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Abstract: The continuously growing framework of information dynamics encompasses a set of

tools, rooted in information theory and statistical physics, which allow to quantify different aspects

of the statistical structure of multivariate processes reflecting the temporal dynamics of complex

networks. Building on the most recent developments in this field, this work designs a complete

approach to dissect the information carried by the target of a network of multiple interacting

systems into the new information produced by the system, the information stored in the system,

and the information transferred to it from the other systems; information storage and transfer are then

further decomposed into amounts eliciting the specific contribution of assigned source systems to the

target dynamics, and amounts reflecting information modification through the balance between

redundant and synergetic interaction between systems. These decompositions are formulated

quantifying information either as the variance or as the entropy of the investigated processes,

and their exact computation for the case of linear Gaussian processes is presented. The theoretical

properties of the resulting measures are first investigated in simulations of vector autoregressive

processes. Then, the measures are applied to assess information dynamics in cardiovascular networks

from the variability series of heart period, systolic arterial pressure and respiratory activity measured

in healthy subjects during supine rest, orthostatic stress, and mental stress. Our results document

the importance of combining the assessment of information storage, transfer and modification

to investigate common and complementary aspects of network dynamics; suggest the higher

specificity to alterations in the network properties of the measures derived from the decompositions;

and indicate that measures of information transfer and information modification are better assessed,

respectively, through entropy-based and variance-based implementations of the framework.
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1. Introduction

The framework of information dynamics is rapidly emerging, at the forefront between the

theoretical fields of information theory and statistical physics and applicative fields such as

neuroscience and physiology, as a versatile and unifying set of tools that allow to dissect the general

concept of “information processing” in a network of interacting dynamical systems into basic elements

of computation reflecting different aspects of the functional organization of the network [1–3].

Within this framework, several tools that include the concept of temporal precedence within the

computation of standard information-theoretic measures have been proposed to provide a quantitative

description of how collective behaviors in multivariate systems arise from the interaction between

the individual system components. These tools formalize different information-theoretic concepts

applied to a “target” system in the observed dynamical network: the predictive information about

the system describes the amount of information shared between its present state and the past

history of the whole observed network [4,5]; the information storage indicates the information shared

between the present and past states of the target [6,7]; the information transfer defines the information

that a group of systems designed as “sources” provide about the present state of the target [8,9];

and the information modification reflects the redundant or synergetic interaction between multiple

sources sending information to the target [3,10]. Operational definitions of these concepts have

been proposed in recent years, which allow to quantify predictive information through measures

of prediction entropy or full-predictability [11,12], information storage through the self-entropy or

self-predictability [11,13], information transfer through transfer entropy or Granger causality [14],

and information modification through entropy and prediction measures of net redundancy/synergy [11,15]

or separate measures derived from partial information decomposition [16,17]. All these measures

have been successfully applied in diverse fields of science ranging from cybernetics to econometrics,

climatology, neuroscience and others [6,7,18–28]. In particular, recent studies have implemented these

measures in cardiovascular physiology to study the short-term dynamics of the cardiac, vascular and

respiratory systems in terms of information storage, transfer and modification [12,13,29].

In spite of its growing appeal and widespread utilization, the field of information dynamics is

still under development, and several aspects need to be better explored to fully exploit its potential,

favor the complete understanding of its tools, and settle some issues about its optimal implementation.

An important but not fully explored aspect is that the measures of information dynamics are often

used in isolation, thus limiting their interpretational capability. Indeed, recent studies have pointed

out the intertwined nature of the measures of information dynamics, and the need to combine their

evaluation to avoid misinterpretations about the underlying network properties [4,12,30]. Moreover,

the specificity of measures of information storage and transfer is often limited by the fact that their

definition incorporates multiple aspects of the dynamical structure of network processes; the high

flexibility of information-theoretic measures allows to overcome this limitation by expanding these

measures into meaningful quantities [13,29]. Finally, from the point of view of their implementation,

the outcome of analyses based on information dynamics can be strongly affected by the functional

used to define and estimate information measures. Model-free approaches for the computation of these

measures are more general but more difficult to implement, and often provide comparable results than

simpler and less demanding model-based techniques [31,32]; even within the class of model-based

approaches, prediction methods and entropy methods—though often used interchangeably to assess

network dynamics—may lead to strongly different interpretations [16,30].

The aim of the present study is to integrate together several different concepts previously proposed

in the framework of information dynamics into a unifying approach that provides quantitative

definitions of these concepts based on different implementations. Specifically, we propose three

nested information decomposition strategies that allow: (i) to dissect the information contained in

the target of a network of interacting systems into amounts reflecting the new information produced

by the system at each moment in time, the information stored in the system and the information

transferred to it from the other connected systems; (ii) to dissect the information storage into the internal
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information ascribed exclusively to the target dynamics and three interaction storage terms accounting

for the modification of the information shared between the target and two groups of source systems;

and (iii) to dissect the information transfer into amounts of information transferred individually from

each source when the other is assigned (conditional information transfer) and a term accounting for

the modification of the information transferred due to cooperation between the sources (interaction

information transfer). With this approach, we define several measures of information dynamics, stating

their properties and reciprocal relations, and formulate these measures using two different functionals,

based respectively on measuring information either as the variance or as the entropy of the stochastic

processes representative of the system dynamics. We also provide a data-efficient approach for the

computation of these measures, which yields their exact values in the case of stationary Gaussian

systems. Then, we study the theoretical properties and investigate the reciprocal behavior of all

measures in simulated multivariate processes reflecting the dynamics of networks of Gaussian systems.

Finally, we perform the first exhaustive application of the complete framework in the context of the

assessment of the short-term dynamics of the cardiac, vascular and respiratory systems explored

in healthy subjects in a resting state and during conditions capable of altering the cardiovascular,

cardiopulmonary and vasculo-pulmonary dynamics, i.e., orthostatic stress and mental stress [33].

Both the theoretical formulation of the framework and its utilization on simulated and physiological

dynamics are focused on evidencing the usefulness of decompositions that evidence peculiar aspects

of the dynamics, and illustrate the differences between variance- and entropy-based implementations

of the proposed measures.

2. Information Decomposition in Multivariate Processes

2.1. Information Measures for Random Variables

In this introductory section we first formulate two possible operational definitions, respectively

based on measures of variance and measures of entropy, for the information content of a random

variable and for its conditional information when a second variable is assigned; moreover we

show how these two formalizations relate analytically under the case of multivariate Gaussian

variables. Then, we recall the basic information-theoretic concepts that build on the previously

provided operational definitions and will be used in the subsequent formulation of the framework

for information decomposition, i.e., the information shared between two variables, the interaction

information between three variables, as well as the conditioned versions of these concepts.

2.1.1. Variance-Based and Entropy-Based Measures of Information

Let us consider a scalar (one-dimensional) continuous random variable X with probability density

function fX(x), x∈DX, where DX is the domain of X. As we are interested in the variability of their

outcomes, all random variables considered in this study are supposed to have zero mean:
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The information content of X can be intuitively related to the uncertainty of X, or equivalently, the

unpredictability of its outcomes x∈DX: if X takes on many different values inside DX, its outcomes

are uncertain and the information content is assumed to be high; if, on the contrary, only a small

number of values are taken by X with high probability, the outcomes are more predictable and the

information content is low. This concept can be formulated with reference to the degree of variability

of the variable, thus quantifying information in terms of variance:
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DX

x2 fX(x)dx, (1)

or with reference to the probability of guessing the outcomes of the variable, thus quantifying

information in terms of entropy:
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where log is the natural logarithm and thus entropy is measured in “nats”. In the following the

quantities defined in Equations (1) and (2) will be used to indicate the information H(X) of a random

variable, and will be particularized to the variance-based definition HV(X) of Equation (1) or to the

entropy-based definition HE(X) of Equation (2) when necessary.

Now we move to define how the information carried by the scalar variable X relates with that

carried by a second k-dimensional vector variable Z = [Z1···Zk]T with probability density fZ(z).

To this end, we introduce the concept of conditional information, i.e., the information remaining in X

when Z is assigned, denoted as H(X|Z). This concept is linked to the resolution of uncertainty about

X, or equivalently, the decrement of unpredictability of its outcomes x∈DX, brought by the knowledge

of the outcomes z∈DZ of the variable Z: if the values of X are perfectly predicted by the knowledge of

Z, no uncertainty is left about X when Z is known and thus H(X|Z) = 0; if, on the contrary, knowing Z

does not alter the uncertainty about the outcomes of X, the residual uncertainty will be maximum,

H(X|Z) = H(X). To formulate this concept we may reason again in terms of variance, considering the

prediction of X on Z and the corresponding prediction error variable U = X −
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the conditional variance of X given Z as:

HV(X|Z) =

               

                         
                                 

                       
                           

                         
                       

                     
                               

            ‐                
                               

                       
                         

                               
‐                            

                         
‐                        

                         
                         

            ‐    ‐      
     

           

           

                       
                               
                             

                         
          ‐                

                           
                     
                         

  ‐     ‐        

          ‐              
                                      

                             
[E                                

                              
                                   
                                 

                               
                         

    

                             
         

      

[U2], (3)

or in terms of entropy, considering the joint probability density fX,Z(x, z) and the conditional

probability of X given Z, fX|Z(x|z) = fX,Z(x, z)/ fZ(z), and defining the conditional entropy of X

given Z as:
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2.1.2. Variance-Based and Entropy-Based Measures of Information for Gaussian Variables

The two formulations introduced above to quantify the concepts of information and conditional

information exploit functionals which are intuitively related with each other (i.e., variance vs. entropy,

and prediction error variance vs. conditional entropy). Here we show that the connection between the

two approaches can be formalized analytically in the case of variables with joint Gaussian distribution.

In such a case, the variance and the entropy of the scalar variable X are related by the well-known

expression [34]:

HE(X) =
1

2
log(2πe HV(X)), (5)

while the conditional entropy and the conditional variance of X given Z are related by the

expression [35]:

HE(X|Z) = 1

2
log(2πe HV(X|Z)). (6)

Moreover, if X and Z have a joint Gaussian distribution their interactions are fully described by

a linear relation of the form X = AZ + U, where A is a k-dimensional row vector of coefficients

such that
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    

                             
         

      

[U2] = E[X2] − AΣ(Z)AT, where Σ(Z) =
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    

                             
         

      

[ZZ
T] is the covariance of Z; additionally,

the uncorrelation between the regressor Z and the error U, Σ(Z; U) = 0, leads to express the coefficients

as A = Σ(X; Z)Σ(Z)−T, which yields:

HV(X|Z) = HV(X)− Σ(X; Z)Σ(Z)−1
Σ(X; Z)T. (7)
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This enables computation of all the information measures defined in Equations (1)–(4) for joint

Gaussian variables X and Z starting from the variance of X, HV(X), the covariance of Z, Σ(Z),

and their cross covariance, Σ(X; Z).

2.1.3. Measures Derived from Information and Conditional Information

The concepts of information and conditional information defined in the Section 2.1.1 form the

basis for the formulation of other important information-theoretic measures. The most popular is the

well-known mutual information, which quantifies the information shared between two variables X and

Z as:

I(X; Z) = H(X)− H(X|Z), (8)

intended as the average reduction in uncertainty about the outcomes of X obtained when the outcomes

of Z are known. Moreover, the conditional mutual information between X and Z given a third variable U,

I(X;Z|U), quantifies the information shared between X and Z which is not shared with U, intended as

the reduction in uncertainty about the outcomes of X provided by the knowledge of the outcomes of Z

that is not explained by the outcomes of U:

I(X; Z|U) = H(X|U)− H(X|Z, U) = I(X; Z, U)− I(X; U). (9)

Another interesting information-theoretic quantity is the interaction information, which is a measure

of the amount of information that a target variable X shares with two source variables Z and U when

they are taken individually but not when they are taken together:

I(X; Z; U) = I(X; Z) + I(X; U)− I(X; Z, U). (10)

Alternatively, the interaction information can be intended as the negative of the amount of

information bound up in the set of variables {X,Z,U} beyond that which is present in the individual

subsets {X,Z} and {X,U}. Contrary to all other information measures which are never negative,

the interaction information defined in Equation (10) can take on both positive and negative values,

with positive values indicating redundancy (i.e., I(X;Z,U) < I(X;Z) + I(X;U)) and negative values

indicating synergy (i.e., I(X;Z,U) > I(X;Z) + I(X;U)) between the two sources Z and U that share

information with the target X. Note that all the measures defined in this Section can be computed

as sums of information and conditional information terms. As such, the generic notations I(·;·),
I(·;·|·), and I(·;·;·) used to indicate mutual information, conditional mutual information and interaction

information will be particularized to IV(·;·), IV(·;·|·), IV(·;·;·), or to IE(·;·), IE(·;·|·), IE(·;·;·), to clarify

when their computation is based on variance measures or entropy measures, respectively. Note that,

contrary to the entropy-based measure IE(·;·), the variance-based measure IV(·;·) is not symmetric and

thus fails to satisfy a basic property of “mutual information” measures. However, this disadvantage is

not crucial for the formulations proposed in study which, being based on exploiting the flow of time

that sets asymmetric relations between the analyzed variables, do not exploit the symmetry property

of mutual information (see Section 2.2).

Mnemonic Venn diagrams of the information measures recalled above, showing how these

measures quantify the amounts of information contained in a set of variables and shared between

variables, are shown in Figure 1. The several rules that relate the different measures with each

other can be inferred from the figure; for instance, the chain rule for information decomposes the

information contained in the target variable X as H(X) = I(X;Z,U) + H(X|Z,U), the chain rule for mutual

information decomposes the information shared between the target X and the two sources Z and U as

I(X;Z,U) = I(X;Z) + I(X;U|Z) = I(X;U) + I(X;Z|U), and the interaction information between X, Z and

U results as I(X;Z;U) = I(X;Z) − I(X;Z|U) = I(X;U) − I(X;U|Z).
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Figure 1. Information diagram (a) and mutual information diagram (b,c) depicting the relations

between the basic information-theoretic measures defined for three random variables X, Z, U:

the information H(·), the conditional information H(·|·), the mutual information I(·;·), the conditional

mutual information I(·;·|·), and the interaction information I(·;·;·). Note that the interaction information

I(X;Z;U) = I(X;Z) – I(X;Z|U) can take both positive and negative values. In this study, all interaction

information terms are depicted with gray shaded areas, and all diagrams are intended for positive

values of these terms. Accordingly, the case of positive interaction information is depicted in (b),

and that of negative interaction information is depicted in (c).

2.2. Information Measures for Networks of Dynamic Processes

This Section describes the use of the information measures defined in Section 2.1, applied

by taking as arguments proper combinations of the present and past states of the stochastic

processes representative of a network of interacting dynamical systems, to formulate a framework

quantifying the concepts of information production, information storage, information transfer and

information modification.

Let us consider a network formed by a set of M possibly interacting dynamic systems, and assume

that the course of visitation of the system states is suitably described as a multivariate stationary

stochastic process S. We consider the problem of dissecting the information carried by an assigned

“target” process Y, into contributions resulting either from its own dynamics and from the dynamics

of the other processes X = S\Y, that are considered as “sources”. We further suppose that two

separate (groups of) sources, identified by the two disjoint sets V = {V1,...,VP} and W = {W1,...,WQ}

(Q + P = M − 1), have effects on the dynamics of the target, such that the whole observed process is

S = {X,Y} = {V ,W,Y}. Moreover, setting a temporal reference frame in which n represents the present

time, we denote as Yn the random variable describing the present of Y, and as Y−
n = [Yn−1, Yn−2, . . .]

the infinite-dimensional variable describing the past of Y. The same notation applies for each source

component Vi∈V and Wj∈W, and extends to X
−
n = [Xn−1, Xn−2, . . .] and S

−
n = [X−

n , Y−
n ] to denote the

past of the source process X and of the full network process S. This simple operation of separating

the present from the past allows to consider the flow of time and to study the causal interactions

within and between processes by looking at the statistical dependencies among these variables [1].

An exemplary diagram of the process interactions is depicted in Figure 2a.

Note that, while the elements of the information decompositions defined in the following will be

denoted through the generic notations H(·) and I(·;·) for information and mutual information, they can

be operationally formulated either in terms of variance (i.e., using HV and IV) or in terms of entropy

(i.e., using HE and IE).
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Figure 2. Graphical representation of the information theoretic quantities resulting from the

decomposition of the information carried by the target Y of a network of interacting stationary processes

S = {X,Y} = {V ,W,Y}. (a) Exemplary realizations of a six-dimensional process S composed of the target

process Y and the source processes V = {V1,V2} and W = {W1, W2, W3}, with representation of the

variables used for information domain analysis: the present of the target, Yn, the past of the target, Y−
n ,

and the past of the sources, V
−
n and W

−
n . (b) Venn diagram showing that the information of the target

process HY is the sum of the new information (NY, yellow-shaded area) and the predictive information

(PY, all other shaded areas with labels); the latter is expanded according to the predictive information

decomposition (PID) as the sum of the information storage (SY = SY|X
+ IY

Y;V|W
+ IY

Y;W|V
+ IY

Y;W;V )

and the information transfer (TX→Y = TV→Y|W
+ TW→Y|V

+ IY
V;W|Y); the information storage

decomposition dissects SY as the sum of the internal information (SY|X
), conditional interaction terms

(IY
Y;V|W

and IY
Y;W|V

) and multivariate interaction (IY
Y;W;V ). The information transfer decomposition

dissects TX→Y as the sum of conditional information transfer terms (TV→Y|W
and TW→Y|V

) and

interaction information transfer (IY
V;W|Y).

2.2.1. New Information and Predictive Information

First, we define the information content of the target process Y as the information of the variable

obtained sampling the process at the present time n:

HY = H(Yn), (11)

where, under the assumption of stationarity, dependence on the time index n is omitted in the

formulation of the information HY. Then, exploiting the chain rule for information [34], we decompose

the target information as:

HY = PY + NY = I(Yn; S
−
n ) + H(Yn|S−

n ), (12)

where PY = I(Yn; S
−
n ) is the predictive information of the target Y, measured as the mutual information

between the present Yn and the past of the whole network process S
−
n , and NY = H(Yn|S−

n ) is the

newly generated information that appears in the target process Y after the transition from the past

states to the present state, measured as the conditional information of c given S
−
n .

The decomposition in Equation (12) evidences how the information carried by the target of a

network of interacting processes can be dissected into an amount that can be predicted from the past

states of the network, which is thus related to the concept of information stored in the network and

ready to be used at the target node, and an amount that is not predictable from the history of any other

observed process, which is thus related to the concept of new information produced by the target.

2.2.2. Predictive Information Decomposition (PID)

The predictive information quantifies how much of the uncertainty about the current state of

the target process is reduced by the knowledge of the past states visited by the whole network.
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To understand the contribution of the different parts of the multivariate process to this reduction in

uncertainty, the predictive information can be decomposed into amounts related to the concepts of

information storage and information transfer. Specifically, we expand the predictive information of the

target process Y as:

PY = SY + TX→Y = I(Yn; Y−
n ) + I(Yn; X

−
n |Y−

n ), (13)

where SY = I(Yn; Y−
n ) is the information stored in Y, quantified as the mutual information between

the present Yn and the past Y−
n , and TX→Y = I(Yn; X

−
n |Y−

n ) is the joint information transferred from

all sources in X to the target Y, quantified as the amount of information contained in the past of the

sources X
−
n that can be used to predict the present of the target Yn above and beyond the information

contained in the past of the target Y−
n .

Thus, the decomposition resulting from Equation (13) is useful to dissect the whole information

that is contained in the past history of the observed network and is available to predict the future states

of the target into a part that is specifically stored in the target itself, and another part that is exclusively

transferred to the target from the sources.

2.2.3. Information Storage Decomposition (ISD)

The information storage can be further expanded into another level of decomposition that

evidences how the past of the various processes interact with each other in determining the information

stored in the target. In particular, the information stored in Y is expanded as:

SY = SY|X + IY
Y;X = I(Yn; Y−

n |X−
n ) + I(Yn; Y−

n ; X
−
n ), (14)

where SY|X = I(Yn; Y−
n |X−

n ) is the internal information of the target process, quantified as the amount of

information contained in the past of the target Y−
n that can be used to predict the present Yn above

and beyond the information contained in the past of the sources X
−
n , and IY

Y;X = I(Yn; Y−
n ; X

−
n ) is the

interaction information storage of the target Y in the context of the network process {X,Y}, quantified as

the interaction information of the present of the target Yn, its past Y−
n , and the past of the sources X

−
n .

In turn, considering that X = {V ,W}, the interaction information storage can be expanded as:

IY
Y;X = IY

Y;V + IY
Y;W − IY

Y;V;W = IY
Y;V|W + IY

Y;W|V + IY
Y;V;W, (15)

where IY
Y;V = I(Yn; Y−

n ; V
−
n ) and IY

Y;W = I(Yn; Y−
n ; W

−
n ) quantify the interaction information storage

of the target Y in the context of the bivariate processes {V ,Y} and {W,Y}, IY
Y;V|W = I(Yn; Y−

n ; V
−
n |W−

n )

and IY
Y;W|V = I(Yn; Y−

n ; W
−
n |V−

n ) quantify the conditional interaction information storage of Y in the

context of the whole network processes {V,W,Y}, and IY
Y;V;W = I(Yn; Y−

n ; V
−
n ; W

−
n ) is the multivariate

interaction information of the target Y in the context of the network itemized evidencing the two sources

V and W. This last term quantifies the interaction information between the present of the target Yn,

its past Y−
n , the past of one source V

−
n , and the past of the other source W

−
n .

Thus, the expansion of the information storage puts in evidence basic atoms of information about

the target, which quantify respectively the interaction information of the present and the past of the

target with one of the two sources taken individually, and the interaction information of the present of

the target and the past of all processes. This last term expresses the information contained in the union

of the four variables (Yn, Y−
n , W

−
n , V

−
n ), but not in any subset of these four variables.

2.2.4. Information Transfer Decomposition (ITD)

The information transferred from the two sources V and W to the target Y can be further expanded

to evidence how the past of the sources interact with each other in determining the information

transferred to the target. To do this, we decompose the joint information transfer from X = (V ,W) to

Y as:
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TX→Y = TV→Y + TW→Y − IY
V;W|Y = TV→Y|W + TW→Y|V + IY

V;W|Y, (16)

where TV→Y = I(Yn; V
−
n |Y−

n ) and TW→Y = I(Yn; W
−
n |Y−

n ) quantify the information transfer from

each individual source to the target in the context of the bivariate processes {V ,Y} and {W,Y},

TV→Y|W = I(Yn; V
−
n |Y−

n , W
−
n ) and TW→Y|V = I(Yn; W

−
n |Y−

n , V
−
n ) quantify the conditional information

transfer from one source to the target conditioned to the other source in the context of the whole

network process {V,W,Y}, and IY
V;W|Y = I(Yn; V

−
n ; W

−
n |Y−

n ) = I(Yn; V
−
n |Y−

n )− I(Yn; V
−
n |Y−

n ; W
−
n ) is the

interaction information transfer between V and W to Y in the context of the network process {V,W,Y},

quantified as the interaction information of the present of the target Yn and the past of the two sources

V
−
n and W

−
n , conditioned to the past of the target Y−

n .

Thus, the decomposition of the information transfer allows to dissect the overall information

transferred jointly from the two group of sources to the target into sub-elements quantifying the

information transferred individually from each source, and an interaction term that reflects how the

two sources cooperate with each other while they transfer information to the target.

2.2.5. Summary of Information Decomposition

The proposed decomposition of predictive information, information storage and information

transfer are depicted graphically by the Venn diagram of Figure 2. The diagram evidences how the

information contained in the target process Y at any time step (all non-white areas) splits in a part that

can be explained from the past of the whole network (predictive information) and in a part which is

not explained by the past (new information). The predictable part is the sum of a portion explained

only by the target (information storage) and a portion explained by the sources (information transfer).

In turn, the information storage is in part due exclusively to the target dynamics (internal information,

SY|X) and in part to the interaction of the dynamics of the target and the two sources (interaction

information storage, IY
Y;V;W, which is the sum of the interaction storage of the source and each target

plus the multivariate interaction information). Similarly, the information transfer can be ascribed to an

individual source when the other is assigned (conditional information transfer, TV→Y|W, TW→Y|V) or to

the interaction between the two sources (interaction information transfer, IY
V;W|Y).

Note that all interaction terms (depicted using gray shades in Figure 2) can take either positive

values, reflecting redundant cooperation between the past states of the processes involved in the

measures while they are used to predict the present of the target, or negative values, reflecting

synergetic cooperation; since the interaction terms reflect how the interaction between source variables

may lead to the elimination of information in the case of redundancy or to the creation of new

information in the case of synergy, they quantify the concept of information modification. This concept

and those of information storage and information transfer constitute the basic elements to dissect the

more general notion of information processing in networks of interacting dynamic processes.

2.3. Computation for Multivariate Gaussian Processes

In this section we provide a derivation of the exact values of any of the information measures

entering in the decompositions defined above under the assumption that the observed dynamical

network S = {X,Y} = {V ,W,Y} is composed by Gaussian processes [12]. Specifically, we assume that

the overall vector process S has a joint Gaussian distribution, which means that any vector variable

extracted sampling the constituent processes at present and past times takes values from a multivariate

Gaussian distribution. In such a case, the information of the present state of the target process, H(Yn),

and the conditional information of the present of the target given any vector Z formed by past variables

of the network processes, H(Yn|Z), can be computed using Equations (5) and (6) where the conditional

variance is given by Equation (7). Then, any of the measures of information storage, transfer and

modification appearing in Equations (12)–(16) can be obtained from the information H(Yn) and the

conditional information H(Yn|Z)—where Z can be any combination of Y−
n , V

−
n and W

−
n .
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Therefore, the computation of information measures for jointly Gaussian processes amounts

to evaluating the relevant covariance and cross-covariance matrices between the present and past

variables of the various processes. In general, these matrices contain as scalar elements the covariance

between two time-lagged variables taken from the processes V , W, and Y, which in turn appear as

elements of the M × M autocovariance of the whole observed M-dimensional process S, defined at

each lag k ≥ 0 as Γk =
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    

                             
         

      

[SnSn−k]. Now we show how this autocovariance matrix can be computed

from the parameters of the vector autoregressive (VAR) formulation of the process S:

Sn =
m

∑
k=1

AkSn−k+Un, (17)

where m is the order of the VAR process, Ak are M × M coefficient matrices and Un is a zero mean

Gaussian white noise process with diagonal covariance matrix Λ. The autocovariance of the process

(17) is related to the VAR parameters via the well-known Yule–Walker equations:

Γk =
m

∑
l=1

AlΓk−l+δk0Λ, (18)

where δk0 is the Kronecher product. In order to solve Equation (18) for Γk, with k = 0, 1, ..., m − 1,

we first express Equation (17) in a compact form as ϕn = Aϕn−1 + En, where:

ϕn = [ST
nS

T
n−1 · · · S

T
n−m+1]

T
, A =













A1 · · · Am−1 Am

IM · · · 0M 0M
...

. . .
...

...

0M · · · IM 0M













, En = [UT
n01×M(m−1)]

T
. (19)

Then, the covariance matrix of ϕn, which has the form:

Ψ =
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, (20)

can be expressed as Ψ = AΨ AT + Ξ, where Ξ = E[EnE
T
n ] is the covariance of En. This last equation is

a discrete-time Lyapunov equation, which can be solved for Ψ yielding the autocovariance matrices

Γ0, ..., Γm−1. Finally, the autocovariance can be calculated recursively for any lag k ≥ m by repeatedly

applying Equation (18). This shows how the autocovariance sequence can be computed up to arbitrarily

high lags starting from the parameters of the VAR representation of the observed Gaussian process.

3. Simulation Study

In this Section we show the computation of the terms appearing in the information decompositions

defined in Section 2 using simulated networks of interacting stochastic processes. In order to make

the interpretation free of issues related to practical estimation of the measures, we simulate stationary

Gaussian VAR processes and exploit the procedure described in Section 2.3 to quantify all information

measures in their variance-based and entropy-based formulations from the exact values of the

VAR parameters.

3.1. Simulated VAR Processes

Simulations are based on the general trivariate VAR process S = {X,Y} = {V,W,Y} with temporal

dynamical structure defined by the equations:
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Vn = 2ρv · cos 2π fv · Vn−1 − ρ2
v · Vn−2 + Uv,n

Wn = 2ρw · cos 2π fw · Wn−1 − ρ2
w · Vn−2 + a · Yn−2 + d · Vn−1 + Uw,n

Yn = 2ρy · cos 2π fy · Yn−1 − ρ2
w · Yn−2 + b · Wn−1 + c · Vn−1 + Uy,n

(21)

where Un = [Uv,n, Uw,n, Uy,n] is a vector of zero mean white Gaussian noises of unit variance and

uncorrelated with each other (Λ = I). The parameter design in Equation (21) is chosen to allow

autonomous oscillations in the three processes, obtained placing complex-conjugate poles with

amplitude ρv, ρw, ρy and frequency fv, fw, fy in the complex plane representation of the transfer

function of the vector process, as well as causal interactions between the processes at fixed time

lag of 1 or 2 samples and with strength modulated by the parameters a, b, c, d [37]. Here we consider

two parameter configurations describing respectively basic dynamics and more realistic dynamics

resembling rhythms and interactions typical of cardiovascular and cardiorespiratory signals.

The type-I simulation is obtained setting ρv = ρw = 0, a = 0, ρy =
√

0.5, fy = 0.25, b = 1 in

Equation (21), and letting the parameters c and d free to vary between 0 and 1 while keeping the

relation d = 1 − c. With this setting, depicted in Figure 3a, the processes V and W have no internal

dynamics, while the process Y exhibits negative autocorrelations with lag 2 and strength 0.5; moreover

causal interactions are set from W to Y with fixed strength, and from V to Y and to W with strength

inversely modulated by the parameter c.

−

 

Figure 3. Graphical representation of the trivariate VAR process of Equation (21) with parameters set

according the first configuration reproducing basic dynamics and interactions (a) and to the second

configuration reproducing realistic cardiovascular and cardiorespiratory dynamics and interactions

(b). The theoretical power spectral densities of the three processes V, W and Y corresponding to the

parameter setting with c = 1 are also depicted in panel (c) (see text for details).

In type-II simulation we set the parameters to reproduce oscillations and interactions commonly

observed in cardiovascular and cardiorespiratory variability (Figure 3b) [37,38]. Specifically,

the autoregressive parameters of the three processes are set to mimic the self-sustained dynamics

typical of respiratory activity (process V, ρv = 0.9, fv = 0.25) and the slower oscillatory activity

commonly observed in the so-called low-frequency (LF) band in the variability of systolic arterial

pressure (process W, ρw = 0.8, fv = 0.1) and heart rate (process W, ρy = 0.8, fy = 0.1). The remaining

parameters identify causal interactions between processes, which are set from V to W and from V to Y

(both modulated by the parameter c = d) to simulate the well-known respiration-related fluctuations

of arterial pressure and heart rate, and along the two directions of the closed loop between W and

Y (a = 0.1, b = 0.4) to simulate bidirectional cardiovascular interactions. The tuning of all these

parameters was performed to mimic the oscillatory spectral properties commonly encountered in

short-term cardiovascular and cardiorespiratory variability; an example is seen in Figure 3c, showing

that the theoretical power spectral densities of the three processes closely resemble the typical profiles

of real respiration, arterial pressure and heart rate variability series [39].

3.2. Information Decomposition

Figure 4 reports the results of information decomposition applied to the VAR process of Equation

(21) considering Y as the target process and V and W as the source processes. Setting the process
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structures of the two types of simulations depicted on the top, we computed the decompositions of

the predictive information (PID), information storage (ISD) and information transfer (ITD) described

graphically on the left. The measures appearing in these decompositions are plotted as a function of

the coupling parameter varying in the range (0, 1). In order to favor the comparison, all measures are

computed both using variance and using entropy to quantify conditional and mutual information.

Note that we performed also an estimation of all measures starting from short realizations (300 points)

of Equation (21), finding high consistency between estimated and theoretical values (results are in the

Supplementary Material, Figure S1).

 

Figure 4. Information decomposition for the stationary Gaussian VAR process composed by the

target Y and the sources X = {V,W}, generated according to Equation (21). The Venn diagrams of the

predictive information decomposition (PID), information storage decomposition (ISD) and information

transfer decomposition (ITD) are depicted on the left. The interaction structure of the VAR process

set according to the two types of simulation are depicted on the top. The information measures

relevant to (a–d) PID (HY = NY + SY + TX→Y), (e–h) ISD (SY = SY|X + IY
Y;V|W + IY

Y;W|V + IY
Y;V;W) and

(i–l) ITD (TX→Y = TV→Y|W + TW→Y|V + IY
V;W|Y), expressed in their variance and entropy formulations,

are computed as a function of the parameter c for the two simulations.

Considering the PID measures reported in Figure 4a–d, first we note that the new information

produced by the target process, NY, is constant in all cases and measures the variance or the entropy

of the innovations Uv. The information storage SY displays different behaviour with the coupling

parameter depending on the simulation setting and on the functional used for its computation:

in type-I simulation, the variance-based measure varies non-monotonically with c and the

entropy-based measure is stable at varying c (Figure 4a,b); in type-II simulation, increasing c determines

an increase of the variance-based measure and a decrease of the entropy-based measure (Figure 4c,d).
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The information storage is sensitive to variations in both the internal dynamics of the target process

and the causal interactions from source to target [7]; in our simulations where auto-dependencies

within the processes are not altered, the variations of the information stored in the target process

reflect the coupling effects exerted from the two sources to the target. The information transferred

jointly from the two sources to the target, TX→Y, is related in a more straightforward way to the causal

interactions: in the type-I simulation, the opposite changes imposed in the strength of the direct effects

(V→Y, increasing with c) and the indirect effects (V→W→Y, decreasing with c) from source to target

results in the non-monotonic behaviour of TX→Y (Figure 4a,b); in the type II simulation, the concordant

changes of direct and indirect effects from V to Y determine a monotonic increase of TX→Y with the

parameter c (Figure 4c,d).

The behaviour observed for the information storage at varying the parameter c can be better

interpreted by looking at the terms of the ISD reported in Figure 4e–h. First, we find that the internal

information Sr|x is not affected by c, documenting the insensitivity to causal interactions of this measure

that is designed to reflect exclusively variations in the internal dynamics of the target process [12].

We note that also the interaction information storage between the target Y and the source W conditioned

to the other source V, IY
Y;W|V , is constant in all simulated conditions, reflecting the fact that the direct

interaction between Y and W is not affected by c. Therefore, the ISD allows to evidence that in our

simulations variations in the information storage are related to how the target Y interacts with a specific

source (in this case, V); such an interaction is documented by the trends of the interaction information

measure IY
Y;V|W and IY

Y;V;W . In type-I simulation, the increasing coupling between V and Y determines

a monotonic increase of the interaction storage IY
Y;V|W and a monotonic decrease of the multivariate

interaction IY
Y;V;W (Figure 4e); in particular, IY

Y;V|W is zero and IY
Y;V;W is maximum when c = 0, and

the opposite occurs when c = 1, reflecting respectively the conditions of absence of direct coupling

V→Y and presence of exclusive direct coupling V→Y. In type-II simulation, the concordant variations

set for the couplings V→Y and V→W lead to a similar but smoothed response of the interaction

storage (IY
Y;V|W slightly increases with c) and to an opposite response of the multivariate interaction

information (IY
Y;V;W increases with c) (Figure 4g). These trends of the interaction measures IY

Y;V|W
and IY

Y;V;W are apparent when information is measured in terms of variance, but become of difficult

interpretation when information is measured as entropy: in such a case, the variations with c of IY
Y;V|W

and IY
Y;V;W are non-monotonic (Figure 4f) or even opposite to those observed before (Figure 4h).

The expansion of the joint information transferred from the two sources V and W to the target Y

into the terms of the ITD is reported in Figure 4i–l. Again, this decomposition allows to understand

how the modifications of the information transfer with the simulation parameter result from the

balance among the constituent terms of TX→Y. In particular, we note that the information transferred

from W to Y after conditioning on V, TW→Y|V , does not change with c, documenting the invariance of

the direct coupling W→Y in all simulation settings. The information transferred from V to W after

conditioning on W, TV→Y|W , increases monotonically with c, reflecting the higher strength of the direct

causal interactions V→Y. Note that both these findings are documented clearly using either variance or

entropy to measure the information transfer. On the contrary, different indications are provided about

the interaction information transfer IY
V;W|Y when this measure is computed through variance or entropy

computations. In the type-I simulation, the variance-based measure of IY
V;W|Y decreases from 1 to 0 at

increasing c from 0 to 1 (Figure 4i), reflecting the fact that the target of the direct effects originating in V

shifts progressively from W to Y; a similar trend is observed for the entropy-based measure of IY
V;W|Y

with the difference that the measure assumes negative values indicating synergy for high values of c

(Figure 4j). In the type-II simulation, inducing a variation from 0 to 1 in the parameter c determines an

increase from 0 to positive values of IY
V;W|Y—denoting redundant source interaction—when variance

measures are used (Figure 4k), but determines a decrease from 0 to negative values of IY
V;W|Y—denoting

synergetic source interaction—when entropy measures are used (Figure 4k).



Entropy 2017, 19, 5 14 of 28

3.3. Interpretation of Interaction Information

The analysis of information decomposition discussed above reveals that the information measures

may lead to different interpretations depending on whether they are based on the computation of

variance or on the computation of entropy. In particular we find, also in agreement with a recent

theoretical study [16], that the interaction measures can greatly differ when computed using the

two approaches. To understand these differences, we analyze how variance and entropy measures

relate to each other considering two examples of computation of the interaction information transfer.

We recall that this measure can be expressed as IY
V;W|Y = TV→Y − TV→Y|W , where the information

transfer is given by the conditional information terms TV→Y = H(Yn|Y−
n ) − H(Yn|Y−

n , V−
n ) and

TV→Y|W = H(Yn|Y−
n , W−

n )− H(Yn|Y−
n , W−

n , V−
n ). Then, exploiting the relation between conditional

variance and conditional entropy of Equation (6) we show in Figure 5 that, as a consequence of the

concave property of the logarithmic function, subtracting TV→Y|W from TV→Y can lead to very different

values of IY
V;W|Y when the information transfer is based on variance (i.e., HV is computed: horizontal

axis of Figure 5a,c) or is based on entropy (i.e., HE is computed: vertical axis of Figure 5a,c).

 

Figure 5. Examples of computation of interaction information transfer IY
V;W|Y for exemplary cases of

jointly Gaussian processes V, W (sources) and Y (target): (a–c) uncorrelated sources; (d–f) positively

correlated sources. Panels show the logarithmic dependence between variance and entropy measures

of conditional information (a,d) and Venn diagrams of the information measures based on variance

computation (b,e) and entropy computation (c,f). In (a–c), the variance-based interaction transfer

is zero, suggesting no source interaction, while the entropy-based transfer is negative, denoting

synergy. In (d–f), the variance-based interaction transfer is positive, suggesting redundancy, while the

entropy-based transfer is negative, denoting synergy.

First, we analyze the case c = 1 in type-I simulation, which corresponds to uncorrelation

between the two sources V and W, and yields IY
V;W|Y = 0 using variance and IY

V;W|Y < 0 using

entropy (Figure 4i,j). In Figure 5a this corresponds to TV→Y = TV→Y|W using variance measures

(see also Figure 5b, where the past of V and W are disjoint), denoting no source interaction,
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and to TV→Y < TV→Y|W using variance measures (see also Figure 5c, where considering the past

of W adds information), denoting synergy between the two sources. Thus, in the case of uncorrelated

sources there is no interaction transfer if information is quantified by variance, reflecting an intuitive

behaviour, while there is negative interaction transfer if information is quantified by entropy, reflecting

a counter-intuitive synergetic source interaction. The indication of net synergy provided by entropy

based-measures in the absence of correlation between sources was first pointed out in [16].

Then, we consider the case c = 1 in type-II simulation, which yields IY
V;W|Y > 0 using variance and

IY
V;W|Y < 0 using entropy (Figure 4k,l). As seen in Figure 5d, in this case we have TV→Y > TV→Y|W

using variance measures (see also Figure 5e, where considering the past of W removes information),

denoting redundancy between the two sources, and to TV→Y < TV→Y|W using variance measures

(see also Figure 5d, where considering the past of W adds information), denoting synergy between

the two sources. Thus, there can be situations in which the interaction between two sources sending

information to the target is seen as redundant or synergetic depending on the functional adopted to

quantify information.

4. Application to Physiological Networks

This Section is relevant to the practical computation of the proposed information-theoretic

measures on the processes that compose the human physiological network underlying the short-term

control of the cardiovascular system. The considered processes are the heart period, the systolic arterial

pressure, and the breathing activity, describing respectively the dynamics of the cardiac, vascular

and respiratory systems. Realizations of these processes were measured noninvasively in a group of

healthy subjects in a resting state and in conditions capable of altering the cardiovascular dynamics

and their interactions, i.e., orthostatic stress and mental stress [33,40,41]. Then, the decomposition of

predictive information, information storage and information transfer were performed computing the

measures defined in Section 2.2, estimated using the linear VAR approach described in Section 2.3 and

considering the cardiac or the vascular process as the target, and the remaining two processes as the

sources. The assumptions of stationarity and joint Gaussianity that underlie the methodologies

presented in this paper are largely exploited in the multivariate analysis of cardiovascular and

cardiorespiratory interactions, and are usually supposed to hold when realizations of the cardiac,

vascular and respiratory processes are obtained in well-controlled experimental protocols designed to

achieve stable physiological and experimental conditions [42–47].

4.1. Experimental Protocol and Data Analysis

The study included sixty-one healthy young volunteers (37 females, 24 males, 17.5 ± 2.4 years),

who were enrolled in an experiment for which they gave written informed consent, and that was

approved by Ethical Committee of the Jessenius Faculty of Medicine, Comenius University, Martin,

Slovakia. The protocol consisted of four phases: supine rest in the baseline condition (B, 15 min),

head-up tilt (T, during which the subject was tilted to 45 degrees on a motor driven tilt table for

8 min to evoke mild orthostatic stress), a phase of recovery in the resting supine position (R, 10 min),

and a mental arithmetic task in the supine position (M, during which the subject was instructed to

mentally perform as quickly as possible arithmetic computations under the disturbance of the rhythmic

sound of a metronome).

The acquired signals were the electrocardiogram (horizontal bipolar thoracic lead; CardioFax

ECG-9620, NihonKohden, Tokyo, Japan), the continuous finger arterial blood pressure collected

noninvasively by the photoplethysmographic volume-clamp method (Finometer Pro, FMS,

Amsterdam, The Netherlands), and the respiratory signal obtained through respiratory inductive

plethysmography (RespiTrace 200, NIMS, Miami Beach, FL, USA) using thoracic and abdominal belts.

From these signals recorded with a 1000 Hz sampling rate, the beat-to-beat time series of the heart

period (HP), systolic pressure (SP) and respiratory amplitude (RA) were measured respectively as

the sequence of the temporal distances between consecutive R peaks of the ECG after detection of
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QRS complexes and QRS apex location, as the maximum value of the arterial pressure waveform

measured inside each detected RR interval, and as the value of the respiratory signal sampled at the

time instant of the first R peak denoting each detected RR interval. In all conditions, the occurrences of

R-waves peaks was carefully checked to avoid erroneous detections or missed beats, and if isolated

ectopic beats affected any of the measured time series, the three were linearly interpolated using the

closest values unaffected by ectopic beats. After measurement, segments of consecutive 300 points

were selected synchronously for the three series starting at predefined phases of the protocol: 8 min

after the beginning of the recording session for B, 3 min after the change of body position for T, 7 min

before starting mental arithmetics for R, and 2 min after the start of mental arithmetics for M.

To favor the fulfillment of stationarity criteria, before the analysis all time series were detrended

using a zero-phase IIR high-pass filter with cutoff frequency of 0.0107 cycles/beat [48]. Moreover,

outliers were detected in each window by the Tukey method [49] and labeled so that they could be

excluded from the realizations of the process points to be used for model identification. Then, for each

subject and window, realizations of the trivariate process S = {R,S,H} were obtained by normalizing the

measured multivariate time series, i.e., subtracting the mean from each series and dividing the result by

the standard deviation. The resulting time series {Rn, Sn, Hn} was fitted with a VAR model in the form

of Equation (17) where model identification was performed using the standard vector least squares

method and the model order was optimized according to the Bayesian Information Criterion [50].

The estimated model coefficients were exploited to derive the covariance matrix of the vector

process, and the covariances between the present and the past of the processes were computed as in

Equations (18)–(20) used as in Equation (7) to estimate all the partial variances needed to compute

the measures of information dynamics. In all computations, the vectors representing the past of the

normalized respiratory and vascular processes were incremented with the present variables in order

to take into account fast vagal reflexes capable to modify HP in response to within-beat changes of

RA and SP (effects Rn→Hn, Sn→Hn) and fast effects capable to modify SP in response to within-beat

changes of RA (effect Rn→Sn).

4.2. Results and Discussion

This section presents the results of the decomposition of predictive information (PID), information

storage (ISD) and information transfer (ITD) obtained during the four phases of the analyzed protocol

(B, T, R, M) using both variance-based and entropy-based information measures when the target of the

observed physiological network was either the cardiac process H (Section 4.2.1) or the vascular process

S (Section 4.2.2).

In the presentation of results, the distribution of each measure is reported as mean + SD over the

61 considered subjects. The statistical significance of the differences between pairs of distributions is

assessed through Kruskall–Wallis ANOVA followed by signed rank post-hoc tests with Bonferroni

correction for multiple comparisons. Results are presented reporting and discussing the significant

changes induced in the information measures first by the orthostatic stress (comparison B vs. T) and

then by the mental stress (comparison R vs. M). Besides statistical significance, the relevance of the

observed changes is supported also by the fact that no differences were found for any measure between

the two resting state conditions (baseline B and recovery R).

4.2.1. Information Decomposition of Heart Period Variability during Head-Up Tilt

Figure 6 reports the results of information decomposition applied to the variability of the

normalized HP (target process H) during the four phases of the protocol.
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Figure 6. Information decomposition of the heart period (process H) measured as the target of the

physiological network including also respiration (process R) and systolic pressure (process S) as

source processes. Plots depict the values of the (a,d) predictive information decomposition (PID),

(b,e) information storage decomposition (ISD) and (c,f) the information transfer decomposition (ITD)

computed using entropy measures (a–c) and prediction measures (d–f) and expressed as mean +

standard deviation over 61 subjects in the resting baseline condition (B), during head-up tilt (T),

during recovery in the supine position (R), and during mental arithmetics (M). Statistically significant

differences between pairs of distributions are marked with * (T vs. B, M vs. B), with # (T vs. R,

M vs. R), and with § (T vs. M).

We start with the analysis of variations induced by head-up tilt, observing that the PID reported

in Figure 6a,d documents a significant reduction of the new information produced by the cardiac

process, and a significant increase of the information stored in the process, in the upright body

position compared to all other conditions (significantly lower NH and significantly higher SH during T).

Since in this application to normalized series with unit variance the information of the target series is

always the same (HV(H) = 1, HE(H) = 0.5 log(2πe)), the decrease of the new information NH

corresponds to a statistically significant increase of the predictive information PH = HH − NH

(see Equation (12)). In turn, this increased predictive information during T is mirrored by the

significantly higher information storage not compensated by variations of the information transfer

TS,R→H ; the latter decreased significantly during T when computed through variance measures

(Figure 6d), while it was unchanged when computed through entropy measures (Figure 6a).

These results confirm those of a large number of previous studies reporting a reduction of the dynamical

complexity (or equivalently an increase of the regularity) of HP variability in the orthostatic position,

reflecting the well-known shift of the sympatho-vagal balance towards sympathetic activation and

parasympathetic deactivation [40,51,52].
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The ISD reported in Figure 6b,e indicates that the higher information stored in the cardiac process

H in the upright position is the result of a significant increase of the internal information of H and of the

interaction information between H and the vascular process S in this condition (higher SH|S,R and IH
H;S|R

during T). Higher internal information in response to an orthostatic stress was previously observed

using a measure of conditional self entropy in a protocol of graded head-up tilt [13]. This result

documents a larger involvement of mechanisms of regulation of the heart rate which act independently

of respiration and arterial pressure, including possibly direct sympathetic influences on the sinus node

which are unmediated by the activation of baroreceptors and/or low pressure receptors, and central

commands originating from respiratory centres in the brainstem that are independent of afferent

inputs [53,54]. The increased interaction information is likely related to the tilt-induced sympathetic

activation that affects both cardiac and vascular dynamics [38], thus determining higher redundancy

in the contribution of the past history of H and S on the present of H.

The results of ITD reported in Figure 6c,f document a discrepancy between the responses

to head-up tilt of the variance-based and entropy-based measures of information transfer.

While the information transferred from RA to HP decreased with tilt in both cases (significantly

lower TR→H|S during T in both Figures 6c and 6f), the information transferred from SP to HP and

the interaction information transfer showed opposite trends: moving from B to T the variance-based

measures of TS→H|R and IH
S;R|H decreased significantly (Figure 6f), while the entropy-based measures

increased or did not change significantly (Figure 6c). The decrease of information transfer from R

to H is in agreement with the reduction cardiorespiratory interactions previously observed during

orthostatic stress, reflecting the vagal withdrawal and the dampening of respiratory sinus arrhythmia

during orthostatic stress [13,55,56]. The other findings are discussed in Section 4.2.3 where the reasons

of the discrepancy between variance and entropy measures are investigated and the more plausible

physiological interpretation is provided.

4.2.2. Information Decomposition of Heart Period Variability during Mental Arithmetics

The analysis of variations induced by mental stress revealed that the new information produced

by the HP series and the information stored in this series are not substantially altered by mental

stress (Figure 6a,d). In agreement with previous studies reporting a similar finding [57,58],

this result suggests that during mental stress the pattern of alterations in the sympathetic nervous

system activity is more complex and interindividually variable than that elicited by orthostatic

stress [41]. The only significant variation evidenced by the PID was the decrease of the joint

cardiovascular and cardiorespiratory information transferred to the cardiac process during mental

arithmetics compared to both resting conditions (significantly lower TS,R→H during M, Figure 6a,d).

This decrease was the result of marked reductions of the information transfer from RA to HP and

of the interaction information transfer between RA and SP to HP (lower TR→H|S and IH
R;S|H during

M), not compensated by the statistically significant increase of the information transfer from SP to

HP (higher TS→R|H during M, Figure 6c,f). The decrease of joint, cardiorespiratory and interaction

transfers to the cardiac process are all in agreement with withdrawal of vagal neural effects and

reduced respiratory sinus arrhythmia observed in conditions of mental stress [59–61]. A reduced

cardiorespiratory coupling was also previously observed during mental arithmetics using coherence

and partial spectrum analysis [62]. The increase in the cardiovascular coupling is likely related

to a larger involvement of the baroreflex in a condition of sympathetic activation; interestingly,

such an increase could be noticed in the present study where the information transfer from S to

H was computed conditionally on R, while a bivariate unconditional analysis could not detect such an

increase because of the concomitant decrease of the interaction information transfer. In fact, using a

bivariate analysis we did not detect significant changes in the causal interactions from S to H during

mental stress [33].

As regards the ISD, we found that the unchanged values of the information storage during

mental stress (Figure 6a,d) were the result of unaltered values of all the decomposition terms in
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the entropy-based analysis (Figure 6b), and of a balance between higher internal information in the

cardiac process and lower multivariate interaction information storage in the variance-based analysis

(Figure 6e, increase of SH|S,R and decrease of IH
H;R;S during M). These findings confirm those of a

previous study indicating that the information storage is unspecific to variations of the complexity

induced in the cardiac dynamics by mental stress, and that these variations are better reflected by

measures of conditional self-information [58]. Here we find that the detection of stronger internal

dynamics of heart period variability is masked, in the measure of information storage, by a weaker

interaction among all variables. The stronger internal dynamics reflected by higher internal information

are likely attributable to a higher importance of upper brain centers in controlling the cardiac dynamics

independently of pressure and respiratory variability. This may also suggest a central origin for the

sympathetic activation induced by mental stress. The reduced multivariate interaction is in agreement

with the vagal withdrawal [59–61] that likely reduces the information shared by RA, SP and HP in

this condition.

4.2.3. Information Decomposition of Systolic Arterial Pressure Variability during Head-Up Tilt

Figure 7 reports the results of information decomposition applied to the variability of the

normalized SP (target process S) during the four phases of the protocol. We start with the analysis of

changes related to head-up tilt, observing that the components of the PID are not significantly affected

by the orthostatic stress (Figure 7a,d). In agreement with previous studies, the invariance with head-up

tilt of information storage and new information, and that of the joint information transferred to it from

H and R, document respectively that the orthostatic stress does not alter the complexity of the vascular

dynamics or the capability of cardiac and respiratory dynamics to alter this complexity [33,63]. On the

other hand, the decomposition of information storage and transfer evidenced statistically significant

variations during T that reveal important physiological reactions to the orthostatic stimulus.

Looking at the ISD, we found that the interaction information terms IS
S;H|R and IS

S;H;R were

consistently higher during T than in the other conditions (Figure 7b,e), and the variance-based estimate

of the internal information of the systolic pressure process was significantly lower during T (Figure 7e).

This result mirrors the increase of cardiovascular interactions contributing to the information stored

in HP, suggesting that head-up tilt involves a common mechanism, likely of sympathetic origin,

of regulation of both H and S that brings about an overall increase of the redundancy between the past

history of these two variables in the prediction of their future state.

The ITD of Figure 7c,f documents that the unchanged amount of information transferred from

HP and RA to SP moving from supine to upright (unvaried TH,R→S during T seen in Figure 7a,d)

results from increased vasculo-pulmonary information transfer, unchanged transfer from the cardiac

to the vascular process, and decreased cardiorespiratory interaction information transfer to SP

(higher TR→S|H , stable TH→R|S, and lower IS
H;R|S during T). The unchanged transfer from H to S

supports the view that interactions along this direction are mediated mainly by mechanical effects

(Frank–Starling law and Windkessel effect) that are not influenced by the neural sympathetic activation

related to tilt [33,56,64]. The increased direct transfer from R to S together with the decreased

interaction information can be explained by the fact that respiratory sinus arrhythmia (i.e., the effect of

R on H) is known to drive respiration-related oscillations of systolic pressure in the supine position,

but also to buffer these oscillations in the upright position [65]. Therefore, in the supine position,

respiratory-related effects of H on S are prevalent over the effects of respiration on S unrelated to H

(and occurring through effects of R on the stroke volume), also determining high redundancy between

R and H causing S; in the upright position the two mechanism are shifted, leading to higher effects of

R on S unrelated to H and to lower redundancy.
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Figure 7. Information decomposition of systolic pressure (process S) measured as the target of

the physiological network including also respiration (process R) and heart period (process H) as

source processes. Plots depict the values of the (a,d) predictive information decomposition (PID),

(b,e) information storage decomposition (ISD) and the (c,f) information transfer decomposition (ITD)

computed using entropy measures (a–c) and prediction measures (d–f) and expressed as mean +

standard deviation over 61 subjects in the resting baseline condition (B), during head-up tilt (T),

during recovery in the supine position (R), and during mental arithmetics (M). Statistically significant

differences between pairs of distributions are marked with * (T vs. B, M vs. B), with # (T vs. R,

M vs. R), and with § (T vs. M).

4.2.4. Information Decomposition of Systolic Arterial Pressure Variability during Mental Arithmetics

As to the analysis of mental arithmetics, the PID revealed an increase of the new information NS

and a corresponding decrease of the information storage SS relevant to the vascular process during

M Figure 7a,d. The ISD applied to the process S documents that the reduction of the information

stored in SP during the mental task is the result of a marked decrease of the internal information

(lower SS|H,R during M in Figure 7b,e), observed in variance-based analysis together with a decrease of

the vasculo-pulmonary information storage (lower IS
S;R|H during M in Figure 7e). These results point

out that mental stress induces a remarkable increase of the dynamical complexity of SP variability,

intended as a reduction of both the predictability of S given the past of all considered processes (higher

new information) and the predictability of S given its own past only (lower information storage).

Given that these trends were observed together with a marked decrease of the internal information

and in the absence of decrease of the information transfer, we conclude that the higher complexity of

the systolic pressure during mental stress is caused by alterations of the mechanisms able to modify its

values independently of heart period and respiration. These mechanisms may include an increased
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modulation of peripheral vascular resistance [41] and an increased influence of higher brain cortical

structures exerting “top-down” influence of the control system of blood pressure [66], and possibly

manifested as an additional mechanism that limits the predictability of SP given the universe of

knowledge that includes also RA and HP.

Similarly to what observed for HP during head-up tilt, the response to mental arithmetics

of the information transferred to SP was different when monitored using variance-based or using

entropy-based measures. The joint information transfer to the vascular process was significantly

higher during M than in all other conditions when assessed by variance measures (Figure 7d),

while it was unchanged when assessed by entropy measures (Figure 7a). These two trends were the

result of significant increases of the conditional information transferred to SP from RA or from HP in the

case of variance measures (higher TH→S|R and TR→S|H during M, Figure 7f), and of a balance between

higher transfer from heart period to SP and lower interaction transfer in the case of entropy measures

(higher TH→S|R and lower IS
H;R|S during M, Figure 7c). The origin of these different trends is better

elucidated and interpreted in the following subsection.

4.2.5. Different Profiles of Variance-Based and Entropy-Based Information Measures

In this subsection we present the results reporting significant variations between conditions of an

information measure observed using one of the two formulations of the concept of information but not

using the other formulation. These results are typically observed as statistically significant variations

of the variance-based expression of a measure in concomitance with absence of significant variations,

or even with variations of the opposite sign, of the entropy-based expression of the measure. Similarly

to what shown in simulations of Section 3.3, the mathematical explanation of these behaviors lies in

the nonlinear transformation of a distribution of values performed by the logarithmic expression that

relates conditional variance and conditional entropy. While in Section 3.3 this behavior is explained in

terms of its consequences on the sign of interaction information measures for simulations, here we

discuss its consequences on the variation of measures of information transfer for physiological time

series, also drawing analogies with the findings of [30].

Looking at the decomposition of the information carried by the heart period H, a main result

not consistently observed using the two formulations of information is the significant decrease of

the variance-based measure of joint information transfer TS,R→H during head-up tilt (Figure 6d),

which is due to significant decreases of the cardiovascular and cardiorespiratory information transfer

TS→H|R and TR→H|S, as well as of the interaction information transfer IH
S;R|H (Figure 6f). Differently,

the entropy-based formulation of information transfer indicates unchanged joint transfer TS,R→H

during T (Figure 6a) as a result of a decreased cardiorespiratory transfer TR→H|S, an increased

cardiovascular transfer TS→H|R, and an unchanged information transfer IH
S;R|H (Figure 6f). Note that

these inconsistent results were obtained in the presence of a marked reduction of the new information

and of a marked increase of the information storage in the target process H during T (Figure 6a,d).

Similar but complementary variations were observed looking at the decomposition of the

information carried by the vascular process S during mental arithmetics. In this case variance

measures evidenced a significant increase of the joint transfer TH,R→S during M (Figure 7d),

due to increases of the decomposition terms TH→S|R and TR→S|H (Figure 7f). On the contrary, entropy

measures documented unchanged joint transfer (Figure 7a) resulting from a slight increase of TH→S|R
compensated by the decrease of the interaction transfer IS

H;R|S (Figure 7f). These trends were observed

in the presence of significant increase of the new information and decrease of the information storage

in the target process S during M (Figure 7a,d).

To clarify the apparently inconsistent behaviors described above, we represent in Figure 8 the

changes of variance-based and entropy-based information measures relevant to the modifications

induced by head-up tilt (transition from B to T) on the cardiac process H (note that complementary

descriptions apply to the case of the changes induced by the transition from R to M on the vascular

process S). The figure depicts the values of information content of the cardiac process H and conditional
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information of H given its past and the past of the respiratory and vascular processes R and S computed

using variance (horizontal axis) and using entropy (vertical axis) in the resting baseline condition and

during head-up tilt; in each condition, the highest and lowest information terms are the information

content HH and the new information NH , while the differences between information terms indicate the

information storage SH , the joint information transfer TS,R→H , and the conditional transfers TS→H|R
and TR→H|S. Note that, since the time series are normalized to unit variance, HH is the same during

B and during T. Resembling the physiological results of Figure 6, we see that NH is much lower

during T than during B, and SH is much higher; this holds for both variance-based and entropy

based formulations of the measures. Moreover the figure depicts the decrease from B to T of the

variance formulation of TS,R→H and of TS→H|R; these decreased variance-based values correspond

to entropy-based values that are unchanged for TS,R→H , and even increased for TS→H|R. Thus, the

discrepancy between the two formulations arises from the shift towards markedly lower values of

the conditional variances of H, and from the concave property of the logarithmic transformation that

expands the differences between conditional variances producing higher differences in conditional

entropy. Note that very similar trends of the information measures were found in a similar protocol

in [30] in a different group of healthy subjects, indicating that these behaviours are a typical response

of cardiovascular dynamics to head-up tilt. In [30], different formulations of information transfer

were compared, observing discrepancies between measures based on the difference in conditional

variance and the ratio between the same conditional variances which are consistent with the differences

observed here between variance-based and entropy-based measures. The agreement between our

findings and those of [30] is confirmed by the fact that measuring the difference of conditional entropies

equals to measuring the ratio of conditional variances.

 

H
H

H

Figure 8. Graphical representation of the variance-based (red) and entropy-based (blue) measures of

information content (HH), storage (SH), transfer (TS→H|R, TR→H|S) and new information (NH) relevant

to the information decomposition of the heart period variability during baseline (dark colors) and

during tilt (light colors), according to the results of Figure 6. The logarithmic relation explains why

opposite variations can be obtained by variance-based measures and entropy-based measures moving

from baseline to tilt.

The reported results and the explanation provided above indicate that, working with processes

reduced to unit variance as typically recommended in the analysis of real-world time series, if marked

variations of the new information produced by the target process occur together with variations of

the opposite sign of the information stored in the process, it happens that variance-based measures

of the information transferred to the target follow closely the variations of the new information,
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thus appearing of little use for the evaluation of Granger-causal influences between processes. On the

contrary, the intrinsic normalization performed by entropy-based indexes makes them more reliable to

assess the magnitude of the information transfer regardless of variations of the complexity of the target.

These conclusions are mirrored by our physiological results, which indicate a better physiological

interpretability for the variations between conditions of the information transfer measured using

entropy rather than using variance. For instance, the greater involvement of the baroreflex that is

expected in the upright position to react to circulatory hypovolemia [40,51] is reflected by the entropy

based increase of the information transfer from S to H during tilt (Figure 6b), while the variance-based

measure showed a hardly interpretable decrease moving from B to T (Figure 6f). Similarly, the increase

during mental arithmetics of the information transfer along the directions from R to S and from H to S

observed in terms of variance (Figure 7f) seems to reflect more the increased complexity of the target

series S rather than physiological mechanisms, and are indeed not captured when entropy is used to

measure information (Figure 7c).

We conclude this section mentioning other caveats which may contribute to differences in the

estimates of variance-based and entropy-based information measures. Besides distorting the theoretical

values of some of the information measures as described above, the logarithm function is also a source

of statistical bias in the estimation of entropy-based measures on practical time series of finite length.

While this bias was not found to be substantial in realizations of our type-II simulation generated with

the same length of the cardiovascular series (see Supplementary Material, Figure S1), an effect of this

bias on the significance test results cannot be excluded. Moreover, while the assumption of linear

stationary multivariate process should hold reasonably in our data, we cannot exclude that significant

differences in measures between conditions may be in part due to confounding factors such as the

different goodness of the linear fit to the data (possibly related to a different impact of non-linearities),

or the different impact of non-stationarities, in a condition compared to another.

5. Summary of Main Findings

The main theoretical results of the present study can be summarized as follows:

• Information decomposition methods are recommended for the analysis of multivariate

processes to dissect the general concepts of predictive information, information storage and

information transfer in basic elements of computation that are sensitive to changes in specific

network properties;

• The combined evaluation of several information measures is recommended to characterize

unambiguously changes of the network across conditions;

• Entropy-based measures are appropriate for the analysis of information transfer thanks to the

intrinsic normalization to the complexity of the target dynamics, but are exposed to the detection

of net synergy in the analysis of information modification;

• Variance-based measures are recommended for the analysis of information modification since they

yield zero synergy/redundancy for uncorrelated sources, but can return estimates of information

transfer biased by modifications of the complexity of the target dynamics.

The main experimental results can be summarized as follows:

• The physiological stress induced by head-up tilt brings about a decrease of the complexity

of the short-term variability of heart period, reflected by higher information storage and

internal information, lower cardiorespiratory and higher cardiovascular information transfer,

physiologically associated with sympathetic activation and vagal withdrawal;

• Head-up tilt does not alter the information stored in and transferred to systolic arterial pressure

variability, but information decompositions reveal an enhancement during tilt of respiratory

effects on systolic pressure independent of heart period dynamics;
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• The mental stress induced by the arithmetic task does not alter the complexity of heart period

variability, but leads to a decrease of the cardiorespiratory information transfer physiologically

associated to vagal withdrawal;

• Mental arithmetics increases the complexity of systolic arterial pressure variability, likely

associated with the action of physiological mechanisms unrelated to respiration and heart

period variability.

6. Conclusions

This work provides an exhaustive framework to dissect the information carried by the target of a

network of interacting dynamical systems in atoms of information that form the building blocks of

traditional measures of information dynamics such as predictive information, information storage

and information transfer. These basic elements are useful to elucidate the specific contributions of

individual systems in the network to the dynamics of the target system, as well as to describe the

balance of redundancy and synergy between the sources while they contribute to the information

stored in the target and to the information transferred to it. Formulating exact values of these measures

for the case of Gaussian systems, our theoretical and real-data results illustrate how information

storage, transfer and modification interact with each other to give rise to the predictive information

of a target dynamical system connected to multiple source systems. In fact, though confirming

that different measures reflect different aspects of information processing (respectively, regularity,

causality and synergy/redundancy), we have shown that these measured can undergo concurrent

modifications in response to specific system alterations. Therefore, we advocate that the various

information dynamics measures should not be computed in isolation, but rather evaluated together as

components of the total statistical dependence relevant to target process of a multivariate system. We

confirm that “aggregate” measures of information storage and information transfer can be useful to

reflect macroscopic phenomena like the overall complexity of the target dynamics or the overall causal

effects directed to the target, but are often unspecific to alterations of local network properties such as

internal dynamics of the target or causal contributions from an individual source. These alterations

are better captured by more specific measures such as the internal information and the conditional

information transfer. Moreover, we showed that useful additional inferences about the network

dynamics can be made exploring the concept of information modification through measures that

point out variations related to how the target interacts with a specific source (interaction information

storage), how two sources interact while they send information to the target (interaction information

transfer), and how more complex interactions arise between the target and all sources (multivariate

interaction information).

We performed an exhaustive exploration of the two implementations of the measures of

information dynamics commonly adopted for Gaussian systems, finding that the logarithmic

transformation which relates variance-based and entropy-based measures may give rise to non-trivial

differences between the two formulations. Specifically, since conditional entropy is proportional to

the logarithm of conditional variance, any measure defined as the difference between two conditional

entropies can be equally seen as measuring the ratio between two conditional variances. Therefore,

given that measures defined as the difference between two variances and as the ratio between the

same two variances can change in opposite directions between conditions, situations may arise in

which entropy-based measures increase, and variance-based measures decrease, in response to a

change in condition. Our simulation results document a general bias of entropy-based measures

towards the detection of net synergy, including the case of uncorrelated sources that is reflected by

zero interaction transfer if assessed through conditional variance but by negative interaction transfer if

assessed through conditional entropy. In the analysis of real data we find that, working with processes

normalized to unit variance, when marked variations of the new information produced by the target

process occur together with variations of the opposite sign of the information stored in the process,

variance-based (un-normalized) measures of the information transferred to the target follow closely
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the variations of the new information; on the contrary, entropy-based (normalized) are less sensitive

to the dynamical structure of the target because of the normalization intrinsically present in their

formulation. These results lead to the conclusion that the variance-based formulation should be

preferred to compute measures of interaction information, while the entropy-based implementation is

more indicated to compute measures of information transfer.

The application to experimental data suggested the importance of adopting information

decomposition methods to fully assess the cardiac, vascular and respiratory determinants of short-term

heart rate and arterial pressure variability. The analysis confirmed known findings about the variations

in the complexity and causality of cardiovascular and cardiorespiratory variability, but also revealed

novel interpretations related to how the overall predictability of the dynamics of a target system is

modified due to possible interactions between the information sources. Given their high specificity,

their efficient implementation via traditional multivariate regression analysis, and their demonstrated

link with neural autonomic regulation, the proposed quantities are suitable candidates for large scale

applications to clinical databases recorded under uncontrolled conditions.

Future studies should be directed to extend the decompositions to model-free frameworks

that assess the role of nonlinear physiological dynamics in information storage, transfer and

modification [5,31], to explore novel partial decomposition approaches that separate synergetic and

redundant information rather than providing their net balance [3,16,17], and to explore scenarios

with more than two source processes [15]. Practical extensions should be devoted to evaluate the

importance of these measures for the assessment of cardiovascular and cardiorespiratory interactions

in diseased conditions. Moreover, thanks to its generality, the approach might be applied not only to

cardiovascular physiology, but also to any field of science in which interactions among realizations,

representing the behavior of interacting systems, are under scrutiny.

Supplementary Materials: The following is available online at www.mdpi.com/1099-4300/19/1/5/s1,
Figure S1: Estimation of information measures for finite length realizations of simulated cardiovascular and
cardiorespiratory dynamics.
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