
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005 851

Information-Directed Routing in
Ad Hoc Sensor Networks

Juan Liu, Feng Zhao, and Dragan Petrovic

Abstract—In a sensor network, data routing is tightly coupled
to the needs of a sensing task, and hence the application seman-
tics. This paper introduces the novel idea of information-directed
routing, in which routing is formulated as a joint optimization of
data transport and information aggregation. The routing objective
is to minimize communication cost, while maximizing information
gain, differing from routing considerations for more general ad
hoc networks. The paper uses the concrete problem of locating and
tracking possibly moving signal sources as an example of informa-
tion generation process, and considers two common information
extraction patterns in a sensor network: routing a user query from
an arbitrary entry node to the vicinity of signal sources and back,
or to a prespecified exit node, maximizing information accumu-
lated along the path. We derive information constraints from real-
istic signal models, and present several routing algorithms that find
near-optimal solutions for the joint optimization problem. Simula-
tion results have demonstrated that information-directed routing
is a significant improvement over a previously reported greedy al-
gorithm, as measured by sensing quality such as localization and
tracking accuracy and communication quality such as success rate
in routing around sensor holes.

Index Terms—Ad hoc network, information, routing, sensor net-
work, target localization.

I. INTRODUCTION

THE PRIMARY task of a sensor network is sensing, that
is, to collect information from a physical environment

in order to answer a set of user queries or support other
decision-making functions. Typical high-level information pro-
cessing tasks for a sensor network include detection, tracking,
or classification of physical phenomena of interest such as
people, vehicles, fires, and seismic events. Routing in a sensor
network is not just about getting data from one point to another
in the network. It must be optimized with respect to both
data transport and information gathering. In other words, the
routing structure must match the way the physical information
is generated and aggregated by the network.
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Routing algorithms for a sensor network must be aware of
the sensor network constraints and application requirements. A
sensor network is subject to a unique set of resource constraints
such as limited on-board battery power and limited network
communication bandwidth. In a typical sensor network, each
sensor node operates untethered and has a microprocessor and
limited amount of memory for signal processing and task sched-
uling. Each node also is equipped with one or more of acoustic
microphone arrays, video or still cameras, IR, seismic, or mag-
netic sensing devices. Sensor nodes within each other’s radio
range communicate wirelessly. The tasks for a sensor network
can be varied, depending on the nature of signal sources and
how the information is used. For example, tracking a moving
signal source may require the routing algorithm to combine in-
formation sequentially along a path, while querying the average
temperature over an extended region may use a tree structure to
aggregate the data from the region.

A broad class of sensor network problems can be character-
ized as collaborative signal and information processing prob-
lems. In such problems, a number of sensor nodes may possess
useful information for a sensing task. The goal is to define and
manage dynamic groups of such nodes, maximizing informa-
tion extracted, while keeping resource usage to a minimum. A
number of approaches along this line have been reported in the
literature (see, for example, [1]–[3]). As these approaches have
demonstrated, a routing decision each local node makes during
the information gathering process depends on the data genera-
tion model of the signal sources. This blurring of the abstraction
barrier between applications and data transport is characteristic
of resource-constrained sensor networks. The key is for routing
algorithms to handle and exploit constraints from data genera-
tion and applications in a principled way.

Routing for ad hoc networks is a well-studied problem.
Graph-based algorithms such as Dijkstra or Bellman–Ford type
algorithms are commonly used to determine optimal paths.
Examples include optimized link state routing (OLSR) [4],
destination sequenced distance vector (DSDV) [5], and ad hoc
on-demand distance vector routing (AODV) [6] protocols. Of
recent interest is the topic of energy-aware routing in wireless
or sensor networks. Methods have been proposed, for examples,
in [7] and [8], to plan paths minimizing the chance of node
energy depletion. GPSR [9] routes data around a network hole,
using a stateless protocol over a planar subgraph of the network
topology. Geocasting [10] routes data to a geographically
defined region. However, none of the above ad hoc routing
algorithms consider information gathering and aggregation
while routing data to a node or region, which is a major concern
for sensor networks. Moreover, as will be discussed later in the
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paper, path dependency of the information aggregation problem
for a sensor network renders shortest path algorithms, the basis
for most of the ad hoc routing protocols, inapplicable.

The work closest to what is reported here is directed diffusion
routing protocol for sensor networks [11]. Directed diffusion is
a type of publish-and-subscribe that sets up network paths be-
tween data source nodes and data sink nodes. It floods the net-
work with data interest, and uses network parameters such as
latency to autonomously reinforce good paths. It is an elegant
way to route data based on low-level data attributes, rather than
node addresses, thus bringing routing closer to the application
semantics. However, directed diffusion does not necessarily set
up routing structures that are optimized for information gath-
ering and aggregation, which is the primary focus of this paper.
By considering the information content of the data packets, we
argue that routing in a sensor network can be more than just
a message-transporting mechanism. For example, it can con-
tribute to successive message refinement as in a tracking appli-
cation. Constrained anisotropic diffusion routing (CADR) [12]
considers both routing and data aggregation. However, the al-
gorithm is greedy, and may suffer from getting trapped at local
minima when network holes are present. This paper generalizes
CADR.

The contributions of this paper are twofold.

1) The paper formulates a routing problem for a class of
sensor network applications as a joint optimization of
data transport and information aggregation, and presents
a number of near-optimal algorithms for finding good
quality routing paths. This builds on our earlier work on
collaborative signal processing [1], [3], [12], and general-
izes CADR to handle large sensor holes and more general
query routing scenarios: routing a user query from an
arbitrary entry node to the vicinity of signal sources
and back, or to a prespecified exit node, maximizing
information accumulated along the path.

2) As a concrete instantiation of the general information-di-
rected routing, the paper derives a set of information
models for realistic signal and sensing modalities, using
a canonical problem for a sensor network—locating and
tracking moving signal sources—as the information gen-
eration process. This is significant because performance
evaluation of our routing algorithm depends crucially
on meaningful data generation models. The information
utility of individual sensors can be estimated without
the need to communicate sensor data. Simulation results
are presented to validate the routing algorithms using
measures such as localization and tracking error, and to
demonstrate the benefits of exploiting the tradeoff be-
tween routing efficiency and information maximization.

Despite the fact that in this paper, we focus on target tracking
for illustration, it should be noted that the concept of informa-
tion-directed routing is more generally applicable. The notion
of information utility is common to a broad class of sensing
problems.

We assume each node is aware of its own position, for ex-
ample, using a Global Positioning System (GPS) device or other

location services, and has knowledge about its local neighbor-
hood, including node positions, link quality, and one-hop com-
munication cost. Such knowledge can be established through
local message exchange between neighbors during network ini-
tialization and discovery. With these assumptions, the routing al-
gorithms described here can be regarded as a form of source-ini-
tiated on-demand routing.

The rest of the paper is organized as follows. Section II
introduces target tracking as a canonical problem for sensor
networks and the associated data generation model. Section III
derives the information models and discusses the property of
state dependency in information aggregation. Section IV intro-
duces the general formulation of information-directed routing
and approximations to information constraints. Sections V
and VI develop near-optimal solution to information-directed
routing for two common information extraction scenarios.
Section VII presents simulation results, demonstrating the
benefit of information-directed routing. Section VIII discusses
possible extensions of the current algorithmic embodiment.

II. TRACKING AS A CANONICAL PROBLEM

FOR SENSOR NETWORKS

As an example of data generation processes in a sensor net-
work, consider tracking a point signal source, or target, in a
two–dimensional (2-D) region. The goal of tracking is to esti-
mate target location based on a set of measurements

, indexed by time , and collected by a set
of nodes. To accomplish this, we use a statistical framework
of sequential Bayesian filtering, a generalization of the well-
known Kalman filtering [3]. For conciseness, we only briefly
review the key concepts here. At time , one has some rough
prior knowledge (called belief) about where the target is, usu-
ally in the form of a probability density function .
At time , a new measurement is collected. Sequential
Bayesian filtering incorporates the measurement and updates
the belief to via Bayesian inference

(1)

The integral represents how prior belief is propagated to the cur-
rent time step via the target dynamics . The up-
dated belief is the posterior of target location after observing all
the measurements up to time . The method repeats as time
advances. For more details about sequential Bayesian filtering
in target tracking, please refer to our prior work [3].

In sequential Bayesian filtering, sensor information is aggre-
gated incrementally. Sensors along a routing path can contribute
to target tracking via their measurements. To illustrate the ag-
gregation of information, we consider a simple sensor network
example consisting of four sensors, A, B, C, and D, as shown in
Fig. 1. Belief about the target location is shown using grayscale
grids. Brighter grid means that the target is more likely to be
at the grid location. We assume a very weak initial belief, uni-
form over the entire sensor field, knowing only that the target is
somewhere in the region. Fig. 2(a)–(d) shows how information
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Fig. 1. Sample sensor network layout: Sensors are marked by squares, with
labels A, B, C, and D. Arrows represent the order in which sensor data is to be
combined. The target is marked by “�.”

Fig. 2. Progressive update of target position as sensor data is aggregated along
the path ABCD. (a)–(d) plot the resulting belief after each update.

about the target location is updated as sensor data is combined
in the order of . At each step, the active
sensor node, marked with a diamond, applies its measurement
to update the belief. The localization accuracy is improved over
time: the belief becomes more compact and its centroid moves
closer to the true target location.

To measure the tracking performance, we consider two
quantities: 1) the mean-squared error (MSE)

and 2) the size of the belief state. The MSE describes
the tracking accuracy, and the belief size reflects uncertainty in
the estimate. In this paper, the belief size is calculated as the
number of cells with likelihood value exceeding 0.005. Table I
lists the MSE and belief size values after each step. They
generally decrease as the path is traversed, indicating that more
information about the target position has been accumulated
along the path.

TABLE I
INFORMATION AGGREGATION IN THE SENSOR NETWORK PICTURED IN

FIG. 1. IN THE SECOND COLUMN, INFORMATION IS MEASURED

USING MUTUAL INFORMATION DEFINED IN (2)

III. MODELS OF INFORMATION

We introduce information models to formalize the intuition
developed in Section II. To quantify the contribution expected
of individual sensors, we consider mutual information [3],
a measure with a root in information theory and commonly
used for characterizing the performance of data compression,
classification, and estimation algorithms. As will become
clear shortly, this measure of information contribution can be
estimated without having to first communicate the sensor data.
The mutual information between two random variables and

with a joint probability density function is defined as

where is the Kullback–Leibler divergence [13] between
two distributions. It indicates how much information conveys
about . From a data compression perspective, it measures the
savings in bits of encoding if is already known.

Under the sequential Bayesian filtering method (1), the infor-
mation contribution of sensor with measurement is

(2)

Intuitively, it indicates how much information conveys
about the target location given the current belief. It can
also be interpreted as Kullback–Leibler divergence between

and , the belief after and
before applying the new measurement , respectively
[3]. Hence, reflects the expected amount of changes in
the posterior belief brought upon by sensor . Larger change
means more information. Other information metrics, such as
the Mahalanobis distance [12], have also been proposed. They
are computationally simpler to evaluate and are often good
approximations.

It is worth pointing out that information, which measures how
much a sensor may contribute to the estimation, is an expected
quantity rather than an observation. For example, in (2), the
mutual information is an expectation over all possible
measurements and, hence, can be computed be-
fore is actually observed. In a sensor network, a sensor
may have local knowledge about its neighborhood such as the
location and sensing modality of neighboring nodes. Based on
such knowledge alone, the sensor can compute the information
contribution from each of its neighbors. It is unnecessary for
the neighboring nodes to take measurements and communicate
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back to the sensor. In our previous work [3], we provide a de-
tailed algorithm describing how mutual information is evaluated
based on knowledge local to the leader sensor. With little mod-
ification, this evaluation method can be extended to other infor-
mation metrics.

A. State Dependency

In general, the information contribution of each sensor is
state-dependent. The information metric of (2) depends
on the belief state . Revisiting the sensor network
example in Fig. 2, we compute the information contribution for
each sensor, and list the values in Table I. Note that sensors A
and D are very similar and physically close by. Despite such
similarity, the information values differ significantly (0.67 for
A and 0.07 for D). Visually, as can be observed from Fig. 2,
sensor A brings significant changes to the initial uniform belief.
In contrast, sensor D hardly causes any changes. The reason for
the difference is that A applies to a uniform belief state, while
D applies to a compact belief as shown in Fig. 2(c).

State-dependency is an important property of sensor data
aggregation, regardless of specific choices of information
metric. Intuitively, how much new information a sensor can
bring depends on what is already known. Note that in sensor
networks, sensor measurements are often correlated. Hence,
a sensor’s measurement is not “entirely new,” it could be just
repeating what its neighbors have already reported. In the
previous example, sensor D is highly redundant with sensor A.
Such redundancy shows up in the belief state and, thus, should
be discounted.

IV. INFORMATION-DIRECTED ROUTING

With the intuition developed in Section II and the informa-
tion models presented in Section III, we formulate the informa-
tion-directed routing problem. We use a graph to
describe the sensor network structure. is a collection of ver-
tices corresponding to sensor nodes. is a collection of edges
corresponding to internode connectivities. Associated with an
edge between two nodes and is a communication cost

. The information-directed routing problem can be formu-
lated as finding a path minimizing the total cost

(3)

The first term measures the communication cost. The second is
the negative information – , representing the
total contribution from the sensors . Under this
formulation, routing is to find a path with maximum informa-
tion gain at moderate communication cost. The regularization
parameter controls the balance. In a network where shortest
path is desired, is set to zero. For applications where infor-
mation aggregation is of primary concern and communication
cost is relatively low, should be set to a high value. The for-
mulation (3) can also be interpreted as maximizing information
gain under a communication cost constraint. In this case, is
a Lagrange multiplier [14] whose value is determined by the
constraint.

Fig. 3. Routing scenarios. (a) Routing from a query proxy to the high
activity region and back. The co-centric ellipses represent iso-contours of an
information field, which is maximal at the center. The goal of routing is to
maximally aggregate information along a path while keeping the cost minimal.
(b) Routing from a query proxy to an exit node, maximizing information gain
along the path.

When the information gain is additive, i.e.,

(4)

the path-finding problem can be simplified considerably. It can
be converted to the equivalent problem of finding the shortest
path in a modified graph . has the same set of vertices and
edges as , but has a modified cost
associated with each edge. Dijkstra’s or Bellman–Ford type of
algorithms can be used to find optimal paths.

However, in sensor networks, the additivity condition (4) does
not hold, due to the state-dependency property of information.
For example, suppose sensors and have information value

and with respect to a given belief state. After applying
sensor ’s measurement, the belief state has changed, hence,

is obsolete and needs to be re-computed based on the new
state. The information contribution and cannot be added
together to account for the total contribution. The state-depen-
dency property sets the information directed routing problem
apart from traditional routing problems. Strictly speaking, the
modified graph is not static. The edge cost depends on previ-
ously visited nodes and the signal source. Standard shortest-path
algorithms are no longer applicable. Instead, a path-finding al-
gorithm has to search through possible paths, leading to com-
binatorial explosion. To mitigate this problem, two strategies
may be useful. We can restrict the search for optimal paths
to be within a small region of the sensor network, or we can
apply heuristics to approximate the cost (3). Though informa-
tion is not strictly additive, the sum of individual information

can often be considered as a reasonable approximation
of in cases where the belief state varies slowly. In
particular, one can show that, with mutual information as the in-
formation metric (2), the former is an upper bound of the latter.

In the rest of this paper, we consider two source-initiated
on-demand routing scenarios. These two scenarios are common
in ad hoc sensor networks. The first one is illustrated in Fig. 3(a).
The user issues a query from an arbitrary peripheral sensor node,
which we call a query proxy node, requesting the sensor net-
work to collect information about a phenomenon of interest. The
query proxy has to figure out where such information can be col-
lected and routes the query toward the high information content
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Fig. 4. Routing in the presence of sensor holes. A through G are sensor nodes.
All edges have unit communication cost. The dashed lines plot target trajectory.
(a) Target is moving from X to Y. (b) Target is bouncing back and forth between
X and Y.

region. This differs from routing in communication networks
where the destination is often known a priori to the sender. Here,
the destination is unknown and is dynamically determined by
the routing state and physical phenomenon. We will discuss this
routing problem in more details in Section V.

The second routing scenario is pictured in Fig. 3(b). The user,
for example, an police officer, may issue a query to a query
proxy, asking the sensor network to collect information and re-
port to an extraction or exit node, for example, a police station,
where the information can be extracted for further processing.
In this scenario, the query proxy and exit nodes may be far away
from the high information content region. A path taking a detour
toward the high information region may be preferable than the
shortest path. This routing problem is discussed in Section VI.

V. ROUTING A QUERY TO WHERE INFORMATION IS

In target tracking applications, it is important to be able to
initiate a query from an arbitrary entry node to find out the cur-
rent status of a target, as illustrated in Fig. 3(a). Ideally, the entry
point node (query proxy node) would like to contact the nodes
in the vicinity of the target, or the high information content re-
gion. Due to the distributed nature of ad hoc sensor networks,
the query proxy may not be aware of existence and whereabouts
of the high information content region. Hence, it must find out
which node in its local neighborhood may have better informa-
tion, and then relay the query to that node. The relay process
is similar to routing with gradient in the information field, only
that the information field is dynamic and not directly observ-
able. During the relay, the intermediate nodes incorporate their
measurements to refine the target estimate.

Previous approaches such as CADR [1] address the routing
problem with a greedy relay strategy. Due to the greedy nature,
the relay may get trapped near sensor holes. Fig. 4(a) provides a
simple example. Here, we use the inverse of Euclidean distance
between a sensor and the target to measure sensor’s information
contribution (assuming these information values are given by an
“oracle”). The problem with greedy search is independent of the
choice of information measure. Consider the case that the target
moves from X to Y along a straight line [see Fig. 4(a)]. At time

, node A is the leader, and can relay the information to
its neighbor B or C. The relay goes to B since it has a higher
information value. By the same criteria, B then relays back to
A. The relay keeps bouncing between A and B, while the target
moves away. The path never gets to nodes E, F, or G, who may
become informative as the target moves closer to Y. The culprit

TABLE II
ALGORITHM FOR MIN-HOP ROUTING AT EACH NODE

in this case is the “sensor hole” the target went through. The
greedy algorithm fails due to its lack of knowledge beyond the
immediate neighborhood.

To route around holes in ad hoc networks, Karp and Kung
[9] has proposed a greedy perimeter stateless routing (GPSR)
method. Once the greedy routing gets stuck, it switches to the
mode of following the perimeter of a hole. While this method
guarantees successful routing in static planar graphs, it is not ap-
plicable to our scenario. One difficulty lies in detecting whether
the greedy search is trapped, since the target state is not observ-
able. Fig. 4(b) shows a counter example: observing the path al-
ternating between A and B does not necessarily imply that the
search is stuck. It may well be that the target itself is oscillating
between points X and Y. In this case, the alternating path be-
tween A and B is desirable.

We resort to an information-directed multiple step look-ahead
approach. We search for a path with maximum information ag-
gregation among the family of paths with less than hops.
The look-ahead horizon should be large enough and compa-
rable to the diameter of sensor holes, yet not too large to make
the computational cost prohibitive. For example, in simulations
discussed in Section VII, with a 4 2 sensor hole, or 4
works well. More generally, for static sensor networks, the sen-
sors can explore their local area in the network discovery phase
and store in cache the information about inhomogeneity. This
is done, for example, in [15]. Later in the path planning phase,
such information will be helpful in selecting the value for .

Here, we describe a suboptimal path-finding algorithm called
the min-hop algorithm, which can be implemented distributedly.
Table II shows the algorithm on each node. A node wakes up
upon receiving a query-routing request, which consists of the
tuple ( , , ) of time, state, and path, respectively. In
target tracking, the state is the belief . The active
node incorporates a new measurement, plans the next move with
a -step look-ahead horizon, and relays on, until the path meets
a prespecified length . To plan the path, the active node first
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Fig. 5. Conversion ofM -hop local graph. (a) A localM -hop neighborhood of
the current leader A, with information gain labeled at each node. (b) Converted
graph that can be solved by a shortest-path algorithm.

selects the destination as the node with the highest information
value within its -hop neighborhood. It compares minimum
hop paths from the active node to the destination, and selects
the path with maximum information aggregation, measured as

, where is the information metric such as (2). The al-
gorithm routes the query one hop down the selected path, and
the path-finding procedure repeats.

To find a minimum hop path with maximum accumulated in-
formation, we perform the following conversion on the graph G
and turn it into a shortest-path problem. The conversion is de-
signed as follows: for each node , we assign to each edge going
into the node the cost of , where is some large number
and is the information value at node . Fig. 5 shows an ex-
ample of local neighborhood before and after the conversion.
The information value of each node is marked next to the node
in Fig. 5(a). The cost of edges are marked in Fig. 5(b). It is easy
to show that the path with maximum information accumulation
in the original graph is the shortest path in the converted graph.
The path is then found efficiently using Dijkstra’s algorithm,
with the computational complexity . The
overhead here is the computation of information contribution.
The complexity is at each planning step.

With the min-hop algorithm, we revisit the examples in Fig. 4.
Let the search depth . If the target is traveling in a straight
line as in Fig. 4(a), starting from A, the path will bounce between
A and B for a while, but as the target gets close to G, G will
replace B as the most informative sensor in A’s neighborhood,
and the path will extend to G via ACDG. On the other hand,
if the target is traveling as in Fig. 4(b), then B is always the
most informative sensor in A’s neighborhood, and vice versa.
The min-hop algorithm selects the path alternating between A
and B.

VI. ROUTING A QUERY TO AN EXIT NODE

In the scenario pictured in Fig. 3(b), the goal is to route a
query from the query proxy to the exit point and accumulate as
much information as possible along the way, so that one can ex-
tract a good estimate about the target state at the exit node, and
yet keep the total communication cost close to some prespeci-
fied amount . Here, the total cost is treated as a soft con-
straint, which is a “hypothetical” cost that the routing algorithm
aims to achieve.1 The value of controls the tradeoff between

1An alternative formulation of treatingC as a hard constraint which must be
satisfied strictly. However, finding an optimal path under this hard constraint will
require global knowledge about the sensor network and, thus, is inapplicable to
ad hoc sensor networks.

the communication cost and information aggregation. Low
value favors shortest path, and high allows longer paths with
more effective information aggregation.

For this task, we consider an A* heuristic search which is
commonly used for problems such as constraint satisfaction and
motion planning [16]. The basic A* is a best first search, where
the merit of a node is assessed as the sum of the actual cost paid
to reach it from the query proxy, and the estimated cost to pay
in order to get to the exit node (often known as the “cost-to-go”).
It keeps a moving frontier of , and iteratively expands the
nodes on the frontier until the exit is reached. The resulting path
is guaranteed to be optimal if the estimated never exceeds the
true cost-to-go, i.e., is admissible. The well-known Dijkstra’s
algorithm can be considered as a special case of A* with esti-
mated cost-to-go , which is always an underestimate. The
complexity of A* search depends on the choice of . Conser-
vative takes longer to find an optimal solution. An optimistic
estimate searches faster, yet an overly optimistic estimate (not
admissible) may miss the optimal solution. For details analysis
of A* complexity, refer to [16].

For real-time path-finding, we use an variation of the A*
method, namely, the real-time A* (RTA*) search. It restricts
search to small local region and makes real-time moves before
the entire path is planned. Only local information is used in the
RTA* search, hence, it can be implemented distributedly and is
suitable for ad hoc networks. It guarantees to find a path if it ex-
ists, but as a price to pay for real-time operations, the solution
may lose the optimality of the baseline A* search and may be
suboptimal. The selected path may exhibit backtrack behavior.

RTA* search is recursive. Given an estimated cost-to-go,
the active node selects the best move (with some look-ahead
horizon). The algorithm repeats until the exit node is reached.
The key to implementing a RTA* algorithm is defining a suit-
able heuristic to estimate the cost-to-go . The total cost (as in
(3)) comprises a communication cost term and an information
aggregation term. The estimation of communication cost is
straightforward. One can use standard metric such as Euclidean
distance.

The estimation of information contribution is more compli-
cated. One has to estimate the information contribution of sen-
sors lying ahead, based on the currently available information
alone without further querying or communication. Here, we de-
scribe an estimation method. Suppose we have planned the path

, and is now at . To further reach the exist node , the
remaining path length is upper bounded by , where

is the communication cost already paid. Thus, the locus of
all feasible paths forms an ellipse with as one focus point
and the current node as the other. Fig. 6 shows such an ellipse.
We denote its extrema along the major axis as and , and
extrema along the minor axis as and . Within the ellipse
there are infinitely many paths satisfying the length constraint.
Some path may be complicated and hard to describe, such as
the thick curly path in the figure. Rather than estimate for all
possible paths, we sample four paths as representatives.

• Path 1: the concatenation of two line segments:
and .

• Path 2: .
• Path 3: .
• Path 4: .
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Fig. 6. Node v is the current node; v is the exit node. The ellipse covers
all possible paths from v to v satisfying communication cost constraint.
The thick curve represent one sample path.

TABLE III
FUNCTION TO ESTIMATE INFORMATION-TO-GO

For each path, the information is computed via numerical in-
tegral, which samples the path at an interval inversely propor-
tional to the sensor density. From to , the information
lying ahead is estimated as the maximum among the four paths,
as an approximation to the admissible heuristic estimate. The
computational complexity of estimating information is propor-
tional to the number of sampling paths (four in this case), times
the number of integral intervals. On average, we have about ten
samples along each path. Hence, the overall complexity is about
40 times the computation of .

The estimation of information contribution is summarized in
Table III. If the remaining path length allowance
is smaller than the Euclidean distance between to , the
ellipse cannot be constructed. In this case, the estimation algo-
rithm returns zero information. At this point, the forward search
degenerates into a shortest-path problem based on the commu-
nication cost alone. Furthermore, if the initial allowance is
zero to start with, then the algorithm returns the shortest path
from the querier to the exit.

VII. EXPERIMENTAL RESULTS

Simulations were carried out to validate and characterize the
performance of the proposed routing algorithms. We simulate
a sensor field of dimension 225 375 . Two types of sen-
sors are used for target tracking: acoustic amplitude sensors and
direction-of-arrival (DOA) sensors. The acoustic amplitude sen-
sors output sound amplitude measured at each microphone, and

Fig. 7. Examples of simulated sensor layout. (a) Homogeneous. (b) With a
sensor hole. The points marked with a dot denote amplitude sensors, ant the
points marked with a “x” denote the DOA sensors.

estimate the distance to a target based on the physics of sound at-
tenuation. The DOA sensors are small microphone arrays. Using
beam-forming techniques, they determine the direction where
sound comes from, i.e., the bearing of the target. The detailed
description of these two types of sensors can be found in [3].

Sensor layout is generated as follows: first generate a uni-
form grid of 15 rows and 6 columns to evenly cover the region,
then perturb the grid points with independent Gaussian noise of

. The resulted sensor layout is plotted in Fig. 7(a). To
test the routing performance in the presence of sensor holes, we
remove the uniform grid points in rows 5 and 6 and columns
2–5 before adding perturbation. The resulting sensor network is
shown in Fig. 7(b). The sensor network consists of 70% ampli-
tude sensors and 30% DOA sensors, randomly spread over the
sensor region. Each sensor can directly communicate to neigh-
bors within a 50 m radius.

The routing algorithms are evaluated in terms of the efficiency
of communication expenditure and the effectiveness of infor-
mation aggregation in support of target tracking. We measure
tracking performance using MSE and belief size. Besides these
numerical measures, characteristics of selected path are also of
interest. We pay attention to noticeable features such as whether
the path successfully gets around holes, where it ends, and how
it takes detour to accumulate information.

A. Query Routing Using a Min-Hop Algorithm

Here, we present the simulation results for routing a query
from an arbitrary query proxy node to high information content
region. Target may be stationary or moving.

1) Stationary Target: A stationary target is simulated at lo-
cation (125, 200). We use the sensor closest to the lower left
corner (0,0) as the query proxy node. Starting from the proxy
node, we would like to progressively estimate the target loca-
tion and shoot the query toward it. In simulation, we allow a
path length of 20 hops and examine the performance at the end
of the path. The sensor network is inhomogeneous with a sensor
hole, as shown in Fig. 7(b).
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TABLE IV
SIMULATION RESULTS: ROUTING A QUERY TO TARGET VICINITY

USING THE GREEDY CADR AND THE MIN-HOP ALGORITHM

WITH LOOKAHEAD HORIZONM = 2, 3, AND 4

For this routing task, we compare the min-hop algorithm
using a look-ahead horizon , 3, and 4 with the greedy
CADR algorithm. Each method is simulated with 100 indepen-
dent runs. The results are summarized and reported in Table IV.
As discussed in Section V, some paths may get stuck and fail
to route around the sensor hole. If the path has an ending point
with -coordinate below 100, we consider that as a “stuck”
situation.

Compared with the greedy CADR algorithm, the min-hop
algorithm significantly improves the tracking performance. For
example, with a three-step look-ahead, the min-hop algorithm
successfully routes around the sensor hole in 92 runs; only 8
runs are stuck at the sensor hole. By contrast, the CADR fails in
80 runs. Tracking performance is also improved: with ,
the min-hop algorithm reduces the square root of MSE by a
factor of 4, and reduces the belief size by a factor of 3. The
tracking performance comparison suggests that the min-hop
algorithm aggregates information more effectively than the
greedy CADR. Table IV also lists the average distance between
the path ending point and the true target. This distance indicates
the capability of the routing algorithm to route a path to the
vicinity of the target. The greedy CADR performs poorly here:
the ending point is on average very far (108.91 m) from the true
target location. The min-hop algorithm routes the path to much
closer positions. For example, with , the ending point is
approximately 33 m from the target. The overall computational
complexity of path planning is roughly proportional to the size
of the -hop neighborhood. In our simulation, the average
neighborhood size is 6.2 for , 20.2 for , and 39.2
for .

In general, the overall performance improves with the in-
crease of the look-ahead horizon , but the improvement is
nonuniform. It is most prominent for small , and marginal as

increases. This is consistent with our intuition. The value of
should be selected based on the knowledge of network in-

homogeneity such as sensor hole size. In our simulated sensor
layout, the sensor hole is roughly the size of a two row by four
column grid. Hence, three-hop path is often sufficient to get to
the side and further traverse around it. Further increasing to
4 brings little gain in performance.

Fig. 8 visualizes the paths produced by the greedy CADR and
the min-hop algorithm with applied to the same sensor
network. The greedy algorithm path is plotted in Fig. 8(a). The
path gets stuck and spends most of hops (17 hops out of 20)
bouncing between two nodes on the lower side of the sensor
hole. The ending point, marked with a little square, is far away
from the target. For comparison, the min-hop path is plotted

Fig. 8. Query routing path produced by (a) the greedy CADR algorithm and
(b) the min-hop algorithm with M = 3. The target is located at (125, 200),
roughly in the middle of the sensor field. It is marked with a “�.” The selected
paths are marked with solid lines. The nodes where the paths end are marked
with a square.

TABLE V
TRACKING PERFORMANCE TO ROUTE A QUERY TO HIGH INFORMATION

REGION WITH A MOVING TARGET. THE NUMBERS ARE

AVERAGED OVER 100 RUNS AND ALL TIME STEPS

in Fig. 8(b). The path manages to get around the sensor hole,
and ends at a node slightly above the true target location. The
tracking performance is also much improved. The target loca-
tion estimate is more accurate and has higher confidence.

2) Moving Target: In tracking applications, target is often
nonstationary. In principle, moving target can be considered as
an extension of the stationary target case; the target can be con-
sidered as approximately stationary within a short time interval.
With target moving, routing a query towards the high informa-
tion content region is essentially routing a path to follow the
target. Here, we simulate a target moving along the straight line

(the center line of the sensor field along the vertical
dimension) with speed m/s. The query enters at the node
closest to the initial target position (125, 0).

We compare the min-hop algorithm ( , 3, and 4) with
the greedy CADR, with 100 independent runs for each. The per-
formance is summarized in Table V. Similar as in the stationary
case, routing algorithms may get stuck at sensor holes. While
the routing is stuck, the target estimate keeps worsening due to
weaker signals. In simulation, a track is considered lost if by
the time the vehicle reaches the upper side of the sensor field
( ), the estimate of target location of the last five steps is
on average more than 60 m away from the true target location.
We report the number of “lost” runs, and the statistics (MSE
and belief size) for the good runs, averaged over all runs and all
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Fig. 9. Routing query toward a moving target: Path produced by the min-hop
method with M = 3. The snapshots are at the end of 30, 60, and 90 hops.
The target (marked with a “�”) is at location (125, 105), (125, 210), and
(125, 315), respectively. The selected path is marked with solid lines.

Fig. 10. Routing query toward a moving target: Path produced by the greedy
CADR method. Simulation setting is the same as in Fig. 9.

time steps. Here, we observe similar characteristics as in the sta-
tionary case. With the greedy algorithm, most of the runs lost the
target (93 out of 100). With increasing look-ahead horizon ,
the percentage of lost runs is reduced significantly. Among the
good runs, the tracking performance improves with the increase
of . For example, with , the square root of the MSE is
only 1/2 of that obtained by the greedy algorithm. From these
results, we can see that the min-hop algorithm with a modest
look-ahead horizon ( or 3) is much more robust against
the presence of sensor holes.

Fig. 9 shows several snapshots of the routing path using the
greedy algorithm. In all runs, the final path is 100-hop long. The
figure shows the progressive path development after 30, 60, and
90 hops. Similar as in the stationary target case, the min-hop al-
gorithm routes around sensor holes. The snapshots indicates that
the path mainly follows the target movement, but occasionally
reaches out to nearby sensors to aggregate information. The be-
lief states follows the target fairly closely. For comparison, the
path produced by the greedy CADR is plotted in Fig. 10. The
path failed to get around the sensor hole within 30 hops and is
stuck ever since. The belief state failed to track the target. As
the target moves away, the signal is too weak to correct the be-
lief, hence, the belief eventually missed the target completely.
The failure is caused by the feedback between belief estimation
and query routing: as the routing failed to aggregate informa-
tion, the estimate can be poor; and as the estimation accuracy

TABLE VI
INFORMATION-DIRECTED ROUTING USING RTA* FORWARD SEARCH: RESULTS

WITH DIFFERENT HYPOTHETICAL PATH LENGTH CONSTRAINTS

deteriorates, the estimated belief state provides little guidance
to routing.

B. Query Routing Using Forward Search

The forward search routing from the query proxy to the exit
node is tested with a stationary target at (125, 200). The selec-
tion of query proxy and exit node can be arbitrary. We select the
query proxy node as the node closest to the lower left corner
(0,0), and the exit node as the node closest to the upper left
corner (0, 375). Forward search is performed on a homogeneous
sensor network [as in Fig. 7(a)] to route query between these two
nodes.

Recall from Section VI that the information-directed routing
problem is essentially a tradeoff between the communication ex-
pense and information aggregation, with the balance controlled
by the hypothetical path length constraint . We vary the al-
lowance ; for each value , 100 independent runs are sim-
ulated. The numerical results are listed in Table VI. We use the
shortest path as a benchmark for comparison (the left most point
in the figures). The average number of hops increases with the
hypothetical allowance . It is the same order as divided
by the radio range of 50 m, but about 35%—50% larger. The
margin accounts for the fact that sensors are not dense enough,
and communication over the maximum radio range may not al-
ways be feasible. From Table VI, we can see that both the MSE
and belief size decreases with path length. Compared with the
shortest path, the information-directed routes take a little bit
of detour, but improve the tracking performance considerably.
On average, the square root of MSE is cut to half with a 30%
longer path. In sensor network practice, based on the application
specifics, one can choose an efficient tradeoff at an affordable
communication expense.

Fig. 11 visualizes selected paths with different length. The
shortest path is shown in Fig. 11(a). It has ten hops and mostly
follows a vertical line from the query proxy to the exit node. The
belief state is fairly big, and cannot localize the target. Fig. 11(b)
shows a longer path of 12 hops. Starting from the proxy, the
path bends toward the target direction in attempt to accumulate
information. The tracking performance is vastly better than the
shortest path. Fig. 11(c) shows a path of 21 hops. The tracking
accuracy is further improved, but the improvement is less promi-
nent. The caption of Fig. 11 lists the detailed numerical results
for comparison.

VIII. DISCUSSION

We have demonstrated the benefits of information-directed
routing that jointly optimizes for maximal information gain
and minimal communication cost. In the simulation study, we
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Fig. 11. Routing query from the proxy to exit node. (a) Shortest path: ten
hops, sqrt(MSE) = 43:18, belief size = 1176. (b) 12-hop path selected by
the RTA* algorithm, sqrt(MSE) = 3:70, belief size = 91. (c) 21-hop path
selected by the RTA* algorithm, sqrt(MSE) = 2:46, belief size = 105.

have shown that the min-hop algorithm, compared with the
previous greedy algorithm, is 4–11 times more likely to suc-
ceed in routing a message around sensor holes with a three-step
look-ahead, and at the same time produces 2–4 times less error
in tracking a signal source. This significant improvement is
obtained at the cost of additional computation at each decision
node to search the graph of its -hop neighborhood. However,
the complexity of our algorithm grows only quadratically with
the number of nodes in the neighborhood. Choosing an appro-
priate neighborhood size will allow us to obtain a sufficient
amount of information at only a modest cost.

Knowledge about network structure or application plays an
important role in assisting the information-directed routing al-
gorithms such as the selection of . In a homogeneous net-
work, greedy routing algorithms such as CADR provide sat-
isfactory results at a low computational cost. In the presence
of holes in the network, a multistep look-ahead routing algo-
rithms such as the min-hop algorithm may be necessary. These
algorithms search a local neighborhood beyond the immediate
one-hop neighbors in the network. Additional knowledge about
the network, such as sensor node density in a region, can be used
to estimate information gain ahead in the forward search algo-
rithm RTA*. The parameter or structure of a network, for ex-
ample, node density or network holes, may be discovered and
mapped out during the initialization phase. If such knowledge
is made available, then online routing algorithms can use ei-
ther a greedy or a multistep search and switch as appropriate
to minimize the overhead. Likewise, knowing the distribution
of physical stimuli can help plan data aggregation and routing
accordingly. In general, a priori knowledge about a network
or application should be exploited whenever possible to assist
routing in a sensor network. If such a priori knowledge is not
available, one may resort to an online iterative probing strategy
to explore the network inhomogeneity.

While we presented information-directed routing using in the
context of localization and tracking problems, the general idea
of using information to guide routing applies to other problems
as well. For example, in monitoring and detection problems, in-
formation may be defined as reduction of uncertainty in the hy-
pothesis test of target presence. In classification problems, infor-
mation may relate to how sensor measurement affects the overall

classification error. The specific form of information model may
vary; the basic structure of the routing algorithms stay the same.

We presented the routing algorithms for scenarios with a
single stimulus. The algorithms can be generalized to handle
multiple stimuli, using a spanning tree such as Steiner tree
[17]. While computing an exact Steiner tree is very expensive,
approximate algorithms exist. For example, a greedy Steiner
tree algorithm produces a tree that is no factor worse than
the optimal tree [18], [19], where is the number of leaves in
the tree. Generalizing the algorithms described in this paper
to handle dynamically moving stimuli while maintaining good
approximations to the optimal routing tree remains as a future
research topic.

REFERENCES

[1] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor col-
laboration,” ., vol. 19, no. 2, pp. 61–72, Mar. 2002.

[2] R. Brooks, C. Griffin, and D. Friedlander, “Self-organized distributed
sensor network entity tracking,” Int. J. High-Performance Comput.
Appl., vol. 16, no. 3, pp. 207–219, 2002.

[3] J. Liu, J. E. Reich, and F. Zhao, “Collaborative in-network processing
for target tracking,” EURASIP, J. Appl. Signal Process., vol. 2003, pp.
378–391, Mar. 2003.

[4] T. Clausen, G. Hansen, L. Christensen, and G. Behrmann, “The opti-
mized link state routing protocol, evaluation through experiments and
simulation,” in Proc. IEEE Symp. Wireless Pers. Mobile Commun., 2001.

[5] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,” Comput.
Commun. Rev., pp. 234–244, 1994.

[6] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Proc. 2nd IEEE Workshop Mobile Comput. Syst. Appl., Feb.
1999, pp. 90–100.

[7] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in wireless
ad hoc networks,” presented at the MobiCom, Rome, Italy, Jul. 2001.

[8] R. C. Shah and J. M. Rabaey, “Energy aware routing for low energy ad
hoc sensor networks,” in Proc. IEEE Wireless Commun. Netw. Conf.,
Orlando, FL, Mar. 2001, pp. 350–355.

[9] B. Karp and H. T. Kung, “Greedy perimeter stateless routing for wireless
networks,” in Proc. MobiCom, Boston, MA, Aug. 2000, pp. 243–254.

[10] Y.-B. Ko and N. H. Vaidya, “Geocasting in mobile ad hoc networks:
Location-based multicast algorithms,” in Proc. IEEE Workshop Mobile
Comput. Syst. Appl., New Orleans, LA, Feb. 1999, pp. 101–110.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
presented at the MobiCom 2000, Boston, MA, Aug. 2000.

[12] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor networks,”
Int. J. High-Performance Comput. Appl., vol. 16, no. 3, pp. 293–313,
2002.

[13] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[14] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Sci-
entific, 1995.

[15] Q. Huang, C. Lu, and G.-C. Roman, “Mobicast: Just-in-time multicast
for sensor networks under spatiotemporal constraints,” in Proc. Inf.
Process. Sensor Netw. (IPSN), Apr. 2003, pp. 442–457.

[16] R. Korf, “Real-time heuristic search,” Artif. Intell., vol. 42, pp. 189–211,
1990.

[17] E. J. Cockayne and D. G. Schiller, “Computation of Steiner minimal
trees,” in Proc. Combinatorics (Conf. Combinatorial Math.), D. J. A.
Welsh and D. R. Woodall, Eds., Southend-on-Sea, Essex, U.K., 1972,
pp. 53–71.

[18] M. Imase and B. M. Waxman, “Dynamic Steiner tree problem,” SIAM
J. Discrete Math., vol. 4, pp. 369–384, 1991.

[19] N. Alon and Y. Azar, “On-line Steiner trees in the Euclidean plane,”
Discrete Comput. Geom., vol. 10, pp. 113–121, 1993.



LIU et al.: INFORMATION-DIRECTED ROUTING IN AD HOC SENSOR NETWORKS 861

Juan Liu received the B.E. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 1995, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois
at Urbana–Champaign, Urbana, in 1998 and 2001,
respectively.

In September 2001, she joined Palo Alto Re-
search Center, Palto Alto, CA, as a Research
Scientist, working in the embedded collaborative
computing area. Her research interests include
signal processing, statistical modeling, detection

and estimation, network routing, and their applications to distributed sensor
network problems.

Feng Zhao received the Ph.D. degree in elec-
trical engineering and computer science from the
Massachusetts Institute of Technology (MIT),
Cambridge.

He is a Senior Researcher at Microsoft Research,
Redmond, VA, where he manages the Networked
Embedded Computing Group. He has taught at Stan-
ford University and Ohio State University. He was
a Principal Scientist at Xerox PARC and directed
PARC’s sensor network research effort. He recently
coauthored Wireless Sensor Networks: An Informa-

tion Processing Approach, (San Mateo, CA: Morgan Kaufmann). His current
interest is in developing algorithms and software for interconnected devices
such as wireless sensor networks. He is well-known for his work in networked
embedded systems, distributed algorithms, and artificial intelligence.

Dr. Zhao is serving as the Editor-In-Chief of ACM Transactions on Sensor
Networks.

Dragan Petrovic was born in Nis, Serbia-
Montenegro, in 1979. He received the B.S. de-
gree in computer engineering (highest honors) from
the University of Illinois at Urbana–Champaign,
Urbana, in 1999 and the M.S. degree in electrical
engineering from the University of California,
Berkeley, in 2001. He is currently working towards
the Ph.D. degree at the University of California
under the supervision of Profs. K. Ramchandran and
J. Rabaey.

His research interests include compression,
routing, and reliable data transfer in sensor networks, as well as error control
coding.


	toc
	Information-Directed Routing in Ad Hoc Sensor Networks
	Juan Liu, Feng Zhao, and Dragan Petrovic
	I. I NTRODUCTION
	II. T RACKING AS A C ANONICAL P ROBLEM F OR S ENSOR N ETWORKS

	Fig.€1. Sample sensor network layout: Sensors are marked by squa
	Fig.€2. Progressive update of target position as sensor data is 
	TABLE I I NFORMATION A GGREGATION IN THE S ENSOR N ETWORK P ICTU
	III. M ODELS OF I NFORMATION
	A. State Dependency

	IV. I NFORMATION -D IRECTED R OUTING

	Fig.€3. Routing scenarios. (a) Routing from a query proxy to the
	Fig.€4. Routing in the presence of sensor holes. A through G are
	V. R OUTING A Q UERY TO W HERE I NFORMATION IS

	TABLE II A LGORITHM FOR M IN -H OP R OUTING AT E ACH N ODE
	Fig.€5. Conversion of $M$ -hop local graph. (a) A local $M$ -hop
	VI. R OUTING A Q UERY TO AN E XIT N ODE

	Fig. 6. Node $v_{t}$ is the current node; $v_{\rm exit}$ is the 
	TABLE III F UNCTION TO E STIMATE I NFORMATION - TO -G O
	VII. E XPERIMENTAL R ESULTS

	Fig.€7. Examples of simulated sensor layout. (a) Homogeneous. (b
	A. Query Routing Using a Min-Hop Algorithm
	1) Stationary Target: A stationary target is simulated at locati


	TABLE IV S IMULATION R ESULTS: R OUTING A Q UERY TO T ARGET V IC
	Fig.€8. Query routing path produced by (a) the greedy CADR algor
	TABLE V T RACKING P ERFORMANCE TO R OUTE A Q UERY TO H IGH I NFO
	2) Moving Target: In tracking applications, target is often nons

	Fig.€9. Routing query toward a moving target: Path produced by t
	Fig.€10. Routing query toward a moving target: Path produced by 
	TABLE VI I NFORMATION -D IRECTED R OUTING U SING RTA* F ORWARD S
	B. Query Routing Using Forward Search
	VIII. D ISCUSSION

	Fig.€11. Routing query from the proxy to exit node. (a) Shortest
	F. Zhao, J. Shin, and J. Reich, Information-driven dynamic senso
	R. Brooks, C. Griffin, and D. Friedlander, Self-organized distri
	J. Liu, J. E. Reich, and F. Zhao, Collaborative in-network proce
	T. Clausen, G. Hansen, L. Christensen, and G. Behrmann, The opti
	C. E. Perkins and P. Bhagwat, Highly dynamic destination-sequenc
	C. E. Perkins and E. M. Royer, Ad-hoc on-demand distance vector 
	Q. Li, J. Aslam, and D. Rus, Online power-aware routing in wirel
	R. C. Shah and J. M. Rabaey, Energy aware routing for low energy
	B. Karp and H. T. Kung, Greedy perimeter stateless routing for w
	Y.-B. Ko and N. H. Vaidya, Geocasting in mobile ad hoc networks:
	C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed diffusio
	M. Chu, H. Haussecker, and F. Zhao, Scalable information-driven 
	T. M. Cover and J. A. Thomas, Elements of Information Theory . N
	D. P. Bertsekas, Nonlinear Programming . Belmont, MA: Athena Sci
	Q. Huang, C. Lu, and G.-C. Roman, Mobicast: Just-in-time multica
	R. Korf, Real-time heuristic search, Artif. Intell., vol. 42, p
	E. J. Cockayne and D. G. Schiller, Computation of Steiner minima
	M. Imase and B. M. Waxman, Dynamic Steiner tree problem, SIAM J.
	N. Alon and Y. Azar, On-line Steiner trees in the Euclidean plan



