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ABSTRACT

Some decision rules for discriminating among alternative

regression models are proposed and mutually compared. They are essentially

based on the Akaike Information Criterion as well as the Kullback-Leibler

Information Criterion (KLIC) : namely, the distance between a postulated

model and the true unknown structure is measured by the KLIC. The proposed

criteria combine the parsimony of parameters with the goodness of fit.

Their relationships with conventional criteria are discussed in terms of

a new concept of unbiasedness

.
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1. Introduction

In most statistical analyses it is taken for granted that the

family of the probability distribution functions, say F(y|©), may be

correctly specified on a priori grounds. Uncertainty exists, therefore,

only with reference to the values of parameters 9 involved in the speci-

fied family of probability distribution functions (p.d.f.). In practice,

however, we are seldom in such an ideal situation; that is, we are more

or less uncertain about the family to which the true p.d.f. might belong.

It may be very likely that the true distribution is in fact too compli-

cated to be represented by a simple mathematical function such as is

given in ordinary textbooks.

In practice we approximate the true distribution by one of the alter-

native p.d.f. 's listed in textbooks. Needless to say, we try to choose

the most adequate p.d.f. with due thought to a priori considerations. A

p.d.f. specified by a convenient mathematical function is usually termed

a model . For further analysis a postulated model is identified at least

tentatively with the true distribution. To put it differently, in the

process of conventional statistical analysis a sharp distinction is sel-

dom drawn between the postulated model and the true distribution.

To avoid the arbitrariness that inevitably occurs in the process of

model building, nonparametric statistical methods have been extensively

developed in the past two decades. It seems to me, however, that these

methods have not been used very successfully in practical data analysis.

In fact, most statistical inferences are based on some specific parametric

models, very often on the model of normal distribution.
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In recent years, however, more and more emphasis has been placed

on the problem of model identification;— that is, how to identify the

model when it cannot be completely specified from a priori knowledges.

The main purpose of the present paper is to propose and analyze statisti-

cal criteria for model identification in regression analysis. Our basic

attitude toward the problem is to recognize the fact that a certain

amount of discrepancy inevitably exists between the true distribution

and the model. The best we can do in trying to cope with this sort of

situation is to identify the most adequate model relatively among a given

set of alternatives. The adequacy of a model needs to be quantified by

defining a suitable measure of the distance of the model from the unknown

true distribution.

It is expected intuitively that the more complicated model will

provide the better approximation to reality. But, on the contrary, in

most practical situations the less complicated model is likely to be

preferred if we wish to pursue the accuracy of estimation. To illustrate

this point, let us consider the situaiton where two alternative density

functions, f_(»|6) and f-(*|c)» are given as possible models of the density

g(0 of the unknown true distribution, where 8 and T, are finite-dimensional

vectors of unknown parameters. Even if f («|8) is the better approximation

to the true density g(') in the sense that

inf
||
f,0|9) - 8(0 ||

< inf
|| f,(-|c) - g(0|| where ||

•
||

9 ?
l

is a suitably defined distance measuring the difference between two p.d.f.'s,

it is quite likely that

E
q II V'le) ~ 8(0 ||

> E-
||

f
2 (*U)

- g(0 (I
if dim 6 > dim C where

and t, are some reasonable estimates for and £,, respectively.
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The above consideration leads us naturally to the so-called prin-

ciple of parsimony . That is, more parsimonious use of parameters should

be pursued so as to raise the accuracy of estimates for unknown parameters

in a model. In general, closeness to the true distribution is incompatible

with parsimony of parameters. These two criteria form a trade-off: if

one pursues one of the criteria, the other must be necessarily sacrificed.

The multiple correlation coefficient adjusted for the degrees of freedom

may be the most commonly used statistic that incorporates the two incom-

patible criteria into a single statistic.

Akaike [1] has proposed a more general as well as more widely appli-

cable statistic, that ingeniously incorporates the above two criteria. As

it is based on the Kullback-Leibler Information Criterion, Akaike'

s

statistic is called the Akaike Information Criterion and is abbreviated

as the AIC. Indeed, the procedure developed here is "also based on the

Kullback-Leibler Information Criterion, but the criterion for the choice

of the most adequate regression model implied by our procedure is con-

siderably different from that implied by the AIC. The disagreement stems

from, among other things, a difference between Akaike' s and our views on

the true distribution.

Some readers may feel that it is useless to study the preliminary

test any more because the resultant estimator has been proved to be

inadmissible. To avoid this criticism in advance, we point out that what

we are proposing is not an estimation procedure but a procedure for model

identification. More precisely, in the present context we aim to develop

a procedure for identifying the most adequate model from a given set of

alternatives rather than estimating unknown parameters involved in a

given true model.
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In Section 2 we briefly review the Kullback-Leibler Information

Criterion and the Akaike Information Criterion. In Section 3 we develop

a criterion for the choice of the most adequate regression model and
;

compare it with a criterion implied by the Akaike Criterion. In Section

4 a different criterion is derived on the basis of the minimum attainable

Bayes risk. The biases of those criteria are discussed in Section^, i

2. Information Criterion

Suppose that we are concerned with the probabilistic structure

of a vector random variable Y' (Y- , Y a , ... , Y ). Let G(y) be the12 n

true joint distribution of Y. On the basis of _a priori knowledge we

postulate a model F(y|9) to approximate the unknown true distribution

G(y), where 8 is a finite-dimensional vector of unknown parameters.

The adequacy of a postulated model may be appropriately measured

by the Kullback-Leibler Information Criterion (KLIC).

(2.1) I(G:F(.|6)) = E
G
[log^^-] = / log ^^y dG(y)

where g and f are density (or probability) functions of, respectively,

G and F; E (•) stands for expectation with respect to the true distribu-
te

tion G; the integration is over the entire range of Y. It can be easily

shown that the KLIC is nonnegatlve.

(2.2) I(G:F(-|6)) >

with equality only when F(yJ6) = G(y) almost everywhere in the possible

range of Y; namely, only when the model is essentially correct. (See,

for instance, Rao [7] pp. 58-59.) Incidentally, the negative value of

the KLIC is termed the entropy of a probability distribution G(y) with
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respect to F(y|9). Noting the inequality (2.2) as well as an obvious

equality

(2.3) I(G:F(-|6)) - / log g(y)dG(y) - /log f(y|e)dG(y) ,

we are led to propose the following rule for a comparison of alternative

2/
models or estimates.—

Rule 2.1 : (i) A model F, (
- 1 6) is regarded as the better approximation

to the true distribution G(*)» i.e., the more adequate model than an

alternative model F
2 (*|c)

if and only if

(2.4) inf KGzFjHe)) < inf I(G:F? (-|0) ,

or equivalently

(2,.5) sup E
G

[log f (Yje)] > su? E
G
[log f^Y^)] .

9 Q

(ii) Given a model F(«J0), estimate 6 is regarded as a better esti-

mate than e„, if and only if

(2.6) Eg {E
G
[log f(Y[8

1
)!6

1
]} > Eg {E^log f(Y|8

2
)|§

2
]}

where Eg and E~ stand for expectations with respect to the sampling

distributions of 9 and 6 , respectively. (Note that when we first take

an expectation with respect to G the estimate 9 or 9„ should be treated

as if it were a constant.)

In words, the adequacy of a postulated model is measured by

the minimum possible KLIC distance between the model and the true

distribution.
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r

u,It was pointed out by Akaike [1] that if the Y' s are independent

and identically distributed the maximum likelihood estimate may be

regarded as an estimate that minimizes the estimated KLIC, or equivalently

maximizes the estimated entropy, because the log likelihood function

divided by the sample size n

1
n

(2.7) ~ Z log f(y |e)
n

j»l 2

may be regarded as a reasonable estimate for E-flog f(YJ9)} whatever

G(y) is.
i

Apparently, the above rule for a comparison of models is not directly

applicable in practice, because the criteria are totally dependent on the

unknown true probability distribution- To establish a practical usable

criterion for model identification on the basis of the KLIC, we need to

replace unknowns in (2.5) by their reasonable estimates. In fact, the

Akaike Information Criterion (AIC) has been derived as an approximately

unbiased estiijfmte for the KLIC, neglecting its irrelevant constant terms

and based implicitly on a fairly strong assumption that will, be stated

later.

For the sake of convenience in developing our argument we give the

following definition:

Definition : Given a model F(*J9), a parameter value 9- such that

(2.8) I(G:F(-|9
Q
)) < I(G:F(-|e))

for any possible 9 in the admissible parameter space is called a pseudo-

true parameter value ; F(*J6_) is called a pseudo-true model .
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If the true distribution G(y) and a model F(yJB) satisfy due

regularity conditions, the pseudo-true parameter 6« must satisfy

(2.9) E^logfCYle)] -0".

The model F(y|en ) may be regarded as the most adequate relatively within

the family of models F(y|e) in the sense that the KLIC for F(y|8) is

minimized by F(yJ8 ). We note that Rule 2.1 is based on the comparison

of the KLIC distances between the pseudo-true models and the true model.

Assuming that I(G:F(*J8 )) - 0(n ), i.e., the pseudo-true model is

nearly true, Akaike [1] derives his criterion

(2.10) AIC(F(«J6)) = ~2 log f(y|6) + 2k

as an almost unbiased estimate for -2 E_ [log f(Yj8_)], where 8 is the

maximum likelihood estimate for 8 based on observations y and k is the

number of the unknown parameters, i.e., the dimension of 6. The procedure

of choosing a model that minimizes the AIC is called the Minimum AIC (MAIC)

procedure. The first term of the AIC measures the goodness-of-fit of the

model to a given set of data, because f(y|6) is the maximized likelihood

function. The second term is interpreted as representing a penalty that

should be paid for increasing the number of parameters. In this sense

the AIC may be regarded as an explicit formulation of the so-called prin-

ciple of parsimony in model building.

Indeed, the assumption that

(2.11) I(G:F(.|8 )) - OOT 1
)

for every model F simplifies the derivation substantially, but there is

no denying that this simplifying assumption lessens the plausibility of
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the AIC to some extent. To see this point in more detail let us consider

the case where we have to choose one from the two alternatives, say F

and F„« The AIC for F is evaluated assuming that F. with pseudo-true

parameter value be true, while the AIC for F is evaluated assuming that

F_ with pseudo-true parameter value be true. Thereafter, the two AIC's

are numerically compared. In the next section, confining ourselves to

linear regression, we derive another criterion called the BIC on the

basis of weaker assumptions than (2.11) and compare it with the AIC to

see how much difference might arise depending on whether or not we

assume (2.11).

3. Identification of a Regression Model

We are interested in investigating a joint distribution of a vector

random variable Y' = (Y, , Y0> ..., Y ). Each of Y.'s may be an observa-
1 l n l •

tion on a certain characteristic of a randomly chosen individual; or Y.'s

may constitute a sequence of observed time series. The distribution func-

tion G(y) is unknown, but each Y. is assumed to possess finite variance.

We denote the mean vector and the variance-covariance matrix, respectively,

by y and ft, where y is a vector of n components and ft is a n x n positive

definite matrix. Unless we place more a priori restrictions on the ele-

ments of y and ft, we can make no inference at all about the joint distri-

bution of Y.

What we usually do is to assume that y belongs to a linear subspace

of lower dimension than n and Y.'s are mutually uncorrelated. Then we

have a familiar linear regression model

(3.1) E(Y) - XS, V(Y) - c
2
I- ,n
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where X is a n x k matrix of known constants, the k columns of which

constitute a basis of the subspace to which u is assumed to belong; g

2
is a vector of k unknown parameters; o is an unknown positive constant

1 is an identity matrix of order n. In most practical situations the
n

columns of X are vectors of observations on certain characteristics con-

sidered to be associated with Y. Then the model implies that the i-th

mean u. is represented as a linear function of k explanatory variables,

k
i.e., \i . » T. |3, x.. where x. . is the (i,1)-th element of X. By assum-

i . , 1 ij ij

ing a regression model we can reduce the number of unknown parameters

from n + n(n + l)/2 to k + 1.

In addition to (3.1) we often assume the normal distribution for Y

and postulate a model

(3.2) Y * N(X3, cr^I ) ,n

or

Y » Xg + u , u <v- N(0, o
2
I ) ,n

which is termed a linear normal regression model.

2
Lemma 3.1 : The pseudo-true values for parameters 8* = (B', a ) are

(3.3) S3
*= (X'xrt'v

(3.4) an
2 = - p'(I - X(X'X)"

X
X')y + - tr tl .On n .

The above results are easily obtained by solving the equations

(3.5) E[^ log f(YJ6)] - ;
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(3.6) E[~ log f(Y|e)] - ,

So

where f(y|8) is the density function of N(X8, a I) and the expectation

is with respect to the true distribution. (All the lemmas and theorems

are proved in Appendix.) Geometrically speakings XSQ is a projection

of the unknown mean vector u into the space spanned by the k columns of

X, while naA is the sum of the variances of the Y.'s plus the squared

length of the perpendicular from u to the space. Speaking heuristically,

the error of approximating y by X3 is observed into the error variance.

The maximum likelihood (ML) estimates

(3.7) B - (X'X)
_1

X y , o
2

« ~ y'[I - X(X , X)~
1
X']y

2
for $ and a in the normal regression model (3.2) have the following

property.

Lemma 3.2 :

(3.8) E(3) = 6 ,

(3.9) lim E (a
2

- a
Z

) = 0, if Si = u)
2
!^ and lim o

Q
< » .

This lemma implies that with an incorrect model our objective is

the estimation of the pseudo-true parameter values. To put it differ-

ently, what we ordinarily call the true parameter values are the pseudo-

true parameter values that minimize the distance between the true unknown

distribution and the postulated parametric model, where the distance is

measured by the KLIC. Moreover, it should be noted that if Y.'s are

7 "2
uncorrelated, i.e., = u> I , then 6 and a are uncorrelated.

n
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Along the lines of the previous section, one can measure the loss

incurred by modelling G(y) by F(yJ6) with some estimate 9 in place of

unknown 6^ by the quantity

(3.10) W(P(-|9)) - - | E
G

[log f(Y|e)(8l ,

where f(y|8 ) is the density function of the pseudo-true model

2N(Xg , a I), i.e., the likelihood function of the model. It should

be noted that the expectation on the right-hand side of (3.10) refers

only to the argument Y of the density function; i.e., 6 is taken as a

fixed constant,

Lemma 3.3 : The loss incurred by modelling the distribution of Y by

F(y|8) with an estimated value 6 substituted for 6 is evaluated as

2

(3.11) W(F(-|e» - log (2ir) + log (a
2
) + (JU + 4r || X(g - B

Q
) !|

2

a no-

where
|| || is the Euclidean norm.

In this section we adhere to the sampling theory approach, and

hence we base our decision about model selection on the risk function

derived by integrating the loss function with respect to the sampling

distribution of the estimate 6. Since the ML estimate 6 possesses the

nice property in Lemma 3.2, even when a postulated model is incorrect,

we define the risk of postulating a model F(yJ6) by an integral of the

loss function of F(y|s) with respect to the sampling distribution of the

ML estimate 6.

2Theorem 3.1: Suppose that Q = w I and each Y. is symmetrically

3/
distributed with the same kurtosis as a normal distribution.— Then
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the risk of a model F(*J6), i.e., the expected value of W(F(-J8)), is

evaluated to order 0(n ) as

2 2

(3.12) R(F(.|8» - log (2rr) + log (o
2
) + 1 + £±?- (^~) - ^ <-^) + Q(n"

2
)

2
The proof is given in the Appendix. It should be noted that anu

decreases along with the successive addition of explanatory variables,

i.e., the increase of k.

To develop a practical and useful criterion for model identifica-

tion, the risk function involving unknown parameters needs to be somehow

estimated from a given set of observations.

Theorem 3.2 : Suppose, that we have an estimate, say w , for w such

*? 9 — 1/9 -1 19
that id = id + (n ), where (n '

) stands for the term of
? P

stochastic order of n and with finite second order moment.—

Then

'2 "2

(3.13) BIC (F(.|e» = -2 log f (y|6) + 2(k + 2)(^) - 2(~)
a a

is an asymptotically unbiased estimate of nR(F(-|o)).

"2 "2 5/
If we equate ui to a , the BIC is identical with the AIC—' As

was pointed out in the preceding section, the AIC is based on the assump-

tion that the true distribution defers from the pseudo-true model only

-1 2 2
in the order of n ; hence it is justifiable to equate a

n
to u> in

"2 "2
(3.12) or to equate o to a in (3.13).

'2 '2
The variance ratio w la increases with successive addition of

explanatory variables, and possibly it approaches one as long as the

~2 "2
degrees of freedom are sufficiently large. Its reciprocal o /w (>_ 1)
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may be interpreted as a discounting factor for the penalty that has to

be paid for increasing the number of parameters. Therefore, the favor

to parsimonious models is more pronounced in the minimum BIC procedure.

When we compare two regression models, one with less explanatory variables

and poorer fit, the other with more explanatory variables and better fit,

the BIC is rather more favorable to the former model than the AIC. The

following numerical evaluations show that the difference between the two

criteria is far from negligible.

Let us develop a decision rule to choose one from two nested

alternative regression models

V Y * N(x
i
B
i>

a
i

2V >

(3.14)

F9 : Y <v N(XR + X„B„, a
2
I ) ,

where X, and X^ are respectively n x p and n x q matrices of Known

constants, B and B„ are respectively p x 1 and q x 1 vectors of

2 2
unknown parameters, and a and o_ are positive unknowns. The true

2
distribution is assumed to be N(u, to I ) . In practice, we cannot

expect to obtain an estimate for u from some independent source.

Therefore, assuming that the more complicated model F~ is nearly true,

2 2 * 2 2 "2
i.e., u - a_ «= o(l), we substitute the ML estimate o ~ of o„ for w

in the BIC's for both models. Our decision rule is described as follows:

we choose Fj if BIC (F ) < BIC (F
?
) and vice versa , where co is replaced

x. "1 6/
by or

-'

It is straight forward to show that the decision rule based on the

BIC is equivalent to a decision rule based on the magnitude of the F-statistic
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(n - p - qM^" - a
2

)

A 2
qs

2

which is customarily used to test the null-hypothesis g„ = 0. That is,

we decide to choose F. if an observed value of the F-statistic falls

below a critical point determined by the inequality, BIC (F-) < BIC (F? )

which is equivalent to

(3,16)

where

n log V - 2(p + 2) V + 2V
2 + 2(p + q + 1) <

°2 q -1
(3.17) V « ~ - [1 + —2— W]

L
"2 n-p-q
1

and choose F„ otherwise.— The critical point varies depending on n, p,

and q.

Confining ourselves to the case when q = 1, we tabulate the critical

points implied by the minimum BIC principle, say MBIC critical points,

in Table 3.1. As the t-statistic appeals more to our intuition rather

than the F-statistic, these critical values are with reference to the

t-statistic, the ML estimate of g„ divided by its estimated standard

error. We decide to choose F- if the observed value of the t-statistic

falls below the critical point determined by the inequality (3. 16) and

vice versa .

It is straightforward to show that AIC(F, ) <_ AIC(F
2 ) is equivalent

to the inequality

(3.18) W < [exp (|) - l]~2=E_a
V

To examine how much the MBIC procedure differs from the MAIC procedure,

the MAIC critical point, the right-hand side of (3.18), is also tabulated
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8/ r~
in Table 3.2.— Both of these approaches, albeit very slowly, v2 asymp-

totically. The MBIC procedure is always more parsimonious than the MAIC

procedure for a finite sample. We note a remarkable difference in their

asymptotic behavior, namely that the MAIC critical point approaches v2

from below whereas the MBIC approaches from above. Morevoer, as the number

of variables already included increases, i.e., as p becomes large, the

MBIC procedure increasingly discriminates against the inclusion of addi-

tional variables, whereas the converse is true for the MAIC.

To see a connection between our procedure and the preliminary t-test,

for some chosen cases, we tabulate the level of significance, i.e., the

probability that the absolute value of the t-statistic exceeds the critical

point when F is true. Roughly speaking, for moderate values of p, the

significance level for the MAIC procedure varies over the wide range

from 30% to 16% as the number of degrees of freedom increases; on the

other hand, for the MBIC procedure, it varies over a relatively narrow

range from 10% to 16%. Both procedures share a common property in their

more generous attitude toward inclusion of additional variables than the

traditional preliminary test with the significance level 5% or 10%. It

should be noted, however, that these two asymptotically equivalent pro-

9/
cedures will very often lead us to different decisions for small samples.

~

Based on the minimax regret principle with the squared error of pre-

diction as a loss function, Sawa and HIromatsu [S] calculated the optimal

significance point for the preliminary t-test. Their minimax regret

significance points are. quite insensitive to the change in the number of

degrees of freedom. That is, it remains constant at 1.37 to two decimal

places, unless the number of degrees of freedom is extremely small, say





-16-

Table 3.1: The MBIC Critical Points and Significance Levels
for the Preliminary t-Test

\
n 10

10 1.646(.144) 1.816(.119) 2.036(.097) 2.264(.086) «•»*.

12 1.59K.146) 1.715(.125) 1.882(.102) 2.092C081) —
16 1.533(.149> 1.510(.133) 1.709 (.116) 1.836C096) 2.758(.040)
20 1.504C151) 1,558(.139) 1.625(.125) 1.707C.110) 2.494(.034)
30 1.469 (.153) 1.500 (.146) 1.536(.137) 1.576(.128) 1.912(.071)
50 1.445 (.155)' 1.462(.151) 1.480(.146) 1.449(.154) 1.625(.112)

100 1.429(.156) 1.437(.154) 1.445 (.152) 1.453(.150) 1.499(.138)
200 1.421(.156) 1.425(.156) 1.429(.154) 1.433(.154) 1.453(.148)
500 1.417 (.158) 1.419(.156) 1.420(.156) 1.42K.156) 1.429(.154)
1000 1.416(.158) 1.416 (.158) 1.417(.156) 1.418(.156) 1.42K.156)

n is the sample size and p is the number of the explanatory variables
already included in the model. The decision rule is described as follows: if

the t-value for an optional variable exceeds the MBIC critical point, we decide
to augment the model by the optional variable, and vice versa . Note that, the
MBIC critical point approaches slowly to /2 as n tends to infinity for every p.

Table 3.2: The MAIC Critical Points and Significance Levels
for the Preliminary t-Test

10

10
12
16

20

30

50
100
200
500

1000

1.245(.253) 1.153(.293) 1-052(.341)
1.278(.233) 1.205(.263) 1.127(.297)
1.316(
1.337(
1.364(
1.385(
1.400(
1.407(
1.41K

,211)

,199)

.184)

,173)

,164)

,160)

.158)

1.264 (.230)

1.297(.2i3)
1.339 (.192)

1.370(.177)
1.393(.166)
1.404 (.1*2)
1.410C.160)

1.21QC.252)
1.256(.228)
1.313(.201)

1.355C.182)
1.385(.170)
1.400(.164)
1.409 (.160)

1.413(.158) 1.412(.158) 1.411(.158)

.94K.400)
1.043(.337)
1.154(.275)
1.213(.245)
1.286(.211)
1.340 (.187)
1.378(.172)
1.396(.164)
1.407(.160)

1.41K.158)

.816 (.452)

•973(.356)
1.144(.267)
1.262 (.214)

1.34K.184)
1.378(.170)
1.400(.162)

1.407C.160)

See the footnote to Table 3.1.
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less than 10. Indeed it is difficult to see a clear-cut connection

between the two basically different approaches, but it would be worth

noting that if a loss function is specified in terms of the prediction

10/
error, the more prodigal model is likely to be preferred.

—

We often encounter a situation where we have to choose one of two

unnested alternatives:

Y ^ N (X 8. , oA ) and Y <u N (Xo0,, o,
2
I ) ,liln Z22n

2
where the true distribution of Y is N (u, m I ). In this kind of situa-

n
>

tion the unknown true variance u*" may be reasonably estimated from a

regression of y on all the explanatory variables X,UX . Another

2reasonable estimate of to may be the smallest value of "unbiased"

estimates, instead of the maximum likelihood estimates, of variances

for all possible regressions of y on a subset of X (j X9 .

2
The difficulty in estimating w does admittedly place a serious

limitation to the practical usefulness of the MBIC procedure. However,

it should be noted that the same difficulty is shared by Mallows' [5]

procedure which is based on what he calls C statistic. Incidentally,

Mallows' procedure gives a decision rule essentially similar to the

11/ 2
AIC.— It is worth noting that according to Akaike's procedure w is

'• 2 ~ 2
estimated by a when we evaluate the AIC for the model F and by o

when we evaluate the AIC for the model F
?

, This means that, given a

class of nested alternative models, the AIC for each model is evaluated

assuming it is nearly true in the sense that the difference of the error

9
variance in the model from the true variance w tends to zero as n tends

to infinity. (See the equation (2.11).) On the other hand, the BIC for
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each model is evaluated assuming that the most complex model within the

class would be nearly true but the rest are not necessarily so.

4, A Decision Rule Based on Bayes Risk

In this section we look at the problem another way. Given a model

F(«J8) coupled with a prior distribution ?(6) we define the Bayes risk,

say B(8|F), for an estimate 6 as the expectation of the loss function

(3.10) or (3.11) with respect to the posterior distribution, that is,

(4.1) B(eJF) = / W(F(-|e)) dP(6|y)

where P(8Jy) is the posterior distribution for Q given an observation

y. If there exists an estimate 6* such that

(4.2) B(6*iF) - min B(6JF) ,

e

then it is called the Bayes estimate of 9 with respect to the loss func-

tion (3.10). Recalling that W(F(-|e)) measured the discrepancy of a

model F(*J6) from the true distribution G(-)> we take B(6*JF) as a measure

of the adequacy of a postulated model F(*|o) associated with a prior dis-

tribution P(6). That iSj along the lines of previous sections, if we

compare two alternative models, say, F («|e) with F (0) and F„(
« [ c)

with P„(c), then we decide to choose F, or F^ according to whether or

not B(9*|F ) < B(c*|F
2
).

In what follows let us be specific to a linear normal regression

model for a vector random variable Y:

(4.3) F: Y ^ N (X3, a I )
n
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where Y is n * 1, X is n * k, 6 is k x 1, and u is n * 1; the true dis-

2 2tribution of Y is N(u, to I ) with unknowns u and ui . If we assume a
n

2diffuse prior for 8 and a , the minimum attainable Bayes risk is

evaluated as follows:

Lemma 4.1 . Given a model F with a diffuse prior, the minimum attainable

Bayes risk is

(4.4) B(8*, a
2
*JF) - - | log f (y||3, a

2
) + log (^77^2) ,

* "2 2 ~2*
where 8 and a are the ML estimates for 8 and a , S* and a are the

Bayes estimates, and f is the density function of N(X8» I )

.

n

Let us make a comparison of two nested alternatives F, and F given

in (3.14). The Bayes decision rule, based on the magnitude of the mini-

mum attainable Bayes risk, leads us to the following decision rule which

1?/
is again described in terms of a familiar F-statistic.

—

Theorem 4.1 . A decision rule based on the minimum attainable Bayes risk

is equivalent to: choose F. if

(4 ' 5; - (n +p)(n - p - q - 2) »

choose F
?
otherwise, where W defined by (3.15), is an F-statistic

conventionally employed to test the hypothesis that 8* = 0.

We call the right-hand side of (4.5) the Bayes critical point,

which tends to 2 asymptotically, increases with q, and decreases with

p if n is moderately large. Limiting ourselves to the case of q = 1,

we tabulate the numerical values of the square root of the Bayes critical

point in Table 4.1 which is comparable to Tables 3.1 and 3.2.





-20-

Table 4.1. Bayes Critical Points and Significance Levels
for the Preliminary t-Test

V 2 3 4 5 10

10 1. 499(.178) 1.441 (.200) 1.464(.203) 1.549 (.196) «.«.

12 1.42K.189) 1.398(.200) 1.387 (.208) 1.393(.213)
16 1.403(.184). 1.376(.194) 1.354(.203) 1.336 (.211) 1.387(.224)
20 1.399 (.180) 1.374(.188) 1.352(.196) 1.332(.204) 1.276 (.234)
30 1.399(.173) 1.380 (.179) 1.362(.185) 1.345(.191) 1.270(.220)
50 1.403(.167)- 1.390(.171) 1.378(.i75) 1.366(.179) 1.312(.197)
100 1.408(.162) 1.40K.164) 1.395(.166) 1.388(.168) 1.357(.175)
200 1.41K.160) 1.407(.162) 1.404(.162) 1.40K.162) 1.384(.166)

1000 1.414(.158) 1.413(.158) 1.412(.158) 1.41K.158) 1.408(.159)

See the footnote to Table 3.1.

It is interesting to note that the Bayes critical point varies

quite little according to the changes in the values of n and p. Also,

it is very close to the minimax regret critical point in Sawa and

Hiromatsu [8].

5. Bias of Decision Rules

Now we return to Section 3 and reconsider the problem from the view-

point of sampling theory. When we compare the two nested alternative

models given in (3.14), our decision rule should be in principle based

on the risk function given in Theorem 3.1. That is, we should choose

Y
±

if R(F
1
(-|6 )) < R(F

2
(»|6 )) and vice versa .

2 2 -1
Lemma 5.1 . If 6 = a - o_ = 0(n ), then •

2

(5.1) R(F
1
(- |8 )) - RCF

2
(- |9

2
)) - -^ - "^ + (n~

2
) •

c
2

na
2
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The proof is given in the Appendix. It should be recalled that

-2
when we derived the BIC the terms of 0(n ) were neglected. It is,

therefore, consistent that we evaluate the difference of risk only to

order 0(n ). The difference 6 between the pseudo-variances is assumed

to be 0(n ). This assumption may seem to be somewhat uncomfortable.

However, it may be justified by the fact that the model discrimination

procedure would be unnecessary unless the difference between the two

alternatives is as small as the reciprocal of the sample size. Inci-

dentally, starting from Mallows' type risk function, Sawa and Takeuchi [9]

has arrived at the essentially same result as (5.1). This reflects

the asymptotic equivalence of the two different approaches.

We can legitimately define a correct decision rule as follows:

2 2
choose the model F if n5/w £ q and choose F£ if n6/oi > q.

Based on the preceding consideration, we introduce the notion of

unbiasedness of a decision rule ; a decision rule is said to be unbiased

2
if the probability of choosing F. is greater than 1/2 when n<S/o) '_< q

o
and less than 1/2 when n5/u) > q. If the probability decreases con-

2
tinuously with the increase of n6/w , the condition of unbiasedness

is simply described as follows: the probability of choosing F^. (or F^)

2 2
is 1/2 when n6/u> q. Note that when n6/cc = q the two alternative

models are equally desirable. If the above probability exceeds 1/2,

then the decision rule is said to be biased toward a simpler model; if

it falls below 1/2, then the decision rule is biased toward a more com-

plex model.

All decision rules considered so far are based on whether or not

an observed value of W, given by (3.15), exceeds a constant which changes



;.-
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2
with n, p, and q. Under the assumption that Y *\» N(u, oj I ), W is

n

distributed as a doubly noncentral F with (q, n-p-q) degrees of free-

dom and the noncentrality parameters

a'Xft(IS l»r1» ,
|i

(5.2) ^-Sf --—^-2 2 2
;

u

u'[i - x oqx r1^ - &(tt'x*)~hs*']v
(5.3) 5

2
« 2 »

u

where X* » X - X (X'X )

-1
X'X . It would be worth noting here that a

decision is correct if we decide to choose F. when the noncentrality

parameter of the numerator is less than its degrees of freedom and vice

versa .

In Table 5.1 we tabulate the probability that W exceeds the BIC

2critical point when n6/cu =» q, i.e., when F. and F„ are indifferent.

It can be observed from the Table that the BIC procedure is considerably

biased toward a simpler model.

Table 5.1. Bias of the BIC Decision Rule

noncentrality n - 10 n = 20 n - 30 n - 40 n * 50

.0 .696 .671 .664 .661 .659

.2 .742 .720 .714 .711 .709

.4 .781 .762 .756 .753 .752

.6 .814 .797 .791 .789 .788

.8 .842 .827 .822 .820 .818
1.0 .866 .852 .848 .846 .844

.0 .738 .689 .675 .669 .666

.2 .781 .738 .725 .719 .715

.4 .817 .779 .767 .761 .758

.6 .848 .813 .802 .796 .793

.8 .873 .842 .832 .827 .824
1.0 .894 .866 .857 .852 .850
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Bach entry in the table is the probability that a doubly non-central F

variate, with noncentrality parameters (5 , 6
?
) and {1, n - p - 1)

degrees of freedom, fails below the BIC critical point when 6- "1.

The noncentrality is 5
2
/(n - p - 1), i.e., the normalized noncentrality

parameter of the denominator in F, where 6. is given by (5.3).

The unbiased decision rule has been considered in more detail by

Sawa and Takeuchi [9].
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Appendix

Proof of Lemma 3.1

The log likelihood function is

(A.l) iogf(yje) - - | log (2ir) - | log (a
2
)

--^Ijy-xejf
2

,

2a

where 9' = (@ ' , a ) and jj
•

}[ stands for an Euclidean norm.

Differentiating it with respect to g and a „ we have

(A . 2) 12£|Jpd!i..^x'(y-XB),
a

(A . 3) l-io^IzM . . » + 1
S| y „ xg [|2.

'

3 <T 2a 2c^

Then

(A.4) E[U£B^GLlliJ
. 1- r(p _ X0)

(A . 5) E [
3 log f<Yf6)

}
. _ _n_ + „1_. E

ji
Y _ X3 jj2

9 o 2e 2o

-Sj^-^CE !|Y-yj| 2
4.

![ y -Xe!|
2
)

2a 2a

_ JL.+ 1 (tr Q + JJ,,
- X3

t|

2
)

2o 2o

Equating (A.4) and (A. 5) to zeroes and solving them yields the

5_ ana o n
2

pseudo-true parameter values g_ and oA given, respectively, by (3.3)

and (3.4).
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Proof of Lemma 3.2

(A. 6) E(B) - (X'xrt'y - 3
Q

(A. 7) E(a
2
) - ~ trPY (uu' + cb

2
I )n a n

n - k 2,1 .——-— u +-y'Py
n n X

where P
x

- I - X(X , X)"
1
X' . Then

(A. 8) lim E(a
2
) = lim o

Q

2

Proof of Lemma 3.3

From (A,l) we have

(A. 9) - | log f(Y|9) - log (2ir) + log o
2
+ 4j || Y - Xg

||

2

no

where Y Is a vector random variable Independent of 6. Taking expectation

of (A. 9) and substituting

(A.10) EC If
Y - X6

||

2
|e] - Ej] Y - U

Q ||

2
- 2 E[(Y - X3 >'X(e - 6

Q
) ]

+
|f
xcs - B ) ||

2

- na
2 - 2y'P

x
X($ - g

Q
) +

[| X(g - 3
Q
) ||

2

-na 2
+.||x(3 - B

Q)ir
2

therein, we obtain (3.11).

Proof of Theorem 3.1

The risk function is
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(A.ll) R(F(. |8)) « E[W(F(-|8))}

rj 2 2

- log (2tt) + log (a ) - E[log (~) ] + E(~)
a a

2

+ -ijE<%) E||X(6 - 6) f|

2

na a

where use is made of the independence of a and 6, and the suffix of

2
a

fi
end 3_ is dropped. We have the following power series expansions:

"2

(A. 12) log (2-) - log (l + A) = A - -| A
2
+ •••

a

2

(A. 13) ~ „ _1_- , 1 _ A + A
2
+ ...

2 1 + A
a

where

~2 2

(A. 14) A - " °

a

Note that under the assumptions stated in the Theorem the expectations

-2
of higher order terms in the expansions are of order 0(n ).

(A. 15) A - -~ [Y'P Y - nw
2

- u'P u]

no

1
2

« -~ [V'P V + 2y»PV] - ~
na a

where V Y - u. Under the assumptions in the Theorem

(A. 16) E(V'P
X
V) - aj

2
trP

x
- (n - k)u

2

(A.17) E(V'P
X
V)

2
= w

4
[(trP

x)

2
+ 2trP

x ]

= [(n - k)
2 + 2(n - k)]u

A

(A. 18) E(u'PvV) - E[V'PvVp'P V] -
A A A
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(A.19) E(y»PV) 2
- w

2
u'P

xU
- nw

2
(c

2
- t/)

Hence, rearranging the terms, we obtain

. 2

(A.20) E(A) - - i- (SL.)
,

a

2 2 2

(A. 21) E(A
2
) - ~ (%) - f (%) + 0(n"

2
).

a a"

Also, we have

(A. 22) E|| X(8 - B) |!

2
- Ej| XCX'X)"^^

||

2
- o^trXCX'X)"^'

. 2
KU

Therefore,

2 2

(A.23) E[log (—)] + E (~) « 1 + | E(A
2
) + 0(n'

2
)

- i +i 4 -i 42+
°<»~

2
>

a

2

(A. 24) E (~) B|| X(g - 6) |!

2
kto

2
+ 0(n

_1
)

a

Substituting (A.23) and (A. 24) into (A. 11), we finally obtain (3.12).

Proof of Theorem 3»2

From (A. 12), (A.20) and (A. 21)

(A. 25) E (log a
2
) - log a

2
+ E(A) - ~ E (A

2
)

- log a
2

- J <4> ~ | (4 + J (4)
2

+ 0(n"
2
).

n <£ n / n z
a a o

Moreover, as w
2 = u

2 + (n~ ) by assumption and a = a + (n ), we hav<

"2, 2

(A.26) E(%) -2L- [1 + OCn"
1
)]

a o
Q
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and

Ml A /

(A.27) E(%) « \ [1 + 0(n
_1

)

a a

Noting that

(A. 28) -2 log f(y|e) - n log (2ir) + n log a
2
+ 1

and combining the above expectations, we obtain

(A.29) n E [3IC(F(.|e))3 - nR(F(-|e)) + OdT1
)

Proof of Lemma 4.1

2
If we assume a linear normal regression model Y ^> N(X8, a 1)

2
with diffuse prior for 3 and o , the conditional posterior distribu-

tion of 8, given a , is N (8, a (X'X) ) where «» (X'X) X'y is the

maximum likelihood estimate, and also the marginal prior distribution

2
for a is the inverse gamma distribution with the, density function

, 2 v/2
, 2

(A>30)
r(v72T C"T") "^hi "P C - —3D

a 2a

2 "2
where v n - k and s no /(n - k) . The proof is given by Zellner

2
[ 10] . The conditional expectation of |j X(8 - 8) j| with respect to the

posterior distribution is

(A.31) E
g

j
y>a tj

X(8 - 8) j|

2
- E

B
j
y>c If

X(8 - 8)||
2
+ || X(8 - 8) |(

2

>E
3Jy>fl

||X(8-8)|| 2

, 2
- kc

where the lower bound is attainable when 8 8; i.e., the Bayes estimate

8 of 8 is nothing but the ML estimate. A straightforward integration



'

.

' ..
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ylelds

/a oon u tJl\ v 2 n - k 2
(A.32) E

2
(« ) - ^-^ s * ^XTT s

17

as long as v > 2. Hence

2

(A.33) E „ [W(F(-|6))1 > log (2ir) + log o
2
+ g-± ^ (1 + g) %

2 ~2
The Bayes estimate of is a that minimizes the right-hand side of the

above inequality; i.e.

(A.34) a «
n _ k , 2

a

"2 2
where a is the ML estimate of a . Substituting this into the right-hand

side of (A.33), the minimum attainable Bayes risk is evaluated as

follows

:

(A. 35) B(3 , a JF) - log 2ir + log a " + 1

- log 2tt + log a + 1 + log (p
°

k _ 2
)

- -
f log f(y|9) + log(

n ;^ 2
).

Proof of Theorem 4.1

Let B. and B„ be the minimum attainable Bayes risks, respectively, for

F
1
and F. with diffuse prior for parameters. The difference between

B. and B
?

is

" 2
or

(A . 36) Bl - b
2

- los <^> + „. tg:;^q)-^.v.-^ i

°2

If this is negative, we should choose F. , and vice versa . By the

monotonicity of the logarithm transformation, B- - B
?

< is

equivalent to





-30-

(A.37) !i < ^SL±JE + 3iInjIJEJl2).

a
2 (n. 4- p;(n - p - q - 2)
2

which is again equivalent to (4.5).

Proof of Lemma 5.1

(A.38) R(F
1
(r!e)) - R(F

2
(.|e)) - log C-ij) + *-i-£ (-^ - -ij)

2
a,

2
a)

V V a
l

Z

<L u 1/ 1 1 \ 4 ^ - , ~ 2
N

n-2 +
n (— -~T> « +0 <n >

a
2

o
2

a
x

If we assume that

(A. 39) 6 - o
x

2
- ct

2

2
= OCn"

1
),

we have an expansion

2

(A.40) log(-4j) - log (1 + -—) - -~ + 0(n"
2
).

°2 °2 °2

Also, it follows that the second and third terms on the right-hand side

of (A.38 ) are of order 0(n ). Hence, if we neglect the terms of order

0(n~ ), we can assert that R(F.(-|6)) < R(F
2
(«|e)) if and only if

(A. 41) 2| < q
in

and vice versa.
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FOOTNOTES

1. Regarding the importance of the model identification in econometrics,
the readers should refer to excellent comprehensive survey papers
by Gaver and Geisel [3] and Ramsey [6] . Particularly in Section
2 of Ramsey [6]> a very illuminating as well as profound discussion
is given about a concept of models.

2. In what follows, for simplicity of exposition F(*J6) will be simply
called a model, instead of a family of models, except for cases,
when sharp distinction needs to be drawn between a family of models
and its particular element.

3. It is fair to say that the assumption here is nearly equivalent to
assuming the normal distribution.

4. The precise meaning of (n ) is as follows: Given e > 0, if
there exists a positive number X such thatr e

PrfixJ < A
£

n~
a

} > 1 - £ ,

then we say that X = (n ) . Note thatJ n p

(i) (n"
a
) (n~Y ) - (n"

a~Y
)

p p p

(ii) (n~
a

) + (n"
a

) - (n~
a
) .

p P P

Also, if E JX
|

k
< », then E JX

|

k
- G(n~

ka
) .

1 n' ' n 1

5. Note that the number of unknown parameters is k + 1, i.e., k regression
coefficients and variance.

6. It should be here emphasized that the difference between the AIC
and BIG decision rules stems from the following: the AIC for F,

is evaluated assuming that id
2 - a2 - o(l), whereas the BIC for

F, is evaluated without assuming that w2 - a 2 o(l). See the
last paragraph of Section 3. 1

7. It is impossible to explicitly write down the BIC critical point
as a function of n, p and q. However, for each combination of n,

p and q, we can evaluate the BIC critical point numerically. Note
that the inequality BICCF,) < BIC(F

2
) is equivalent to the Inequality

that the F statistic is less than a critical point determined by n,

p and q.

3. It should be here noted that the decision based on the adjusted
multiple correlation coefficient is also equivalent to a decision
based on the F-statistic with a constant critical point equalling
one. Also j. Mallows' C statistic leads us to a decision based on
the F-statistic with a critical point equalling two, irrespective
of n, p and q.
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9. The difference between the AIC and the BIC ia more substantial for
a larger value of q. In his personal correspondence Dr. Akaike
pointed out that the two criteria give almost identical critical
points for cases when p/n < 0.1. An implication may be that the
simplifying assumption made by Akaike is virtually harmless if

the sample size is large enough to satisfy the above condition.

10. A decision rule based on R, the multiple correlation coefficient
adjusted for the degrees of freedom, is equivalent to a decision
based on F-statistic with critical point unity regardless of the
degrees of freedom. (The proof is quite straightforward.) This
decision rule is perhaps most often used in practical regression
analysis. The implied significance level is a little bit greater
than 30%. Presumably 5 this is the most prodigal decision rule.

11. Mallows' C statistic is C - RSS + 2 p u , where RSS is the
residual sum of squares, p' is the number of explanatory variables,
and u)

2 is an estimate of the common variance of YJs. It is
straightforward to show that a decision based on C is equivalent
to a decision based on the F-statistic with a constant critical
point equalling two. Therefore, the AIC and BIC decision rules
are asymptotically equivalent to Mallows' decision rule.

12. In his personal correspondence Dr. Akaike noticed the following:

. , n+k . _ (k+1)
since log (—:—=-) <v 2 J —b n-k~2 — n

if n >> k, a decision rule based on Bayes risk is almost equivalent
to the MAIC decision rule. This may provide another justification
for the MAIC procedure. It is fair to note that the decision rule
derived in this section is considerably different from orthodox
Bayesian approach.
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