
Information Discriminant Analysis:
Feature Extraction with an

Information-Theoretic Objective
Zoran Nenadic, Member, IEEE

Abstract—Using elementary information-theoretic tools, we develop a novel technique for linear transformation from the space of

observations into a low-dimensional (feature) subspace for the purpose of classification. The technique is based on a numerical

optimization of an information-theoretic objective function, which can be computed analytically. The advantages of the proposedmethod

over several other techniques are discussed and the conditions underwhich themethod reduces to linear discriminant analysis are given.

We show that the novel objective function enjoys many of the properties of the mutual information and the Bayes error and we give

sufficient conditions for the method to be Bayes-optimal. Since the objective function is maximized numerically, we show how the

calculations can be accelerated to yield feasible solutions. The performance of the method compares favorably to other linear

discriminant-based feature extraction methods on a number of simulated and real-world data sets.

Index Terms—Feature extraction, information theory, mutual information, entropy, classification, linear discriminant analysis, Bayes

error.

Ç

1 INTRODUCTION

FEATURE extraction is a common preprocessing step in the
analysis of multivariate statistical data. In a broad sense,

the feature extraction can be defined as a low-dimensional
data representation, where features capture some important
data properties. An obvious benefit of this dimensionality
reduction is that data becomes computationally more
manageable.More importantly, thedimensionality reduction
facilitates numerous applications, such as data compression,
denoising, pattern recognition, etc. Many of these applica-
tions rely on accurate estimates of the data statistics, e.g.,
means, covariances, or probability density functions (PDFs),
in general. In the face of a limited sample size, a direct
estimation of these quantities in the data space is grossly
inaccurate, primarily because the high-dimensional data
space is mostly sparse [1, p. 70], [2], a phenomenon known as
the curse of dimensionality. Also, the feature extraction may be
useful for visualization purposes, where the optimal low-
dimensional data projection is sought (projection pursuit),
subject to a suitably chosen objective function [2], [3].

In the majority of applications, feature extraction meth-
ods are linear; that is, a feature vector represents a linear
combination of the attributes of a data vector and resides in a
(linear) subspace of the data space. Consequently, the
transformation from the data space to the feature space is
represented by a transformation matrix. Recently, a couple
of nonlinear feature extraction methods have been proposed
[4], [5], where features reside on a low-dimensional

manifold embedded in the data space. However, linear
feature extraction methods continue to play an important
role in many applications, primarily due to their computa-
tional effectiveness.

From a different standpoint, feature extraction methods
can be classified as unsupervised and supervised. In un-
supervised applications, the data class labels are unknown;
therefore, it is assumed that data is sampled from a common
distribution. The statistical properties of this distribution are
thenused to facilitate the feature extraction process. The best-
known representative of these techniques is principal compo-
nent analysis (PCA), which relies on the first two statistical
moments of the data distribution (see [6] or any other
textbook). Another popular method, which utilizes higher
order statistical moments and can be viewed as a general-
ization of PCA, is independent component analysis (ICA) (see [7]
for survey). In supervised applications, the knowledge of the
data class labels is used to find a low-dimensional representa-
tion which preserves the class differences, so that a classifier
can be designed in the feature domain. This type of feature
extraction is often referred to as the discriminant feature
extraction (DFE). Undoubtedly, linear discriminant analysis
(LDA) is the best known representative of these techniques.

Thebasic formofLDAwas introducedbyFisher [8] and, so,
the method often goes by the name of the Fisher linear
discriminant. The method was subsequently generalized by
Rao [9] and it has since been used in many statistical
applications, such as speech recognition (see [10] for a
review), document classification [11], and face recognition
[12]. Under fairly restrictive assumptions, it can be shown
that LDA is an optimal1 linear DFE [13]. Motivated by these
restrictions, Kumar andAndreou [10] proposed an extension
of LDA, which they derived using a maximum likelihood
(ML) approach. Other linear DFE methods include the use of
probabilistic distance measures [14], such as Kullback-Liebler

1394 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 8, AUGUST 2007

. The author is with the Department of Biomedical Engineering and the
Department of Electrical Engineering and Computer Science, University of
California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715.
E-mail: znenadic@uci.edu.

Manuscript received 13 Nov. 2005; revised 28 June 2006; accepted 22 Sept.
2006; published online 18 Jan. 2007.
Recommended for acceptance by X. Tang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0617-1105.
Digital Object Identifier no. 10.1109/TPAMI.2007.1156. 1. The optimality is in the sense of Bayes (see Section 2).

0162-8828/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



(KL) divergence [15], [16], Bhattacharyya distance [16], and
approximate Chernoff distance [17]. It should be noted that
these criteria are designed for binary classification tasks and
that their application to multiclass problems requires heur-
istic extensions, e.g., the introduction of an average pairwise
distance.

Devijver and Kittler [14] also discuss several probabilistic
dependence measures, which are naturally defined in a multi-
class case and can serve as class-separability measures. The
best-known representative of these measures is the mutual
information, whose use in pattern recognition applications
has been mostly limited to feature selection2 problems [18],
[19] due to the high-computational cost associated with the
mutual information evaluation. However, current feature
selection approaches lack a consistent strategy for combining
individual features into a feature set and proposed solutions
(see [20] for a review) are either of unrestricted combinatorial
complexity or likely to be suboptimal [21]. Principe et al. [22]
used alternative definitions of entropy [23], coupled with a
Parzenwindowdensity estimation that led to a computation-
ally simpler definition of the mutual information. Motivated
by these findings, Torkkola developed an information-
theoretic feature extraction algorithm [24], although his
method is computationally demanding and seems imprac-
tical even for moderately sized data.

In this paper, we propose a novel information-theoretic
class-separability measure which, unlike the mutual in-
formation, can be found analytically. In Section 2, we give
an overview of the classical tools such as Bayes classifica-
tion and LDA. The shortcomings of LDA serve as a
motivation for the development of our technique. Section 3
introduces the idea behind our method, conveniently called
information discriminant analysis (IDA), and some interesting
theoretical properties of IDA are presented. A practical
recipe for calculating the IDA feature extraction matrix is
given as well. The performance of our method on several
benchmark data sets is tested in Section 4. Discussion is
presented in Section 5 and concluding remarks are given in
Section 6. Some mathematical derivations and proofs are
given in the supplemental Appendix, which can be found
at http://computer.org/tpami/archives.htm.

2 BAYES CLASSIFIER AND LINEAR DISCRIMINANT

ANALYSIS

To objectively assess the performance of any DFE method,
a classifier is designed in the feature domain. For
theoretical purposes, the Bayes classifier is often used as
a standard benchmark. Let fRj�ðrrrr j !iÞ be the PDF of a
continuous random variable (RV) R 2 IRn conditioned
upon a class variable � ¼ f!1; !2; � � � ; !cg, where classes
are drawn from a discrete distribution with the prior
probability pi ¼

4
P ð� ¼ !iÞ, 8i ¼ 1; 2; � � � ; c. The probability

of misclassification is given by

PRð"Þ ¼ 1�
X

c

i¼1

Z

Ri

fRj�ðrrrr j !iÞ pi drrrr; ð1Þ

where Ri � IRn is the region of acceptance of the class !i, as
determined by the classifier. A classifier that minimizes (1)
is the Bayes classifier

i� ¼ arg max
1�i�c

P ð!i j rrrr0Þ; ð2Þ

where rrrr0 is an unlabeled observation and P ð!i j rrrr0Þ is the
posterior class probability. Consequently, the minimum
"R ¼

4
minPRð"Þ is called the Bayes error. An important

property of the Bayes error is that it is invariant under
invertible linear transformations. Unfortunately, the evalua-
tion of "R requires the knowledge of fRj�ðrrrr j !iÞ, which limits
the applicability of the Bayes error, in practice, where the
class-conditional PDFs are rarely known and have to be
estimated fromdata. If the sample size is relatively smallwith
respect to the data dimension,n, these estimatesmay be quite
unreliable. One remedy is to extract low-dimensional
features by virtue of a full-rank3 linear transformation
TTTT : IRn ! IRm, where m ðm � nÞ is the dimension of the
feature space. The classifier (2), or any other classifier, can
then be designed for the features �R ¼

4
TTTT R. While theoretical

analysis shows that the performance of the Bayes classifier
can only deteriorate under such a transformation [25, p. 110],
i.e., "�R � "R, the opposite effect is often seen in dealing with
finite data samples (see Section 4.2).

Due to its computational simplicity, LDA is a widely
used DFE technique. There are many variants of LDA and a
somewhat unifying definition can be found in [1, p. 446]. In
its most popular form, LDA maximizes the generalized
Rayleigh quotient

JðTTTT Þ ¼
jTTTT ��BTTTT

Tj

jTTTT ��WTTTTTj
;

where ��B and ��W represent the between-class and the
within-class scatter matrices [25, p. 121], respectively, and TTTT
is the feature extraction matrix. The biggest appeal of LDA is
that such a matrix can be found analytically, thereby
avoiding numerical optimization.

Since the evaluation of ��B and ��W relies on the first two
statistical moments, LDA implicitly assumes Gaussian
classes. Additionally, if the class-conditional covariances
are equal, it can be shown that LDA is optimal in the sense of
Bayes [13, p. 90], i.e., "�R ¼ "R, where �R ¼ TTTT R is the extracted
feature vector. If the classes do not conform to these so-called
homoscedastic conditions, LDA will be suboptimal, even if the
classes areGaussian. Ingeneral, if the class-conditionalmeans
are similar and/or the class-conditional covariances are
different, LDA may be highly suboptimal. Fig. 1a shows one
such example,where searching for the best 1D features yields
quite different results for LDA and IDA (to be described in
Section 3). In particular, the features extracted by LDA are
fully overlapped, resulting in the Bayes error of 50 percent,
compared to 25.78 percent error of the IDA features. The
subspace extracted by a recently developed technique of
Loog and Duin [17] has also been shown. Although the
methodmaximizes a criterion based on theChernoff distance
[1, p. 98], it too fails to find a useful data projection; in
particular, a subspace with zero Chernoff distance is
extracted. Thus, we will refer to this technique as the
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2. We make a distinction between the feature selection and the feature
extraction. The feature extraction gives rise to a feature vector by utilizing
the joint statistical properties of features. The feature selection is concerned
with individual (scalar) features, where the feature space is constructed by
the concatenation of individual features.

3. A deficient-rank transformation matrix would extract features that are
linear combinations of other features. To avoid this redundancy, only full-
rank extraction matrices will be considered in this article.



approximate Chernoff criterion (ACC). Two unsupervised
techniques, PCA and ICA, have been shown for reference. The
directionofmaximumvariance reveals nothingabout the two
classes, and so the PCA features are useless. On the contrary,
ICA produces essentially the same result as ourmethod (note
the symmetry of the example). We will underscore the
similarities between the twomethods later on.Weemphasize,
however, that the two techniques are fundamentallydifferent
(supervised versus unsupervised). Figs. 1b, 1c, and 1d show
that, if the class-conditional means are overlapped, the
superiority of IDA over LDA and ACC extends beyond
Gaussian classes.

Another weakness of LDA is that the size of the feature
space is constrained by the number of classes c. Since
rankð��BÞ � c� 1 and the LDA feature space is spanned by
the eigenvectors of ���1

W ��B corresponding to its nonzero
eigenvalues, the number of features is at most c� 1. While
the Bayes classifier (2) indeed requires c� 1 features, namely,
the posteriors P ð!i j rrrrÞ, i ¼ 1; 2; � � � ; c,4 these features cannot
be extracted from data in a linear fashion. Therefore, for
linear feature extractionmethods, there is no theoretical basis
for a feature vector to be c� 1-dimensional.

Examples illustrating this shortcoming of LDA are pre-
sented in Table 1. Two Gaussian class-conditional PDFs with
randomly sampled parameters were created in 2D, 3D, and

4Dspaces and the optimal featureswere extractedusingLDA,
ACC, and IDA methods. The experiment was repeated
1,000 times with random sampling performed on a trial-by-
trial basis. Since c ¼ 2, LDA features are constrained to a
1D subspace, while IDA and ACC can search for discrimina-
tory information in higher dimensions. For each feature
space, the Bayes error was estimated using Monte Carlo
integrationwith 10,000 points and the averages over trials are
shown. Generally, the performance of IDA, represented by
theaverageerror rate, is significantlybetter (sign test, p=0.05)
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4.
Pc

i¼1 P ð!i j rrrrÞ ¼ 1 implies c� 1 linearly independent features.

Fig. 1. Various 2D binary class examples where LDA fails. The class probabilities are uniform, i.e., p1 ¼ p2. The straight lines indicate optimal
1D subspace according to different feature extraction methods: IDA, LDA, ACC, and PCA. The numbers above the panels represent the value of
information theoretic objective � (see Section 3.1), and the estimate " of the Bayes error, evaluated through a numeric integration. The two smaller
panels are the class-conditional PDFs of the extracted features. (a) Gaussian classes. (b) Mixture of Gaussian classes. (c) Bimodal uniform classes.
(d) Discrete class distributions with the size of the dot proportional to the probability mass function (PMF).

TABLE 1
The Average Error Rates (Percent) of LDA, ACC, and IDA

Methods for Various Feature Space Dimensions

Boldface values are significantly different from IDA error.



than those of LDA andACCmethods.Note that the advantage
of IDA over LDA holds even in 1D feature space.

We will show next that these limitations of LDA and ACC

can be circumvented by choosing an information-theoretic
cost functional, the maximization of which gives rise to a
feature extraction matrix. We will also argue that more
sophisticated methods, such as the ones that can handle
problems in Fig. 1, are computationally more complex than
the IDA method developed here.

3 INFORMATION DISCRIMINANT ANALYSIS

A fundamental concept in information theory is the mutual
information. For a continuous RV R 2 IRn and a discrete class
variable �, the mutual information, denoted by �IðR;�Þ, is
defined as

�IðR;�Þ ¼
4
HðRÞ �HðR j �Þ ¼ HðRÞ �

X

c

i¼1

HðR j !iÞ pi;

ð3Þ

where HðRÞ ¼
4

�
R

R fRðrrrrÞ logðfRðrrrrÞÞ d rrrr is the differential
entropy. While the mutual information primarily serves a
probabilistic dependence measure, it naturally defines a
multiclass feature extraction criterion [14]. Generally, the
higher the mutual information, the smaller the probability
of error. In particular, the following inequality5 holds [26]:

"R �
1

2
Hð�Þ � �IðR;�Þ½ 	; ð4Þ

where Hð�Þ is the entropy of �. However, the practical
applicability of (4) as a class-separability measure is limited
by the computational cost (numerical integration in the
feature space) associated with the mutual information. Next,
we introduce a feature extraction objective function that is
based on the mutual information, yet it is easily computable.

3.1 Information-Theoretic Objective Function

Let fRj�ðrrrr j !iÞ be a class-conditional PDF with the mean mmmmi

and the positive definite covariance matrix ��i > 0, 8i. To
calculate the unconditional entropy HðRÞ, the mixture PDF,
defined as fRðrrrrÞ ¼

4 Pc
i¼1 fRj�ðrrrr j !iÞ pi, must be evaluated.

The mean and the covariance of the mixture are given by

mmmm ¼
X

c

i¼1

mmmmi pi �� ¼
X

c

i¼1

��i þ ðmmmmi �mmmmÞðmmmmi �mmmmÞT
h i

pi: ð5Þ

While the mixture PDF is not Gaussian, in general, we
propose a measure similar to (3), where HðRÞ is replaced by
its Gaussian entropy, easily computed as HgðRÞ ¼

1
2
log

2�eð Þn ��j jð Þ. Thus, we write

�ðR;�Þ ¼
4
HgðRÞ �HðR j �Þ ¼ HgðRÞ �

X

c

i¼1

HðR j !iÞ pi: ð6Þ

Throughout the rest of thepaper,wewill refer to this criterion
as the �-measure. If we define the negentropy as �HðRÞ ¼

4

HgðRÞ �HðR), the �-measure can be decomposed as

�ðR;�Þ ¼ �HðRÞ þ �IðR;�Þ: ð7Þ

For a fixed covariance matrix, HgðRÞ � HðRÞ and the
equality holds if and only if R is a Gaussian RV [27,
p. 234]. Thus, the negentropy can be viewed as a measure of
non-Gaussianity of a distribution. Based on (7), it follows
that the �-measure is a biased version of the mutual
information, i.e., �ðR;�Þ � �IðR;�Þ, where the bias is the
negentropy. If the classes are well separated, it is clear that
the resulting mutual information will be large, thereby
contributing to the value of �. Perhaps less obvious is the
fact that, under these conditions, the mixture PDF is likely to
be far from normal, resulting in a large �HðRÞ. This property
of the negentropy has been used in projection pursuit
applications [2], [28], where it was argued that the most
interesting data projections are the ones where data appears
least Gaussian. Similarly, the negentropy plays a prominent
role in ICA applications, where the presence of independent
signal sources may be revealed by finding these far-from-
Gaussian projections. On the other hand, if the classes
are fully overlapped, not only do we have �IðR;�Þ ¼ 0, but
also the negentropy is likely to be relatively small.6 In
summary, the maximization of the �-measure implies the
maximization of �HðRÞ and/or �IðR;�Þ, both of which are
proper class-separability criteria. We will refer to the
maximization of the �-measure over a subspace of a fixed
dimension (see Section 3.6) as information discriminant
analysis.

3.2 Theoretical Properties of the �-Measure

The �-measure shares many properties of the Bayes error "R
and the mutual information (3).

Theorem 1 (Subspace Invariance). The �-measure is
invariant under invertible linear transformations, i.e.,
�ð�R;�Þ ¼ �ðR;�Þ, where �R ¼

4
TTTT R, and TTTT : IRn ! IRn is a

nonsingular transformation matrix.

Proof. For any nonsingular matrix, TTTT , we have HðTTTT RÞ ¼
HðRÞ þ logðjTTTT jÞ, where j : j is the absolute value of the
determinant [27, p. 234]. It follows from the definition (6)
that

�ð�R;�Þ ¼ HgðRÞ þ logðjTTTT jÞ � HðR j �Þ þ logðjTTTT jÞ½ 	 ¼ �ðR;�Þ:

ut

Theorem 2. For any full-rank transformation matrix TTTT : IRn !
IRm (m < n), thereexistsanorthonormal7matrixEEEE 2 IRm
n, so
that, if �R ¼

4
TTTT R and ~R ¼

4
EEEE R, we have �ð�R;�Þ ¼ �ð~R;�Þ.

Proof. By the Singular Value Decomposition Theorem, there
exist orthogonal matrices UUUU 2 IRm
m and VVVV 2 IRn
n such
that UUUUTTTTT VVVV ¼ ½�� j 0m
d	, where �� 2 R

m
m is a diagonal
matrix of singular values of TTTT and d ¼

4
n�m. Note that

rankðTTTT Þ ¼ m implies that �� is invertible. Define �R ¼
4
TTTT R

and ~R ¼
4
���1UUUUT �R and note that �ð�R;�Þ ¼ �ð~R;�Þ based

on Theorem 1. From the definitions of �R and ~R, it follows
that ~R ¼ ���1UUUUTTTTT R. Define EEEE ¼

4
���1UUUUTTTTT 2 IRm
n and

note that EEEE VVVV ¼ ½IIIIm j 0m
d	. It follows readily that
EEEE VVVV VVVV TEEEET ¼ IIIIm, which, after recalling that VVVV is an
orthogonal matrix, completes the proof. tu
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5. Hellman and Raviv [26] give examples of distributions where (4) does
not hold. These pathological cases will not be treated here.

6. Examples may be constructed where nonoverlapping classes give rise
to a Gaussian mixture and fully overlapped classes give rise to a far-from-
Gaussian mixture, but these are of theoretical significance and rarely appear
in practical applications.

7. Matrix EEEE 2 IRm
n is orthonormal if EEEEEEEET ¼ IIIIm, where IIIIm is the
identity matrix of size m.



Theorem 3 (Data Processing Inequality). The �-measure is
nonincreasing under linear transformations, i.e., �ð�R;�Þ �
�ðR;�Þ, where �R ¼

4
TTTT R and TTTT : IRn ! IRm ðm < nÞ is a

full-rank transformation matrix.

Proof. Let TTTT? 2 IRðn�mÞ
n be a matrix whose rows span the
null space of TTTT . Define the matrix ~TTTT and the RV ~R as

~TTTT ¼
4 TTTT

TTTT?

� �

2 IRn
n; ~R ¼
4 ~TTTT R ¼

TTTT R

TTTT?R

� �

¼
4

�R

�N

� �

:

Since ~TTTT is a full-rank matrix, it follows from Theorem 1
that �ð~R;�Þ ¼ �ðR;�Þ. From the definition of ~R, we have

�ð~R;�Þ ¼ �ð�R; �N;�Þ ¼ Hgð�R; �NÞ �Hð�R; �N j �Þ:

We write based on the chain rule for entropies and
conditional entropies [27, p. 232]

�ð~R;�Þ ¼ Hgð�RÞ þHgð�N j �RÞ � Hð�R j �Þ þHð�N j �R;�Þ½ 	

¼ �ð�R;�Þ þHgð�N j �RÞ �Hð�N j �R;�Þ � �ð�R;�Þ;

where the inequality follows by noting that Hgð�N j �RÞ �
Hð�N j �RÞ � Hð�N j �R;�Þ (Gaussiandistributionmaximizes
entropy and conditioning reduces entropy [27, p. 232]). tu

We comment briefly on the importance of the above
theorems. Theorem 1 simply states that, like many other
discriminant measures, such as the Bayes error or the
mutual information, the �-measure is independent of the
choice of a coordinate system for data representation. The
implication of Theorem 2 is that the search for a full-rank
feature extraction matrix TTTT can be restricted to a subspace
of orthonormal projection matrices without compromising
the objective function. While theoretical performances of
orthonormal and arbitrary projection matrices are equiva-
lent, in practical applications, these oblique projections may
cause awkward scalings of data and may lead to numerical
instability. Finally, Theorem 3 states that the �-measure of
any subspace of the original data space is bounded above
by the �-measure of the original space.

3.3 The Calculation of the �-Measure

To complete the calculation of � given by (6), the class-
conditional PDFs and, in turn, the corresponding entropies,
HðR j !iÞ, must be evaluated. In principle, this can be
achieved using either a parametric (model-based) or a
nonparametric (kernel-based) approach. The advantage of
the parametric approach is that computations are simpler,
although the assumed model may not be supported by data.
The nonparametric approach, on the other hand, does not
assume any particular model, but analytical tractability
is inevitably lost, and computations are much more
demanding. Interestingly, Devijver and Kittler [14] argue
against the use of nonparametric density estimates on the
grounds of both simplicity and accuracy, claiming that, in
the face of a limited sample size, the errors on the
nonparametric PDF estimate may by far exceed those of
simple parametric models, such as Gaussians. Throughout
the rest of the paper, we will use the parametric estimates of
the class-conditional entropies HðR j !iÞ. In particular, the
entropies are modeled as

HðR j !iÞ ¼
1

2
log 2�eð Þn ��ij jð Þ;

which coupled with (6) yields a very simple version of the
�-measure

�ðR;�Þ ¼
1

2
logð ��j jÞ �

X

c

i¼1

logð ��ij jÞ pi

" #

: ð8Þ

While (8)8 is ideally suited for Gaussian classes, we will
argue below, and demonstrate by numerous examples, that
it is also a general class-separability criterion. Furthermore,
because of its analytical tractability, we will show how �
relates to known statistical quantities and how it can be
efficiently maximized. Like IDA and ACC, the criterion (8)
employs the first two statistical moments and belongs to the
category of second-order criteria.

First note that the primary goal of the criterion (8) is to
measure the class separability, rather than to approximate
the mutual information. If the class differences are captured
by the first two statistical moments, it is expected that the
�-measure (8) will perform well. Fig. 1 demonstrates that
this is indeed the case; even if the class-conditional PDFs are
multimodal and far from Gaussian (Figs. 1b and 1c), the
criterion (8) performs optimally. In addition, the �-measure

may be optimal even if the support of the PDF is not simply
connected (Fig. 1c), and even if the classes have discrete
distributions (Fig. 1d). On the other hand, LDA and ACC fail
completely, as illustrated by the Bayes error of 50 percent.

While classes with fully overlapped means are unlikely
to be found in real situations, a simple continuity argument
suggests that IDA will retain the advantage over LDA and
ACC if the class-conditional means remain relatively close.
To test this hypothesis, we performed 1,000 Monte Carlo
trials for examples (Figs. 1a, 1b, and 1c) and calculated the
Bayes error using a numerical integration. Briefly, the class
covariances were randomized and the first class was
centered at the origin. The second class was rotated by a
random angle, sampled uniformly from ½0; 2�	, and the
class was centered � Mahalanobis distances from the
origin. Therefore, we have mmmm2

T ��1
�1mmmm2 ¼ �2, where � was

sampled uniformly from ½0; D	. All random samplings were
performed on a trial-by-trial basis. Table 2 shows the
average error rates and the average values of � for several
values of D and for the following feature extraction
techniques: LDA, ACC, IDA, and the Patrick-Fisher (PF)
measure, which was chosen as a computationally feasible
representative of probabilistic dependence measures [14,
p. 261]. The performance of IDA is uniformly superior (the
smallest ") to those of LDA, ACC, and PF methods. For small
values of D, the performances of PF and IDA are similar, but
they seem to diverge as D increases, with the performance
margin increasing in favor of IDA. On the other hand, IDA

holds a substantial advantage over LDA and ACC when the
means are relatively close and the margin of improvement
decreases with D. As classes are more separated, the three
techniques yield errors which are more similar. Note that �
is negatively correlated with "; hence, its use as a class-
separability measure is justified. In most of the cases, the
advantage of IDA over the other three techniques is
statistically significant (sign test, p = 0.05).

In summary, if the class-conditional means are relatively
close, the �-measure may provide significant improvement
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8. It was brought to the author’s attention at the time of publication of
this manuscript that (8) was used earlier in [47].



over other second-order techniques such as LDA and ACC.
We will see next that this property of the �-measure can be
explained theoretically.

3.4 The �-Measure as a Measure of Class
Separability

Ideally, the �-measure should be linked to the Bayes error in a

manner similar to (4). A useful connection between �ðR;�Þ

and "R, however, is not easy to establish even if the simplified

definition (8) is used. We will argue next that the �-measure

increaseswithclass separability.Beforeweproceed,note that,

under the homoscedastic conditions ��1 ¼ ��2 ¼ � � � ¼ �c�c, the

definition (8) reduces to

�ðR;�Þ ¼
1

2
log

��B þ ��Wj j

��Wj j
;

which is a variant of LDA [1, p. 446], where��B ¼
4 Pc

i¼1½ðmmmmi �

mmmmÞðmmmmi �mmmmÞT	 pi and ��W ¼
4 Pc

i¼1 ��i pi are the between and

within-class scatter matrices, respectively. Therefore, under

the homoscedastic conditions, IDA reduces to the classical

LDA. In addition, if the classes are Gaussian, the two

methods will be optimal the sense of Bayes (see Section 2).
Another interesting point is that, for a binary Gaussian

class case with a relatively small difference in means, the

�-measure reduces to yet another well-known statistical

measure—the Chernoff distance. To see this, rewrite (8) as

�ðR;�Þ ¼
1

2
log

j��W þ ðmmmm1 �mmmm2Þðmmmm1 �mmmm2Þ
T p1p2j

Q2
i¼1 j��ij

pi
;

which follows readily after noting that mmmm ¼
P2

i¼1 mmmmi pi and

��W ¼
P2

i¼1 ��i pi. Since the second term in the numerator is

a rank-1 matrix, the expression above can be simplified as

�ðR;�Þ ¼
1

2
log

j�W�Wj
Q2

i¼1 j��ij
pi

þ
1

2
log 1þ ðmmmm1 �mmmm2Þ

T
���1

W ðmmmm1 �mmmm2Þp1p2

� �

:

For kxxxxk � 0, the following second order Taylor series
expansion is valid

logð1þ � xxxxTQQQQxxxxÞ � � xxxxTQQQQxxxx

and, so, we finally write

�ðR;�Þ ¼
p1p2
2

ðmmmm1 �mmmm2Þ
T
���1

W ðmmmm1 �mmmm2Þ

þ
1

2
log

j�W�Wj
Q2

i¼1 j��ij
pi
;

ð9Þ

which is the Chernoff distance, �ðsÞ, evaluated at s ¼ p1 [1,
p. 99]. Therefore, for two heteroscedastic Gaussian classes
with relatively close means, the �-measure approaches the
Chernoff distance, thereby defining the upper bound for the
Bayeserror, i.e., "R � pp11 p

p2
2 e

��ðR;�Þ. This explains the superior
performance of IDA on the example from Fig. 1a and the
relatedMonteCarlo simulations, especially at lowvaluesofD
(see Table 2). For non-Gaussian classes, the expression (9)
no longer represents the Chernoff distance, although this
criterion has been successfully used in many pattern
recognition problems [16], [15] or as a basis for the
development of novel feature extracting methods [17].
Therefore, the good performance of IDA in examples
Figs. 1b and 1c is not surprising even though the classes are
far from Gaussian.

Let us now show that the �-measure is a valid class-
separability measure under more general conditions.
Suppose first that c ¼ 2, mmmm1 ¼ mmmm2, and ��1 ¼ ��2. It follows
from (5) and (8) that � ¼ 0. Adding a little perturbation to
mmmm1 and/or ��1 would result in a � that is slightly positive.
Our conjecture is that by “increasing” these perturbations,
the �-measure would also increase, therefore capturing the
differences between fmmmm1;��1g and fmmmm2;��2g. For the sake of
simplicity, we consider two separate cases.

3.4.1 Fixed Covariances

Suppose��1; ��2; � � � ; ��c are fixed anddefine deviations ~mmmmi ¼
4

mmmmi �mmmm,8i. In the interestofclarity,wewill studythevariation
of a single vector, say mmmmj. The analysis extends to multiple
vectors in a straightforward fashion. Therefore, assume that
all mmmmi are fixed with the exception of mmmmj. Also, assume that
mmmmj 6¼ mmmm, i.e., ~mmmmj 6¼ 0, where 0 stands for a zero vector in IRn.
Wewant to argue that moving in the direction of ~mmmmj can only
increase the function�.AnillustrativeexamplewithGaussian
classes is shown in Fig. 2.
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TABLE 2
The Average Error Rates (Percent) and the Average Values of the �-Measure for Various Examples (Fig. 1)

Boldface values are significantly different from IDA values.



Proposition 1.

@�

@ ~mmmmj
; ~mmmmj

� �

> 0; ð10Þ

where @�=@ ~mmmmj 2 IRn is the gradient of � with respect to ~mmmmj

and h ; i is an inner product in IRn. The proof of this
proposition is given in the supplemental Appendix A, which
can be found at http://computer.org/tpami/archives.htm.

3.4.2 Fixed Means

Suppose now that mmmm1; mmmm2; � � � ;mmmmc are fixed. Define matrix
deviations ~�~�i ¼

4
��i � ��, and assume that all ��i are fixed

with the exception of a single matrix, say ��j. A similar
argument extends to multiple matrices. Also, assume that
��j 6¼ ��, i.e., ~��j 6¼ 0n, where 0n stands for a zero matrix in
IRn
n. We want to show that moving in the direction of ~�~�j

can only increase the function �. An example of this
situation is illustrated by Fig. 3.

Proposition 2.

h@�=@ ~�~�j : ~�~�ji > 0; ð11Þ

where @�=@ ~�~�j 2 IRn
n is the gradient of � with respect to
~�~�j and h : i stands for an inner product of matrices, defined
as hAAAA : BBBBi ¼

4 P

i;j Ai;j Bi;j for two arbitrary matrices AAAA
and BBBB of the same size. The proof of this proposition is
given in the supplemental Appendix B, which can be found
at http://computer.org/tpami/archives.htm.

We finish this section by commenting briefly on the two
propositions. Since the projection of the gradient of � to the
parameter vector is strictly positive, moving in the direction
of the parameter vector can only increase the �-measure. By
definition, the parameter vector is proportional to the class
separability, hence, we conclude that the �-measure is a
valid class-separability measure.

3.5 Bayes Optimality of IDA

We have seen in Section 3.4 that, when Gaussian classes
conform to the homoscedastic conditions, IDA is an optimal
featureextractiontechniqueinthesenseofBayes.Wewillnow
give more general (heteroscedastic) conditions under which
IDA is optimal. LetR 2 IRn beadatavector. Letusassume that
the class differences are confined to an mD subspace in IRn,
andthatclassesarefullyoverlappedinthecomplementarydD
space (d ¼

4
n�m). We will refer to these subspaces as the

signal subspaceand thenoise subspace, respectively.Assume

further that class data is a linear mixture of a Gaussian signal
Sj� 2 IRm and a Gaussian noiseNj� 2 IRd

R j !i ¼ MMMM
S j !i

N j !i

� �

8i ¼ f1; 2; � � � ; cg; ð12Þ

where MMMM 2 IRn
n is a nonsingular mixing matrix. This type
of model is frequently used in array signal processing [29],
where the number of sensors is larger than the number of
signal sources.

Theorem 4. Let TTTT 2 IRm
n be a full-rank matrix that maximizes
�ð�R;�Þ, where �R ¼

4
TTTT R. If fNjS;�ðnnnn j ssss; !iÞ ¼ fNjSðnnnn j ssssÞ,

8i ¼ f1; 2; � � � ; cg, 8ssss 2 IRm, 8nnnn 2 IRd, where Sj� and Nj�
are Gaussian random variables, then TTTT extracts the signal
subspace, i.e., �ð�R;�Þ ¼ �ðS;�Þ. Moreover, such a subspace is
optimal in the sense of Bayes, i.e., "�R ¼ "R.

Proof. Without loss of generality, assume MMMM ¼ IIIIn. If not,
we can always find a transformation matrix ~TTTT ¼ MMMM�1

such that

~R ¼
4 ~TTTT R ¼

S

N

� �

;

where �ð~R;�Þ ¼ �ðR;�Þ (by Theorem 1) and "~R ¼ "R (see
Section 2). Therefore, we have

�ðR;�Þ ¼ �ðS;N;�Þ ¼ �ðS;�Þ þHgðN j SÞ �HðN j S;�Þ;

ð13Þ

which follows after applying the chain rule for entropies.
From the conditions of the theorem, it follows that N is
independent of �, given S, thus HðN j S;�Þ ¼ HðN j SÞ.
To prove that �ðR;�Þ ¼ �ðS;�Þ in (13), it suffices to show
thatNjS is Gaussian. Since both Sj� andNj� are Gaussian
by assumption, so is NjS;�. From fNjSðnnnn j ssssÞ ¼ fNjS;�
ðnnnn j ssss; !iÞ, it follows that NjS is Gaussian. Thus, we have
�ðR;�Þ ¼ �ðS;�Þ, which, combined with Theorem 3 and
the assumptions of Theorem 4, yields

�ðR;�Þ � �ð�R;�Þ � �ðS;�Þ ¼ �ðR;�Þ:

Next, we show that "S ¼ "R by showing that the Bayes
assignment is preserved, i.e.,

P ð!i j rrrrÞ ¼
fRj�ðrrrr j !iÞ pi

fRðrrrrÞ
¼

fNjS;�ðnnnn j ssss; !iÞfSj�ðssss j !iÞ pi

fRðrrrrÞ

¼
fNjSðnnnn j ssssÞfSj�ðssss j !iÞ pi

fN;Sðnnnn; ssssÞ
¼

fSj�ðssss j !iÞ pi

fSðssssÞ

¼ P ð!i j ssssÞ 8i ¼ f1; 2; � � � ; cg; 8rrrr 2 IRn:
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Fig. 2. (a) ThreeGaussian classes. (b)Movingmeanmmmm3 in the direction of
~mmmm3 reduces the overlap, thus increasing the class separability and the
�-measure.

Fig. 3. (a) Two Gaussian classes. (b) Changing the covariance ��1 in the
“direction” of ~�~�1 reduces the overlap and increases the class separability
and �.



Since the Bayes error is subspace invariant (see Section 2),
it follows that "�R ¼ "S. tu

Before we proceed, let us comment briefly on this result.
First, Theorem 4 gives sufficient conditions for the optimality
of IDA. Second, apart from the fact that the class � has no
bearing on the noise N when the signal S is given, these
conditions are somewhat hard to interpret. Fortunately, since
Gaussian RVs are involved, it is easy to find another set of
conditionswhich are sufficient for optimality of IDA, yet they
are easy to interpret. The following corollary of Theorem 4
states that, if the class differences are confined to the signal
subspace and if the noise and signal are uncorrelated over
classes, then IDA is an optimal DFE method in the sense of
Bayes, and will extract the signal subspace. Kumar and
Andreou [10] proposed anML solution of the problemabove,
although they did not explicitly show that their solution
extracts the signal subspace.

Corollary 1. Let Rj� be a Gaussian RV defined as in (12) with
MMMM ¼ IIIIn and with

mmmmi ¼
mmmmS

i

mmmmN
i

" #

��i ¼
��SS

i ��SN
i

��NS
i ��NN

i

" #

:

Let TTTT 2 IRm
n be a full-rank matrix that maximizes �ð�R;�Þ,
where �R ¼

4
TTTT R. If mmmmN

i ¼ mmmmN, ��NN
i ¼ ��NN, and ��SN

i ¼
ð��NS

i ÞT ¼ 0m
d, 8i, then this transformation extracts the signal
subspace, i.e., �ð�R;�Þ ¼ �ðS;�Þ. Moreover, such a subspace is
optimal in the sense of Bayes.

The proof of this corollary is given in the supplemental
Appendix E, which can be found at http://computer.org/
tpami/archives.htm and an illustrative example is shown in
Fig. 4.

The signal subspace is the x0y-plane and the noise
subspace is the z-axis (note the overlap in PDFs along this
axis). Fig. 4 also shows that IDA estimates the optimal
2D subspace up to a rotation matrix. Finally, note that, if
Corollary 1 holds for RV R, it also holds for RV ~R ¼

4
MMMM R,

whereMMMM 2 IRn
n is an arbitrary nonsingular matrix.

3.6 Maximization of the �-Measure

From the three theorems in Section 3.2, it follows that the
following optimization problem is well-posed. Given the

data R 2 IRn and the dimension, m, of a feature space, we
wish to find a full-rank matrix TTTT 2 IRm
n such that the
measure �ð�R;�Þ is maximized, i.e.,

TTTT � ¼ arg max
TTTT2IRm
n

f�ð�R;�Þ : �R ¼ TTTT Rg

subject to TTTTTTTTT ¼ IIIIm;
ð14Þ

where, based on Theorem 2, we have replaced the condition
rankðTTTT Þ ¼ m in (14) with the constraint TTTT TTTTT ¼ IIIIm. From
(8) and (22) (see the supplemental Appendix C, which can
be found at http://computer.org/tpami/archives.htm), the
gradient @�=@TTTT 2 IRm
n can be found as

@�ð�R;�Þ

@TTTT
¼ ðTTTT ��TTTTTÞ�1TTTT ���

X

c

i¼1

ðTTTT ��iTTTT
TÞ�1TTTT ��i pi: ð15Þ

Unfortunately, the equation @�ð�R;�Þ=@TTTT ¼ 0 cannot be
solved analytically, so the maximization (14) must be
performed numerically using gradient-based optimization
schemes. However, the Hessian @2�=@TTTT 2 2 IRmn
mn can be
found analytically as

@2�ð�R;�Þ

@TTTT 2
¼ AAAAð��Þ þBBBBð��Þ �

X

c

i¼1

AAAAð��iÞ þBBBBð��iÞ½ 	pi; ð16Þ

where the matrix functions AAAA and BBBB are defined by (23) (see
Appendix C). Therefore, the maximization (14) is amenable
to Newton-based optimization routines. While posed as a
constrained optimization problem, (14) can be solved using
an unconstrained approach, where, at each iteration, the
current solution is projected to the constraint set (see
Theorem 2).

4 EXPERIMENTAL RESULTS

The performance of IDA was tested experimentally and
compared to those of the LDA, ACC, and PF methods. Both
LDA and ACC yield feature extraction matrices analytically,
therefore, they are easy to implement. For the PF criterion, a
parametric model of class-conditional PDFs was used, so that
the four criteria are comparable in that they are all second-
order techniques. The IDA and PF extraction matrices were
found numerically.

The performances were tested against five data sets taken
from the UCI machine learning repository [30] and a data set
adopted from [31]. These data sets come from a variety of
applications, with various numbers of classes and attributes
and various sample sizes (see Table 3). The instances with
missing values in data set (b) were ignored throughout the
experiments. The performances were evaluated based on the
linear andquadratic Bayesian classifiers [25, p. 39],with prior
probabilities estimatedempirically fromthedata. Inaddition,
for data sets (e) and (f), a support vector machine (SVM)
implementation, SVMTorch [32], was used, and all experi-
ments were performedwith a Gaussian kernel. For these two
data sets, training and test data were specifically designated
by their donors; therefore, the DFEmatrices and the classifier
parameters were estimated from the training data and
validated on the test data. The number of test instances is
given in Table 3. For all other data sets, a k-fold cross-
validation (CV) was used. The justification of the choice of k
will be given below.
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Fig. 4. (a) TwoGaussian classes in 3D with the corresponding orthogonal
projections (ellipses). (b) The IDA-optimal 2D subspace together with x0y
plane. The dashed line marks the optimal 1D subspace extracted by LDA.



4.1 Performance Evaluation

Fordata sets (e) and (f), the transformationmatricesTTTT : IRn !

IRm were estimated from the training data, which was then

transformed by TTTT to a subspace of appropriate dimension,

where the two classifiers were designed. The test data was

then transformedbyTTTT and theprobabilityofmisclassification

(error) was computed. Note that the admissible subspace

dimensions are 1 � m � c� 1 for LDA and 1 � m � n� 1 for

the IDAandACCmethods.Fordata sets (a), (b), (c), and (d), the

evaluation consists of the following procedure:

1. Randomly divide the data set into k nonoverlapping
folds of equal size.

2. Designate one of the folds as test data and combine
the other k� 1 folds (and possible leftover data) into
a single training set.

3. Based on the training set, compute the transformation
matrix toa subspaceof appropriatedimension,m, and
design the classifiers based on the transformed
training data. Transform the test data in the same

manner, perform the classification, and log the
number of misclassified instances.

4. Repeat Steps 2 and 3 until all the folds are exhausted.
Estimate the error as the total number of misclassified
casesdividedby the totalnumberof test instances [33].

5. Repeat Steps 1 through 4 several (5-10) times to
obtain multiple estimates of the error.

The sample mean of the error obtained above is used as the
estimate of the probability ofmisclassification, and its sample
variance is used to construct the confidence intervals.

Thechoiceof thenumberof folds,k, forCV isdictatedbythe
bias-variance trade-off. For small values of k, a large
discrepancy in size between the training set and the data set
may overestimate the probability of error [33]. On the other
hand, for k ¼ Ni, also known as leave-one-out CV, the error
estimates are almost unbiased, but often with unacceptably
high variability [34]. Also, for data with a large number of
instances, Ni, leave-one-out CV can be computationally
demanding. It is widely accepted that 10 to 20-fold CV offers
a good bias-variance compromise, and these values are often
usedasdefault.Assuggested in [33], further improvements in
terms of both bias and variance can be obtained by stratifica-
tion, where the relative class frequencies over folds roughly
match those of the original data set. Therefore, for large data
sets (Ni > 500), a stratified 20-fold CVwas used (see Table 3).
Other data sets were tested using a stratified 10-fold CV.

4.2 Analysis of Results

Webeginwith the analysis of data sets (e) and (f), where only
a single cross-validatory run was performed. The respective
results are given in Table 4 and Table 5. The errors are
calculated based on the four DFE methods and the three
classifiers: linear (L), quadratic (Q), and SVM (S). The
performance of the classifiers in the original space (FULL) is
also shown. In the interest of space, the results for selected
subspaces are shown, featuring the smallest error for each
method-classifier combination. These optimal error values
are shown in bold. The best performance for a given classifier
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TABLE 3
Data Sets Used for Performance Assessment

The columns are: n is the number of attributes, c is the number of
classes, Ni is the number of instances, and Validation is the type of
validation or the number of test data.

TABLE 4
The Estimated Error (Percent) for Various DFE Method-Classifier Combinations for Data Set Satellite (e)



ismarked by y and the best overall performance ismarked by
z. The performance of the SVM classifier depends on the
standard deviation of the Gaussian kernel and the chosen
value is shown in theparentheses. Tominimize thevariability
in performance, the feature extraction matrices of the LDA,
ACC, and PF methods were orthonormalized prior to
classification. This renders all four transformations volume
preserving and, so, their performances for a single choice of
the kernel are comparable. For generalizable results, both the
kernel and the subspace dimension, m, must be estimated
from the training data. These could be accomplished, for
example, through internal CV over the training sets. In
general, this is a computationally expensive procedure and,
since the goal of this analysis is to merely compare the
performances of various DFE techniques under identical
classifiers, no effort was made to optimize the kernel
individually for each feature set and/or DFE method.

Based on these results, wemake two general observations.
First, the SVM classifier uniformly outperforms the quadratic
classifier, which is uniformly better than the linear classifier.
Second, for both data sets, the best overall performance is

based on IDA. In particular, for data set (e), the best results for
all three classifiers were observed with the IDA method. For
data set (f), however, the results are somewhatmixed, and the
performances of the four methods are more comparable.
These results are consistent with Section 3.3, where the
advantage of IDA was shown to be more substantial on
difficult classification problems (measured here by the ratio
of ð1� errorÞ and ð1� chance errorÞ). Also, note that the best
error rates per classifier were typically achieved in the
subspace of lower dimension than that of the original space,
thus underscoring the benefits of the dimensionality reduc-
tion. The data sets (e) and (f) were also benchmarked by
Torkkola [24],whousedanonparametricmutual information
with quadratic entropies as an objective function for finding
theoptimalDFEmatrix. Inessence, his technique is equivalent
to the PF measure, with the Parzen window estimates of
the class-conditional PDFs. While the choice of a Gaussian
kernel was not disclosed in [24], the reported optimal error
rates with SVMTorch were 10.3 percent for Satellite data
and 7.5 percent for Letter data (inferior to the results reported
here). Apart from being computationally complex, his
method apparently had difficulties with the extraction
of high-dimensional subspaces (m > 15 for data set (e) and
m > 8 for data set (f)).

We now turn to the analysis of the remaining data sets,
where the k-fold CVwas used. The results are summarized in
Tables 6, 7, 8, and 9. The errors are shown only for selected
subspaces, where at least one method-classifier combination
attains a minimum. In addition, standard deviation bounds,
estimated from multiple runs of CV, are shown. For a given
classifier, the best performance over all DFE methods is
marked by y, while zmarks the best overall performance. For
each classifier-feature space combination, the error estimates
that are significantly different (sign test, p = 0.05) from the
best error of that combination are given in boldface. For
example, the smallest error for theQ-5 combination (Table 6),
corresponds to IDA features. This value is significantly
different from that of ACC features, but not significantly
different from the error corresponding to PF features.

4.2.1 General Performance

As with the previous data sets, we note that the quadratic
classifier is generally superior to the linear classifier. Also,
note that the average error rates over many subspace
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TABLE 5
The Estimated Error (Percent) for the Data Set Letter (f)

TABLE 6
The Estimated Error (Percent) and Standard Deviation (Percent) for Data Set Brain (a)



dimensions remain smaller than those in the full space, thus
confirming that a gain in performance can be achieved by
reducing the dimensionality of the problem (see Section 2).

4.2.2 Peak Performance

The average error rates of the IDA method compare
favorably to those of other techniques for many subspace
dimensions m. As indicated earlier, this advantage seems to
correlate with the difficulty of the classification problem. In
particular, for data set (a), with the achieved error rates of
nearly 30 percent, IDA is uniformly (over all m) superior to
other DFE methods. Also, note that many of these perfor-
mance differences are statistically significant, especially for
the quadratic classifier. In addition, the best linear and
quadratic classifier error rates are those of IDA, with the best
overall performance significantly different from the best
performances of other techniques. The only exception is the
PFmethod, which, as predicted by our analysis in Section 3.3,
approaches the performance of the IDA method when the
classes are highly overlapped. A similar analysis applies to
other data sets, where the advantages of IDA persist but are
not as convincing as in the case of Brain data. Clearly, the
class separability in data set (b) is much better than the
separability in data set (a), as can be seen by comparing the

attained error rates. Nevertheless, the differences in the best

error rates of the IDA method and the other three techniques

are still statistically significant. Note that the optimal

subspace dimensions for data sets (a) and (b) are relatively

low m 2 ½1; 3	, consistent with a small number of classes in

these data. The performance of IDA on data set (c) is

comparable to that of other techniques, most notably due to a

high separability of classes, although IDA slightly outper-

forms other techniques under the linear classifier. Note that

the optimal subspace dimension is m ¼ 1, regardless of the

classifier choice. Finally, the performance of IDA on data

set (d) is relatively poor for low-dimensional feature space,

especially when compared to LDA, but the performance

improves in higher dimensions. In particular, the best linear

and quadratic classifier errors are those of IDA. While the

best linear classifier result is significantly better than those of

other methods, the best quadratic classifier performance is

superior to the LDAmethod only. Note that the performance

of LDA is seriously limited by the constraint m � c� 1.

4.2.3 Statistical Significance

To compare the performances of two techniques on certain

data, statistical tests arenecessary to establish the significance

of results. To gather the sufficient statistics for small data sets,

data is typically resampled (e.g., holdout, cross-validation,

bootstrap [33]). Themajor problemwith this data recycling is

that observations violate the independence assumption

necessary for further statistical tests. As a consequence, the

mere repetition of a k-fold CVwill render the performances of

any twomethods statistically significant (type I error). On the

other hand, variability arising from resampling of small data

sets [35] may impose differences between two methods that

are not genuine (type II error). Dietterich [35] developed a

statistical test for a classifier comparison by balancing the two

types of errors. When applied to our data, this statistical test

produced rather inconsistent results, presumably due to a

violation of the many assumptions required by the test.

Therefore, a simple sign test on the error samples was

performed. Based on these remarks, it should be clear that

caution must be exercised when discussing the statistical

significance of the results in Section 4.2.2.
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TABLE 7
The Estimated Error (Percent) and Standard Deviation (Percent) for Heart Data (b)

TABLE 8
The Estimated Error (Percent) and the Standard Deviation

(Percent) for Balance Data (c)



5 DISCUSSION

We discuss several points related to the implementation
and performance of the IDA method.

5.1 Optimization

Both the gradient (15) and the Hessian (16) can be calculated
analytically, thus the maximization of the �-measure is
amenable to fast optimization techniques based onNewton’s
method, such as the trust-region technique [36]. All optimiza-
tion routines were implemented with the MATLAB2
Optimization Toolbox. The convergence rates of the trust-
region method varied across the data sets, but single
iterations were generally very fast (a fraction of a second to
a couple of seconds), even forproblemswith thedimensionof
several hundreds. Supplying the Hessian speeds up optimi-
zation procedure by an order of a magnitude. Since the
Hessian calculation involves a manipulation of matrices in
IRmn
mn, the computation speed will necessarily saturate for
large-scale problems. It was observed empirically that, when
mn > 1; 000, a standard conjugate gradient method was a
faster optimization scheme, even though it does not facilitate
the curvature information. Repeated optimization runs with
10 randomized initial conditions yielded solutions with less
than 10�8 percent of relative improvement over a single
optimization run. These improvements are comparable to the
relative tolerance of the optimization routine and suggest that
the optimal results were independent of the choice of initial
condition. Experiments with simulated annealing [37] using
an exponential annealing schedule were not able to improve
upon the best solution obtained through random restarts;
therefore, themaximization of the �-measure does not appear
prone to theproblemof localmaxima, at least for data studied
in this paper. Choosing a good initial condition, however,
speeds up the overall computation considerably. The feature
extraction matrix of the ACC method and, when admissible,
the LDA method, were used as an initial guess for the
optimization problem (14). In many cases, the �-measure in
the LDA and ACC feature subspace was very close to the
optimal �-measure found by IDA (< 1 percent in some cases).
Thus, LDA and ACC provide a good initial condition for the
maximization of� and, in turn, its fast convergence.A similar
initialization approach was used in [24].

5.2 Singular Covariance Matrices

Since second-order techniques involve covariance matrices,
problems may arise if these matrices are singular. This, for
example, often happens in the so-called small sample size
problems [1, p. 39], such as image classification, where the
dimension of data, n, exceeds the number of data instances.
As this is a problem commonly faced by many second-order
techniques, including LDA, there have been a number of
proposed solutions, ranging from the removal of data
singularities through PCA [17], to various shrinkage ap-
proaches [38]. Some recent solutions to the small sample size
problem in the context of LDA include various covariance
matrix subspace decompositions [39], [40] and combining the
discriminatory information over the subspaces.

The �-measure (8) becomes ill-defined if any of the
covariance matrices ��i are singular. However, one benefit
of IDA, over LDA and ACC in particular, is that it does not
deal with covariance matrices ��i directly, rather, it relies on
their feature space representation TTTT ��i TTTT

T. It follows
immediately that rankðTTTT ��i TTTT

TÞ ¼ minfm; rig, where ri is
the rank of ��i. Therefore, as long as the size of the feature
space is smaller than the rank of ��i, the �-measure and its
subsequent optimization will be well-defined. In the small
sample size problems, ri is typically linked to the number of
training instances, ni, in class !i, i.e., ri ¼ ni � 1, while m is
small by design and, so, the assumption m < ri is well-
justified. Extending m beyond ri would require the use of
aforementioned techniques, such as covariance shrinkage.
In addition, subspace decompositions, proposed in [39],
[40], may provide some computational savings by removing
large uninformative subspaces.

5.3 Performance

In general, the parametric form (8) of the �-measure can be
viewed as an approximation of the �-measure (6) when
class-conditional PDFs are replaced by their second order
approximations and, so, the �-measure (8) is ideally suited
for Gaussian classes. While Fig. 1 and extensive Monte Carlo
simulations (Section 3.3) indicate that IDA works well for
non-Gaussian classes, we also comment on the implications
of the second order approximation on experimental data.
Consider, for example, data sets (e) and (f), where classes
are known to deviate from the Gaussian assumption [24],
and consider the performance of the SVM classifier in the
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full space (Table 4 and Table 5), which is Gaussian
assumption-free. Evidently, the performances are compar-
able (even inferior) to the peak performance of IDA and
other second-order techniques. This suggests that the
violation of the Gaussian assumption is not critical for the
performance of IDA. In cases where classes deviate
significantly from the Gaussian assumption, IDA (and any
other second-order technique) may yield suboptimal solu-
tions; though as long as the first two statistical moments
contain discriminatory information, IDA is expected to
perform well.

Although the number of analyzed data sets in this study
is limited (9), data comes from a variety of domains, with a
diverse number of classes, attributes, and sample sizes. In
addition, many experimental data sets contain a combina-
tion of continuous, discrete, and nominal attributes.
Because of this data diversity, we hope that the conclusions
of this study will hold in a more general set-up. Based on
the results presented in Tables 1, 2, 3, 4, 5, 6, 7, 8, and 9, it
follows that IDA outperforms other methods according to
many criteria such as: the number of best performances, the
number of best overall performances and the optimality
margin. Even when suboptimal, the performance of the IDA

method remains relatively close to the optimal perfor-
mance. We conclude that, among the DFE methods tested on
the nine data sets, IDA is the best single technique.

Clearly, the IDA technique is computationally more
demanding than the ACC method and especially the LDA

method. Since the absolute improvements of IDA are
modest (< 7.5 percent for LDA; < 2.75 percent for ACC), it
is worth addressing the question of IDA’s justifiability. First
note that the �-measure (8), the gradient (15), and the
Hessian (16) are available analytically. Moreover, they
involve simple matrix manipulations. The optimization
problem (14) can be solved using standard algorithms
(trust-region and conjugate gradients), which are readily
available. Finally, once the LDA (ACC) feature extraction
matrix is available as an initial guess for the IDA matrix, the
solution is typically found in only a few iterations. Even if a
random initial condition is used, the solution is available
within seconds (minutes for large-scale problems). This is
not the case for the PF method and related probabilistic
dependence measures [14], which are computationally
much more intense, even when the parametric class models
are assumed. While available analytically, the expression
for the PF measure involves Oðc3Þ terms. Thus, PF will be
very slow for problems involving a large number of classes
(e.g., data set (f)). Similarly, the expression for the gradient
is equally complex and there are no known expressions for
the Hessian, which limit the practical applicability of the PF

measure. In summary, IDA offers a computationally feasible
alternative to other linear DFE methods.

6 CONCLUSION

Using elementary information-theoretic tools, we have
developed a novel linear DFE method, conveniently called
IDA. Themethod facilitates themaximization of ameasure,�,
which, under the parametric class-conditional PDF models,
can be analytically computed from the data. We have shown
that the �-measure has many interesting properties that are
reminiscent of the mutual information and the Bayes error.

If the classes conform to the homoscedastic Gaussian
conditions, IDA reduces to the classical LDA technique and is
an optimal feature extraction technique in the sense of Bayes.
For twoclosely centeredheteroscedasticGaussian classes, the
�-measure reduces to the Chernoff distance. Sufficient condi-
tions for the optimality of IDA in the sense of Bayes have been
given for heteroscedastic Gaussian classes. We have justified
the use of the �-measure as a class-separability criterion by
showing how it relates to the differences in the class-
conditional means and the class-conditional covariances,
which, in turn, makes IDA suitable for heteroscedastic data.

Finally, we have tested the performance of the IDA

method, and several related second-order techniques, on a
number of simulated and real-world data sets. We have
demonstrated, both theoretically and experimentally, that,
when class-conditional PDFs are highly overlapped, the IDA

method outperforms other second-order techniques, and as
the classes are more separated, the performance of IDA

approaches that of the other methods. Since the estimation
of the IDA feature extraction matrix is computationally
feasible, IDA should be considered as an alternative to other
linear DFE methods.
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APPENDIX I

PROOF OF PROPOSITION 1

It follows from (8) that

µ(R; Ω) =
1

2

[

log

(
∣

∣

∣

∣

∣

ΣW +

c
∑

i=1

m̃im̃i
Tpi

∣

∣

∣

∣

∣

)

−
c
∑

i=1

log(|Σi|)pi

]

where ΣW ,
∑c

i=1 Σi pi. Based on (22) (see Appendix III), followed by the chain rule, we

obtain

∂µ

∂m̃j

= pj

[

ΣW +

c
∑

i=1

m̃im̃i
Tpi

]−1

m̃j

To prove (10), it suffices to show that
[

ΣW +
∑c

i=1 m̃i m̃i
Tpi

]−1
is a positive definite matrix,

which follows readily after noting that ΣW > 0 and
[
∑c

i=1 m̃i m̃i
Tpi

]

> 0. �

APPENDIX II

PROOF OF PROPOSITION 2

Based on (8) and (21) we calculate ∂µ/∂Σ̃j as

∂µ

∂Σ̃j

=
pj

2

[

Σ
−1 − Σ

−1
j

]

To prove (11) we need to show 〈Σ−1 − Σ
−1
j : Σj − Σ〉 > 0. This condition can be written as

e
T
[(

Σ
−1 −Σ

−1
j

)

◦ (Σj −Σ)
]

e > 0

where e , [1, 1, · · · , 1]T ∈ R
n, and ◦ denotes the Hadamard product (see Appendix IV). Based

on the properties 2) and 5) of the Hadamard product (see Appendix IV), the expression above

reduces to8

e
T
(

Σ
−1 ◦ Σj + Σ

−1
j ◦ Σ

)

e > 2 n (17)

8A less strict version of the condition (17), written as Σ
−1

◦Σj + Σ
−1

j ◦ Σ ≥ 2 I, was proven in [41].
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Based on the property 6), the term on the left hand side of (17), denoted by L, satisfies the

following

case (1): L = e
T
[

(

Σ ◦ Σ
−1
j

)−1
+ Σ

−1
j ◦ Σ

]

e (18)

Σj ,Σ − diagonal

case (2): L > e
T
[

(

Σ ◦ Σ
−1
j

)−1
+ Σ

−1
j ◦ Σ

]

e (19)

otherwise

We proceed by noting that the matrix
(

Σ ◦ Σ
−1
j

)−1
+Σ

−1
j ◦Σ is symmetric [property 3)], therefore

its eigenvectors {vi : i = 1, 2, · · · , n} form an orthonormal basis in R
n. Write e in this new basis

as e =
∑n

i=1 gi vi, where gi , 〈e, vi〉, and observe that e
T[
(

Σ ◦ Σ
−1
j

)−1
+Σ

−1
j ◦Σ]e =

∑n

i=1 g2
i αi,

where αi are the eigenvalues corresponding to the eigenvectors vi. Based on the property 1) and

the properties of invertible matrices we note that αi = λi + 1/λi, where λi are the eigenvalues

of Σ
−1
j ◦ Σ. Finally, observe that Σ

−1
j ◦ Σ is a positive definite matrix [property 4)], therefore

λi > 0, ∀i. Thus minλ>0 {λ + 1/λ} = 2, and the minimum is attained at λ = 1. Based on these

observations we have

e
T
[

(

Σ ◦ Σ
−1
j

)−1
+ Σ

−1
j ◦ Σ

]

e

≥ 2

n
∑

i=1

g2
i = 2 n (20)

and the equality holds if and only if e is the eigenvector of Σ
−1
j ◦ Σ corresponding to λ = 1.

Therefore, for the case (2) the condition (17) follows directly from (19) and (20). A similar

argument applies to the case (1), the only concern arising when (20) holds with equality. But

in this case, the condition
(

Σ
−1
j ◦ Σ

)

e = e imposes that the row sums of the matrix Σ
−1
j ◦ Σ

are 1, which for diagonal matrices Σj and Σ yields Σj = Σ. This, however, contradicts our

assumption Σ̃j 6= 0n. �

APPENDIX III

DERIVATIVES OF FUNCTIONS OF MATRICES

Let f : R
m×n → R be a differentiable function of a matrix T ∈ R

m×n. We define ∂f/∂T

as an m × n matrix such that [∂f/∂T]i,j , ∂f/∂Ti,j . Let Ψ : R
m×n → R

p×q be a differ-

entiable function of a matrix T ∈ R
m×n. We define ∂Ψ/∂T as a pq × mn matrix such that
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[∂Ψ/∂T](j−1)p+i,(l−1)m+k , ∂Ψi,j/∂Tk,l. We list some important rules and identities for the

differentiation of functions of matrices [42], [43]. Unless otherwise noted, it is assumed that

T ∈ R
m×n, Ψ : R

r×s → R
p×q and Φ : R

m×n → R
r×s are differentiable functions of their

respective variables.

1) ∂|T|/∂T = adjT(T), where T ∈ R
n×n.

2) ∂T/∂T = In ⊗ Im, where ⊗ stands for the Kronecker product [44].

3) ∂T
−1/∂T = −

(

T
−T ⊗ T

−1
)

, where T ∈ R
n×n is a non-singular matrix.

4) Product rule: ∂ [U V] /∂T = (Ir ⊗U) ∂V/∂T +(VT ⊗ Ip) ∂U/∂T, where U : R
m×n → R

p×q

and V : R
m×n → R

q×r are differentiable functions of T.

5) Chain rule: ∂ [Ψ (Φ(T))] /∂T = [∂Ψ/∂Φ] [∂Φ(T)/∂T].

From the foregoing, we have the following useful results:

• If T ∈ R
n×n is an invertible matrix with |T| > 0, then

∂ log(|T|)

∂T
= T

−T (21)

• Let T ∈ R
m×n (m < n) be a full-rank matrix, and let Σ ∈ R

n×n be a symmetric positive

definite matrix. From (21) and the chain rule we have

∂ log(|T ΣT
T|)

∂T
= 2(T ΣT

T)
−1

T Σ (22)

• Similarly, based on the product rule and the chain rule we write

∂
(

T ΣT
T
)

∂T
= (Im ⊗ T Σ)

∂T
T

∂T

+ (T ⊗ Im)
∂ (T Σ)

∂T

= (Im ⊗ T Σ)Θ

+ (T Σ ⊗ Im) , C(Σ)

where we have used the fact that (T ⊗ Im) (Σ ⊗ Im) = (T Σ ⊗ Im). The matrix Θ ∈

R
mn×mn is a sparse matrix with {Θ(j−1)n+i,(i−1)m+j = 1 | i = 1, · · · , n; j = 1, · · · , m} and

all other elements 0.

• Finally, based on the product rule we find the derivative of the main term in (22) as

∂
[

(

T ΣT
T
)−1

T Σ

]

∂T
= A(Σ) + B(Σ)
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where from the chain rule we have

A(Σ) =
[

In ⊗ (T ΣT
T)

−1
]

(Σ ⊗ Im)

B(Σ) = −
(

ΣT
T ⊗ Im

)

(23)
[

(T ΣT
T)

−T
⊗ (T ΣT

T)
−1
]

C(Σ)

where A(Σ), B(Σ) ∈ R
mn×mn.

APPENDIX IV

SOME PROPERTIES OF HADAMARD PRODUCT

The Hadamard (elementwise) product of two matrices A and B of the same size is defined as

[A ◦ B]i,j , Ai,j Bi,j. We will use the following properties of the Hadamard product:

1) Commutativity: A ◦ B = B ◦ A (follows directly from the definition).

2) Distributivity: A ◦ (B + C) = A ◦ B + A ◦ C (follows from the definition).

3) If A = A
T and B = B

T, then (A ◦ B)T = A
T ◦ B

T = A ◦ B (follows from the definition).

4) If A > 0 and B > 0, then (A ◦ B) > 0 (see [44, pp. 458]).

5) If A ∈ R
n×n is an invertible matrix and e , [1, 1, · · · , 1]T ∈ R

n, then e
T
(

A
−1 ◦ A

)

e = n

(follows from the definition, but see also [45]).

6) If A > 0 and B > 0, then (A ◦ B)−1 ≤ A
−1 ◦ B

−1 and the equality holds if and only if A

and B are both diagonal (see [45]).

APPENDIX V

PROOF OF COROLLARY 1

It suffices to show that the conditions of Corollary 1 imply the conditions of Theorem 4, i.e.

fN|S,Ω(n | s, ωi) = fN|S(n | s), ∀i = {1, 2, · · · , c}, ∀s ∈ R
m, ∀n ∈ R

d. Since S|Ω and N|Ω are

Gaussian, so is N|S, Ω, i.e. N|S, Ω ∼ N
(

m
N|S
i ,Σ

N|S
i

)

, where [46, pp. 45-51]

m
N|S
i = m

N

i + Σ
NS

i (ΣSS

i )
−1 (

s − m
S

i

)

Σ
N|S
i = Σ

NN

i −Σ
NS

i (ΣSS

i )
−1

Σ
SN

i ∀i, ∀s (24)

After recalling the conditions of Corollary 1, it follows immediately from (24) that m
N|S
i = m

N

and Σ
N|S
i = Σ

NN, hence N|S, Ω ∼ N
(

m
N,ΣNN

)

. By definition

fN|S(n | s) =

c
∑

i=1

fN|S,Ω(n | s, ωi) P (ωi|s)
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which after noting that fN|S,Ω(n | s, ωi) = N
(

m
N,ΣNN

)

and
∑c

i=1 P (ωi|s) = 1, implies that

N|S ∼ N
(

m
N,ΣNN

)

. �
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