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ABSTRACT
Model selection is the problem of distinguishing competing models, perhaps featuring differ-

ent numbers of parameters. The statistics literature contains two distinct sets of tools, those

based on information theory such as the Akaike Information Criterion (AIC), and those on

Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC).

The Deviance Information Criterion combines ideas from both heritages; it is readily com-

puted from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter

degeneracy. I describe the properties of the information criteria, and as an example compute

them from Wilkinson Microwave Anisotropy Probe 3-yr data for several cosmological models.

I find that at present the information theory and Bayesian approaches give significantly different

conclusions from that data.

Key words: methods: data analysis – methods: statistical – cosmology: theory.

1 I N T RO D U C T I O N

Although it has been widely recognized only recently, model selec-

tion problems are ubiquitous in astrophysics and cosmology. While

parameter estimation seeks to determine the values of a parameter

set chosen by hand, model selection seeks to distinguish between

competing choices of parameter set. A considerable body of statis-

tics literature is devoted to model selection [excellent textbook ac-

counts are given by Jeffreys (1961), Burnham & Anderson (2002),

MacKay (2003) and Gregory (2005)] and its use is widespread

throughout many branches of science. For a non-technical overview

of model selection as applied to cosmology, see Liddle, Mukherjee &

Parkinson (2006a), and for an overview of techniques and applica-

tions see Lasenby & Hobson (2006).

In general, a model is a choice of parameters to be varied and a

prior probability distribution on those parameters. The goal of model

selection is to balance the quality of fit to observational data against

the complexity, or predictiveness, of the model achieving that fit.

This tension is achieved through model selection statistics, which

attach a number to each model enabling a rank-ordered list to be

drawn up. Typically, the best model is adopted and used for further

inference, such as permitted parameter ranges, though the statistics

literature has also seen increasing interest in multimodel inference

combining a number of adequate models (e.g. Hoeting et al. 1999;

Burnham & Anderson 2004).

There are two main schools of thought in model selection.

Bayesian inference, particularly as developed by Jeffreys culminat-

ing in his classic textbook (Jeffreys 1961) and by many others since,

can assign probabilities to models as well as to parameter values,

and manipulate these probabilities using rules such as Bayes’ the-

orem. Information-theoretic methods, pioneered by Akaike (1974)

�E-mail: a.liddle@sussex.ac.uk

with his Akaike Information Criterion (AIC), instead focus on the

Kullback–Leibler information entropy (Kullback & Leibler 1951)

as a measure of information lost when a particular model is used

in place of the (unknown) true model. Variants on this latter theme

include the Takeuchi Information Criterion (TIC, Takeuchi 1976),

which extends the AIC by dropping the assumption that the model

set considered includes the true model. Bayesian statistics include

the Bayesian evidence and an approximation to it known as the

Bayesian Information Criterion (BIC, Schwarz 1978), which, de-

spite the name, does not have an information-theoretic justification.

Given the plethora of possible statistics, one might despair as to

which to use, especially if they give conflicting results. Cosmolo-

gists, in particular, tend to ally themselves with a Bayesian method-

ology, for example the use of Markov Chain Monte Carlo (MCMC)

methods to carry out parameter likelihood analyses, and are there-

fore tempted to adopt methods advertised as such. However, even

if one were to side automatically against frequentist approaches,

the situation does not appear that clear-cut; Burnham & Anderson

(2004) have argued that the AIC can be derived in a Bayesian way

(and the BIC in a frequentist one), and that one should not casu-

ally dismiss a criterion soundly grounded in information theory.

Nevertheless, in my view the Bayesian evidence is the preferred

tool; in Bayesian inference it is precisely the quantity which up-

dates the prior model probability to the posterior model probability,

and has an unambiguous interpretation in these probabilistic terms.

The problem with the evidence is the difficulty in calculating it

to the required accuracy, though the situation there has improved

with the development of the nested sampling algorithm (Skilling

2006) and its implementation for cosmology in the CosmoNest

code1 (Mukherjee, Parkinson & Liddle 2006; Parkinson, Mukherjee

& Liddle 2006). This Letter is principally directed at circumstances

1 http://cosmonest.org
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where the evidence is not readily calculable, and a simpler model

selection technique is required.

In this article I describe and apply an additional information cri-

terion, the Deviance Information Criterion (DIC) of Spiegelhalter

et al. (2002, henceforth SBCL02), which combines heritage from

both Bayesian methods and information theory. It has interesting

properties. First, unlike the AIC and BIC it accounts for the sit-

uation, common in astrophysics, where one or more parameters

or combination of parameters is poorly constrained by the data.

Secondly, it is readily calculable from posterior samples, such as

those generated by MCMC methods. It has already been used in

astrophysics to study quasar clustering (Porciani & Norberg 2006).

2 M O D E L S E L E C T I O N S TAT I S T I C S

2.1 Bayesian evidence

The Bayesian evidence, also known as the model likelihood and

sometimes, less accurately, as the marginal likelihood, comes from

a full implementation of Bayesian inference at the model level,

and is the probability of the data given the model. Using Bayes

theorem, it updates the prior model probability to the posterior model

probability. Usually the prior model probabilities are taken as equal,

but quoted results can readily be rescaled to allow for unequal ones if

required (e.g. Lasenby & Hobson 2006). In many circumstances the

evidence can be calculated without simplifying assumptions (though

perhaps with numerical errors). It has now been quite widely applied

in cosmology; see for example Jaffe (1996), Hobson, Bridle & Lahav

(2002), Saini, Weller & Bridle (2004), Trotta (2005), Parkinson et al.

(2006), and Lasenby & Hobson (2006).

The evidence is given by

E ≡
∫

L(θ ) P(θ ) dθ, (1)

where θ is the vector of parameters being varied in the model and

P(θ ) is the properly normalized prior distribution of those parame-

ters (often chosen to be flat). It is the average value of the likelihood

L over the entire model parameter space that was allowed before

the data came in. It rewards a combination of data fit and model

predictiveness. Models which fit the data well and make narrow

predictions are likely to fit well over much of their available pa-

rameter space, giving a high average. Models which fit well for

particular parameter values, but were not very predictive, will fit

poorly in most of their parameter space, driving the average down.

Models which cannot fit the data well will do poorly in any event.

The integral in equation (1) may however be difficult to calculate,

as it may have too many dimensions to be amenable to evaluation

by gridding, and the simplest MCMC methods such as Metropolis–

Hastings produce samples only in the part of parameter space where

the posterior probability is high rather than throughout the prior.

Nevertheless, many methods exist (e.g. Gregory 2005; Trotta 2005),

and the nested sampling algorithm (Skilling 2006) has proven fea-

sible for many cosmology applications (Mukherjee et al. 2006;

Parkinson et al. 2006; Liddle et al. 2006b).

A particular property of the evidence worth noting is that it does

not penalize parameters (or, more generally, degenerate parameter

combinations) which are unconstrained by the data. If the likelihood

is flat or nearly flat in a particular direction, it simply factorizes out

of the evidence integral leaving it unchanged. This is an appealing

property, as it indicates that the model fitting the data is doing so

really by varying fewer parameters than at first seemed to be the

case, and it is the unnecessary parameters that should be discarded,

not the entire model.

2.2 AIC and BIC

Much of the literature, both in astrophysics and elsewhere, seeks a

simpler surrogate for the evidence which still encodes the tension

between fit and model complexity. In Liddle (2004), I described two

such statistics, the AIC and BIC, which have subsequently been quite

widely applied to astrophysics problems. They are relatively simple

to apply because they require only the maximum likelihood achiev-

able within a given model, rather than the likelihood throughout the

parameter space. Of course, such simplification comes at a cost, the

cost being that they are derived using various assumptions, partic-

ularly Gaussianity or near-Gaussianity of the posterior distribution,

that may be poorly respected in real-world situations.

The AIC is defined as

AIC ≡ −2 lnLmax + 2k, (2)

where Lmax is the maximum likelihood achievable by the model

and k the number of parameters of the model (Akaike 1974). The

best model is the one which minimizes the AIC, and there is no

requirement for the models to be nested. The AIC is derived by

an approximate minimization of the Kullback–Leibler informa-

tion entropy, which measures the difference between the true data

distribution and the model distribution. An explanation geared to

astronomers can be found in Takeuchi (2000), while the full statis-

tical justification is given by Burnham & Anderson (2002).

The BIC was introduced by Schwarz (1978), and is defined as

BIC ≡ −2 lnLmax + k ln N , (3)

where N is the number of data points used in the fit. It comes from

approximating the evidence ratios of models, known as the Bayes

factor (Jeffreys 1961; Kass & Raftery 1995). The BIC assumes that

the data points are independent and identically distributed, which

may or may not be valid depending on the data set under considera-

tion (e.g. it is unlikely to be good for cosmic microwave anisotropy

data, but may well be for supernova luminosity–distance data).

Applications of these two criteria have usually shown broad

agreement in the conclusions reached, but occasional differences

in the detailed ranking of models. One should consider the extent to

which the conditions used in the derivation of the criteria are vio-

lated in real situations. A particular case in point is the existence of

parameter degeneracies; inclusion (inadvertent or otherwise) of un-

constrained parameters is penalized by the AIC and BIC, but not by

the evidence. Interpretation of the BIC as an estimator of evidence

differences is therefore suspect in such cases.

Burnham & Anderson (2002, 2004) have stressed the importance

of using a version of the AIC corrected for small sample sizes, AICc.

This is given by (Sugiura 1978)

AICc = AIC + 2k(k + 1)

N − k − 1
. (4)

Because the correction term anyway disappears for large sample

sizes, N � k, there is no reason not to use it even in that case, i.e.

it is always preferable to use AICc rather than the original AIC. In

typical small-sample cases, e.g. N/k being only a few, the correction

term strengthens the penalty, bringing the AICc towards the BIC and

potentially mitigating the difference between them.

2.3 DIC

The DIC was introduced by SBCL02. It has already been widely

applied outside of astrophysics. Its starting point is a definition of an

effective number of parameters pD of a model. This quantity, known

C© 2007 The Author. Journal compilation C© 2007 RAS, MNRAS 377, L74–L78
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also as the Bayesian complexity, has already been introduced into

astrophysics by Kunz, Trotta & Parkinson (2006), with the focus on

assessing the number of parameters that can be usefully constrained

by a particular data set.

It is defined by

pD = D(θ ) − D(θ̄ ), where D(θ ) = −2 lnL(θ) + C . (5)

Here C is a ‘standardizing’ constant depending only on the data

which will vanish from any derived quantity, and D is the deviance

of the likelihood. The bars indicate averages over the posterior dis-

tribution. In words, then, pD is the mean of the deviance, minus the

deviance of the mean. If we define an effective chi-squared as usual

by χ2 = −2 lnL, we can write

pD = χ 2(θ ) − χ 2(θ̄ ). (6)

Its intent becomes clear from studying a simple one-dimensional

example, in which the likelihood is a Gaussian of zero mean and

width σ , i.e. lnL = A − x2/2σ 2, and where the prior distribution

is flat with width aσ . Care is needed to properly normalize the

posterior, which relates the likelihood amplitude A to the prior width.

In the limit where a � 1, so that the posterior is well confined

within the prior, one finds pD = 1 (in this case, the averaging is

just evaluating the variance of the distribution, but in units of that

variance). This corresponds to a well-measured parameter. If instead

a � 1, so that the data are unable to constrain the parameter, then

pD → 0 as χ2 becomes independent of x. Hence pD indicates the

number of parameters actually constrained by the data. Extension of

the above argument to an N-dimensional Gaussian, potentially with

covariance, indicates pD = N if all dimensions are well contained

within the prior, and pD < N otherwise (SBCL02; Kunz et al. 2006).

One issue of debate in the statistics literature is the choice of the

mean parameter value in the definition of pD. One could alternatively

argue for the maximum likelihood in its place. This choice affects

the possible reparametrization dependence of the statistic (SBCL02;

Celeux et al. 2006). It may be that the best choice depends on the

situation under study (e.g. the mean parameter value will be a poor

choice if the likelihood has distinct strong peaks).

The DIC is then defined as

DIC ≡ D(θ̄ ) + 2pD = D(θ ) + pD . (7)

The first expression is motivated by the form of the AIC, replacing

the maximum likelihood with the mean parameter likelihood, and

the number of parameters with the effective number. It can therefore

be justified on information/decision theory grounds, as discussed by

SBCL02. The second form is interesting because the mean deviance

can be justified in Bayesian terms, which always deal with model-

averaged quantities rather than maximum values.

The DIC has two attractive properties.

(i) It is determined by quantities readily obtained from Monte

Carlo posterior samples. One simply averages the deviances over the

samples. If the calculation is being performed by whoever generated

the chains, they can obtain the deviance at the mean with a single

extra likelihood call, but even if using chains generated by others,

it should be fine to use the sample closest to that mean value as

the estimator, especially bearing in mind the possibility that the

mode could have been used in place of the mean. The calculation

is also easily performed with posterior samples generated by nested

sampling, which have non-integer weights (Parkinson et al. 2006).

(ii) By using the effective number of parameters, the DIC over-

comes the problem of the AIC and BIC that they do not discount

parameters which are unconstrained by the data.

Note that in the case of well-constrained parameters, the DIC

approaches the AIC and not the BIC, as D(θ̄ ) → −2 lnLmax and

pD → k. It is plausible to believe that it too can be corrected for small

data set sizes using the same formula that leads to AICc, though to

my knowledge there is currently no proof of this.

2.4 Other criteria

In addition to those already mentioned, the literature contains many

other information criteria, but mostly sharing the heritage of those

above. The TIC (Takeuchi 1976) generalizes the AIC by dropping

the assumption that the true model is in the set considered, but in

practice is hard to compute and, where computation has been car-

ried out, tends to give results very similar to the AIC (Burnham &

Anderson 2002, 2004). A Bayesian version of the AIC, the Expected

AIC (EAIC), where one takes its expected value over the posterior

distribution rather than evaluating at the maximum, has been pro-

posed (by Brooks in the comments to SBCL02) but does not appear

to have been significantly applied.

Other information criteria, which appear to have been less

widely used, include the Network Information Criterion (NIC), the

Subspace Information Criterion (SIC, though this abbreviation

is sometimes used for Schwarz Information Criterion as another

name for the BIC), and the Generalized Information Criterion

(GIC). The DIC also comes in many variants, see e.g. Celeux

et al. (2006).

An interesting variant was proposed by Sorkin (1983), using a

Turing machine construction to define an entropy associated with

the theory to be used as a penalty term. This was recently ap-

plied to cosmological data by Magueijo & Sorkin (2007). It has

not been picked up by the statistics community, but may be related

to the widely used minimum message length paradigm (Wallace &

Boulton 1968; Wallace 2005). The idea of interpetting the best

model as the one offering maximal algorithmic compression of

the data goes all the way back to late 17th century writings by

Leibniz.

2.5 Dimensional consistency and model selection philosophy

Dimensional consistency refers to the behaviour of the model se-

lection statistics in the limit of arbitrarily large data sets. The BIC

and evidence are dimensionally consistent, meaning that if one of

the considered models is true, they give 100 per cent support to that

model as the data set becomes large. As a necessary consequence,

however, they will give 100 per cent support to the best model even

if it is not true. By contrast, the AIC is dimensionally inconsistent

(Kashyap 1980), sharing its support around the models even with

infinite data. As the DIC approaches the AIC in the limit of large

data sets, it too is dimensionally inconsistent (SBCL02).

Dimensional consistency does not seem to particularly bother

most statisticians, as they are typically seeking models which can

explain data and have some predictive power, rather than expecting

to represent some underlying truth. Indeed, they commonly quote

statistician George Box: ‘All models are wrong, but some are use-

ful.’ The problem of dimensional consistency is therefore mitigated,

because they do not expect the set of models to remain static as the

data set evolves. Cosmologists, however, are probably not yet will-

ing to concede that they might be looking for something other than

absolute truth specified by a finite number of parameters. Combining

this line of argument with the statements above, this implies that the

Bayesian evidence indeed is the preferred choice for cosmological

model selection when it can be calculated.

C© 2007 The Author. Journal compilation C© 2007 RAS, MNRAS 377, L74–L78
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Table 1. Results for comparison of different models to WMAP3 data. The differences are quoted with respect to the first model. Negative is preferred.

Model Parameters k pD −2 lnL(θ̄ ) DIC −2 lnLmax �DIC �AICc �BIC

Base + ASZ 6 5.2 11262.6 11272.9 11262.2 0 0 0

Base + nS 6 6.3 11253.3 11265.9 11252.5 −7.0 −9.7 −9.7

Base + ASZ + nS 7 5.6 11253.0 11264.1 11252.6 −8.8 −7.6 −2.3

Base + ASZ + nS + r 8 5.4 11254.2 11265.0 11252.6 −7.9 −5.6 +5.0

Base + ASZ + nS + running 8 6.2 11250.0 11262.3 11249.0 −10.6 −9.2 +1.4

3 I N F O R M AT I O N C R I T E R I A F O R W M A P 3

I now apply the information criteria to Wilkinson Microwave
Anisotropy Probe 3-yr data (WMAP3) model fits as compiled by

the WMAP team on LAMBDA.2 The DIC calculation is straight-

forward. The eight chains for each cosmology are concatenated, the

mean deviance found by averaging the likelihoods, and the deviance

at the mean estimated by finding the MCMC point located closest

to the mean (where the distance in each parameter direction was

measured in units of the standard deviation of that parameter).

I also quote the values of the differences in AICc and BIC, where

the maximum likelihood is taken directly from the most likely pos-

terior sample (in principle this may slightly disadvantage models

with more parameters, for which the most likely sample will typ-

ically be slightly further from the true maximum, though for the

WMAP3 sample sizes this effect will be small). I take N to be the

number of power spectrum data points, NWMAP3 = 1448 (Spergel

et al. 2006); this choice is to be discussed further below (nothing

changes significantly if a slightly larger number ∼3000 is used to

allow for the pixel-based treatment of the low-� likelihood). With

this large value, �AIC and �AICc are indistinguishable.

The available model fits unfortunately do not quite cover all cases

that might be of interest. All well-fitting models vary five standard

parameters, those being the physical baryon density �bh2, the phys-

ical cold dark matter (CDM) density �ch2, the sound horizon θ ,

the perturbation amplitude ln (1010 AS), and the optical depth τ

(the Hubble constant and dark energy density are derived parame-

ters). However, no fits are available varying just these parameters, a

Harrison–Zel’dovich model suggested as the best model from first-

year WMAP data in Liddle (2004). (Nevertheless, I will refer to this

as the Base model.) Instead, there are two different six-parameter

models, one adding the spectral index nS and one adding the phe-

nomenological Sunyaev–Zel’dovich (SZ) marginalization parame-

ter ASZ (Spergel et al. 2006). All further available models include

ASZ; extra parameters that I then consider are the spectral index nS

(giving the standard 
CDM model), further addition of tensors r to

give the standard slow-roll inflation model, and inclusion of spectral

index running (without tensors).

The main subtlety is the inclusion of ASZ. This is poorly con-

strained by the data and hence is not expected to contribute fully to

pD; nevertheless the likelihood does have some dependence on it and

it must be included in the analysis that determines the deviance at

the mean. Of the parameters considered, ASZ and τ are phenomeno-

logical parameters which, at least in principle though not yet in

practice, can be determined from the others. The remaining four are

truly independent according to present understanding.

2 Legacy Archive for Microwave Background Data Analysis: http://lambda.

gsfc.nasa.gov. Chains were downloaded in 2006 December. The subsequent

2007 January update does not allow model selection as the chains were not

all generated with the same likelihood code.

The uncertainty in the DIC may not be well estimated by analyz-

ing subsamples, as with smaller samples the mean deviance will be

less well estimated by the nearest point. Instead I estimated the un-

certainty by employing bootstrap resamples of the combined sample

list. This showed that the statistical accuracy was limited by the ac-

curacy with which the lnL values were stored, ±0.1 corresponding

to ±0.2 in the DIC. As this is a much smaller uncertainty than the

level at which differences are significant, the statistical uncertainty

in the determination of the DIC is negligible.

The results are shown in Table 1. The pD values are in good agree-

ment with expectation. Kunz et al. (2006) computed pD for several

models using a compilation of microwave anisotropy data including

WMAP3, and always found pD close to the input number of param-

eters. However, they ran their own chains and did not include the

poorly-constrained parameters ASZ and r. Models including those

parameters return a pD significantly less than k.

While only the Bayesian evidence has the full interpretation as

the model likelihood, leading to the posterior model probability, the

AIC has also been interpreted as a model likelihood by defining

Akaike weights (Akaike 1981; Burnham & Anderson 2004)

wi = exp(−�AICc,i/2)∑R
r=1

exp(−�AICc,r/2)
, (8)

where there are R models and the differences are with respect to

any one of them. The same interpretation can be given to the DIC

differences (SBCL02). For the BIC, insofar as it well approximates

twice the log of the Bayes factor, it too can be interpreted as a

model likelihood. By convention, significance is then judged on

the Jeffreys’ scale, which rates �IC > 5 as ‘strong’ and �IC >

10 as ‘decisive’ evidence against the model with higher criterion

value. If the interpretation as model likelihoods holds, these points

correspond to odds ratios of approximately 13 : 1 and 150 : 1 against

the weaker model. As with the evidence, these likelihoods can be

further weighted by a prior model probability if desired.

Recall that the DIC, like the AIC, is motivated from information

theory, while the BIC is not. Indeed, we see that the DIC results quite

closely follow the AIC results; both argue quite strongly against

the Base+ASZ model, but are then rather inconclusive amongst the

remaining models. Thus information theory methods are neither for

nor against the inclusion of extra parameters such as r and running at

this stage. Incidentally, we can also see that if the DIC were defined

using Lmax rather than L(θ̄ ), little difference would have arisen in

this comparison.

The information criteria indicate that WMAP3 has put the

Harrison–Zel’dovich model (with SZ marginalization) under con-

siderable, if not yet conclusive, pressure. This is in accord with the

conclusions reached by Spergel et al. (2006) using chi-squared per

degree of freedom arguments, though the information criterion give

weaker support to this conclusion by recognizing model dimen-

sionality. The strength of conclusion against Harrison–Zel’dovich

could also be weakened by various systematic effects in data anal-

ysis choices, e.g. inclusion of gravitational lensing (Lewis 2006),

C© 2007 The Author. Journal compilation C© 2007 RAS, MNRAS 377, L74–L78
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beam modelling (Peiris & Easther 2006) and point-source subtrac-

tion (Eriksen et al. 2006; Huffenberger, Eriksen & Hansen 2006).

By contrast, Bayesian approaches do not put nS =1 under any kind

of pressure. Parkinson et al. (2006) found that the full evidences for

the Base model and Base + nS were indistinguishable with WMAP3

alone, and still inconclusive with the inclusion of other data sets.

However, that analysis did not include SZ marginalization, and so

the equivalent comparison cannot be made here. Nevertheless, the

BIC comparison between those models each with ASZ added does

not show any strong preference, and it seems a safe bet that had

the Base model itself been supplied by WMAP3, its BIC difference

compared with Base+nS, the best model in the set as judged by the

BIC, would not have been significant.

Further, while the information theory methods are ambivalent

about r and running, the BIC argues rather strongly against them,

especially in the case of tensors which offer no improvement at all

in data-fitting. Full evidence calculations, however, show that this

conclusion is quite prior dependent (Parkinson et al. 2006).

That the two methods give such different answers is due to the

way that prior assumptions are treated, in particular the prior widths

of the parameter ranges. The AIC does not care about this at all,

and the DIC only cares while the data is weak enough that some

prior information on the parameter distribution remains. By con-

trast, in Bayesian model comparison the prior width is a key con-

cept, determining the predictiveness of the model. For the evidence

this is reflected in the domain of integration over which the likeli-

hood is averaged, while for the BIC it is in the dependence on the

amount of data. Cosmologists are in the fortunate position that for

many parameters the likelihood is highly compressed within reason-

able priors, forcing a discrepancy between information theory and

Bayesian results. This discrepancy will be further enhanced in the

future if the data continue to improve without requiring evolution

in the model data set, i.e. the problem of dimensional inconsistency

of the AIC/DIC may already be with us.

Concerning the inclusion of ASZ in models, it is clear that Bayesian

methods don’t like including it as a fit parameter, as it is poorly

constrained and does not significantly improve the fit. However, the

SZ effect is certainly predicted to be in the data at some level, though

it ought to be derived from the other parameters rather than the fit.

It is tempting to try to deal with this by using pD in the BIC rather

than k, but there is no existing justification for doing so. The same

issue does not arise with the optical depth, also a derived parameter,

as it is well constrained by the data in all models.

In computing the BIC above, I adopted the number of data points

literally. This may not always be the best choice: the derivation of the

BIC requires the data to be independent and identically distributed,

and it may be that this can be better achieved by binning the data

in some suitable way. However, to do so would require a whole

new likelihood analysis for the binned data, counter to the desire

here that the methods should be applicable to pre-existing posterior

samples. In any case there does not appear to be any well-defined

way to judge how much binning, if any, is desirable.

Finally, I note that while here it is the BIC which appears to behave

most like the evidence, in their quasar clustering studies Porciani &

Norberg (2006) found that the DIC was the only criterion to give pre-

cisely the same model ranking order and level of inconclusiveness

as the Bayes factors, with the BIC underfitting.

4 S U M M A RY

I have described several information criteria that can be used for

astrophysical model selection, representing the rival strands of in-

formation theory and Bayesian inference. In application to WMAP3

data, the DIC behaves rather similarly to the AIC, despite the

presence of parameter degeneracies. The conclusions one would

draw from those statistics are rather different from those indi-

cated by Bayesian methods, either the full evidence as computed in

Parkinson et al. (2006) or the BIC as calculated in this article.
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