method, and the bootstrap
method has become an established practical statistical technique for a variety
of applications.

Example books focusing on applications and practical aspects of the boot-
strap method to statistical problems are those of Efron and Tibshirani (1993)
and Davison and Hinkley (1997). Works addressing the theoretical aspects of
the bootstrap method are those of Efron (1982), Hall (1992), and Shao and
Tu (1995). In addition, Diaconis and Efron (1983), Efron and Gong (1983),
and Efron and Tibshirani (1986) provide introductions to the basic concepts
underlying the bootstrap method. In this section, we introduce the basic con-
cepts and procedures for the bootstrap method through the evaluation of the
bias and variance of an estimator.

Let Xn = {X1, X2, . . . , Xn} be a random sample of size n drawn from
an unknown probability distribution G(x). We estimate a parameter θ with

respect to the probability distribution G(x) by using an estimator θ̂ = θ̂(Xn).
When observed data xn = {x1, x2, . . . , xn} are obtained, critical statistical

analysis tasks are estimating the parameter θ by the estimator θ̂ = θ̂(xn) and
evaluating the reliability of the estimation.

The basic quantities used to assess the error in the estimation are the
following bias and variance of the estimator:

b(G) = EG[ θ̂ ] − θ, σ2(G) = EG

[

{

θ̂ − EG[θ̂]
}2

]

. (8.1)

Both the bias and variance express the statistical error of an estimator and
depend on the true probability distribution G(x). The task is to estimate them
from the data. Instead of attempting to estimate these quantities analytically
for each estimator, the bootstrap method provides an algorithm for estimating
them numerically with a computer. Basically, the procedure of the bootstrap
method is executed through the following steps:

(1) Estimate the unknown probability distribution G(x) from an empirical
distribution function Ĝ(x), where Ĝ(x) is a probability distribution function
with an equal probability 1/n at each point of the n observations {x1, x2,
. . . , xn}. (See Subsection 5.1.1 for a description of empirical distribution func-
tions.)

(2) Random samples from the empirical distribution function Ĝ(x) are
referred to as bootstrap samples and are denoted as X∗

n = {X∗
1 , X∗

2 , . . . , X∗
n}.

Similarly, the estimator based on a bootstrap sample is denoted as θ̂∗ =
θ̂(X∗

n). The bias and variance of the estimator in (8.1) are then estimated as

b(Ĝ) = EĜ[θ̂∗] − θ̂, σ2(Ĝ) = EĜ

[

{

θ̂∗ − EĜ[θ̂∗]
}2

]

, (8.2)
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Fig. 8.1. Bootstrap samples and bootstrap estimate.

respectively, where EĜ denotes the expectation with respect to the empirical

distribution function Ĝ(x). The expressions b(Ĝ) and σ2(Ĝ) are referred to as
the bootstrap estimates of b(G) and σ2(G), respectively.

(3) Exploiting the fact that a bootstrap sample X∗
n(i) = {x∗

1(i), . . . , x
∗
n(i)}

is obtained by n repeated samples with replacement from the observed data,
the bootstrap estimates in (8.2) are numerically approximated by using the
Monte Carlo method (see Remark 1). Specifically, bootstrap samples of size
n are extracted repeatedly B times, i.e., {X∗

n(i); i = 1, . . . , B}, and the corre-

sponding B estimators are denoted as {θ̂∗(i) = θ̂(X∗
n(i)); i = 1, . . . , B}. Then

the bootstrap estimates of the bias and variance in (8.2) are respectively ap-
proximated as

b(Ĝ) ≈ 1

B

B
∑

i=1

θ̂∗(i) − θ̂, σ2(Ĝ) ≈ 1

B − 1

B
∑

i=1

{

θ̂∗(i) − θ̂∗(·)
}2

,

where θ̂∗(·) =
∑B

i=1 θ̂∗(i)/B (see Figure 8.1).

Remark 1 (Bootstrap sample) The following is a brief explanation of a
bootstrap sample. Generally, given any distribution function G(x), random
numbers that follow the distribution G(x) can be obtained by generating
uniform random numbers u over the interval [0, 1) and substituting them
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Fig. 8.2. Generation of random numbers (bootstrap samples) from an empirical
distribution function.

into the inverse function G−1(u) of G(x). This principle can be applied to
empirical distribution functions. Since an empirical distribution function is
a discrete distribution with an equal probability 1/n at each of the n data
points x1, x2, . . . , xn, it follows that

Ĝ−1(u) = {one of the observations x1, . . . , xn}. (8.3)

It is clear that the bootstrap sample obtained by repeating this process is
simply a set of n data points that are sampled with replacement from n
observations.

Figure 8.2 shows the relationship among density functions, distribution
functions, empirical distribution functions, and bootstrap samples. The up-
per left plot shows a normal density function. The upper right plot shows the
distribution function obtained by integrating the normal density function. In
this plot, a normal random number can be obtained by generating a uni-
form random number u over the interval [0,1) on the ordinate, determining
the intersection between the line drawn horizontally from the number and
the distribution function, tracing a line perpendicularly downward from the
intersection, and determining the point at which the line crosses the x-axis.
The lower left plot shows data generated from a standard normal distribution
N(0, 1). The plot on the lower right shows an empirical distribution function
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determined by these data points and an example in which random numbers
are generated in a similar manner using the distribution function. From the
figure, it is clear that random numbers can be obtained in equal probabilities.
The figure also shows that bootstrap samples can be obtained by sampling
with replacement of the observed data used in the construction of the empir-
ical distribution function.

Remark 2 (Bootstrap simulation) The bootstrap method can be applied
to a broad range of complex inference problems because the Monte Carlo
method employed in step (3) above permits the numerical approximation of
bootstrap estimates. For a parameter θ and a function determined by the
estimator θ̂, such as θ̂ − θ and {θ̂ −EG[θ̂]}2, we write r(θ̂, θ). The bias and
variance of the estimator can be expressed as

EG

[

r(θ̂, θ)
]

=

∫

· · ·
∫

r(θ̂, θ)
n

∏

α=1

dG(xα), (8.4)

that is, the expectation of r(θ̂, θ), appropriately defined [see Subsection 3.1.1
for a description of dG(x)]. The bootstrap method estimates this quantity by
using

EĜ

[

r(θ̂∗, θ̂)
]

=

∫

· · ·
∫

r(θ̂∗, θ̂)

n
∏

α=1

dĜ(x∗
α). (8.5)

In other words, the bootstrap method performs an inference process based on
{G, θ, θ̂} by replacing it with {Ĝ, θ̂, θ̂∗}.

The expectation in (8.4) cannot be computed since the probability distri-
bution G(x) is unknown. In contrast, since the expectation in (8.5) is taken
with respect to the joint distribution

∏n
α=1 dĜ(x∗

α) of the empirical distribu-
tion function, which is a known probability distribution, it can be numerically
approximated using a Monte Carlo simulation. Specifically, a set of n random
numbers (bootstrap sample) that follows the empirical distribution function
is generated repeatedly, and the expectation is numerically approximated as

EĜ

[

r(θ̂∗, θ̂)
]

=

∫

· · ·
∫

r(θ̂∗, θ̂)

n
∏

α=1

dĜ(x∗
α)

≈ 1

B

B
∑

i=1

r(θ̂∗(i), θ̂), (8.6)

where θ̂∗(i) denotes an estimate based on the ith set of random numbers
obtained by repeatedly generating random numbers of size n B times from
Ĝ(x).

This method exploits the fact that a set of random numbers of size n from
an empirical distribution function, that is, a bootstrap sample of size n, is
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equivalent to the sampling with replacement of a sample of size n from the
observed data {x1, x2, . . . , xn}. It is clear, therefore, that this sampling process
cannot be performed unless n observations are obtained independently from
the same distribution.

Remark 3 (Number of bootstrap samples) Errors in the approxima-
tion by Monte Carlo simulation can be ignored if the number B of bootstrap
repetitions becomes infinitely large. In practice, however, the number of boot-
strap repetitions for estimating a bias or variance (standard error) is usually
B = 50 ∼ 200. In contrast, the estimation of percentage points of the proba-
bility distribution of an estimator requires B = 1000 ∼ 2000.

8.2 Bootstrap Information Criterion

8.2.1 Bootstrap Estimation of Bias

Recall that the information criterion is obtained by correcting the bias,

b(G) = EG(x)

[

n
∑

α=1

log f(Xα|θ̂(Xn)) − nEG(z)

[

log f(Z|θ̂(Xn))
]

]

, (8.7)

when the expected log-likelihood of a model is estimated by the log-likelihood,
where EG(x) denotes the expectation with respect to the joint distribution of
a random sample Xn, and EG(z) represents the expectation with respect to
the probability distribution G.

The second term EG(z)

[

log f(Z|θ̂(Xn))
]

on the right-hand side of (8.7)

can be expressed as

EG(z)

[

log f(Z|θ̂(Xn))
]

=

∫

log f(z|θ̂(Xn))dG(z). (8.8)

This represents the expectation with respect to the distribution G(z) of the
future data z that is independent of the random sample Xn. In addition, the
first term on the right-hand side is the log-likelihood, which can be expressed
as an integral by using the empirical distribution function Ĝ(x),

n
∑

α=1

log f(Xα|θ̂(Xn)) = n

∫

log f(z|θ̂(Xn))dĜ(z). (8.9)

Recall here that the information criteria AIC, TIC, and GIC were obtained
analytically based on asymptotic theory for the terms in (8.7) under suit-
able conditions. In contrast, the bootstrap information criterion is obtained
through a numerical approximation by using the bootstrap method, instead of
analytically deriving the bias of the log-likelihood for each statistical model.
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In constructing the bootstrap information criterion, the true distribution
G(x) is replaced with an empirical distribution function Ĝ(x). In connection
with this replacement, the random variable and estimator contained in (8.7)
are substituted as follows:

G(x) −→ Ĝ(x),

Xα ∼ G(x) −→ X∗
α ∼ Ĝ(x),

Z ∼ G(z) −→ Z∗ ∼ Ĝ(z),

EG(x), EG(z) −→ EĜ(x∗), EĜ(z∗),

θ̂ = θ̂(X) −→ θ̂
∗

= θ̂(X∗).

Therefore, the bootstrap bias estimate of (8.7) becomes

b∗(Ĝ) = EĜ(x∗)

[

n
∑

α=1

log(X∗
α|θ̂(X∗

n)) − nEĜ(z∗)

[

log f(Z∗|θ̂(X∗
n))

]

]

.

(8.10)
In the following, we describe in detail how the terms are replaced in the
framework of the bootstrap method.

Given a set of data xn = {x1, x2, . . . , xn}, in the bootstrap method, the
true distribution function G(x) is first substituted by an empirical distribu-

tion function Ĝ(x). A statistical model f(x|θ̂(X∗
n)) is constructed based on

a bootstrap sample X∗
n from the empirical distribution function. Then, the

expected log-likelihood of the model f(x|θ̂(X∗
n)) when the empirical distrib-

ution function is considered as the true distribution is calculated as

EĜ(z)

[

log f(Z|θ̂(X∗
n))

]

=

∫

log f(z|θ̂(X∗
n))dĜ(z)

=
1

n

n
∑

α=1

log f(xα|θ̂(X∗
n)) (8.11)

≡ 1

n
ℓ(xn|θ̂(X∗

n)).

Thus, if Ĝ(x) is considered as the true distribution, the expected log-likelihood
is simply the log-likelihood.

On the other hand, since the log-likelihood, which is an estimator of the
expected log-likelihood, is constructed by reusing the bootstrap sample X∗

n,
it can be represented as

EĜ∗(z)

[

log f(Z|θ̂(X∗
n))

]

=

∫

log f(z|θ̂(X∗))dĜ∗(z)

=
1

n

n
∑

α=1

log f(X∗
α|θ̂(X∗

n)) (8.12)

≡ 1

n
ℓ(X∗

n|θ̂(X∗
n)),
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Fig. 8.3. Estimation of the bias of the log-likelihood by the bootstrap method. The
bold curve shows the expected log-likelihood, the thin curve the log-likelihood, and
the dashed curve the log-likelihood based on a bootstrap sample.

where Ĝ∗ is an empirical distribution function based on the bootstrap sample
X∗

n. Consequently, using the bootstrap method, the bootstrap bias estimate
in (8.7) can be written as

b∗(Ĝ) = EĜ(x∗)

[

ℓ(X∗
n|θ̂(X∗

n)) − ℓ(Xn|θ̂(X∗
n))

]

(8.13)

=

∫

· · ·
∫

{

ℓ(X∗
n|θ̂(X∗

n)) − ℓ(Xn|θ̂(X∗
n))

}

n
∏

α=1

dĜ(x∗
α).

As noted in the preceding section, the most significant feature of the bootstrap
information criterion is that this integral can be approximated numerically
by the Monte Carlo method by using the fact that Ĝ is a known probability
distribution (the empirical distribution function).

In the bootstrap information criterion, we use D∗ instead of D in Figure
8.3, which is equivalent to determining the expectation of the difference be-

tween EĜ(z)

[

log f(Z|θ̂(X∗
n))

]

and EĜ∗(z)

[

log f(Z|θ̂(X∗
n))

]

instead of deter-

mining the expectation of the difference between the expected log-likelihood

EG(z)

[

log f(Z|θ̂(Xn))
]

and the log-likelihood nEĜ(z)

[

log f(Z|θ̂(Xn))
]

=

log f(Xn|θ̂(Xn)).
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8.2.2 Bootstrap Information Criterion, EIC

Let us extract B sets of bootstrap samples of size n and write the ith boot-
strap sample as X∗

n(i) = {X∗
1 (i), X∗

2 (i), . . . , X∗
n(i)}. We denote the difference

between (8.12) and (8.11) with respect to the sample X∗
n(i) as

D∗(i) = ℓ(X∗
n(i)|θ̂(X∗

n(i))) − ℓ(xn|θ̂(X∗
n(i))), (8.14)

where θ̂(X∗
n(i)) is an estimate of θ obtained from the ith bootstrap sample.

Then the expectation in (8.13) based on B bootstrap samples can be numer-
ically approximated as

b∗(Ĝ)≈ 1

B

B
∑

i=1

D∗(i) ≡ bB(Ĝ). (8.15)

The quantity bB(Ĝ) is the bootstrap estimate of the bias b(G) of the log-
likelihood. Consequently, the bootstrap methods yield an information criterion
as follows:

Bootstrap information criterion, EIC. Let f(x|θ̂) be a statistical model
estimated by a procedure such as the maximum likelihood, and let bB(Ĝ) be
the bootstrap bias estimate of the log-likelihood. The bootstrap information
criterion is given by

EIC = −2
n

∑

α=1

log f(Xα|θ̂) + 2bB(Ĝ). (8.16)

This quantity was referred to as the extended information criterion (EIC)
by Ishiguro et al. (1997). Konishi and Kitagawa (1996) have given a theoretical
justification for the use of the bootstrap method in the bias estimate of a log-
likelihood. For the use of the bootstrap for model uncertainty, we refer to
Kishino and Hasegawa (1989), Shimodaira and Hasegawa (1999), Burnham
and Anderson (2002, Chapter 6), and Shimodaira (2004).

8.3 Variance Reduction Method

8.3.1 Sampling Fluctuation by the Bootstrap Method

The bootstrap method can be applied without analytically cumbersome pro-
cedures under very weak assumptions, that is, the estimator is invariant with
respect to the reordering of the sample. In applying the bootstrap method,
however, care should be paid to the magnitude of the fluctuations due to
bootstrap simulations and approximation errors, in addition to the sample
fluctuations of the bias estimate itself.
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Table 8.1. True bias b(G) and the means and variances of the bootstrap estimate.

n 25 100 400 1,600

b(G) 2.27 2.06 2.02 2.00

Ê(bB(Ĝ)) 2.23 2.04 2.01 2.00

Var(bB(Ĝ)) 0.51 0.61 2.07 8.04
Var(D∗) 24.26 56.06 203.63 797.66

For a set of given observations, the approximation bB(Ĝ) in (8.15) con-
verges to the bootstrap estimate b∗(Ĝ) of the bias in (8.13), with probability
one, if the number of bootstrap resampling B goes to infinity. However, be-
cause simulation errors occur for finite B, procedures must be devised to
reduce the error. This can be considered a reduction of simulation error for
bB(Ĝ) for a given sample. The variance reduction method described in the
next section, called the efficient bootstrap simulation method or the efficient
resampling method, provides an effective, yet extremely simple method of re-
ducing any fluctuation in the bootstrap bias estimation of log-likelihood.

Example 1 (Variance of bootstrap bias estimate) Table 8.1 shows
the true bias b(G) and bootstrap estimates of b(G) when the true distribu-
tion G(x) is assumed to be the standard normal distribution N(0, 1) and the
parameters of the normal distribution model N(µ, σ2) are estimated by the
maximum likelihood method. The table shows the average of bB(Ĝ), variance
of bB(Ĝ), and variance of D∗(i), obtained by setting the number of bootstrap
replications to B = 100 and repeating the Monte Carlo simulation 10,000
times. The table shows that the variance of bB(Ĝ) grows as n increases and,
when the sample size n is large, an accurate estimate cannot be obtained if
the number of bootstrap replications is moderate, e.g., B = 100. It is clear
that the variance of D∗(i) is approximately B times bB(Ĝ) and is approxi-
mately half the sample size n. The variance of D∗(i) divided by B (i.e., 100
in this example) is attributable to the bootstrap approximation error due to
the fluctuation of bB(Ĝ). Therefore, it can be seen that reducing the variance
caused by the bootstrap simulation is essential, especially when the sample
size n is large.

8.3.2 Efficient Bootstrap Simulation

We set the difference between the log-likelihood of the model in (8.7) and (n
times) the expected log-likelihood as

D(Xn;G) = log f(Xn|θ̂) − n

∫

log f(z|θ̂)dG(z), (8.17)
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Fig. 8.4. Decomposition of the bias term for variance reduction. For simplicity, a
maximum likelihood estimator is shown for which θ̂(X) attains the maximum of the
function.

where log f(Xn|θ̂) =
∑n

α=1 log f(Xα|θ̂). In this case, D(Xn;G) can be de-
composed into three terms (Figure 8.4):

D(Xn;G) = D1(Xn;G) + D2(Xn;G) + D3(Xn;G), (8.18)

where

D1(Xn;G) = log f(Xn|θ̂) − log f(Xn|θ),

D2(Xn;G) = log f(Xn|θ) − n

∫

log f(z|θ)dG(z), (8.19)

D3(Xn;G) = n

∫

log f(z|θ)dG(z) − n

∫

log f(z|θ̂)dG(z).

In the derivation of the information criterion, the bias represents the ex-
pected value of D(Xn;G) with respect to the joint distribution of a random
sample Xn. By taking the expectation term by term on the right-hand side
of (8.18), we obtain the second term as



198 8 Bootstrap Information Criterion

EG [D2(Xn;G)]

= EG

[

log f(Xn|θ) − n

∫

log f(z|θ)dG(z)

]

=

n
∑

α=1

EG [log f(Xα|θ)] − nEG[log f(Z|θ)]

= 0. (8.20)

Thus, the expectation in the second term can be removed from the bias of the
log-likelihood of the model and the following equation holds:

EG [D(Xn;G)] = EG [D1(Xn;G) + D3(Xn;G)] . (8.21)

Similarly, for the bootstrap estimate, we have

EĜ

[

D(X∗
n; Ĝ)

]

= EĜ

[

D1(X
∗
n; Ĝ) + D3(X

∗
n; Ĝ)

]

. (8.22)

Therefore, in the Monte Carlo approximation of the bootstrap estimate, it
suffices to take the average of the following values as a bootstrap bias estimate
after drawing B bootstrap samples with replacement:

D1(X
∗
n(i); Ĝ) + D3(X

∗
n(i); Ĝ)

= log f(X∗
n(i)|θ̂∗

(i)) − log f(X∗
n(i)|θ̂)

+ log f(Xn|θ̂) − log f(Xn|θ̂
∗
(i)). (8.23)

This implies that we may use

bB(Ĝ) =
1

B

B
∑

i=1

{

D1(X
∗
n(i); Ĝ) + D3(X

∗
n(i); Ĝ)

}

(8.24)

as a bootstrap bias estimate.
In fact, conditional on the observed data, it can be shown that the orders

of asymptotic conditional variances of two bootstrap estimates are

Var

[

1

B

B
∑

i=1

{

D(X∗
n; Ĝ)

}

]

=
1

B
O(n), (8.25)

Var

[

1

B

B
∑

i=1

{

D1(X
∗
n; Ĝ) + D3(X

∗
n; Ĝ)

}

]

=
1

B
O(1). (8.26)

The difference between these orders can be explained by noting that, whereas
the order of the asymptotic variance of the terms B−1

∑B
i=1 D1(X

∗
n; Ĝ) and
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B−1
∑B

i=1 D3(X
∗
n; Ĝ) in (8.26) is O(1) if θ̂ is the maximum likelihood esti-

mator, the order of the asymptotic variance of B−1
∑B

i=1 D2(X
∗
n; Ĝ) is O(n).

The theoretical justification for using the simple variance reduction technique
mentioned above is as follows.

If there exists a function IF(X;G) such that its expectation is 0, then the
expectation of D(Xn;G) and the expectation of D(Xn;G)− ∑n

α=1 IF(Xα;G)
in (8.17) are equal. Satisfying such a property is

IF(X;G) ≡ log f(X|θ) −
∫

log f(z|θ)dG(z). (8.27)

This is the influence function of D(Xn;G), which indicates that, while
the expectation remains unchanged, the order of the asymptotic variance
of D(Xn;G) is O(n), whereas the order of the asymptotic variance of
D(Xn;G) − ∑n

α=1 IF(Xα;G) is O(1). Therefore, by using

EĜ

[

D(X∗
n; Ĝ)

]

= EĜ

[

D(X∗
n; Ĝ) −

n
∑

α=1

IF(X∗
α; Ĝ)

]

= EĜ

[

log f(X∗
n|θ̂

∗
) − log f(X∗

n|θ̂)

+ log f(Xn|θ̂) − log f(Xn|θ̂
∗
)
]

(8.28)

as a bootstrap bias estimate instead of (8.17), the variance due to bootstrap
resampling can be reduced significantly.

This variance reduction technique was originally proposed by Konishi and
Kitagawa (1996) and Ishiguro et al. (1997), who verified the effectiveness of
this method both theoretically and numerically. Other studies on informa-
tion criteria based on the bootstrap method include those of Cavanaugh and
Shumway (1997) and Shibata (1997).

Example 2 (Variance reduction in bootstrap bias estimates) We
show the effect of the variance reduction method for normal distribution mod-
els with unknown mean µ and variance σ2 by assuming a standard normal
distribution N(0, 1) for the true distribution.

Table 8.2 shows the bias terms D, D1 + D3, D1, D2, and D3 for sample
sizes n = 25, 100, 400, and 1,600, respectively. For each n, the first and the
second rows show the exact bias term and an estimate obtained by putting
B = 100, namely by using 100 bootstrap resamples. The table shows the
values obtained by taking an average over 1,000,000 different samples x. The
values in brackets show the variances of bootstrap bias estimates. The table
shows the merit of using the variance reduction method for large sample size
n.

Figure 8.5 shows box plots of the distributions of bootstrap estimates
DCD1 + D3CD1CD2, and D3 for n = 25, 100, 400, and 1,600. The figure
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Fig. 8.5. Box–plots of the bootstrap distributions of D, D1 + D3, D1, D2, and D3

for n = 25 (top)C 100 (top right), 400 (bottom left), and 1,600 (bottom right).
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Table 8.2. Bias correction terms for normal distribution models when the true
distribution is a normal distribution. n is the sample size.

n D D1 + D3 D1 D2 D3

25 Exact 2.27 2.27 1.04 0.00 1.23
Bootstrap 2.23(0.51) 2.23(0.35) 1.00(0.05) 0.00(0.11) 1.23(0.14)

100 Exact 2.06 2.06 1.01 0.00 1.05
Bootstrap 2.04(0.61) 2.04(0.10) 1.00(0.02) 0.00(0.49) 1.04(0.03)

400 Exact 2.02 2.02 1.00 0.00 1.01
Bootstrap 2.01(2.04) 2.01(0.06) 1.00(0.01) 0.00(1.98) 1.01(0.01)

1600 Exact 2.00 2.00 1.00 0.00 1.00
Bootstrap 2.00(7.98) 2.00(0.04) 1.00(0.01) 0.00(7.97) 1.00(0.01)

Table 8.3. Effect of variance reduction method.

n 25 100 400

D 0.023 0.237 0.057 0.113 0.206 0.223
D1 + D3 0.008 0.231 0.005 0.061 0.004 0.019

clearly shows that as n increases, D and D1 + D3 fluctuate in a different
manner because of the spreading of the distribution of D2. For small n, such
as 25, the fluctuations of D1 and D3 are large compared with that of D2,
and, as a result, the fluctuations of D and D1 + D3 are not very different.
However, when n increases, the fluctuation of D2 becomes dominant and that
of D1 + D3 becomes significantly smaller than that of D.

Table 8.3 shows the variances of bootstrap estimates for n = 25, 100, and
400. For each n, the left-hand values show the changes in Ĝ of the bootstrap
bias correction terms of (8.15) and (8.24), that is, the variance due to differ-
ences in the data. The right-hand values indicate the variance in bootstrap
bias estimates obtained by (8.15) and (8.24). The values in the table were
obtained for B = 100 and are considered to be inversely proportional to B.
The table shows that the method of decomposing the difference between the
log-likelihood and the expected log-likelihood into D1 and D3, respectively,
can have a dramatic effect, especially when the sample size n is large. Further-
more, it is shown that since there exists a variance due to fluctuations of the
sample, as indicated by the left-hand values, simply increasing the number of
bootstrap replications would be meaningless.
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8.3.3 Accuracy of Bias Correction

Under certain conditions, the bias of the log-likelihood in (8.7) can be ex-
panded in the form

b(G) = b1(G) +
1

n
b2(G) +

1

n2
b3(G) + · · · . (8.29)

In this case, the expectation of the bootstrap estimate of the bias becomes

EG

[

b∗(Ĝ)
]

= EG

[

b1(Ĝ) +
1

n
b2(Ĝ)

]

+ o(n−1)

= b1(G) +
1

n
∆b1(G) +

1

n
b2(G) + o(n−1), (8.30)

where ∆b1(G) denotes the bias of the first-order bias estimate b1(Ĝ). There-
fore, it follows that when ∆b1(G) = 0, the bootstrap bias estimate automati-
cally yields the second-order bias correction.

In contrast, the GIC with asymptotic bias estimate b1(Ĝ) obtained ana-
lytically gives

EG

[

b1(Ĝ)
]

= b1(G) +
1

n
∆b1(G) + O(n−1). (8.31)

Consequently, even when ∆b1(G) = 0, a second-order bias correction does not
occur, since the second-order bias correction term is given by

b1(G) +
1

n
{b2(G) − ∆b1(G)}. (8.32)

Although in the preceding section we derived a second-order bias correc-
tion term analytically, in practical situations the bootstrap method offers an
alternative approach for estimating it numerically. If b1(G) is evaluated ana-
lytically, then the bootstrap estimate of the second-order bias correction term
can be obtained by using

1

n
b∗2(Ĝ) = EĜ(x∗)

[

log f(X∗
n|θ̂(X∗

n)) − b1(Ĝ)

− nEĜ(z)

[

log f(Z|θ̂(X∗
n))

]]

. (8.33)

On the other hand, in situations where it is difficult to analytically determine
the first-order correction term b1(G), an estimate of the second-order cor-
rection term can be obtained by employing the following two-step bootstrap
method:

1

n
b∗∗2 (Ĝ) = EĜ(x∗)

[

log f(X∗
n|θ̂(X∗

n)) − b∗B(Ĝ)

− nEĜ(z∗)[log f(Z∗|θ̂(X∗
n))]

]

, (8.34)
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Table 8.4. Bias correction terms for normal distribution models when the true
distribution is normal. n is the sample size.

n b(G) B1 B2 B̂1 B̂2 B∗
1 B∗

2 B∗∗
2

25 2.27 2.00 2.24 1.89 2.18 2.20 2.24 2.33
100 2.06 2.00 2.06 1.97 2.06 2.04 2.06 2.06
400 2.02 2.00 2.02 1.99 2.02 2.01 2.02 2.02

where b∗B(Ĝ) is the bootstrap estimate of the first-order correction term ob-
tained by (8.15).

Example 3 (Bootstrap higher-order bias correction: normal distri-
bution) We show the effect of the second-order correction for normal distri-
bution models with unknown mean µ and variance σ2. The true distribution
is assumed to be the standard normal distribution N(0, 1).

The centered moments of the normal distribution are µ3 = 0, µ4 = 3, and
µ6 = 15. As shown in Table 7.1 in Section 7.2, the first-order bias correction
term b1(G) is a function only of the number of observations.

Table 8.4 shows the bias correction terms obtained by running 10,000
Monte Carlo trials for three sample sizes, n = 25, 100, and 400, under the
assumption that the true distribution is a standard normal distribution. Here,
b(G) represents the exact bias, which can be evaluated analytically and can
be given as 2n/(n − 3). In Table 8.4, B1 and B2 represent respectively the
following first- and second-order correction terms, as indicated in (5.73) and
(7.71):

B1 = b1(G), B2 = b1(G) +
1

n
(b2(G) − ∆b1(G)).

In the table, the hat symbol (ˆ) denotes the case in which the empirical
distribution function Ĝ is substituted for the true distribution G, and the
symbols ∗ and ∗∗ represent estimates obtained by performing 1,000 bootstrap
repetitions and the two-stage bootstrap method of (8.34), respectively.

In this case, since the model contains the true distribution, B1 agrees with
the bias correction term (the number of estimated parameters) in the AIC.
For n = 400, the asymptotic bias B1 and all other bias estimates are close
to the true value, resulting in good approximations. For n = 25, however,
B1 substantially underestimates the true value, whereas B2 gives a good ap-
proximation. In practice, however, the true distribution G is unknown, and
it should be noted that the quantities B̂1 and B̂2 are used in place of B1

and B2, respectively. In this case, B̂1 = 1.89 is substantially smaller than B1,
but the difference of 0.11 is equal to the bias of the first-order bias correction
term ∆b1/n = −3/25 = −0.12. Although the second-order correction term
B̂2 yields a considerable underestimate for n = 25, it gives accurate values for
n = 100 and 400. The first-order bootstrap estimate B∗

1 gives a value close to
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the second-order analytical correction term B2, due to the fact that the model
in this example contains the true distribution, in which case B1 becomes a
constant, as discussed in Section 7.2, and consequently reverts to ∆b1 = 0,
and the bootstrap estimate automatically performs second-order corrections.

Example 4 (Bootstrap higher-order bias correction: Laplace distrib-
ution) We consider now the bias correction terms for the normal distribution
model when the true distribution is a Laplace distribution:

g(x) =
1√
2

exp
{

−
√

2|x|
}

. (8.35)

The centered moments for the Laplace distribution are µ3 = 0, µ4 = 6, and
µ6 = 90. Table 8.5 shows the first- and second-order bias correction terms.
In this case, compared with correction term 2 of the AIC, B1 and B2 yield
substantially good estimates of the true value. B̂1 and B̂2 estimated using
Ĝ, however, contain significantly large biases. The bias of the first-order bias
correction term is ∆b1/n = −42/n, which may account for some of the large
bias. In this case, the bootstrap estimate B∗

1 gives a better approximation
to the bias b(G) than does B̂1. B∗

2 and B∗∗
2 are second-order bootstrap bias

correction terms by (8.33) and (8.34). For n = 25, B∗∗
2 yields a better ap-

proximation than B̂2 or B∗
2 , which may be due to the fact that B∗

1 produces
a better approximation than B̂1.

Example 5 (Bootstrap bias correction for robust estimation) As
an example of evaluating a model whose parameters are estimated using a
technique other than the maximum likelihood method, Table 8.6 shows the
parameters µ and σ estimated using a median µ̂m = medi{Xi} and a me-
dian absolute deviation σ̂m = c−1medi{|Xi−medj{Xj}|}, respectively, where
c = Φ−1(0.75). The bootstrap method can also be applied to such estimates.
In this case, Table 8.6 shows that the averages of D1 and D3 take entirely dif-
ferent values and that the bootstrap method produces appropriate estimates.
Although the asymptotic bias b1(G) is the same as that for the maximum
likelihood estimate, it is noteworthy that for n = 100 or 400, the AIC gives an
appropriate approximation for models estimated by a robust procedure (see
Subsection 5.2.3).

Table 8.5. Bias of a normal distribution model. The true distribution is assumed
to be a Laplace distribution.

n b(G) B1 B2 B̂1 B̂2 B∗
1 B∗

2 B∗∗
2

25 3.87 3.50 3.74 2.60 3.28 3.09 3.30 3.52
100 3.57 3.50 3.56 3.16 3.49 3.33 3.50 3.50
400 3.56 3.50 3.52 3.40 3.51 3.43 3.51 3.50
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Table 8.6. Bias correction terms of the normal distribution model when the para-
meters are estimated using the median. The true model is assumed to be a normal
distribution.

n b̂(G) B1 B∗
1 B∗∗

2

D1 + D3 2.58 1.89 2.57 2.63
25 D1 −0.47 0.94 −0.56 −0.54

D3 3.04 0.94 3.14 3.16

D1 + D3 2.12 1.97 2.25 2.27
100 D1 −0.18 0.98 −0.37 −0.35

D3 2.30 0.98 2.61 2.62

D1 + D3 2.02 1.99 2.06 2.06
400 D1 −0.16 0.99 −0.19 −0.19

D3 2.18 0.99 2.25 2.26

8.3.4 Relation Between Bootstrap Bias Correction Terms

It is appropriate at this point to comment on the relation between the boot-
strap bias correction terms proposed in literature.

For Gaussian state-space model selection, Cavanaugh and Shumway (1997)

proposed a criterion by bootstrapping (θ0 − θ̂)T J(θ0)(θ0 − θ̂), where J(θ0)
is the Fisher information matrix. The bias correction term in this criterion is
2D3 in our notation. As can be seen in Table 8.2, 2D3 overestimate the true
bias b(G) even for a simple normal distribution model, particularly for small
sample sizes. However, although 2D3 may work well as an order selection
criterion in practice, this criterion cannot be applied as a general estimation
procedure. As shown in Table 8.6, D1 and D3 for models estimated using a
method other than the maximum likelihood method take different values even
for large n, and thus 2D3 cannot yield a reasonable estimate of b(G).

Shibata (1997) presented six candidate bias correction terms, b1, . . . , b6.
These bias correction terms can be clearly explained by the decomposition
shown in Figure 8.4 and can be expressed as b1 = D1 + D2 + D3, b2 = D3,
b3 = D1, b4 = D2 + D3, b5 = D1 + D2, and b6 = D2. The difference between
the bootstrap variances of these estimates can be clearly explained by our
decomposition. However, the most efficient bias correction term D1 + D3 was
not included. This is probably because only a small sample size n = 50 was
used in the Monte Calro simulation, and thus the necessity of removing the
middle term D2 did not become apparent.
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8.4 Applications of Bootstrap Information Criterion

8.4.1 Change Point Model

Let xα denote the data observed at time α, where the data points are ordered
either temporally or spatially. For n observations x1, . . . , xn, we refer to [1, n]
as the total interval. In the following, we assume that the data do not follow
a distribution in the total interval, but if the total interval is partitioned
into several intervals, the data in each interval follow a certain distribution.
However, the appropriate partition of the interval and the distribution in
each subinterval are unknown. As the simplest model that represents such a
situation, we consider the following change point model.

We assume that the interval [1, n] is partitioned into k subintervals
[1, n1], [n1 + 1, n2], . . . , [nk−1 + 1, n], and that in each subinterval the data xα

follow a normal distribution with mean µj and variance σ2
j . In other words,

for j = 1, . . . , k, we assume

xα ∼ N(µj , σ
2
j ) α = nj−1 + 1, . . . , nj , (8.36)

where the number of subintervals k is unknown. If we write θk = (µ1, . . . , µk,
σ2

1 , . . . , σ2
k)T , then the density function for a model with k subinterval is

f(x|θk) =

k
∏

j=1

nj
∏

α=nj−1+1

1
√

2πσ2
j

exp

{

− (xα − µj)
2

2σ2
j

}

. (8.37)

Consequently, the log-likelihood function is

ℓk(θk) = −n

2
log 2π − 1

2

k
∑

j=1

(nj − nj−1) log σ2
j

−1

2

k
∑

j=1

1

σ2
j

nj
∑

α=nj−1+1

(xα − µj)
2, (8.38)

and the maximum likelihood estimators for µj and σ2
j (j = 1, . . . , k) are given

by

µ̂j =
1

nj − nj−1

nj
∑

α=nj−1+1

xα,

σ̂2
j =

1

nj − nj−1

nj
∑

α=nj−1+1

(xα − µ̂j)
2. (8.39)

In this case, the maximum log-likelihood is

ℓk(θ̂k) = −n

2
(log 2π + 1) − 1

2

k
∑

j=1

(nj − nj−1) log σ̂2
j . (8.40)
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Therefore, since the number of unknown parameters in the model is 2k, cor-
responding to µj and σ2

j , the AIC is given by

AICk = n(log 2π + 1) +

k
∑

j=1

(nj − nj−1) log σ̂2
j + 4k. (8.41)

In practice, however, the partition points are also unknown, and it is un-
clear as to whether they should be added to the number of parameters in the
information criterion. Therefore, we attempt to evaluate the bias correction
term by the bootstrap method through the following procedure:

For a number of intervals k = 1, . . . , K, the following steps are repeated:

(1) Estimate the endpoint of the subintervals n1, . . . , nk−1 and the parame-
ters {(µj , σ

2
j ); j = 1, . . . , k} of the models.

(2) Calculate the residual by ε̂α = xα − µ̂j (α = nj−1 + 1, . . . , nj).
(3) By resampling the residual, generate ε̂∗α (α = 1, . . . , n) and a bootstrap

sample x∗
α = ε̂∗α + µ̂j (α = nj−1 + 1, . . . , nj).

(4) Assuming that the number of intervals k is known, estimate n∗
1, . . . , n

∗
k−1

and the parameters µ∗
1, . . . , µ

∗
k, σ2∗

1 , . . . , σ2∗
k by the maximum likelihood

method.
(5) Repeat steps 3 to 4 B times and estimate the bias:

bB(Ĝ) =
1

B

B
∑

i=1

{

log f(x∗(i)|θ̂∗

k) − log f(x|θ̂∗

k)
}

, (8.42)

where x∗(i) is the bootstrap sample obtained in step 3.
In the next example, we use this algorithm to examine the relationship

between the number of parameters and the bias correction term.

Example 6 (Numerical result) We assume that the data x1, . . . , xn with
n = 100 are generated from two normal distributions:

x1, . . . , x50 ∼ N(0, 1),

x51, . . . , x100 ∼ N(c, 1).

Namely, the true model is specified by k = 2 and n1 = 50. Table 8.7 shows
the maximum log-likelihood, AIC bias correction term bAIC, and bootstrap
bias correction term bB(Ĝ) obtained by fitting the models with k = 1, 2, and

3. Whereas ℓ(θ̂k) represents only the case of c = 1, the bias correction term
bB(Ĝ) represents six cases, c = 0, 0.5, 1, 2, 4, and 8. Whereas k = 3 is selected
by the AIC for c = 1, k = 2 is selected by the bootstrap information criterion
EIC.

Note that the closer c is to 0, the greater the bias correction term bB(Ĝ).
This can easily be understood by considering the true number of intervals,
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Table 8.7. Bias correction terms for the change point model. k denotes the number
of subintervals and c is the amount of level shift.

Amount of level shift ck ℓ(θ̂k) bAIC 0 0.5 1 2 4 8

1 −157.16 2 1.9 1.9 1.9 1.7 1.4 1.2
2 −142.55 4 10.3 8.7 6.5 5.6 4.4 4.0
3 −138.62 6 22.6 19.6 15.5 12.3 14.6 14.2

k = 2. If c = ∞, then the endpoint n1 can be detected with probability
one. Therefore, this case is equivalent to estimating two normal distribution
models independently, and from the means and variances for two subintervals,
it follows that bB(Ĝ) = 4. In contrast, if c → 0, n1 fluctuates randomly
between 1 and n. Consequently, contrary to the apparent goodness of fit, n1

deviates greatly from the true distribution, resulting in a large bias. The bias
associated with the model with k = 3 is extremely large, indicating that the
log-likelihood without bias correction significantly overestimates the expected
log-likelihood.

8.4.2 Subset Selection in a Regression Model

We now fit the regression model

yα =

k
∑

j=1

βjxαj + εα, εα ∼ N(0, σ2) (8.43)

to n data points {(yα, xα1, . . . , xαk); α = 1, 2, . . . , n} observed for a response
variable Y and k explanatory variables x1, . . . , xk. Except for certain models
such as an autoregressive model or polynomial regression model for which the
order of the explanatory variables in the model is predetermined naturally,
the priority by which the k explanatory variables are selected is generally
not predetermined. Therefore, we have to consider kCm candidate models in
fitting regression models with m explanatory variables. In particular, in the
extreme case in which all the coefficients are zero, i.e., βj = 0, the apparent
best model obtained by maximizing the log-likelihood actually yields the worst
model. This suggests that bias correction by the AIC, that is, by the number
of free parameters, is inadequate for the selection of variables in a regression
model.

Table 8.8 shows the bootstrap estimate of the bias correction terms when
subset regression models of order m (m = 0, 1, . . . , 20) are fitted to the data
generated for a model with k = 20 with all the coefficients assumed to be
βj = 0. For the sake of simplicity, we assume that the explanatory variable
xαj is an orthogonal variable. In the table, EIC1 represents the bias correc-
tion term for the bootstrap information criterion EIC of the regression model
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Table 8.8. Comparison of bias correction terms in subset regression models.

m AIC EIC1 EIC2 m AIC EIC1 EIC2

0 1 0.96 0.80 11 12 12.29 20.10
1 2 1.79 3.36 12 13 13.49 21.17
2 3 2.65 5.60 13 14 14.85 22.13
3 4 3.55 7.71 14 15 16.29 23.02
4 5 4.48 9.63 15 16 17.78 23.80
5 6 5.44 11.44 16 17 19.35 24.51
6 7 6.46 13.15 17 18 21.02 25.12
7 8 7.51 14.77 18 19 22.76 25.71
8 9 8.60 16.25 19 20 24.58 27.29
9 10 9.74 17.65 20 21 26.51 26.67

10 11 10.93 18.94

for which explanatory variables are incorporated into the model in the or-
der x1, x2, . . . , xk. In contrast, EIC2 represents the bias estimates in the EIC
for the case in which a subset regression model is selected by the maximum
likelihood criterion for each m, the number of explanatory variables. In each
case, for n = 100, the number of bootstrap replication was set to B = 100
and the computations were repeated 1,000 times. Since EIC1 and EIC2 must
agree when k = 0 and k = 20, the difference between these quantities can be
considered to be the error due to the bootstrap approximation.

Here, EIC1, which corresponds to an ordinary regression model, is more or
less equal to the AIC bias correction term for order 14 or less, but increases
rapidly at higher orders. This can be attributed to an increase in the number
of parameters relative to the number of data points. In contrast, EIC2 for
the subset regression model at first increases rapidly as m is large, but at
the maximum order m = 20, it becomes approximately the same as that for
the ordinary regression model. This indicates that subset regression models
are easy to adopt from models of apparently good fit and that, consequently,
their bias is not uniform and the value of m tends to be skewed toward small
values. In the estimation of subset regression models, the use of the EIC can
prevent the problem of overfitting by incorporating too many variables that
appear to improve the goodness of fit.
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Bayesian Information Criteria

This chapter considers model selection and evaluation criteria from a Bayesian
point of view. A general framework for constructing the Bayesian information
criterion (BIC) is described. The BIC is also extended such that it can be
applied to the evaluation of models estimated by regularization. Section 9.2
presents Akaike’s Bayesian information criterion (ABIC) developed for the
evaluation of Bayesian models having prior distributions with hyperparame-
ters. In the latter half of this chapter, we consider information criteria for the
evaluation of predictive distributions of Bayesian models. In particular, Sec-
tion 9.3 gives examples of analytical evaluations of bias correction for linear
Gaussian Bayes models. Section 9.4 describes, for general Bayesian models,
how to estimate the asymptotic biases and how to perform the second-order
bias correction by means of Laplace’s method for integrals.

9.1 Bayesian Model Evaluation Criterion (BIC)

9.1.1 Definition of BIC

The Bayesian information criterion (BIC) or Schwarz’s information criterion
(SIC) proposed by Schwarz (1978) is an evaluation criterion for models defined
in terms of their posterior probability [see also Akaike (1977)]. It is derived
as follows.

Let M1,M2, . . . , Mr be r candidate models, and assume that each model
Mi is characterized by a parametric distribution fi(x|θi) (θi ∈ Θi ⊂ Rki) and
the prior distribution πi(θi) of the ki-dimensional parameter vector θi. When
n observations xn = {x1, . . . , xn} are given, then, for the ith model Mi, the
marginal distribution or probability of xn is given by

pi(xn) =

∫

fi(xn|θi)πi(θi)dθi. (9.1)

This quantity can be considered as the likelihood of the ith model and is
referred to as the marginal likelihood of the data.



212 9 Bayesian Information Criteria

According to Bayes’ theorem, if we suppose that the prior probability of
the ith model is P (Mi), the posterior probability of the ith model is given by

P (Mi|xn) =
pi(xn)P (Mi)

r
∑

j=1

pj(xn)P (Mj)

, i = 1, 2, . . . , r. (9.2)

This posterior probability indicates the probability of the data being generated
from the ith model when data xn are observed. Therefore, if one model is to
be selected from r models, it would be natural to adopt the model that has
the largest posterior probability. This principle means that the model that
maximizes the numerator pi(xn)P (Mi) must be selected, since all models
share the same denominator in (9.2).

If we further assume that the prior probabilities P (Mi) are equal in all
models, it follows that the model that maximizes the marginal likelihood
pi(xn) of the data must be selected. Therefore, if an approximation to the
marginal likelihood expressed in terms of an integral in (9.1) can readily be
obtained, the need to compute the integral on a problem-by-problem basis
will vanish, thus making the BIC suitable for use as a general model selection
criterion.

The BIC is actually defined as the natural logarithm of the integral mul-
tiplied by −2, and we have

−2 log pi(xn) = −2 log

{∫

fi(xn|θi)πi(θi)dθi

}

≈ −2 log fi(xn|θ̂i) + ki log n, (9.3)

where θ̂i is the maximum likelihood estimator of the ki-dimensional parameter
vector θi of the model fi(x|θi). Consequently, from the r models that are to be
evaluated using the maximum likelihood method, the model that minimizes
the value of BIC can be selected as the optimal model for the data.

Thus, even under the assumption that all models have equal prior proba-
bilities, the posterior probability obtained by using the information from the
data serves to contrast the models and helps to identify the model that gen-
erated the data. We see in the next section that the BIC can be obtained by
approximating the integral using Laplace’s method.

Bayes factors. For simplicity, let us compare two models, say M1 and M2.
When the data produce the posterior probabilities P (Mi|xn) (i = 1, 2), the
posterior odds in favor of model M1 against model M2 are

P (M1|xn)

P (M2|xn)
=

p1(xn)

p2(xn)

P (M1)

P (M2)
. (9.4)

Then the ratio
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B12 =
p1(xn)

p2(xn)
=

∫

f1(xn|θ1)π1(θ1)dθ1

∫

f2(xn|θ2)π2(θ2)dθ2

(9.5)

is defined as the Bayes factor.
Akaike (1983a) showed that model comparisons based on the AIC are as-

ymptotically equivalent to those based on Bayes factors. Kass and Raftery
(1995) commented that from a Bayesian viewpoint this is true only if the pre-
cision of the prior is comparable to that of the likelihood, but not in the more
usual situation where prior information is limited relative to the information
provided by the data. For Bayes factors, we refer to Kass and Raftery (1995),
O’Hagan (1995), and Berger and Pericchi (2001) and references given therein.

9.1.2 Laplace Approximation for Integrals

In order to explain the Laplace approximation method [Tierney and Kadane
(1986), Davison (1986), and Barndorff-Nielsen and Cox (1989, p. 169)], we
consider the approximation of a simple integral given by

∫

exp{nq(θ)}dθ, (9.6)

where θ is a p-dimensional parameter vector. Notice that in the Laplace ap-
proximation of an actual likelihood function, the form of q(θ) also changes as
the number n of observations increases.

The basic concept underlying the Laplace approximation takes advantage
of the fact that when the number n of observations is large, the integrand is
concentrated in a neighborhood of the mode θ̂ of q(θ), and consequently, the
value of the integral depends solely on the behavior of the integrand in that
neighborhood of θ̂.

It follows from ∂q(θ)/∂θ|
θ=θ̂

= 0 that the Taylor expansion of q(θ) around

θ̂ yields the following:

q(θ) = q(θ̂) − 1

2
(θ − θ̂)T Jq(θ̂)(θ − θ̂) + · · · , (9.7)

where

Jq(θ̂) = − ∂2q(θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ̂
. (9.8)

Substituting the Taylor expansion of q(θ) into (9.6) gives

∫

exp

[

n

{

q(θ̂) − 1

2
(θ − θ̂)T Jq(θ̂)(θ − θ̂) + · · ·

}]

dθ (9.9)

≈ exp
{

nq(θ̂)
}

∫

exp
{

−n

2
(θ − θ̂)T Jq(θ̂)(θ − θ̂)

}

dθ.
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Fig. 9.1. Laplace approximation. Top left: q(θ) and its quadratic function approxi-
mation. Top right, bottom left, and bottom right: exp{nq(θ)} and Laplace approx-
imations with n=1, 10, and 20, respectively.

By noting the fact that the p-dimensional random vector θ follows the p-
variate normal distribution with mean vector θ̂ and variance covariance matrix
n−1Jq(θ̂)−1, calculation of the integral on the right-hand side of (9.9) yields

∫

exp
{

−n

2
(θ − θ̂)T Jq(θ̂)(θ − θ̂)

}

dθ =
(2π)p/2

np/2|Jq(θ̂)|1/2
. (9.10)

Therefore, we obtain the following Laplace approximation of the integral (9.6).

Laplace approximation of integrals. Let q(θ) be a real-valued function

of a p-dimensional parameter vector θ, and let θ̂ be the mode of q(θ). Then
the Laplace approximation of the integral is given by

∫

exp{nq(θ)}dθ ≈ (2π)p/2

np/2|Jq(θ̂)|1/2
exp

{

nq(θ̂)
}

, (9.11)

where Jq(θ̂) is defined by (9.8).

Example 1 (Laplace approximation)@ Figure 9.1 shows how Laplace’s
method for integrals works. The upper left graph illustrates a suitably defined
function q(θ) and its approximation in terms of its Taylor expansion. The
curve with two peaks shown in bold lines represents the function q(θ), and
the thin line indicates its approximation by the Taylor series expansion up



9.1 Bayesian Model Evaluation Criterion (BIC) 215

Table 9.1. The integral of the function given in Figure 9.1 and its Laplace approx-
imation.

n 1 10 20 50

Integral 398.05 1678.76 26378.39 240282578
Laplace approximation 244.51 1403.40 24344.96 240282578
Relative errors 0.386 0.164 0.077 0

to the second term. In this graph, only the left peak of the two peaks is
approximated, and it can hardly be considered a good approximation. The
other three graphs show the integrand exp{nq(θ)} and approximations to it.
The upper right, lower left, and lower right graphs represent the cases n = 1,
10, and 20, in the indicated order. The graph for n = 1 fails to describe the
peak on the right side. However, as n increases to n = 10 and n = 20, the
right peak vanishes rapidly, indicating that making use of the Taylor series
expansion yields a good approximation. Therefore, it is clear that, when the
value of n is large, this method provides a good approximation to the integral.

Table 9.1 shows the integral of the function exp{nq(θ)} given in Fig-
ure 9.1, its Laplace approximation, and the relative error (= |true value −
approximation|/|true value|). In this case, the relative error is as large as
0.386 when n = 1, but it diminishes as n increases, and the relative error
becomes 0 when n = 50.

9.1.3 Derivation of the BIC

The marginal likelihood or the marginal distribution of data xn can be ap-
proximated by using Laplace’s method for integrals. In this section, we drop
the notational dependence on the model Mi and represent the marginal like-
lihood of (9.1) as

p(xn) =

∫

f(xn|θ)π(θ)dθ, (9.12)

where θ is a p-dimensional parameter vector. This equation may be rewritten
as

p(xn) =

∫

exp {log f(xn|θ)}π(θ)dθ

=

∫

exp {ℓ(θ)}π(θ)dθ, (9.13)

where ℓ(θ) is the log-likelihood function ℓ(θ) = log f(xn|θ).
The Laplace approximation takes advantage of the fact that when the

number n of observations is sufficiently large, the integrand is concentrated in
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a neighborhood of the mode of ℓ(θ) or, in this case, in a neighborhood of the

maximum likelihood estimator θ̂, and that the value of the integral depends
on the behavior of the function in this neighborhood. Since ∂ℓ(θ)/∂θ|

θ=θ̂
= 0

holds for the maximum likelihood estimator θ̂ of the parameter θ, the Taylor
expansion of the log-likelihood function ℓ(θ) around θ̂ yields

ℓ(θ) = ℓ(θ̂) − n

2
(θ − θ̂)T J(θ̂)(θ − θ̂) + · · · , (9.14)

where

J(θ̂) = − 1

n

∂2ℓ(θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ̂
= − 1

n

∂2 log f(xn|θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ̂
. (9.15)

Similarly, we can expand the prior distribution π(θ) in a Taylor series around

the maximum likelihood estimator θ̂ as

π(θ) = π(θ̂) + (θ − θ̂)T ∂π(θ)

∂θ

∣

∣

∣

∣

θ=θ̂
+ · · · . (9.16)

Substituting (9.14) and (9.16) into (9.13) and simplifying the results lead to
the approximation of the marginal likelihood as follows:

p(xn) =

∫

exp
{

ℓ(θ̂) − n

2
(θ − θ̂)T J(θ̂)(θ − θ̂) + · · ·

}

×
{

π(θ̂) + (θ − θ̂)T ∂π(θ)

∂θ

∣

∣

∣

∣

θ=θ̂
+ · · ·

}

dθ (9.17)

≈ exp
{

ℓ(θ̂)
}

π(θ̂)

∫

exp
{

−n

2
(θ − θ̂)T J(θ̂)(θ − θ̂)

}

dθ.

Here we used the fact that θ̂ converges to θ in probability with order θ̂−θ =
Op(n

−1/2) and also that the following equation holds:

∫

(θ − θ̂) exp
{

−n

2
(θ − θ̂)T J(θ̂)(θ − θ̂)

}

dθ = 0. (9.18)

In (9.17), integrating with respect to the parameter vector θ yields

∫

exp
{

−n

2
(θ − θ̂)T J(θ̂)(θ − θ̂)

}

dθ = (2π)p/2n−p/2|J(θ̂)|−1/2, (9.19)

since the integrand is the density function of the p-dimensional normal distri-
bution with mean vector θ̂ and variance covariance matrix J−1(θ̂)/n. Conse-
quently, when the sample size n becomes large, it is clear that the marginal
likelihood can be approximated as

p(xn) ≈ exp
{

ℓ(θ̂)
}

π(θ̂)(2π)p/2n−p/2|J(θ̂)|−1/2. (9.20)
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Taking the logarithm of this expression and multiplying it by −2, we obtain

−2 log p(xn) = −2 log

{∫

f(xn|θ)π(θ)dθ

}

(9.21)

≈ −2ℓ(θ̂) + p log n + log |J(θ̂)| − p log(2π) − 2 log π(θ̂).

Then the following model evaluation criterion BIC can be obtained by ignoring
terms with order less than O(1) with respect to the sample size n.

Bayesian information criterion (BIC). Let f(xn|θ̂) be a statistical model
estimated by the maximum likelihood method. Then the Bayesian information
criterion BIC is given by

BIC = −2 log f(xn|θ̂) + p log n. (9.22)

From the above argument, it can be seen that, BIC is an evaluation cri-
terion for models estimated by using the maximum likelihood method and
that the criterion is obtained under the condition that the sample size n is
made sufficiently large. We also see that it was obtained by approximating
the marginal likelihood associated with the posterior probability of the model
by Laplace’s method for integrals and that it is not an information criterion,
leading to an unbiased estimation of the K-L information.

We shall now consider how to extend the BIC to an evaluation criterion
that permits the evaluation of models estimated by the regularization method
described in Subsection 5.2.4. In the next section, we derive a model evaluation
criterion that represents an extension of the BIC through the application of
Laplace approximation.

Minimum description length (MDL). Rissanen (1978, 1989) proposed a
model evaluation criterion (MDL) based on the concept of minimum descrip-
tion length in transmitting a set of data by coding using a family of probability
models {f(x|θ);θ ∈ Θ ⊂ Rp}.

Assume that the data xn = {x1, x2, . . . , xn} are obtained from f(x|θ).
Since the parameter vector θ of the model is unknown, we first encode θ and
send it to the receiver, and then encode and send the data xn by using the
probability distribution f(x|θ) specified by θ. Then, given the parameter vec-
tor θ, the description length necessary for encoding the data is − log f(xn|θ)
and the total description length is defined by − log f(xn|θ) plus the descrip-
tion length of the probability distribution model. The probability distribution
model that minimizes this total description length is such a model that can
encode the data xn in minimum length.

If the parameter is a real number, an infinite description length is nec-
essary for exact coding. Therefore, we consider encoding the parameter by
discretizing through segmentation of the parameter space Θ ∈ Rp into in-
finitesimal cubes of size δ. Then the total description length depends on the
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value of δ, and its minimum can be approximated as

ℓ(xn) = − log f(xn|θ̂) +
p

2
log n − p

2
log 2π

+ log

∫

√

|J(θ)|dθ + O(n−1/2), (9.23)

where J(θ) is Fisher’s information matrix. By considering terms up to order
O(log n), the minimum description length is defined as

MDL = − log f(xn|θ) +
p

2
log n. (9.24)

The first term on the right-hand side is the description length in sending
the data xn by using the probability distribution f(x|θ̂) specified by the

maximum likelihood estimator θ̂ as the encoding function, and the second
term is the description length for encoding the maximum likelihood estimate
θ̂ with accuracy δ = O(n−1/2). In any case, it is interesting that the minimum
description length MDL coincides with the BIC that was derived in terms of
the posterior probability of the model within the Bayesian framework.

9.1.4 Extension of the BIC

Let f(x|θ̂P ) be a statistical model estimated by the regularization method

for the parametric model f(x|θ) (θ ∈ Θ ⊂ Rp), where θ̂P is an estimator of
dimension p obtained by maximizing the penalized log-likelihood function

ℓλ(θ) = log f(xn|θ) − nλ

2
θT Kθ, (9.25)

and where K is a p×p specified matrix with rank d = p−k [for the typical form
of K, see (5.135)]. Our objective here is to obtain a criterion for evaluation

and selection of a statistical model f(x|θ̂P ), from a Bayesian perspective.
The penalized log-likelihood function in (9.25) can be rewritten as

ℓλ(θ) = log f(xn|θ) + log

{

exp

(

−nλ

2
θT Kθ

)}

= log

{

f(xn|θ) exp

(

−nλ

2
θT Kθ

)}

. (9.26)

By considering the exponential term on the right-hand side as a p-dimensional
degenerate normal distribution with mean vector 0 and singular variance co-
variance matrix (nλK)− and adding a constant term to yield a density func-
tion, we obtain

π(θ|λ) = (2π)−d/2(nλ)d/2|K|1/2
+ exp

(

−nλ

2
θT Kθ

)

, (9.27)
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where |K|+ denotes the product of nonzero eigenvalues of the specified matrix
K with rank d. This distribution can be thought of as a prior distribution in
which the smoothing parameter λ is a hyperparameter.

Given the data distribution f(xn|θ) and the prior distribution π(θ|λ) with
hyperparameter λ, the marginal likelihood of the model is defined by

p(xn|λ) =

∫

f(xn|θ)π(θ|λ)dθ. (9.28)

When the prior distribution of θ is given by the p-dimensional normal distri-
bution in (9.27), this marginal likelihood can be rewritten as

p(xn|λ) =

∫

f(xn|θ)π(θ|λ)dθ

=

∫

exp

[

n × 1

n
log {f(xn|θ)π(θ|λ)}

]

dθ (9.29)

=

∫

exp {nq(θ|λ)} dθ,

where

q(θ|λ) =
1

n
log {f(xn|θ)π(θ|λ)}

=
1

n
{log f(xn|θ) + log π(θ|λ)} (9.30)

=
1

n

{

log f(xn|θ) − nλ

2
θT Kθ

}

− 1

2n
{d log(2π) − d log(nλ) − log |K|+} .

We note here that the mode, θ̂P , of q(θ|λ) in the above equation coincides
with a solution obtained by maximizing the penalized log-likelihood function
(9.25). By approximating it using Laplace’s method for integrals in (9.11), we
have

∫

exp{nq(θ)}dθ ≈ (2π)p/2

np/2|Jλ(θ̂P )|1/2
exp

{

nq(θ̂P )
}

. (9.31)

Taking the logarithm of this expression and multiplying it by −2, we obtain
the following model evaluation criterion [Konishi et al. (2004)]:

Generalized Bayesian information criterion (GBIC). Suppose that the
model f(xn|θP ) is constructed by maximizing the penalized log-likelihood
function (9.25). Then the model evaluation criterion based on a Bayesian
approach is given by

GBIC = −2 log f(xn|θ̂P ) + nλθ̂
T

P Kθ̂P + (p − d) log n (9.32)

+ log |Jλ(θ̂P )| − d log λ − log |K|+ − (p − d) log(2π),
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where K is a p × p specified matrix of rank d, |K|+ is the product of the d
nonzero eigenvalues of K, and

Jλ(θ̂P ) = − 1

n

∂2 log f(xn|θ)

∂θ∂θT

∣

∣

∣

∣

θ̂P

+ λK. (9.33)

Since the model evaluation criterion GBIC can be used for the selection of
a smoothing parameter λ, we select λ that minimizes the GBIC as the optimal
smoothing parameter. This results in the selection of an optimal model from
a family of models characterized by smoothing parameters.

By interpreting the regularization method based on the above argument
from a Bayesian point of view, it can be seen that the regularized estimator
agrees with the estimate that is obtained through maximization (mode) of
the following posterior probability, depending on the value of the smoothing
parameter:

π(θ|xn;λ) =
f(xn|θ)π(θ|λ)

∫

f(xn|θ)π(θ|λ)dθ

, (9.34)

where π(θ|λ) is the density function resulting from (9.27) as a prior probabil-
ity of the p-dimensional parameter θ for the model f(xn|θ). For the Bayesian
justification of the maximum penalized likelihood approach, we refer to Sil-
verman (1985) and Wahba (1990, Chapter 1).

The use of Laplace’s method for integrals has been extensively investi-
gated as a useful tool for approximating Bayesian predictive distributions,
Bayes factors, and Bayesian model selection criteria [Davison (1986), Clarke
and Barron (1994), Kass and Wasserman (1995), Kass and Raftery (1995),
O’Hagan (1995), Konishi and Kitagawa (1996), Neath and Cavanaugh (1997),
Pauler (1998), Lanterman (2001), and Konishi et al. (2004)].

Example 2 (Nonlinear regression models) Suppose that n observations
{(xα, yα); α= 1, 2,. . . , n} are obtained in terms of a p-dimensional vector of
explanatory variables x and a response variable Y . We assume the regression
model based on the basis expansion described in Section 6.1 as follows:

yα =

m
∑

i=1

wibi(xα) + εα

= wT b(xα) + εα, α = 1, 2, . . . , n, (9.35)

where b(xα) = (b1(xα), . . . , bm(xα))T and εα, α = 1, 2, . . . , n, are indepen-
dently and normally distributed with mean zero and variance σ2. Then the
regression model based on the basis expansion can be expressed in terms of
the probability density function
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f(yα|xα;θ) =
1√

2πσ2
exp

[

−{yα − wT b(xα)}2

2σ2

]

, (9.36)

where θ = (wT , σ2)T .
If we estimate the parameter vector θ of the model by maximizing the

penalized log-likelihood function (9.25), the estimators for w and σ2 are re-
spectively given by

ŵ = (BTB + nλσ̂2K)−1BTy, σ̂2 =
1

n
(y −Bŵ)T (y −Bŵ), (9.37)

where B is an n × m basis function matrix given by B = (b(x1), b(x2), · · · ,
b(xn))T (see Section 6.1). Then the probability density function f(yα|xα; θ̂P )
in which the parameters θ = (wT , σ2)T in (9.36) are replaced with their

estimators θ̂P = (ŵT , σ̂2)T is the resulting statistical model.
By applying the GBIC in (9.32), the model evaluation criterion for the

statistical model f(yα|xα; θ̂P ) estimated by the regularization method is given
by

GBIC = n log σ̂2 + nλŵ
T Kŵ + n + n log(2π)

+ (m + 1 − d) log n + log |Jλ(θ̂P )| − log |K|+ (9.38)

− d log λ − (m + 1 − d) log(2π),

where the (m + 1) × (m + 1) matrix Jλ(θ̂P ) is

Jλ(θ̂P ) =
1

nσ̂2

⎡

⎢

⎣

BT B + nλσ̂2K
1

σ̂2
BT e

1

σ̂2
eT B

n

2σ̂2

⎤

⎥

⎦
(9.39)

with the n-dimensional residual vector

e =
(

y1 − ŵ
T
b(x1), y2 − ŵ

T
b(x2), · · · , yn − ŵ

T
b(xn)

)T

, (9.40)

and K is an m×m specified matrix of rank d and |K|+ is the product of the
d nonzero eigenvalues of K.

Example 3 (Nonlinear logistic regression models) Let y1, . . . , yn be
independent binary random variables with

Pr(Yα = 1|xα) = π(xα) and Pr(Yα = 0|xα) = 1 − π(xα), (9.41)

where xα are p-dimensional explanatory variables. We model π(xα) by

log

{

π(xα)

1 − π(xα)

}

= w0 +

m
∑

i=1

wibi(xα), (9.42)
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where {b1(xα), . . . , bm(xα)} are basis functions. Estimating the (m + 1)-
dimensional parameter vector w = (w0, w1, . . . , wm)T by maximization of
the penalized log-likelihood function (9.25) yields the model

f(yα|xα; ŵ) = π̂(xα)yα{1 − π̂(xα)}1−yα , α = 1, . . . , n, (9.43)

where π̂(xα) is the estimated conditional probability given by

π̂(xα) =
exp

{

ŵ
T
b(xα)

}

1 + exp
{

ŵ
T
b(xα)

} . (9.44)

By using the GBIC in (9.32), we obtain the model evaluation criterion for
the model f(yα|xα; ŵ) estimated by the regularization method as follows:

GBIC = 2

n
∑

α=1

[

log
{

1 + exp
(

ŵ
T b(xα)

)}

− yαŵ
T b(xα)

]

+ nλŵ
T Kŵ

− (m+1−d) log(2π/n)+log |Q(L)
λ (ŵ)|−log |K|+−d log λ, (9.45)

where Q
(L)
λ (ŵ) = BTΓ (L)B/n + λK with

Γ (L)
αα =

exp{ŵT
b(xα)}

[1 + exp{ŵT
b(xα)}]2

(9.46)

as the αth diagonal element of Γ (L).

Example 4 (Numerical results) For illustration, binary observations
y1, . . . , y100 were generated from the true models

(1) Pr(Y = 1|x) =
1

1 + exp{− cos(1.5πx)} ,

(2) Pr(Y = 1|x) =
1

1 + exp{− exp(−3x) cos(3πx)} , (9.47)

where the design points are uniformly distributed in [0, 1]. We fitted the non-
linear logistic regression model based on B-splines discussed in Subsection
6.2.1 to the simulated data. The number of basis functions and the value of
a smoothing parameter were selected as m = 17 and λ = 0.251 for case (1),
and m = 6 and λ = 6.31 × 10−5 for case (2). Figure 9.2 shows the true and
estimated conditional probability functions; the circles indicate the data.

9.2 Akaike’s Bayesian Information Criterion (ABIC)

Let f(xn|θ) be the data distribution of xn with respect to a parametric model
{f(x|θ); θ ∈ Θ ⊂ Rp}, and let π(θ|λ) be the prior distribution of the p-
dimensional parameter vector θ with q-dimensional hyperparameter vector λ
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Fig. 9.2. B-spline logistic regression; the true (dashed line) and estimated (solid
line) conditional probability functions. Case (1): left, case (2): right.

(∈ Λ ⊂ Rq). Then the marginal distribution or marginal likelihood of the data
xn is given by

p(xn|λ) =

∫

f(xn|θ)π(θ|λ)dθ. (9.48)

If the marginal distribution p(xn|λ) of the Bayes model is considered to be a
parametric model with hyperparameter λ, then evaluation of the model can
be considered within the framework of the AIC, and the criterion is given by

ABIC = −2 log

{

max
λ

p(xn|λ)

}

+ 2q

= −2max
λ

log

{∫

f(xn|θ)π(θ|λ)dθ

}

+ 2q. (9.49)

This criterion for model evaluation, originally proposed by Akaike (1980b), is
referred to as Akaike’s Bayesian information criterion (ABIC).

According to the Bayesian approach based on the ABIC, the value of the
hyperparameter λ of a Bayes model can be estimated by maximizing either
the marginal likelihood p(xn|λ) or the marginal log-likelihood log p(x|λ). In
other words, the hyperparameter λ can be regarded as being estimated using
the maximum likelihood method in terms of p(xn|λ). If there are two or more
Bayes models characterized by a hyperparameter and if it is necessary to
compare their goodness of fit, it suffices to select the model that minimizes
the ABIC.
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If the hyperparameter estimated in this way is denoted by λ̂, then we can
determine the posterior distribution of the parameter θ in terms of the prior
distribution π(θ|λ̂) as

π(θ|xn; λ̂) =
f(xn|θ)π(θ|λ̂)

∫

f(xn|θ)π(θ|λ̂)dθ

. (9.50)

In general, the mode of the posterior distribution (9.50) is used in practical

applications, i.e., the value θ̂ that maximizes π(θ|xn; λ̂) ∝ f(xn|θ)π(θ|λ̂).
The ultimate objective of modeling using the information criterion ABIC

is not to estimate the hyperparameter λ. Rather, the objective is to estimate
the parameter θ or the distribution of data xn specified by the parameters.
Inferences performed through the minimization of the ABIC can be thought of
as a two-step estimation process consisting first of the estimation of a hyper-
parameter and the selection of a model using the maximum likelihood method
on the data distribution p(xn|λ), which is given as a marginal distribution,
and second, the determination of an estimate of θ by maximizing the posterior
distribution π(θ|xn; λ̂) of the parameter θ.

The ABIC minimization method was originally used for the development of
seasonal adjustments of econometric data [Akaike (1980b, 1980c) and Akaike
and Ishiguro (1980a, 1980b, 1980c)]. Subsequently, it has been used for the
development of a variety of new models, including cohort analyses [Nakamura
(1986)], binary regression models [Sakamoto and Ishiguro (1988)], and earth
tide analyses [Ishiguro and Sakamoto (1984)].

Akaike (1987) showed the relationship between, AIC and ABIC by intro-
ducing the Bayesian approach to control the occurrence of improper solutions
in normal theory maximum likelihood factor analysis [see also Martin and
McDonald (1975)].

9.3 Bayesian Predictive Distributions

Predictive distributions based on a Bayesian approach are constructed using a
parametric model {f(x|θ);θ ∈ Θ ⊂ Rp} that defines the data distribution and
a prior distribution π(θ) for the parameter vector θ. If the prior distribution,
in turn, has a hyperparameter λ, its distribution is denoted by π(θ|λ) (λ ∈
Θλ ⊂ Rq; q < p).

9.3.1 Predictive Distributions and Predictive Likelihood

Let xn = {x1, . . . , xn} be n observations that are generated from an unknown
probability distribution G(x) having density function g(x). Let f(x|θ) denote
a parametric model having a p-dimensional parameter θ, and let us consider
a Bayes model for which the prior distribution of the parameter θ is π(θ).
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Given data xn and the distribution f(xn|θ), it follows from Bayes’ theorem
that the posterior distribution of θ is defined by

π(θ|xn) =
f(xn|θ)π(θ)

∫

f(xn|θ)π(θ)dθ

. (9.51)

Let z = {z1, · · · , zn} be future data generated independently of the ob-
served data xn. Using the posterior distribution (9.51), we approximate the
distribution g(z) of the future data by

h(z|xn) =

∫

f(z|θ)π(θ|xn)dθ

=

∫

f(z|θ)f(xn|θ)π(θ)dθ
∫

f(xn|θ)π(θ)dθ

. (9.52)

The h(z|xn) is called a predictive distribution.
In the following, we evaluate how well the predictive distribution approx-

imates the distribution g(z) that generates the data by using the expected
log-likelihood

EG(z) [log h(Z|xn)] =

∫

g(z) log h(z|xn)dz. (9.53)

In actual modeling, the prior distribution π(θ) is rarely completely specified.
In this section, we assume that the prior distribution of θ is defined by a small
number of parameters λ ∈ Θλ ⊂ Rq called hyperparameters and that they are
expressed as π(θ|λ). In this situation, we denote the posterior distribution of
θ, the predictive distribution of z, and the marginal distribution of the data
xn by π(θ|xn;λ), h(z|xn;λ), and p(xn|λ), respectively.

For an ordinary parametric model f(x|θ), it is easy to see that

EG(xn)

[

log f(Xn|θ) − EG(z) [log f(Z|θ)]
]

= 0, (9.54)

as was shown in Chapter 3. Here, EG(xn) and EG(z) denote the expecta-
tions with respect to the data xn and the future observations z obtained
from the distribution G, respectively. Hence, in this case, the log-likelihood,
log f(xn|θ), is an unbiased estimator of the expected log-likelihood, and it pro-
vides a natural estimate of the expected log-likelihood. In the case of Bayesian
models also, similar results can be derived with respect to the marginal dis-
tribution

p(z) =

∫

f(z|θ)π(θ)dθ. (9.55)

This implies that the log-likelihood provides a natural criterion for estimation
of parameters.
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In contrast, the Bayesian predictive distribution h(z|xn;λ) constructed
by a prior distribution with hyperparameters λ generally takes the form

bP (G,λ) ≡ EG(xn)

[

log h(Xn|Xn;λ) − EG(z) [log h(Z|Xn;λ)]
]


= 0.

(9.56)

Consequently, the log-likelihood log h(xn|xn;λ) is not an unbiased estimator
of the expected log-likelihood EG(z)[log h(Z|xn;λ)]. Therefore, in the esti-
mation of the hyperparameters λ, maximizing the expression log h(xn|xn;λ)
does not result in maximizing the expected log-likelihood, even approximately.

The reason for this difficulty lies in the fact that, as in the case of previ-
ous information criteria, the same data xn are used twice in the expression
log h(xn|xn;λ). Therefore, when evaluating the predictive distribution for the
estimation of hyperparameters in a Bayesian model, it is more natural to use
the bias-corrected log-likelihood

log h(xn|xn,λ) − bP (G,λ) (9.57)

as an estimate of the expected log-likelihood [Akaike (1980a) and Kitagawa
(1984)].

In this section, in a similar way as the information criteria that have been
presented thus far, we define the predictive information criterion (PIC) for
Bayesian models as

PIC = −2 log h(xn|xn;λ) + 2bP (G,λ) (9.58)

[Kitagawa (1997)]. If the hyperparameters λ are unknown, then the values of λ

can be estimated by minimizing the PIC, in a manner similar to the maximum
likelihood method described in Chapter 3. Given a predictive distribution
of general Bayesian models, however, it is difficult to determine this bias
analytically.

In the next section, we show that the bias correction term bP (G,λ) in
(9.58) can be determined directly for a Bayesian normal linear model, and
in Section 9.4, we describe how to use the Laplace integral approximation to
determine it in the case of general Bayesian models.

9.3.2 Information Criterion for Bayesian Normal Linear Models

In this section, we consider a normal linear model in the Bayesian framework
and determine the specific value of the bias term bP (G,λ).

Suppose that the n-dimensional observation vector x and the p-dimensional
parameter vector θ are both from multivariate normal distributions as follows:

X ∼ f(x|θ) = Nn(Aθ, R), θ ∼ π(θ|λ) = Np(θ0, Q), (9.59)

where A is an n × p matrix, and R and Q are n × n and p × p nonsingular
matrices, respectively. It is further assumed that the matrices A and R and
the hyperparameters λ = (θ0, Q) are all known.
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The bias term bP (G,λ) for the Bayesian model given by (9.56) varies de-
pending on the nature of the true distribution. For simplicity in what follows,
we assume that the true distribution may be expressed as g(x) = f(x|θ) and
G(x) = F (x|θ). In addition, we consider the case in which we evaluate the
goodness of fit of the parameters θ, but not that of the hyperparameters λ.
We also assume that the observed data x and the future data z follow dis-
tributions having the same parameter θ. Then the bias can be determined
exactly by calculating

bP (F,λ) = EΠ(θ|λ)EF (x|θ)

[

log h(X|X;λ) − EF (z|θ)[log h(Z|X;λ)]
]

=

∫ [∫ {

log h(x|x,λ) −
∫

f(z|θ) log h(z|x;λ)dz

}

× f(x|θ)dx

]

π(θ|λ)dθ, (9.60)

where Π(θ|λ) and F (x|θ) are the distribution functions of π(θ|λ) and f(x|θ),
respectively.

In the case of the Bayesian normal linear model, as will be shown in Sub-
section 9.3.3, we have the bias correction term

bP (G,λ) = tr
{

(2W + R)−1W
}

, (9.61)

where W = AQA′. Therefore, the PIC in this case is given by

PIC = −2 log f(x|x,λ) + 2tr{(2W + R)−1W}. (9.62)

Similarly, the bias correction term can also be determined when the para-
meters for the model f(x|θ) depend on the MAP (maximum posterior esti-
mate) defined by

θ̃ = arg max
θ

π(θ|x), (9.63)

and in this case we have

b̃P (G,λ) = tr
{

(W + R)−1W
}

. (9.64)

9.3.3 Derivation of the PIC

To derive the information criterion PIC for the Bayesian normal linear model
in (9.59), we use the following lemma [Lindley and Smith (1972)]:

Lemma (Marginal and posterior distributions for normal models)
Assume that the distribution f(x|θ) of the n-dimensional vector x of random
variables is an n-dimensional normal distribution Nn(Aθ, R) and that the
distribution π(θ) of the p-dimensional parameter vector θ is a p-dimensional
normal distribution Np(θ0, Q). Then we obtain the following results:
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(i) The marginal distribution of x defined by

p(x) =

∫

f(x|θ)π(θ)dθ (9.65)

is distributed normally as Nn(Aθ0,W + R), where W = AQAT .
(ii) The posterior distribution of θ defined by

π(θ|x) =
f(x|θ)π(θ)

∫

f(x|θ)π(θ)dθ

(9.66)

is distributed normally as Np(ξ, V ), where the mean vector ξ and the
variance covariance matrix V are given by

ξ = θ0 + QAT (W + R)−1(x − Aθ0),

V = Q − QAT (W + R)−1AQ (9.67)

= (AT R−1A + Q−1)−1.

For the prior distribution π(θ|λ) in (9.59), we derive specific forms of the
marginal and posterior distributions by using the above lemma. In this case, ξ,
V , and W in (9.67) depend on the hyperparameters λ and should be written
as ξ(λ), V (λ), and W (λ). For the sake of simplicity, in the following we shall
denote them simply as ξ, V , and W .

By applying the results (i) and (ii) in the lemma to the Bayesian normal
linear model of (9.59), the marginal distribution p(x|λ) and the posterior
distribution π(θ|x;λ) are

p(x|λ) ∼ Nn(Aθ0,W + R), π(θ|x;λ) ∼ Np(ξ, V ), (9.68)

where ξ and V are respectively the mean vector and the variance-covariance
matrix of the posterior distribution given in (9.67). Then the predictive dis-
tribution defined by (9.52) in terms of the posterior distribution π(θ|x;λ) is
an n-dimensional normal distribution, that is,

h(z|x;λ) =

∫

f(z|θ)π(θ|x;λ)dθ ∼ Nn(µ, Σ), (9.69)

where the mean vector µ and the variance-covariance matrix Σ are given by

µ = Aξ

= W (W + R)−1x + R(W + R)−1Aθ0, (9.70)

Σ = AV AT + R

= W (W + R)−1R + R

= (2W + R)(W + R)−1R. (9.71)

Consequently, using the log-likelihood of the predictive distribution writ-
ten as
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log h(z|x;λ) = −n

2
log(2π) − 1

2
log |Σ| − 1

2
(z − µ)T Σ−1(z − µ), (9.72)

the expectation of the difference between the log-likelihood and the expected
log-likelihood may be evaluated as follows:

EG(x)

[

log h(X|X;λ) − EG(z)[log h(Z|X;λ)]
]

(9.73)

= −1

2
EG(x)

[

(X − µ)T Σ−1(X − µ) − EG(z)[(Z − µ)T Σ−1(Z − µ)]
]

= −1

2
tr

{

Σ−1EG(x)

[

(X − µ)(X − µ)T − EG(z)[(Z − µ)(Z − µ)T ]
]}

.

We note that µ in (9.70) depends on X.
In the particular situation that the true distribution g(z) is given by

f(z|θ0) ∼ Nn(Aθ0, R), we have

EF (z|θ)

[

(Z − µ)(Z − µ)T
]

= EF (z|θ)

[

(Z − Aθ0)(Z − Aθ0)
T
]

+ (Aθ0 − µ)(Aθ0 − µ)T

= R + (Aθ0 − µ)(Aθ0 − µ)T . (9.74)

Writing ∆θ≡ θ − θ0, we can see that

Aθ0 − µ = W (W + R)−1(Aθ0 − x) + R(W + R)−1A∆θ,

x − µ = R(W + R)−1{(x − Aθ0) + A∆θ}. (9.75)

Hence, by using R = R(W + R)−1W + R(W + R)−1R and Σ = R(W +
R)−1(2W + R), it follows from (9.74) and (9.75) that

EF (x|θ)

[

EF (z|θ)[(Z − µ)(Z − µ)T ] − (X − µ)(X − µ)T
]

= R + W (W + R)−1R(W + R)−1W − R(W + R)−1R(W + R)−1R

= W (W + R)−1R + R(W + R)−1W

= Σ − R(W + R)−1R. (9.76)

In this case, the bias correction term in (9.73) can be calculated exactly as

bP (F,λ) = EΠ(θ)EF (x|θ)

[

log h(X|X;λ) − EF (z|θ)[log h(Z|X;λ)]
]

=
1

2
tr

[

Σ−1{Σ − R(W + R)−1R}
]

=
1

2
tr

{

In − (2W + R)−1R
}

= tr
{

(2W + R)−1W
}

. (9.77)

Since the expectation with respect to F (x|θ) is constant and does not
depend on the value of θ, integration with respect to θ is not required. In
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addition, the bias term does not depend on the individual observations x and
is determined solely by the true variance covariance matrices R and Q.

By correcting the bias (9.77) for the log-likelihood of the predictive distri-
bution in (9.72) and multiplying it by −2, we have the PIC for the Bayesian
normal linear model in the form

PIC = n log(2π) + log |Σ| + (x − µ)T Σ−1(x − µ) + 2tr{(2W + R)−1W},
(9.78)

where µ and Σ are respectively given by (9.70) and (9.71).

9.3.4 Numerical Example

Suppose that we have n observations {xα;α = 1, . . . , n} from a normal distri-
bution model

xα = µα + wα, wα ∼ N(0, σ2), (9.79)

where µα is the true mean and the variance σ2 of the noise wα is known. In
order to estimate the mean-value function µα, we consider the trend model

xα = tα + wα, wα ∼ N(0, σ2). (9.80)

For the trend component tα, we assume a constraint model

tα = tα−1 + vα, vα ∼ N(0, τ2). (9.81)

Then eqs. (9.80) and (9.81) can be formulated as the Bayesian model

x = θ + w, Bθ = θ∗ + v, (9.82)

where x = (x1, . . . , xn)T , θ = (t1, . . . , tn)T , w = (w1, . . . , wn)T , v =
(v1, . . . , vn)T , and B and θ∗ are, respectively, an n × n matrix and an n-
dimensional vector given by

B =

⎡

⎢

⎢

⎢

⎣

1
−1 1

. . .
. . .

−1 1

⎤

⎥

⎥

⎥

⎦

, θ∗ =

⎡

⎢

⎢

⎢

⎣

t0
0
...
0

⎤

⎥

⎥

⎥

⎦

. (9.83)

In addition, for simplicity, we assume that t0 = ε0 (ε0 ∼ N(0, 1)) and that
the random variables θ and w and θ∗ and v are mutually independent.

Setting Q0 = diag{τ2 + 1, τ2, . . . , τ2} and θ0 = B−1θ∗, we have

θ ∼ Nn(θ0, B
−1Q0(B

−1)T ). (9.84)

Therefore, by taking A = In, Q = B−1Q0(B
−1)T , and R = σ2In, where In

is the n-dimensional identity matrix, this model turns out to be the Bayesian
normal linear model of (9.59).
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Fig. 9.3. Bias correction terms 2bP (G, λ) and 2b̃p(G, λ) for the Bayesian information
criterion. The horizontal axis is λ, and the vertical axis shows the bias correction
term. For the left graph, n = 20, and for the right graph, n = 100.

Figure 9.3 shows changes in the bias 2bP (G,λ) and 2b̃P (G,λ) as n = 20 and
n = 100 for the values of λ = τ2/σ2 = 2−ℓ (ℓ = 0, 1, . . . , 15), where bP (G,λ)
and b̃P (G,λ) were obtained from (9.60) and (9.64), respectively. We note that,
for a given value of n, the value of the bias depends solely on the variance ratio
λ. As λ increases, the bias also increases significantly. In addition, the bias also
increases as the number of observations increases, suggesting that the order
is O(n). From these results, we observe that the predictive likelihood without
bias correction overestimates the goodness of fit when compared with the
true predictive distribution, especially when the value of λ is large. Smoother
estimates can be obtained by using a small λ that maximizes the predictive
likelihood with a bias correction.

9.4 Bayesian Predictive Distributions by Laplace
Approximation

This section considers a Bayesian model constructed from a parametric model
f(x|θ) (θ∈ Θ ⊂ Rp) and a prior distribution π(θ) for n observations xn= {x1,
. . . , xn} that are generated from an unknown probability distribution G(x)
with density function g(x).

For a future observation z that is randomly extracted independent of the
data xn, we approximate the distribution g(z) by the Bayesian predictive
distribution

h(z|xn) =

∫

f(z|θ)π(θ|xn)dθ, (9.85)

where π(θ|xn) is the posterior distribution of θ given by

π(θ|xn) =
f(xn|θ)π(θ)

∫

f(xn|θ)π(θ)dθ

. (9.86)
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By substituting this expression into (9.85), we can express the predictive dis-
tribution as

h(z|xn) =

∫

f(z|θ)f(xn|θ)π(θ)dθ
∫

f(xn|θ)π(θ)dθ

=

∫

exp
[

n
{

n−1 log f(xn|θ) + n−1 log π(θ) + n−1 log f(z|θ)
}]

dθ
∫

exp [n {n−1 log f(xn|θ) + n−1 log π(θ)}] dθ

=

∫

exp
[

n
{

q(θ|xn) + n−1 log f(z|θ)
}]

dθ
∫

exp {nq(θ|xn)} dθ

, (9.87)

where

q(θ|xn) =
1

n
log f(xn|θ) +

1

n
log π(θ). (9.88)

We will now show that we can apply the information criterion GICM in
(5.114) to the evaluation of a Bayesian predictive distribution, using Laplace’s
method for integrals described in Subsection 9.1.2 to approximate the predic-
tive distribution in (9.87).

Let θ̂q be a mode of q(θ|xn) in (9.88). By applying the Laplace approxi-
mation to the denominator of (9.87), we obtain

∫

exp {nq(θ|xn)} dθ

=
(2π)p/2

np/2
∣

∣Jq(θ̂q)
∣

∣

1/2
exp

{

nq(θ̂q|xn)
}

{

1 + Op(n
−1)

}

, (9.89)

where Jq(θ̂q) = −∂2{q(θ̂q|xn)}/∂θ∂θT . Similarly, by letting θ̂q(z) be a mode
of q(θ|xn) +n−1 log f(z|θ), we obtain the following Laplace approximation to
the integral in the numerator:

∫

exp
[

n
{

q(θ|xn) +
1

n
log f(z|θ)

}]

dθ

=
(2π)p/2

np/2|Jq(z)(θ̂q(z))|1/2
exp

[

n
{

q(θ̂q(z)|xn) +
1

n
log f(z|θ̂q(z))

}

]

× {1 + Op(n
−1)}, (9.90)

where Jq(z)(θ̂q(z)) = −∂2{q(θ̂q(z)|xn) + n−1 log f(z|θ̂q(z))}/∂θ∂θT .
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It follows from (9.89) and (9.90) that the predictive distribution h(z|xn)
can be approximated as follows:

h(z|xn) =

(

|Jq(θ̂q)|
|Jq(z)(θ̂q(z))|

)
1

2

exp
[

n
{

q(θ̂q(z)|xn) − q(θ̂q|xn)

+
1

n
log f(z|θ̂q(z))

}]

× {1 + Op(n
−2)}. (9.91)

Substituting functional Taylor series expansions for the modes θ̂q and

θ̂q(z) into the resulting approximation and then simplifying the Laplace ap-
proximation (9.91) yield the Bayesian predictive distribution in the form

h(z|xn) = f(z|θ̂){1 + Op(n
−1)}. (9.92)

The form of the functional that defines the estimator θ̂ is related to
whether or not the prior distribution π(θ) depends upon the sample size n.
Given a prior distribution, let us now consider two cases: (i) log π(θ) = O(1),
(ii) log π(θ) = O(n). As can be seen from (9.88), in case (i), the estimator

θ̂ is the maximum likelihood estimator θ̂ML, and in case (ii), it becomes the

mode θ̂B of a posterior distribution. Functionals that define these estimators
are solutions of

∫

∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=T ML(G)

dG(x) = 0,

∫

∂ log {f(x|θ)π(θ)}
∂θ

∣

∣

∣

∣

θ=T B(G)

dG(x) = 0, (9.93)

respectively.
In the information criterion GICM given by (5.114) in Subsection 5.2.3,

by taking

ψ(x, θ̂) =
∂ log f(x|θ)

∂θ

∣

∣

∣

∣

θ=T ML(Ĝ)

, (9.94)

ψ(x, θ̂) =
∂ {log f(x|θ) + log π(θ)}

∂θ

∣

∣

∣

∣

θ=T B(Ĝ)

, (9.95)

we obtain the information criterion for the Bayesian predictive distribution
model h(z|xn). It has the general form

GICB = −2 log h(xn|xn) + 2tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

. (9.96)

In the case that log π(θ) = O(n), the asymptotic bias in (9.96) depends on
the prior distribution through the partial derivatives of logπ(θ), while in the
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case that log π(θ) = O(1), the asymptotic bias does not depend on the prior
distribution and has the same form as that of TIC in (3.99). In the latter
case, a more refined result is required in the context of smooth functional
estimators.

The strength of the influence exerted by the prior distribution π(θ) is
principally captured by its first- and second-order derivatives, with the result
that if the prior distribution is log π(θ) = O(1), it does not contribute its
effect solely on the basis of the first-order bias correction term. In such a
situation, by taking the higher-order bias correction terms into account, we
obtain a more accurate result.

The second-order (asymptotic) bias correction term b(2)(Ĝ) is defined as
an estimator of b(2)(G), which is generally given by

EG(x)

[

log h(Xn|Xn) − tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

− nEG(z)[h(Z|Xn)]
]

=
1

n
b(2)(G) + O(n−2). (9.97)

Then we have the second-order bias-corrected log-likelihood of the predictive
distribution in the form

GICBS = −2 log h(xn|xn) + 2tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

+
2

n
b(2)(Ĝ).

(9.98)

In fact, b(2)(G) is given by subtracting the asymptotic bias of the first-order

correction term tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

from the second-order asymptotic
bias term of the log-likelihood of the model (see Subsection 7.2.2). Derivation
of the second-order bias correction term includes log-likelihood, a high-order
differentiation of the prior distribution, and a higher-order, compact differen-
tiation of the estimator, and analytically it can be extremely complex. In such
cases, bootstrap methods offer an alternative numerical approach to estimate
the bias.

Example 5 (Bayesian predictive distribution) We use a normal distri-
bution model

f(x|µ, τ2) =

(

τ2

2π

)
1

2

exp

{

−τ2

2
(x − µ)2

}

(9.99)

that approximates the true distribution as a prior distribution of parameters
µ and τ2, we assume

π(µ, τ2) = N(µ0, τ
−2
0 τ−2)Ga(τ2|λ, β) (9.100)

=

(

τ2
0 τ2

2π

)
1

2

exp

{

−τ2
0 τ2

2
(µ − µ0)

2

}

βλ

Γ (λ)
τ2(λ−1)e−βτ2

.
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Then the predictive distribution is given by

h(z|x) =

Γ

(

b + 1

2

)

Γ

(

b

2

)

( a

bπ

)
1

2

{

1 +
a

b
(z − c)2

}−(a+1)/2

, (9.101)

where x = 1
n

∑n
α=1 xαC s2 = 1

n

∑n
α=1(xα −x)2, and a, b, and c are defined as

a =
(n + τ2

0 )(λ + 1
2n)

(n + τ0 + 1)

{

β +
1

2
ns2 +

τ2n

2(τ2
0 + n)

(µ0 − x)2
} ,

b = 2λ + n, c =
τ2
0 µ0 + nx

τ2
0 + n

, (9.102)

respectively.
From (9.96), the information criterion for the evaluation of the predictive

distribution is then given by

GICB = −2
n

∑

α=1

log h(xα|xn) + 2

{

1

2
+

µ̂4

2(s2)2

}

(9.103)

with

µ̂4 =
1

n

n
∑

α=1

(xα − x)4. (9.104)

It can be seen that GICB , which is an information criterion for the predictive
distribution of a Bayesian model, takes a form similar to the TIC. In addition,
the second-order bias correction term is given by

EG(xn)

[

log h(Xn|Xn) −
{

1

2
+

µ̂4

2(s2)2

}

− n

∫

g(z) log h(z|Xn)dz

]

.

(9.105)

Example 6 (Numerical result) We compare the asymptotic bias estimate
(tr Î Ĵ−1) in (9.103), the bootstrap bias estimate (EIC), and the second-order
corrected bias (GICBS) with the bootstrap bias estimate in (9.105). In the
simulation study, data {xα; α = 1, . . . , n) were generated from a mixture of
normal distributions

g(x) = (1 − ε)N(0, 1) + εN(0, d2). (9.106)

Table 9.2 shows changes in the values of the true bias b(G), tr{Î Ĵ−1}, and
the biases for EIC and GICBS for various values of the mixture ratio ε. For
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Table 9.2. Changes of true bias b(G), tr{Î Ĵ−1}, and the biases for EIC and GICBS

for various values of the mixture ratio ε.

ε b(G) tr{Î Ĵ−1} EIC GICBS

0.00 2.07 1.89 1.97 2.01
0.04 2.96 2.41 2.52 2.76
0.08 3.50 2.73 2.89 3.24
0.12 3.79 2.90 3.13 3.52
0.16 3.95 2.99 3.28 3.68
0.20 4.02 3.01 3.35 3.73
0.24 3.96 2.99 3.39 3.73
0.28 3.92 2.95 3.38 3.69
0.32 3.77 2.89 3.40 3.69
0.36 3.72 2.82 3.31 3.56
0.40 3.60 2.74 3.29 3.51

model parameters, we set d2 = 10, µ0 = 1, τ2
0 = 1, α = 4, and β = 1 and ran

Monte Carlo trials with 100,000 repetitions. In the bias estimation for EIC,
we used B = 10 for the bootstrap replications.

It can be seen from the table that the bootstrap bias estimate of EIC is
closer to the true bias than the bias correction term tr{Î Ĵ−1} for TIC or
GICB . It can also be seen that the second-order correction term of GICBS is
even more accurate than these other two correction terms.

9.5 Deviance Information Criterion (DIC)

Spiegelhalter et al. (2002) developed a deviance information criterion (DIC)
from a Bayesian perspective, using an information-theoretic argument to mo-
tivate a complexity measure for the effective number of parameters in a model.
Let f(xn|θ) (θ ∈ Θ ⊂ Rp) and π(θ|xn) be, respectively, a probability model
and a posterior distribution for the observed data xn. Spiegelhalter et al.
(2002) proposed the effective number of parameters with respect to a model
in the form

pD = −2Eπ(θ|xn)

[

log f(xn|θ)
]

+ 2 log f(xn|θ̂), (9.107)

where θ̂ is an estimator of the parameter vector θ. Using the Bayesian deviance
defined by

D(θ) = −2 log f(xn|θ) + 2 log h(xn), (9.108)

where h(xn) is some fully specified standardizing term that is a function of
the data alone, eq. (9.107) can be written as
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pD = D(θ) − D(θ), (9.109)

where θ (= θ̂) is the posterior mean defined by θ = Eπ(θ|xn)[θ] and D(θ) is

the posterior mean of the deviance defined by D(θ) = Eπ(θ|xn)[D(θ)].
This shows that a measure for the effective number of parameters in a

model can be considered as the difference between the posterior mean of the
deviance and the deviance at the posterior means of the parameters of inter-
est. Note that when models are compared, the second term in the Bayesian
deviance cancels out.

Spiegelhalter et al. (2002) defined DIC as

DIC = D(θ) + pD

= −2Eπ(θ|xn)

[

log f(xn|θ)
]

+ pD. (9.110)

It follows from (9.109) that the DIC can also be expressed as

DIC = D(θ) + 2pD

= −2 log f(xn|θ) + 2pD. (9.111)

The optimal model among a set of competing models is chosen by selecting
one that minimizes the value of DIC. The DIC can be considered as a Bayesian
measure of fit or adequacy, penalized by an additional complexity term pD

[Spiegelhalter et al. (2002)].
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Various Model Evaluation Criteria

So far in this book, we have considered model selection and evaluation criteria
from both an information-theoretic point of view and a Bayesian approach.
The AIC-type criteria were constructed as estimators of the Kullback–Leibler
information between a statistical model and the true distribution generating
the data or equivalently the expected log-likelihood of a statistical model. In
contrast, the Bayes approach for selecting a model was to choose the model
with the largest posterior probability among a set of candidate models.

There are other model evaluation criteria based on various different points
of view. This chapter describes cross-validation, generalized cross-validation,
final predictive error (FPE), Mallows’ Cp, the Hannan–Quinn criterion, and
ICOMP. Cross-validation also provides an alternative approach to estimate
the Kullback–Leibler information. We show that the cross-validation estimate
is asymptotically equivalent to AIC-type criteria in a general setting.

10.1 Cross-Validation

10.1.1 Prediction and Cross-Validation

The objective of statistical modeling or data analysis is to obtain informa-
tion about data that may arise in the future, rather than the observed data
used in the model construction itself. Hence, in the model building process,
model evaluation from a predictive point of view implies the evaluation of the
goodness of fit of the model based on future data obtained independently of
the observed data. In practice, however, it is difficult to consider situations
in which future data can be obtained separately from the model construc-
tion data, and if, in fact, such data can be obtained, a better model would
be constructed by combining such data with the observed data. As a way
to circumvent this difficulty, cross-validation refers to a technique whereby
evaluation from a predictive point of view is executed solely based on ob-
served data while making modifications in order to preserve the accuracy of
parameter estimation as much as possible.
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Fig. 10.1. Schematic of the cross-validation procedure.

Given a response variable y and p explanatory variables x = (x1, x2,
. . . , xp)

T , let us consider the regression model

y = u(x) + ε, (10.1)

where E[ε] = 0 and E[ε2] = σ2. Since E[Y |x] = u(x), the function u(x)
represents the mean structure. We estimate u(x) based on n observations
{(yα,xα);α = 1, 2, . . . , n} and write it as û(x). For example, when a linear
regression model y = βT x+ε is assumed, an estimate of u(x) is given by û(x)

= β̂
T
x, using least squares estimates β̂ = (XT X)−1XT y of the regression

coefficients β, where XT = (x1, . . . ,xn).
The goodness of fit of the estimated regression function û(x) is measured

using the (average) predictive mean square error (PSE)

PSE =
1

n

n
∑

α=1

E
[

{Yα − û(xα)}2
]

, (10.2)

in terms of future observations Yα that are randomly drawn at points xα

according to (10.1) in a manner independent of the observed data. Here the
residual sum of squares (RSS) is used to estimate the PSE by reusing the data
yα instead of the Yα:

RSS =
1

n

n
∑

α=1

{yα − û(xα)}2
. (10.3)

If û(x) is a polynomial model, for example, the greater the order of the model,
the smaller this value becomes, and the goodness of fit of the model seems to
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be improved. As a result, we end up selecting a polynomial of order n−1 that
passes through all the observations, which defeats the purpose of an order
selection criterion.

Cross-validation involves the estimation of a predictive mean square error
by separating the data used for model estimation (training data) from the
data used for model evaluation (test data). Cross-validation is executed in
the following steps:

Cross-Validation

(1) From the n observed data values, remove the αth observation (yα,xα).
Estimate the model based on the remaining n−1 observations, and denote
this estimate by û(−α)(x).

(2) For the αth data value (yα,xα) removed in step 1, calculate the value of
the predictive square error {yα −û(−α)(xα)}2.

(3) Repeat steps 1 and 2 for all α ∈ {1, . . . , n}, and obtain

CV =
1

n

n
∑

α=1

{

yα − û(−α)(xα)
}2

(10.4)

as the estimated value of the predictive mean square error defined by (10.2).
This process is known as leave-one-out cross-validation.

It can be shown that the cross-validation (CV) can be considered as an
estimator of the predictive mean square error PSE as follows. First, the PSE
in (10.2) can be rewritten as

PSE =
1

n

n
∑

α=1

E
[

{Yα − û(xα)}2
]

=
1

n

n
∑

α=1

E
[

{Yα − u(xα) + u(xα) − û(xα)}2
]

=
1

n

n
∑

α=1

E
[

{Yα − u(xα)}2
+ {u(xα) − û(xα)}2

+ 2 {Yα − u(xα)} {u(xα) − û(xα)}
]

=
1

n

n
∑

α=1

E
[

{Yα − u(xα)}2
]

+
1

n

n
∑

α=1

E
[

{u(xα) − û(xα)}2
]

= σ2 +
1

n

n
∑

α=1

E
[

{u(xα) − û(xα)}2
]

. (10.5)

On the other hand, the expectation of (10.4) is
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E[CV] = E

[

1

n

n
∑

α=1

{

Yα − û(−α)(xα)
}2

]

=
1

n

n
∑

α=1

E

[

{

Yα − u(xα) + u(xα) − û(−α)(xα)
}2

]

=
1

n

n
∑

α=1

E

[

{Yα − u(xα)}2
+ 2 {Yα − u(xα)}

{

u(xα) − û(−α)(xα)
}

+
{

u(xα) − û(−α)(xα)
}2

]

= σ2 +
1

n

n
∑

α=1

E

[

{

u(xα) − û(−α)(xα)
}2

]

. (10.6)

Hence, it follows from (10.5) and (10.6) that since û(−α)(xα) and û(xα) are
asymptotically equal, the relationship E [CV] ≈ PSE holds. This implies that
CV can be considered to be an estimator of predictive mean square error.

The leave-one-out cross-validation procedure can be generalized to the
method called K-fold cross-validation as follows. The observed data are di-
vided into K subsets. One of the K subsets is used as the test data for evaluat-
ing a model, and the union of the remaining K−1 subsets is taken as training
data. The average prediction error across the K trials is then calculated.

For cross-validation, we refer to Stone (1974), Geisser (1975), and Efron
(1982) among others.

10.1.2 Selecting a Smoothing Parameter by Cross-Validation

In order to estimate the mean structure u(x) in (10.1), we consider the fol-
lowing regression model, which makes use of basis expansions (see Section
6.1):

yα =

m
∑

i=1

wibi(xα) + εα

= wT b(xα) + εα, α = 1, 2, . . . , n, (10.7)

where w = (w1, w2, . . . , wm)T , b(xα) = (b1(xα), b2(xα), . . . , bm(xα))T , and
it is assumed that εα, α = 1, 2, . . . , n, are mutually independent and that
E[εα] = 0, E[ε2

α] = σ2. We estimate the coefficient vector w of the basis
functions by the regularized or penalized least squares method, that is, by
minimizing the function of w given by

Sλ(w) =

n
∑

α=1

{

yα −
m

∑

i=1

wibi(xα)

}2

+ γwT Kw

= (y − Bw)T (y − Bw) + γwT Kw, (10.8)
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where y = (y1, y2, . . ., yn)T and B = (b(x1), b(x2), . . . , b(xn))T . The typical
form of the matrix K was given in Subsection 5.2.4.

The regularized (penalized) least squares estimate is given by

ŵ = (BT B + γK)−1BT y, (10.9)

which yields the estimate û(x) = ŵ
T
b(x) of the mean structure u(x) in (10.1).

Furthermore, for the predictive value ŷα = û(xα)= ŵ
T
b(xα) at each point

xα, we obtain the n-dimensional vector of predicted values

ŷ = Bŵ = B(BT B + γK)−1BT y, (10.10)

where ŷ = (ŷ1, ŷ2, . . . , ŷn)T . The ridge type of estimator is given by taking
K = Im, where Im is the m-dimensional identity matrix.

Since the estimated regression function û(x) depends on the smoothing
parameter γ and also the number, m, of basis functions through the esti-
mation of the coefficient vector w, we need to select optimal values of these
adjusted parameters. Applying cross-validation to this problem, we choose
optimal values of the adjusted parameters as follows.

First, we specify the number m of basis functions and the value of a
smoothing parameter γ. From n observations, remove the αth data point
(yα,xα) and, based on the remaining n − 1 observations, estimate w using

the regularized least squares method and set it as ŵ
(−α). The corresponding

estimated regression function is given by û(−α)(x) = ŵ
(−α)T

b(x). Then the
adjusted parameters {γ,m} that minimize the equation

CV(γ,m) =
1

n

n
∑

α=1

{

yα − û(−α)(xα)
}2

(10.11)

are selected as optimal values.

10.1.3 Generalized Cross-Validation

Selecting the optimal values of the number of basis functions and a smooth-
ing parameter by applying cross-validation to a large data set can result in
computational difficulties. If the predicted value ŷ is given in the form of
ŷ = Hy, where H is a matrix that does not depend on the data y, then in
cross-validation, the estimation process performed n times by removing ob-
servations one by one is not needed, and thus the amount of computation
required can be reduced substantially.

Because the matrix H transforms observed data y to predicted values ŷ,
it is referred to as a hat matrix. In the case of fitting a curve or a surface,
as in the case of a regression model constructed from basis expansions, it
is called a smoother matrix. For example, since the predicted values for a
linear regression model are given by ŷ = X(XT X)−1XT y, the hat matrix
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is H = X(XT X)−1XT . Similarly, since the predicted values for a nonlinear
regression model based on basis expansions are given by (10.10), it follows
that in this case the smoother matrix is

H(γ,m) = B(BT B + γK)−1BT , (10.12)

which depends on the adjusted parameters.
Using either a hat matrix or a smoother matrix H(γ,m), generalized cross-

validation is given by

GCV(γ,m) =
1

n

n
∑

α=1

{yα − û(xα)}2

{

1 − 1

n
trH(γ,m)

}2 (10.13)

[Craven and Wahba (1979)]. As indicated by this formula, the need to ex-
ecute repeated estimations n times by removing observations one by one is
eliminated, thus permitting efficient computation.

The essential idea behind the generalized cross-validation may be described
as follows [Green and Silverman (1994)]. First, based on the n−1 observations
obtained by removing the αth data point (yα,xα) from n observed data points,
estimate a regression function using the regularized least squares method, and

thus define the regression function û(−α)(x) = ŵ
(−α)T

b(x). In the next step,
we set zj = yj and then replace the αth data point yα with zα = û(−α)(xα).
In other words, define a new n-dimensional vector as

z = (y1, y2, . . . , û
(−α)(xα), . . . , yn)T . (10.14)

Then the fact that the regression function û(−α)(x) estimated by removing
the αth data point minimizes

n
∑

j=1

{

zj − wT b(xj)
}2

+ γwT Kw (10.15)

can be demonstrated based on the following inequality:

n
∑

j=1

{

zj − wT b(xj)
}2

+ γwT Kw

≥
n

∑

j �=α

{

zj − wT b(xj)
}2

+ γwT Kw

≥
n

∑

j �=α

{

zj − û(−α)(xj)
}2

+ γŵ
(−α)T

Kŵ
(−α)

=

n
∑

j=1

{

zj − û(−α)(xj)
}2

+ γŵ
(−α)T

Kŵ
(−α). (10.16)
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Note here that zα − û(−α)(xα) = 0. Hence, it can be seen from the last
expression that the term û(−α)(x) is a regression function that minimizes
(10.15).

Let hαj be the (α, j)th component of the smoother matrix. Using this
result leads to

û(−α)(xα) − yα =

n
∑

j=1

hαjzj − yα

=

n
∑

j �=α

hαjyj + hααû(−α)(xα) − yα

=

n
∑

j=1

hαjyj − yα + hαα

{

û(−α)(xα) − yα

}

= û(xα) − yα + hαα

{

û(−α)(xα) − yα

}

, (10.17)

and hence we obtain

yα − û(−α)(xα) =
yα − û(xα)

1 − hαα
. (10.18)

By substituting this equation into (10.11), we obtain

CV(γ,m) =
1

n

n
∑

α=1

{

yα − û(xα)

1 − hαα

}2

. (10.19)

The generalized cross-validation given by (10.13) is obtained by replac-
ing the quantity 1 − hαα contained in the denominator with its average
1 − n−1tr H(γ,m).

10.1.4 Asymptotic Equivalence Between AIC-Type Criteria
and Cross-Validation

Cross-validation offers an alternative approach to estimate the Kullback–
Leibler information from a predictive point of view. Suppose that n indepen-
dent observations yn = {y1, . . . , yn} are generated from the true distribution
G(y). Consider a specified parametric model f(y|θ) (θ ∈ Θ ⊂ Rp). Let

f(y|θ̂) be a statistical model fitted to the observed data y. The AIC-type
criteria were constructed as estimators of the Kullback-Leibler information
between the true distribution and the statistical model or equivalently the
expected log-likelihood EG(z)[f(Z|θ̂)] for a future observation z that might
be obtained on the same random structure. We know that the log-likelihood
log f(yn|θ̂)(/n) yields an optimistic assessment (overestimation) of the ex-
pected log-likelihood, because the same data are used both to estimate the
parameters of the model and to evaluate the expected log-likelihood.
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Cross-validation can be used as a method for estimating the expected

log-likelihood in terms of the predictive ability of the models. Let f(y|θ̂(−α)
)

be a statistical model constructed by removing the αth observation yα from
n observed data and estimating the model based on the remaining n − 1
observations. Then the cross-validation estimate of the expected log-likelihood
(nEG(z)[f(Z|θ̂)]) is

ICCV =

n
∑

α=1

log f(yα|θ̂
(−α)

). (10.20)

We now show that, in a general setting, cross-validation is asymptotically
equivalent to AIC-type criteria.

Suppose that there exists a p-dimensional functional T (G) such that θ̂ =
T (Ĝ), where Ĝ is the empirical distribution function based on n data points
yn. Removing the αth data point yα from yn gives an empirical distribu-

tion function Ĝ(−α) and a corresponding estimator θ̂
(−α)

= T (Ĝ(−α)). By

expanding log f(yα|θ̂
(−α)

) in a Taylor series around θ̂, we have

n
∑

α=1

log f(yα|θ̂
(−α)

)

=

n
∑

α=1

log f(yα|θ̂) +

n
∑

α=1

(θ̂
(−α) − θ̂)T ∂ log f(yα|θ)

∂θ

∣

∣

∣

∣

θ=θ̂
(10.21)

+
1

2

n
∑

α=1

(θ̂
(−α) − θ̂)T ∂2 log f(yα|θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ̂
(θ̂

(−α) − θ̂) + · · · .

By taking H = Ĝ(−α) in (7.17), we have the functional Taylor series ex-

pansion of the estimator θ̂
(−α)

= T (Ĝ(−α)) in the form

T (Ĝ(−α)) = T (G) +
1

n − 1

n
∑

i�=α

T (1)(yi;G)

+
1

2(n − 1)2

n
∑

i�=α

n
∑

j �=α

T (2)(yi, yj ;G) + op(n
−1)

= T (G) +
1

n

n
∑

i�=α

T (1)(yi;G) (10.22)

+
1

n2

{ n
∑

i�=α

T (1)(yi;G) +
1

2

n
∑

i�=α

n
∑

j �=α

T (2)(yi, yj ;G)

}

+ op(n
−1).

Using this stochastic expansion and the corresponding result for θ̂ in (7.22)
gives
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θ̂
(−α) − θ̂ = − 1

n
T (1)(yα;G) +

1

n2

{ n
∑

i�=α

T (1)(yi;G) (10.23)

+
1

2

n
∑

i�=α

n
∑

j �=α

T (2)(yi, yj ;G) − 1

2

n
∑

i=1

n
∑

j=1

T (2)(yi, yj ;G)

}

+ op(n
−1).

Substituting this stochastic expansion in (10.21) yields

n
∑

α=1

log f(yα|θ̂
(−α)

) (10.24)

=

n
∑

α=1

log f(yα|θ̂) − 1

n

n
∑

α=1

tr

{

T (1)(yα;G)
∂ log f(yα|θ)

∂θT

∣

∣

∣

∣

θ=θ̂

}

+ op(1).

The second term on the right-hand side of (10.24) converges, as n goes to
infinity, to

EG

[

tr

{

T (1)(yα;G)
∂ log f(yα|θ)

∂θT

∣

∣

∣

∣

θ=T (G)

}]

= tr

{

∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣

∣

∣

∣

θ=T (G)

dG(z)

}

, (10.25)

the bias correction term of GIC given by (5.62). Hence the cross-validation in
(10.20) is asymptotically equivalent to GIC defined by (5.64). As described in
Subsection 5.2.2, taking the p-dimensional influence function of the maximum
likelihood estimator in (10.25) yields the TIC, and, further the AIC under
the additional assumption that the specified parametric family of densities
contains the true distribution.

Asymptotic equivalence between the cross-validation and AIC (TIC) was
shown by Stone (1977) [see also Shibata (1989)]. We see that the cross-
validation estimator of the expected log-likelihood has the same order of
accuracy as the AIC-type criteria (see Subsection 7.2.1 for asymptotic ac-
curacy). More refined results for criteria based on the cross-validation were
given by Fujikoshi et al. (2003) for normal multivariate regression models and
Yanagihara et al. (2006) in the general case.

10.2 Final Prediction Error (FPE)

10.2.1 FPE

In time series analysis, Akaike (1969, 1970) proposed a criterion called the
final prediction error (FPE) for selection of the order of the AR model. This
criterion was derived as an estimator of the expectation of the prediction
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Fig. 10.2. Predictive evaluation scheme for the final prediction error, FPE.

error variance when the estimated model was used for the prediction of a
future observation obtained independently from the same stochastic structure
as the current time series data used for building the AR model. We explain
the FPE in the more general framework of regression models.

Let us now fit a linear regression model to the n observations {(yα, xα);
α = 1, . . . , n} drawn from the response variable Y and p explanatory variables
x1, . . ., xp. We have

y = Xβ + ε, E[ε] = 0, V (ε) = σ2In, (10.26)

where β = (β0, β1, . . ., βp)
T , ε = (ε1, . . ., εn)T , and X is an n× (p+1) design

matrix given by

XT =

[

1 1 · · · 1
x1 x2 · · · xn

]

(p+1)×n

. (10.27)

By estimating the unknown parameter vector β of the model by the
least squares method, we obtain the predicted values ŷ = Xβ̂, where β̂ =
(XT X)−1XT y. For these predicted values, let us consider the sum of squares
of prediction errors

S2
p = (z0 − ŷ)T (z0 − ŷ), (10.28)

where z0 is an n-dimensional future observation vector obtained indepen-
dently of the current data y used for estimation of the model.

Put H = X(XT X)−1XT . Then we have ŷ = Hy and HX = X. Hence,
the expected value of S2

p can be calculated as follows:

E
[

S2
p

]

= E
[

(z0 − ŷ)T (z0 − ŷ)
]

= E
[

{z0 − Xβ − (ŷ − Xβ)}T {z0 − Xβ − (ŷ − Xβ)}
]
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= E
[

(z0 − Xβ)T (z0 − Xβ)
]

+ E
[

(ŷ − Xβ)T (ŷ − Xβ)
]

= nσ2 + E
[

(Hy − HXβ)T (Hy − HXβ)
]

= nσ2 + E
[

(y − Xβ)T H(y − Xβ)
]

= nσ2 + tr {HV (y)}
= nσ2 + (p + 1)σ2. (10.29)

Here we used the facts that H is an idempotent matrix (H2 = H) and that
αT Hα = tr(HααT).

By replacing the unknown error variance σ2 with its unbiased estimate

1

n − p − 1
S2

e =
1

n − p − 1
(y − ŷ)T (y − ŷ), (10.30)

we obtain

FPE =
n + p + 1

n − p − 1
S2

e . (10.31)

The model evaluation criterion based on the predicted error is called the final
prediction error (FPE).

10.2.2 Relationship Between the AIC and FPE

The FPE, proposed prior to the information criterion AIC, is closely related
to the AIC. In the case of an AR model of order p,

yn =

p
∑

j=1

ajyn−j + εn, εn ∼ N(0, σ2
p), (10.32)

the maximum log-likelihood is given by

ℓ(θ̂) = −n

2
log σ̂2

p − n

2
log 2π − n

2
. (10.33)

Therefore, the AIC for an AR model of order p is given by

AICp = n log σ̂2
p + n(log 2π + 1) + 2(p + 1). (10.34)

For comparing AR models with different orders, the constant terms in the
equation are often omitted and a simplified version is used, namely,

AIC∗
p = n log σ̂2

p + 2p. (10.35)

On the other hand, the FPE of an AR model with order p is

FPEp =
n + p

n − p
σ̂2

p. (10.36)
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Fig. 10.3. Comparison of AIC, AICC , FPE, and approximated FPE. The left-hand
plot shows the case n = 50, and the right-hand plot is for n = 200.

By multiplying by n after taking logarithms of both sides, we have

n log FPEp = n log

(

n + p

n − p

)

+ n log σ̂2
p

= n log

(

1 +
2p

n − p

)

+ n log σ̂2
p

≈ n
2p

n − p
+ n log σ̂2

p

≈ 2p + n log σ̂2
p = AIC∗

p. (10.37)

Therefore, we see that minimization of the AIC is approximately equivalent to
minimization of the FPE and that, with regard to AR models, by minimizing
the AIC, we obtain a model that approximately minimizes the final prediction
error.

Figure 10.3 shows plots of bias correction terms for the AIC, AICC in
(7.67), FPE, and approximated FPE for n = 50 and n = 200. For comparison
with the AIC, the FPE is shown in terms of the logarithm of the correction
term, n log{1 + 2p/(n− p)}. The approximated FPE is shown in terms of the
first term of its Taylor expansion, 2pn/(n− p). From the plots in Figure 10.3,
it may be seen that the AIC, FPE, modified AIC, and approximated FPE
each produce very similar correction terms.
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10.3 Mallows’ Cp

Suppose that we have n sets of data observations {(yα, xα); α = 1, . . . , n}
drawn from a response variable Y and p explanatory variables x1, . . ., xp. It
is assumed that the expectation and the variance covariance matrix of the
n-dimensional observation vector y = (y1, . . . , yn)T are

E[y] = µ, V (y) = E[(y − µ)(y − µ)T ] = ω2In, (10.38)

respectively.
We estimate the true expectation µ by using the linear regression model

y = Xβ + ε, E[ε] = 0, V (ε) = σ2In, (10.39)

where β = (β0, β1, . . . , βp)
T , ε = (ε1, . . . , εn)T , and X is an n × (p + 1)

design matrix. Then, for the least squares estimator β̂ = (XT X)−1XT y of
the regression coefficient vector β, µ is estimated by

µ̂ = Xβ̂ = X(XT X)−1XT y ≡ Hy. (10.40)

As a criterion to measure the effectiveness of the estimator, we consider
the mean squared error defined by

∆p = E[(µ̂ − µ)T (µ̂ − µ)]. (10.41)

Since the expectation of the estimator µ̂ is

E[µ̂] = X(XT X)−1XT E[y] ≡ Hµ, (10.42)

the mean squared error ∆p can be expressed as

∆p = E[(µ̂ − µ)T (µ̂ − µ)]

= E
[

{Hy − Hµ − (In − H)µ}T {Hy − Hµ − (In − H)µ}
]

= E
[

(y − µ)T H(y − µ)
]

+ µT (In − H)µ

= tr {HV (y)} + µT (In − H)µ

= (p + 1)ω2 + µT (In − H)µ (10.43)

(see Figure 10.4). Here, since H and In−H are idempotent matrices, we have
made use of the relationships H2 = H, (In −H)2 = In −H, H(In −H) = 0,
and tr H = tr{X(XT X)−1XT } = tr Ip+1 = p + 1, tr(In − H) = n − p − 1.

The first term of ∆p, (p + 1)ω2, increases as the number of parameters
increases. The second term, µT (In −H)µ, is the sum of squared biases of the
estimator µ̂. This term decreases as the number of parameters increases. If
∆p can be estimated, then it can be used as a criterion for model evaluation.

The expectation of the residual sum of squares can be calculated as
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Fig. 10.4. Geometrical interpretation of Mallows’ Cp; M(X) is the linear subspace
spanned by the p + 1 column vectors of the design matrix X.

E[S2
e ] = E[(y − ŷ)T (y − ŷ)]

= E[(y − Hy)T (y − Hy)]

= E[{(In−H)(y−µ) + (In−H)µ}T {(In−H)(y−µ) + (In−H)µ}]
= E[(y − µ)T (In − H)(y − µ)] + µT (In − H)µ

= tr{(In − H)V (y)} + µT (In − H)µ

= (n − p − 1)ω2 + µT (In − H)µ. (10.44)

Comparison between (10.43) and (10.44) reveals that, if ω2 is assumed known,
then the unbiased estimator of ∆p is given by

∆̂p = S2
e + {2(p + 1) − n}ω2. (10.45)

By dividing both sides of the above equation by the estimator ω̂2 of ω2, we
obtain Mallows’ Cp criterion, which is defined as

Cp =
S2

e

ω̂2
+ {2(p + 1) − n}. (10.46)

The smaller the value of the Cp criterion for a model, the better is the model.
As an estimator ω̂2, the unbiased estimator of the error variance of the most
complex model is usually used.
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10.4 Hannan–Quinn’s Criterion

Addressing the autoregressive (AR) time series model of order p,

yn =

p
∑

j=1

ajyn−j + εn, εn ∼ N(0, σ2
p), (10.47)

Hannan–Quinn (1979) proposed an order selection criterion of the form

log σ̂2
p + n−12pc log log n (10.48)

that provides a consistent estimator of order p, where n is the number of
observations and c is an arbitrary real number greater than 1. In what follows,
for ease of comparison with other information criteria (IC), we multiply their
criterion by n and consider

ICHQ = n log σ̂2
p + 2pc log log n. (10.49)

Concerning the variance σ̂2
p of the AR model, it follows from Levinson’s

formula [see for example, Kitagawa (1993)] that

σ̂2
p = (1 − b̂2

p)σ̂
2
p−1, (10.50)

where b̂p, which is the pth coefficient of the AR model of order k, is referred
to as a partial autocorrelation coefficient. By using this relation repeatedly,
the ICHQ can be expressed as

n log σ̂2
0 + n

p
∑

j=1

log(1 − b̂2
j ) + 2pc log log n, (10.51)

where σ̂2
0 is the variance of the AR model of order 0, that is, the variance of

the time series yn. Consequently, when the order increases from p − 1 to p,
the value of ICHQ changes by

∆IC = log(1 − b̂2
p) + 2c log log n. (10.52)

We assume here that the model has actual order p0, i.e., that ap0

= 0 and

ap = 0 (p > p0). In this case, since bp0
= ap0


= 0, as n → ∞, the following
inequalities hold:

n log(1 − b̂2
p0

) + 2c log log n < 0, (10.53)

n log(1 − b̂2
p) + 2c log log n ≤ 0 (p < p0). (10.54)

Hence, asymptotically ICHQ never reaches its minimum value for p < p0. On
the other hand, for p > p0, by virtue of the law of the iterated logarithm, for
any n > n0 there exists an n0 such that the inequality
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Table 10.1. Comparison of log n and log log n.

n 10 100 1,000 10,000

log n 2.30 4.61 6.91 9.21
log log n 0.83 1.53 1.93 2.22

n log(1 − b̂2
j ) + 2c log log n > 0 (p0 < p ≤ p) (10.55)

holds. Therefore, for a sufficiently large n, ICHQ always increases for p > p0.
This implies that ICHQ provides a consistent estimator of order p.

Table 10.1 shows that the penalty term of ICHQ yields a value smaller
than log n of BIC. From the consistency argument above, it can be seen that
a penalty term greater in order than log log n gives a consistent estimator of
order. Further, Hannan–Quinn has demonstrated that log n is not the smallest
rate of increase necessary to ensure consistency and that it tends to under-
estimate the order if n is large. Although c (> 1) is assumed to be any real
number, when dealing with finite data, the choice of c can have a significant
effect on the result.

10.5 ICOMP

Bozdogan (1988, 1990) and Bozdogan and Haughton (1998) proposed an
information-theoretic measure of complexity called ICOMP (I for informa-
tional and COMP for complexity) that takes into account lack of fit, lack of
parsimony, and the profusion of complexity. It is defined by

ICOMP = −2 log L(θ̂) + 2C(Σ̂model), (10.56)

where L(θ̂) is the likelihood function of an estimated model, C represents a
complexity measure, and Σ̂model represents the estimated variance-covariance
matrix of the parameter vector. It can be seen that instead of the number
of estimated parameters, ICOMP uses C(Σ̂model) as a measure of complexity
of a model. The optimal model among all candidate models is obtained by
choosing one with a minimum value of ICOMP.

For multivariate normal 1inear and nonlinear structural models, the com-
plexity measure is defined by

C(Σ̂model) =
p

2
log

tr(Σ̂p)

p
− 1

2
log |R̂p| +

n

2
log

tr(R̂p)

n
− 1

2
log |Σ̂p|, (10.57)

where Σ̂p is the estimated variance covariance matrix and R̂p is the model
residual.
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Fisher information matrix, 48, 128
Fisher’s scoring method, 150
fluctuations of the maximum likelihood

estimator, 44
Fourier series, 140
FPE, 247
functional, 168
functional for M -estimator, 110
functional for maximum likelihood

estimator, 109
functional for sample mean, 108
functional for sample variance, 109
functional form of K-L information, 34
functional Taylor series expansion, 170
functional vector, 119

galaxy data, 79
Gaussian basis function, 146, 160
Gaussian linear regression model, 90,

180
GBIC, 219, 221, 222
generalized Bayesian information

criterion, 219
generalized cross-validation, 243
generalized information criterion, 107,

118, 120
generalized linear model, 88
generalized state-space model, 27
Gibbs distribution, 28
GIC, 107, 116, 118–120, 167, 176
GIC for normal model, 121
GIC with a second-order bias correction,

180
gradient vector, 41

Hannan–Quinn’s criterion, 253
hat matrix, 164, 243
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Hessian matrix, 41
hierarchical Bayesian modeling, 6
higher-order bias correction, 176, 178
histogram, 79
histogram model, 14
hyperparameter, 222

ICOMP, 254
influence function, 111, 112, 119, 199
influence function for a maximum

likelihood estimator, 126
influence function for the M -estimator,

113, 129
influence function for the maximum

likelihood estimator, 114
influence function for the sample mean,

112
influence function for the sample

variance, 113
information criterion, 4, 31, 51, 128
information criterion for a logistic

model estimated by regularization,
152

information criterion for a model
constructed by regularized basis
expansion, 142

information criterion for a model
estimated by M -estimation, 116

information criterion for a model
estimated by regularization, 137

information criterion for a model
estimated by robust procedure,
130

information criterion for a nonlinear
logistic model by regularized basis
expansion, 155

information criterion for Bayesian
normal linear model, 226

information criterion for the Bayesian
predictive distribution model, 233

K-fold cross-validation, 242
K-L information, 29
K-L information for normal and Laplace

model, 32
K-L information for normal models, 32
K-L information for two discrete

models, 33
k-means clustering algorithm, 147

Kalman filter, 43
knot, 23
Kullback–Leibler information, 4, 29

Laplace approximation, 213, 214
Laplace approximation for integrals,

213
Laplace distribution, 11, 183, 204
Laplace’s method for integrals, 232
law of large numbers, 36
leave-one-out cross-validation, 241
likelihood equation, 38
linear logistic discrimination, 157
linear logistic regression model, 91, 149
linear predictor, 89
linear regression model, 19, 39, 90, 132,

180
link function, 89
log-likelihood, 36, 51
log-likelihood function, 37
log-likelihood of the time series model,

44
logistic discriminant analysis, 156
logistic discrimination, 157
logistic regression model, 91, 149

M-estimation, 132
M-estimator, 110, 114, 128
MAICE, 69
Mallows’ Cp, 251
MAP, 227
marginal distribution, 211, 223
marginal likelihood, 211, 223
maximum likelihood estimator, 37, 109
maximum likelihood method, 37
maximum likelihood model, 37
maximum log-likelihood, 37
maximum penalized likelihood method,

134, 135
maximum posterior estimate, 227
MDL, 217
mean structure, 134
measure of the similarity between

distributions, 31
median, 131, 204, 205
median absolute deviation, 131, 204
minimum description length, 217
mixture of normal distributions, 12, 15,
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mixture of two normal distributions, 64
model, 10
model consistency, 71, 73, 253
model selection, 5
modeling, 10
motorcycle impact data, 20, 144
multinomial distribution, 17, 77
multivariate central limit theorem, 50
multivariate distribution, 16
multivariate normal distribution, 16

natural cubic spline, 24
Newton–Raphson method, 41
NIC, 138
nonlinear logistic discrimination, 159
nonlinear logistic regression model, 152,

221
nonlinear regression model, 19, 139, 220
normal distribution, 11, 203
normal distribution model, 11, 230
normal model, 38, 121, 182, 203
number of bootstrap samples, 192
numerical optimization, 40

order selection, 5, 19, 71, 92
order selection in linear regression

model, 71

Pearson’s family of distributions, 11,
102

penalized least squares method, 160,
162, 242

penalized log-likelihood function, 135,
218

penalty term, 135
PIC, 227, 230
Poisson distribution, 13
polynomial regression model, 19, 22, 65,

66
posterior distribution, 224, 225
posterior probability, 212
power spectrum estimate, 95
prediction error variance, 26
predictive distribution, 25, 224, 232
predictive information criterion, 226
predictive likelihood, 224
predictive mean square error, 240, 241
predictive point of view, 2
probability density function, 10

probability distribution model, 10
probability function, 10
probability model, 14
probability of occurrence of kyphosis,

155
properties of K-L information, 30
properties of MAICE, 69

quasi-Newton method, 41

radial basis function, 145
regression function, 134
regression model, 17, 18, 21, 134, 208
regularization, 5
regularization method, 135, 218
regularization parameter, 135
regularization term, 135
regularized least squares method, 162,

242
regularized log-likelihood function, 135
relation between bootstrap bias

correction terms, 205
relationship among AIC, TIC and GIC,

124
relationship between AIC and FPE, 249
relationship between the matrices I(θ)

and J(θ), 50
residual sum of squares, 240
RIC, 138
ridge regression estimate, 162
robust estimation, 128, 204
role of the smoothing parameter, 145

sample mean, 108
sample variance, 109
sampling with replacement of the

observed data, 191
Schwarz’s information criterion, 211
second-order accurate, 178
second-order bias correction term, 180
second-order correct, 178
second-order difference, 136
seismic signal model, 99
selection of order, 73
selection of order of AR model, 92
selection of parameter of Box–Cox

transformation, 104
smoother matrix, 164, 243
smoothing parameter, 135
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spatial model, 27
spline, 23
spline function, 23
state prediction distribution, 27
state-space model, 26, 43, 95
statistical functional, 107, 108
statistical model, 1, 9, 10, 21
stochastic expansion of an estimator,

170
subset regression model, 86
subset selection, 208
symbols O, Op, o, and op, 169
synthetic data, 160

third-order accurate, 180
third-order correct, 178, 180

TIC, 60, 115, 127
TIC for normal model, 61
TIC for normal model versus

t-distribution case, 65
time series model, 24, 42
trigonometric function model, 19
true distribution, 10, 29
true model, 10, 29

variable selection, 19, 84
variable selection for regression model,

84
variance reduction in bootstrap bias

correction, 199
variance reduction method, 195, 199
vector of influence function, 120
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