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Abstract

We unify f -divergences, Bregman divergences, surrogate regret bounds, proper scoring rules, cost

curves, ROC-curves and statistical information. We do this by systematically studying integral and

variational representations of these objects and in so doing identify their representation primitives

which all are related to cost-sensitive binary classification. As well as developing relationships

between generative and discriminative views of learning, the new machinery leads to tight and

more general surrogate regret bounds and generalised Pinsker inequalities relating f -divergences

to variational divergence. The new viewpoint also illuminates existing algorithms: it provides a

new derivation of Support Vector Machines in terms of divergences and relates maximum mean

discrepancy to Fisher linear discriminants.
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1. Introduction

Some of the simplest machine learning problems concern binary experiments. There it is assumed

that observations are drawn from a mixture of two distributions (one for each class). These distribu-

tions determine many important objects related to the learning problems they underpin such as risk,

divergence and information. Our aim in this paper is to present all of these objects in a coherent

framework explaining exactly how they relate to each other. Doing so brings conceptual clarity to

the area as well as providing the means for a number of new technical results.

1.1 Motivation

There are many different notions that underpin the definition of machine learning problems. These

include information, loss, risk, regret, ROC (Receiver Operating Characteristic) curves and the area

under them, Bregman divergences and distance or divergence between probability distributions. On

the surface, the problem of estimating whether two distributions are the same (as measured by, say,

their Kullback-Leibler divergence) is different to the problem of minimisation of expected risk in

a prediction problem. One goal of the present paper is to show how this superficial difference is

indeed only superficial—deeper down they are the same problem and analytical and algorithmic

insights for one can be transferred to the other.

Machine learning as an engineering discipline is still young.1 There is no agreed language to

describe machine learning problems (such is usually done with an informal mixture of English and

1. Bousquet (2006) has articulated the need for an agreed vocabulary, a clear statement of the main problems, and to

“revisit what has been done or discovered so far with a fresh look”.
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mathematics). There is very little in the way of composability of machine learning solutions. That

is, given the solution to one problem, use it to solve another. Of course one would like to not merely

be able to do this, but to be certain what one might lose in doing so. In order to do that, one needs

to be able to provide theoretical guarantees on how well the original problem will be solved by

solving the surrogate problem. Related to these issues is the fact that there are no well understood

primitives for machine learning. Indeed, what does that even mean? All of these issues are the

underlying motivation for this paper.

Our long term goal (towards which this paper is but the first step) is to turn the field of ma-

chine learning into a more well founded engineering discipline with an agreed language and well

understood composition rules. Our motivation is that until one can start building systems modu-

larly, one is largely restricted to starting from scratch for each new problem, rather than obtaining

the efficiency benefits of re-use.2

We are comparing problems, not solutions or algorithms. Whilst there have been attempts to

provide a degree of unification at the level of algorithms (Altun and Smola, 2006), there are in-

trinsic limits to such a research program. The most fundamental is that (surprisingly) there is no

satisfactory formal definition of what an algorithm really is Blass and Gurevich (2003), nor how two

algorithms can be compared with a view to determining if they are the same (Blass et al., 2009).

We have started with binary experiments because they are simple and widely used. As we will

show, by pursuing the high level research agenda summarised above, we have managed to unify

all of the disparate concepts mentioned and furthermore have simultaneously simplified and gen-

eralised two fundamental results: Pinsker inequalities between f -divergences and surrogate regret

bounds. The proofs of these new results rely essentially on the decomposition into primitive prob-

lems.

1.2 Novelty and Significance

Our initial goal was to present existing material in a unified way. We have indeed done that. In

doing so we have developed new (and simpler) proofs of existing results. Additionally we have

developed some novel technical results. The key ones are:

1. A link between the weighted integral representations for proper scoring rules and those for

f -divergences which allows the transformation from one to the other (Theorem 10);

2. A unified derivation of the integral representations in terms of Taylor series showing their

equivalence (Theorem 18);

2. Abelson et al. (1996) described the principles of constructing software with the aid of (Locke, 1690, Chapter 12,

paragraph 1):

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three: (1) Combining

several simple ideas into one compound one; and thus all complex ideas are made. (2) The second is

bringing two ideas, whether simple or complex, together, and setting them by one another, so as to take

a view of them at once, without uniting them into one; by which it gets all its ideas of relations. (3) The

third is separating them from all other ideas that accompany them in their real existence; this is called

abstraction: and thus all its general ideas are made

Modularity is central to computer hardware (Baldwin and Clark, 2006b,a) and other engineering disciplines (Ger-

shenson et al., 2003) and plays a central role in some models of economic development (Varian, 2003; Weitzman,

1998; Mokyr, 1992). The reason modularity works is that components can be combined or composed.
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3. Use of these representations to derive new bounds for divergences, Bayes risks and regrets:

“surrogate regret bounds”(Theorem 25) and Pinsker inequalities (Theorem 30);

4. Showing that statistical information (and hence f -divergence) are both Bregman informa-

tions;

5. The derivation of SVMs from a variational perspective which provides a clearer explanation

of the link between MMD (Maximum Mean Discrepancy) and SVMs (Support Vector Ma-

chines) §H;

6. Explicit formulae relating Bayes risk to the Neyman-Pearson function, which allows the trans-

formation of risk curves to ROC curves and vice versa (Theorem 22).

The significance of these new connections is that they show that the choice of loss function

(scoring rule), f -divergence and Bregman divergence (regret) are intimately related—choosing one

implies choices for the others. Furthermore we show there are more intuitively usable parameter-

isations for f -divergences and scoring rules (their corresponding weight functions). The weight

functions have the advantage that if two weight functions match, then the corresponding objects

are identical. That is not the case for the f parameterising an f -divergence or the convex func-

tion parameterising a Bregman divergence. As well as the theoretical interest in such connections,

these alternate representations suggest new algorithms for empirically estimating such quantities.

We have represented all of the connections graphically in figure 1. The various symbols are defined

below; the point of the picture here is to see the overall goal of the paper—the relating of a range of

diverse concepts.

Given the broad scope of our work, there is of course much prior work, too much to summarise

in this introduction. Appendix C summarises the main precursors and related work.

1.3 Paper Outline and Key Contributions

The following is an outline of the main structure of this paper section by section highlighting the

contributions and novelty. A knowledgeable reader only interested in the core new results should be

able to just read Sections 4–8 plus Appendix H with the aid of Table 1. More tedious and technical

proofs and digressions are in the appendices.

§2 Many of the properties of the objects studied in this paper are directly derived from well-known

properties of convex functions. In particular, a generalised form of Taylor’s theorem and

Jensen’s inequality underpin many of the new results. Although elementary, we have started

from this point because it shows how fundamental are the connections drawn later in the paper

are. We rederive Savage’s famous theorem (Theorem 7) from our perspective.

§3 One of the simplest type of statistical problems is that of distinguishing between two distribu-

tions. Such a problem is known as a binary experiment. Two classes of measures of diver-

gence between the distributions are introduced: the class of Csiszár f -divergences and the

class of Bregman divergences.

§4 When additional assumptions are made about a binary experiment—specifically, a prior proba-

bility for each of the two distributions—it becomes possible to talk about risk and statistical

information of an experiment that is defined with respect to a loss function. A key result is

Theorem 10 which shows that f -divergence, statistical information and Bregman divergence

are all fundamentally equivalent.
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§5 A key technique we use is that of an integral representation. We show that integral represen-

tations of f -divergences and proper losses and statistical information are all essentially the

same (Theorem 18). We explicitly compare the primitives for each of these representations

and show their natural interpretation.

§6 The weight function view also illuminates various “graphical representations” of binary exper-

iments, such as ROC curves. We unify several graphical representations for binary experi-

ments and present new explicit formulae relating Bayes risk to the Neyman-Pearson function,

which allows the transformation of risk curves to ROC curves and vice versa (Theorem 22).

§7 The various equivalences developed in the above sections are then used to derive new tight

inequalities of interest in Machine Learning, The first is a We derive an explicit form for

surrogate regret bounds for proper losses in terms of the weight function corresponding to the

proper loss (Theorem 25). These are tight bounds on the conditional risk with respect to an

arbitrary cost-sensitive misclassification loss when all is known is the value of the conditional

risk with respect to an arbitrary proper loss. The result generalises existing results in two

key ways. We also generalise the classical Pinsker inequality by deriving tight bounds on an

arbitrary f -divergence when the value of several generalised variational divergences between

the same distributions is known (Theorem 30). A side-effect is an explicit formula for the best

possible bound on KL-divergence given knowledge of the classical variational divergence.

§8 Another representation of risks is a variational one. We systematically explore the relationship

between Bayes risk and variational divergence, building upon classical results. An interesting

consequence of our analysis is presented in Appendix H where we show that maximum mean

discrepancy (MMD)—a kernel approach to hypothesis testing and divergence estimation—is

essentially SVM learning in disguise. In doing so we present a novel, simple and interesting

alternate derivation of the Support Vector Machine.

1.4 Notational Conventions

Here we record elementary notation and the conventions we adopt throughout the paper. Key no-

tations are tabulated in table 1. We write x ∧ y := min(x,y), x ∨ y := max(x,y), (x)+ := x ∨ 0,

(x)− := x∧0 and the Iverson bracket JpK = 1 if p is true and JpK = 0 otherwise (Knuth, 1992). The

generalised function δ(·) is defined by
∫ b

a δ(x) f (x)dx= f (0) when f is continuous at 0 and a< 0< b

(Antosik et al., 1973; Friedlander, 1982). The unit step U(x) =
∫ x
−∞ δ(t)dt. The real numbers are

denoted R, the non-negative reals R+ and the extended reals R = R∪{∞}; the rules of arithmetic

with extended real numbers and the need for them in convex analysis are explained by Rockafellar

(1970). Random variables are written in sans-serif font: S, X, Y. Sets are in calligraphic font: X

(the “input” space), Y (the “label” space). Vectors are written in bold font: a,ααα,xxx ∈ Rm. We will

often have cause to take expectations (E) of various functions over the random variable X. We write

such quantities in blackboard bold: I, L, B, J. The elementary loss is ℓ, its conditional expectation

w.r.t. Y is L and the full expectation (over the joint distribution P of (X,Y)) is L. Lower bounds on

quantities with an intrinsic lower bound (e.g., the Bayes optimal loss) are written with an underbar:

L, L. Quantities related by double integration appear in this paper and we notate the starting point in

lower case, the first integral with upper case, and the second integral in upper case with an overbar:

w, W , W . Estimated quantities are hatted: η̂. In several places we overload the notation. In all cases

careful attention to the type of the arguments or subscripts reliably disambiguates.
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Symbol Meaning Defined

Iφ Perspective transform (1)

(P,Q) Binary experiment §3

ℓ Loss §4.2

L Conditional risk §4.2

L Expected risk §4.2

L Conditional Bayes risk §4.2

L Expected Bayes Risk §4.2

Jµ[φ] Jensen gap Th. 5

I f (P,Q) f -divergence between P and Q §3.2

φ♦ Csiszár dual of φ (2)

φ⋆ Legendre-Fenchel dual of φ (3)

Bφ Bregman divergence and regret §4.4

TPr , FNr True Positive / False Negative rate for test r (10)

β(·,P,Q) Neyman-Pearson function for (P,Q) (11)

r, τ Test, Test statistic §3.1

Bφ(P,Q) Generative Bregman divergence §3.3

P Joint distribution on X×Y §4.1

M Reference measure for (P,Q) with prior π §4.1

π A priori probability of positive class §4.1

η Probability of positive class §4.2

η(·) Conditional probability of positive class §4.2

T = (η,M;ℓ) = (π,P,Q;ℓ) Task §4.2

η̂(·) Estimator of η(·) §4.2

Bφ(S) Bregman information of S §4.5

w(·) Weight function for proper loss §5.3

γ(·) Weight function for f -divergence §5.1

∆L(η,M) Statistical information (20)

ℓc,Lc Cost-sensitive mis-classification loss (29),(30)

ROC(τ) Receiver Operating Characteristic curve (37)

AUC(τ) Area Under the ROC Curve (38)

Vπ(P,Q) Generalised Variational divergence (49)

Table 1: Standard notation used throughout the paper.

2. Convex Functions and Their Representations

Many of the properties of divergences and losses are best understood through properties of the con-

vex functions that define them. One aim of this paper is to explain and relate various divergences

and losses by understanding the relationships between their primitive functions. The relevant def-

736



INFORMATION, DIVERGENCE AND RISK

initions and theory of convex functions will be introduced as required. Any terms not explicitly

defined can be found in books by Hiriart-Urruty and Lemaréchal (2001) or Rockafellar (1970).

A set S ⊆ Rd is said to be convex if for all λ ∈ [0,1] and for all points s1,s2 ∈ S the point

λs1 +(1−λ)s2 ∈ S. A function φ : S→ R defined on a convex set S is said to be a (proper) convex

function if3 for all λ ∈ [0,1] and points s1,s2 ∈ S the function φ satisfies

φ(λs1 +(1−λ)s2)≤ λφ(s1)+(1−λ)φ(s2).

A function is said to be concave if −φ is convex.

The remainder of this section presents properties, representations and transformations of convex

functions that will be used throughout this paper.

2.1 The Perspective Transform and the Csiszár Dual

When S= R+ and φ : R+ → R is convex, the perspective transform of φ is defined for τ ∈ R+ via

Iφ(s,τ) :=







τφ(s/τ), τ > 0,s> 0

0, τ = 0,s = 0

τφ(0), τ > 0,s = 0

sφ′∞, τ = 0,s> 0,

(1)

where φ(0) := lims→0 φ(s) ∈ R and φ′∞ is the slope at infinity defined as

φ′∞ := lim
s→+∞

φ(s0 + s)−φ(s0)

s
= lim

s→+∞

φ(s)
s

for every s0 ∈ S where φ(s0) is finite. This slope at infinity is only finite when φ(s) = O(s), that

is, when φ grows at most linearly as s increases. When φ′∞ is finite it measures the slope of the

linear asymptote. The function Iφ : [0,∞)2 → R is convex in both arguments (Hiriart-Urruty and

Lemaréchal, 1993b) and may take on the value +∞ when s or τ is zero. It is introduced here

because it will form the basis of the f -divergences described in the next section.4

The perspective transform can be used to define the Csiszár dual φ♦ : [0,∞) → R of a convex

function φ : R+ → R by letting

φ♦(τ) := Iφ(1,τ) = τφ
(

1

τ

)

(2)

for all τ ∈ (0,∞) and φ♦(0) := φ′∞. The original φcan be recovered from Iφ since φ(s) = I f (s,1).
The convexity of the perspective transform Iφ in both its arguments guarantees the convexity of

the dual φ♦. Some simple algebraic manipulation shows that for all s,τ ∈ R+

Iφ(s,τ) = Iφ♦(τ,s).

This observation leads to a natural definition of symmetry for convex functions. We will call a

convex function ♦-symmetric (or simply symmetric when the context is clear) when its perspective

transform is symmetric in its arguments. That is, φ is ♦-symmetric when Iφ(s,τ) = Iφ(τ,s) for all

s,τ ∈ [0,∞). Equivalently, φ is ♦-symmetric if and only if φ♦ = φ.

3. The restriction of the values of φ to R will be assumed throughout unless explicitly stated otherwise. This implies the

properness of φ since it cannot take on the values −∞ or +∞.

4. The perspective transform is closely related to epi-multiplication which is defined for all τ ∈ [0,∞) and (proper)

convex functions φ to be τ⊗φ := s 7→ τφ(s/τ) for τ > 0 and is 0 when τ = s = 0 and +∞ otherwise. Bauschke et al.

(2008) summarise the properties of this operation and its relationship to other operations on convex functions.
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2.2 The Legendre-Fenchel Dual Representation

A second important dual operator for convex functions is the Legendre-Fenchel (LF) dual. The LF

dual φ⋆ of a function φ : S→ R is a function defined by

φ⋆(s⋆) := sup
s∈S

{〈s,s⋆〉−φ(s)}. (3)

The LF dual of any function is convex and, if the function φ is convex and closed then the LF bidual

is a faithful representation of the original function. That is,

φ⋆⋆(s) = sup
s⋆∈S⋆

{〈s⋆,s〉−φ⋆(s⋆)}= φ(s).

When φ: S → R, S ⊆ R, is a function of a real argument s and the derivative φ′(s) exists, the

Legendre-Fenchel conjugate φ⋆ is given by the Legendre transform (Hiriart-Urruty and Lemaréchal,

2001; Rockafellar, 1970)

φ⋆(s) = s · (φ′)−1(s)−φ
(
(φ′)−1(s)

)
.

2.3 Integral Representations

In this paper we are primarily concerned with convex and concave functions defined on subsets of

the real line. A central tool in their analysis is the integral form of their Taylor expansion. Here, φ′
and φ′′ denote the first and second derivatives of φ respectively.

Theorem 1 (Taylor’s Theorem) Let S = [s0,s] be a closed interval of R and let φ : S → R be

differentiable on [s0,s] and twice differentiable on (s0,s). Then

φ(s) = φ(s0)+φ′(s0)(s− s0)+
∫ s

s0

(s− t)φ′′(t)dt. (4)

The argument s appears in the limits of integral in the above theorem and consequently can

be awkward to work with. Also, it will be useful to expand φ about some point not at the end of

the interval of integration. The following corollary of Taylor’s theorem removes these problems by

introducing piecewise linear terms of the form (s− t)+ = (s− t)∨0.

Corollary 2 (Integral Representation I) Suppose −∞ < a < b < ∞ and let φ : [a,b] → R be a

twice differentiable function. Then, for all s,s0 ∈ [a,b] we have

φ(s) = φ(s0)+φ′(s0)(s− s0)+
∫ b

a
φs0

(s, t)φ′′(t)dt, (5)

where

φs0
(s, t) :=







(s− t) s0 < t ≤ s

(t − s) s< t ≤ s0

0 otherwise

is piecewise linear and convex in s for each s0, t ∈ [a,b].
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This result is a consequence of the way in which φt effectively restricts the limits of integration to

the interval (s0,s)⊆ [a,b] or (s,s0)⊆ [a,b] depending on whether s0 < s or s0 ≥ s with appropriate

reversal of the sign of (s− t).

When a = 0 and b = 1 a second integral representation for the unit interval can be derived from

(5) that removes the term involving φ′.

Corollary 3 (Integral Representation II) A twice differentiable function φ : [0,1]→ R can be ex-

pressed as

φ(s) = φ(0)+(φ(1)−φ(0))s−
∫ 1

0
ψ(s, t)φ′′(t)dt, (6)

where ψ(s, t) = (1− t)s∧ (1− s)t is piecewise linear and concave in s ∈ [0,1] for each t ∈ [0,1].

The result follows by integration by parts of tφ′′(t). The proof can be found in Appendix A.1. It

is used in Section 5 below to obtain an integral representation of losses for binary class probability

estimation. This representation can be traced back to Temple (1954) who notes that the kernel

ψ(s, t) is the Green’s function for the differential equation ψ′′ = 0 with boundary conditions ψ(a) =
ψ(b) = 0.

Both these integral representations state that the non-linear part of φ can be expressed as a

weighted integral of piecewise linear terms φs0
or ψ. When we restrict our attention to convex φ

we are guaranteed the “weights” φ′′(t) for each of these terms are non-negative. Since the measures

of risk, information and divergence we examine below do not depend on the linear part of these

expansions we are able to identify convex functions with the weights w(t) = φ′′(t) that define their

non-linear part. The sets of piecewise linear functions {φs0
(s, t)}t∈[a,b] and {ψ(s, t)}t∈[0,1] can be

thought of as families of “primitive” convex functions from which others can be built through their

weighted combination. Representations like these are often called Choquet representations after

work by Choquet (1953) on the representation of compact convex spaces (Phelps, 2001).

2.4 Representations for Non-Differentiable Convex Functions

It is possible to weaken the conditions on the representation results so they hold for continuous but

not necessarily differentiable functions. As much of this paper deals with functions that fall into

this category—namely general convex functions—being able to generalise these results is essen-

tial in order to understand the weight functions corresponding to the primitive f -divergences and

loss functions. We will briefly discuss these generalisations and introduce some conventions for

interpreting subsequent results in an effort to avoid too many distracting technicalities.

The convention for the remainder of this paper is that the first derivative of a convex func-

tion φ over R is to be interpreted as a right derivative. That is, we will take φ′(t) to be φ′+(t) :=

limε↓0
φ(t)−φ(t+ε)

ε . Theorem 24.1 of Rockafellar (1970) guarantees that this derivative exists and

is non-decreasing and right continuous on the domain of φ. It is therefore possible to define a

Lebesgue-Stieltjes measure λφ((a,b]) := φ′(b)−φ′(a) for intervals in the domain of φ.

Second derivatives of convex φare only ever used within integrals to “weight” the contribution

of the non-negative, piecewise linear functions φs0
(·, t) and ψ(·, t) discussed above. Thus, we write∫ b

a f (t)φ′′(t)dt as a short-hand for the Lebesgue-Stieltjes integral
∫ b

a f (t)dλφ(t). For simplicity,

we will often speak of weight “functions” being equal to the second derivative of general convex

functions. As we only ever consider linear operators on these weight functions, it is unproblematic to

treat second derivatives as Schwartz distributions or “generalised functions” (Antosik et al., 1973;

739



REID AND WILLIAMSON

Friedlander, 1982) and add, scale, and evaluate them like normal functions. The most exotic of

these we will consider explicitly are the weight functions corresponding to the primitive φs0
and ψ

functions. They correspond to Dirac delta distributions δ(·) as defined in Section 1.4.

As Liese and Vajda (2006) carefully show, it is possible to derive generalised versions of the

integral representations using the interpretations above. Of course, when the functions φ are twice

differentiable these interpretations and generalised results coincide with those for the usual first and

second derivatives.

2.5 Bregman Divergence

Bregman divergences are a generalisation of the notion of distances between points. Given a differ-

entiable5 convex function φ : S→ R and two points s0,s ∈ S the Bregman divergence6 of s from s0

is defined to be

Bφ(s,s0) := φ(s)−φ(s0)−〈s− s0, ∇φ (s0)〉 , (7)

where ∇φ (s0) is the gradient of φ at s0. A concise summary of many of the properties of Bregman

divergences is given by Banerjee et al. (2005b, Appendix A); see also Censor and Zenios (1997).

In particular, Bregman divergences always satisfy Bφ(s,s0) ≥ 0 and Bφ(s0,s0) = 0 for all s,s0 ∈ S,

regardless of the choice of φ. They are not always metrics, however, as they do not always satisfy

the triangle inequality and their symmetry depends on the choice of φ.

When S=R and φ is twice differentiable, comparing the definition of a Bregman divergence in

(7) to the integral representation in (4) reveals that Bregman divergences between real numbers can

be defined as the non-linear part of the Taylor expansion of φ. Rearranging (4) shows that for all

s,s0 ∈ R ∫ s

s0

(s− t)φ′′(t)dt = φ(s)−φ(s0)− (s− s0)φ′(s0) = Bφ(s,s0) (8)

since ∇φ = φ′ and the inner product is simply multiplication over the reals. This result also holds

for more general convex sets S. Importantly, it intuitively shows why the following holds (because

the Bregman divergence depends only on the nonlinear part of the Taylor expansion).

Theorem 4 Let φ and ψ both be real-valued, differentiable convex functions over the convex set S

such that φ(s) = ψ(s)+as+b for some a,b ∈ R. Then, for all s and s0, Bφ(s,s0) = Bψ(s,s0).

A proof can be obtained directly by substituting and expanding ψ in the definition of a Bregman

divergence.

Equation 8 also shows why B(s,s0) is decreasing as |s− s0| decreases (a fact we will exploit

later): since φ′′(t) ≥ 0 for all t, if s0 < s, then the integrand in (8) is always non-negative and the

result is immediate by the nature of integration. If s0 > s, a similar argument holds.

2.6 Jensen’s Inequality and the Jensen Gap

A central inequality in the study of convex functions is Jensen’s inequality. It relates the expectation

of a convex function applied to a random variable to the convex function evaluated at its mean. We

will denote by Eµ [·] :=
∫
S ·dµ expectation over S with respect to a probability measure µ over S.

5. Technically, φ need only be differentiable on the relative interior ri(S) of S. We omit this requirement for simplicity

and because it is not relevant to this discussion.

6. Named in reference to Bregman (1967) although he was not the first to consider such an equation, at least in the one

dimensional case; confer Brunk et al. (1957, p.838).
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Theorem 5 (Jensen’s Inequality) Let φ : S→R be a convex function, µ be a distribution and S be

an S-valued random variable (measurable w.r.t. µ) such that Eµ [|S|]< ∞. Then

Jµ[φ] := Eµ [φ(S)]−φ(Eµ [S])≥ 0. (9)

The proof is straight-forward and can be found in (Dudley, 2003, §10.2). Jensen’s inequality can

also be used to characterise the class of convex functions. If φ is a function such that (9) holds for

all random variables and distributions then φ must be convex.7 Intuitively, this connection between

expectation and convexity is natural since expectation can be seen as an operator that takes convex

combinations of random variables.

We will call the difference Jµ[φ] the Jensen gap for φwhen S∼ µ. Many measures of divergence

and information studied in the subsequent sections can be expressed as the Jensen gap of some

convex function. Due to the linearity of expectation, the Jensen gap is insensitive to the addition of

affine terms to the convex function that defines it:

Theorem 6 Let φ : S → R be convex function and S and µ be as in Theorem 5. Then for each

a,b ∈ R the convex function ψ(s) := φ(s)+as+b satisfies Jµ[φ(S)] = Jµ[ψ(S)].

The proof is a consequence of the definition of the Jensen gap and the linearity of expectations

and can be found in Appendix A.2. An implication of this theorem is that when considering sets

of convex functions as parameters to the Jensen gap operator they only need be identified by their

non-linear part. Thus, the Jensen gap operator can be seen to impose an equivalence relation over

convex functions where two convex functions are equivalent if they have the same Jensen gap, that

is, if their difference is affine.

In light of the two integral representations in Section 2.3, this means the Jensen gap only depends

on the integral terms in (5) and (6) and so is completely characterised by the weights provided by

φ′′. Specifically, for suitably differentiable φ : [a,b]→ R we have

Jµ[φ(S)] =
∫ b

a
Jµ[φs0

(S, t)]φ′′(t)dt.

Since several of the measures of divergence, information and risk we analyse can be expressed as a

Jensen gap, this observation implies that these quantities can be identified with the weights provided

by φ′′ as it is these that completely determine the measure’s behaviour.

3. Binary Experiments and Measures of Divergence

The various properties of convex functions developed in the previous section have many implica-

tions for the study of statistical inference. We begin by considering binary experiments (P,Q) where

P and Q are probability measures8 over a common space X. We will consider P the distribution over

positive instances and Q the distribution over negative instances. The densities of P and Q with re-

spect to some third reference distribution M over X will be defined by dP = pdM and dQ = qdM

respectively. Unless stated otherwise we will assume that P and Q are both absolutely continuous

7. This can be seen by considering a distribution with a finite, discrete set of points as its support and applying Theo-

rem 4.3 of Rockafellar (1970).

8. We intentionally avoid too many measure theoretic details for the sake of clarity. Appropriate σ-algebras and conti-

nuity can be assumed where necessary.

741



REID AND WILLIAMSON

with respect to M. (One can always choose M to ensure this by setting M := (P+Q)/2; but see the

next section.)

There are several ways in which the “separation” of P and Q in a binary experiment can be

quantified. Intuitively, these all measure the difficulty of distinguishing between the two distri-

butions using instances drawn from their mixture. The further apart the distributions are the easier

discrimination becomes. This intuition is made precise through the connections with risk and MMD

later in Appendix H.

A central statistic in the study of binary experiments and statistical hypothesis testing is the

likelihood ratio dP/dQ. As the following section outlines, the likelihood ratio is, in the sense of

preserving the distinction between P and Q, the “best” mapping from an arbitrary space X to the

real line.

3.1 Statistical Tests and the Neyman-Pearson Lemma

In the context of a binary experiment (P,Q), a statistical test is any function that assigns each

instance x ∈ X to either P or Q. We will use the labels 1 and 0 for P and Q respectively and so a

statistical test is any function r : X→ {0,1}. In machine learning, a function of this type is usually

referred to as a classifier. The link between tests and classifiers is explored further in Section 4.

Each test r partitions the instance space X into positive and negative prediction sets:

X+
r := {x ∈ X : r(x) = 1},

X−
r := {x ∈ X : r(x) = 0}.

There are four classification rates associated with these predictions sets: the true positive rate (TP),

true negative rate (TN), false positive rate (FP) and the false negative rate (FN). For a given test r

they are defined as follows:

TPr := P(X+
r ), FPr := Q(X+

r ),
FNr := P(X−

r ), TNr := Q(X−
r ).

(10)

The subscript r will be dropped when the test is clear by the context. Since P and Q are distributions

over X = X+
r ∪X−

r and the positive and negative sets are disjoint we have that TP+ FN = 1 and

FP+TN = 1. As a consequence, the four values in (10) can be summarised by choosing one from

each column.

Often, statistical tests are obtained by applying a threshold τ0 to a real-valued test statistic

τ : X→ R. In this case, the statistical test is r(x) = Jτ(x)≥ τ0K. This leads to parameterised forms

of prediction sets X
y
τ(τ0) := X

y

Jτ≥τ0K
for y ∈ {+,−}, and the classification rates TPτ(τ0), FPτ(τ0),

TNτ(τ0), and TPτ(τ0) which are defined analogously. By varying the threshold parameter a range of

classification rates can be achieved. This observation leads to a well known graphical representation

of test statistics known as the ROC curve, which is discussed further in Section 6.1.

A natural question is whether there is a “best” statistical test or test statistic to use for binary

experiments. This is usually formulated in terms of a test’s power and size. The power βr of the test

r for a particular binary experiment (P,Q) is a synonym for its true positive rate (that is, βr := TPr

and so 1−βr := FNr
9) and the size αr of same test is just its false positive rate αr := FPr. Here,

9. This is opposite to the usual definition of βr in the statistical literature. Usually, 1−βr is used to denote the power of

a test. We have chosen to use βr for the power (true positive rate) as this makes it easier to compare with ROC curves

and it is consistent with the usage of Torgersen (1991).

742



INFORMATION, DIVERGENCE AND RISK

“best” is considered to be the most powerful (MP) test of a given size (Bickel and Doksum, 2001,

§4.2). That is, a test r is considered MP of size α ∈ [0,1] if, αr = α and for all other tests r′ such that

αr′ ≤ α we have 1−βr ≤ 1−βr′ . We will denote by β(α) := β(α,P,Q) the true positive rate of an

MP test between P (the alternative hypothesis) and Q (the null hypothesis) at Q with significance α.

Torgersen (1991) calls β(·,P,Q) the Neyman-Pearson function for the dichotomy (P,Q). Formally,

for each α ∈ [0,1], the Neyman-Pearson function β measures the largest true positive rate TPr of

any measurable classifier r : X→{−1,1} that has false positive rate FPr at most α. That is,

β(α) = β(α,P,Q) := sup
r∈{−1,1}X

{TPr : FPr ≤ α}. (11)

The Neyman-Pearson lemma (Neyman and Pearson, 1933) shows that the likelihood ratio τ∗(x)=
dP/dQ(x) is the most powerful test for each choice of threshold τ0. Since each choice of τ0 ∈ R

results in a test JdP/dQ ≥ τ0K of some size α ∈ [0,1] we have that10

β(FPτ∗(τ0)) = TPτ∗(τ0) (12)

and so varying τ0 over R results in a maximal ROC curve. This too is discussed further in Sec-

tion 6.1.

The Neyman-Pearson lemma thus identifies the likelihood ratio dP/dQ as a particularly useful

statistic. Given an experiment (P,Q) it is, in some sense, the best mapping from the space X to the

reals. The next section shows how this statistic can be used as the basis for a variety of divergence

measures between P and Q.

3.2 Csiszár f -divergences

The class of f -divergences (Ali and Silvey, 1966; Csiszár, 1967) provide a rich set of relations that

can be used to measure the separation of the distributions in a binary experiment. An f -divergence

is a function that measures the “distance” between a pair of distributions P and Q defined over a

space X of observations. Traditionally, the f -divergence of P from Q is defined for any convex

f : (0,∞)→ R such that f (1) = 0. In this case, the f -divergence is

I f (P,Q) = EQ

[

f

(
dP

dQ

)]

=
∫
X

f

(
dP

dQ

)

dQ (13)

when P is absolutely continuous with respect to Q and equals ∞ otherwise.11

The above definition is not completely well-defined as the behaviour of f is not specified at the

endpoints of (0,∞). This is remedied via the perspective transform of f , introduced in Section 2.1

above which defines the limiting behaviour of f . Given convex f : (0,∞)→ R such that f (1) = 0

the f -divergence of P from Q is

I f (P,Q) := EM [I f (p,q)] = EX∼M [I f (p(X),q(X))] , (14)

where I f is the perspective transform of f (see (1)).

10. Equation (43) in Section 6.3 below, shows that β(α) is the lower envelope of a family of linear functions of α and is

thus concave and continuous. Hence, the equality in (12) holds.

11. Liese and Miescke (2008, pg. 34) give a definition that does not require absolute continuity.
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The restriction that f (1) = 0 in the above definition is only present to normalise I f so that

I f (Q,Q) = 0 for all distributions Q. We can extend the definition of f -divergences to all convex f

by performing the normalisation explicitly. Since f (EQ [dP/dQ]) = f (1) this is done most conve-

niently through the definition of the Jensen gap for the function f applied to the random variable

dP/dQ with distribution Q. That is, for all convex f : (0,∞)→ R and for all distributions P and Q

JQ

[

f

(
dP

dQ

)]

= I f (P,Q)− f (1). (15)

Due to the issues surrounding the behaviour of f at 0 and ∞ the definitions in (13), (14) and (15)

are not entirely equivalent. When it is necessary to deal with the limiting behaviour, the definition

in (14) will be used. However, the version in (15) will be most useful when drawing connections

between f -divergences and various definitions of information in Section 4 below.

Several properties of f -divergence can be immediately obtained from the above definitions. The

symmetry of the perspective I f in (2) means that

I f (P,Q) = I f♦(Q,P) (16)

for all distributions P and Q, where f ♦ is the Csiszár dual of f . The non-negativity of the Jensen

gap ensures that I f (P,Q) ≥ 0 for all P and Q. Furthermore, the affine invariance of the Jensen gap

(Theorem 6) implies the same affine invariance for f -divergences.

Several well-known divergences correspond to specific choices of the function f (Ali and Silvey,

1966, §5). One divergence central to this paper is the variational divergence V (P,Q) which is

obtained by setting f (t) = |t −1| in Equation 14. It is the only f -divergence that is a true metric on

the space of distributions over X (Khosravifard et al., 2007) and gets its name from its equivalent

definition in the variational form

V (P,Q) = 2‖P−Q‖∞ := 2 sup
A⊆X

|P(A)−Q(A)|.

(Some authors define V without the 2 above.) This form of the variational divergence is discussed

further in Section 8. Furthermore, the variational divergence is one of a family of “primitive” f -

divergences discussed in Section 5. These are primitive in the sense that all other f -divergences can

be expressed as a weighted sum of members from this family.

Another well known f -divergence is the Kullback-Leibler (KL) divergence KL(P,Q), obtained

by setting f (t) = t ln(t) in Equation 14. Others are given in Table 2 in Section 5.4.

3.3 Generative Bregman Divergences

Another measure of the separation of distributions can be defined as the expected Bregman diver-

gence between the densities p and q with respect to the reference measure M. Given a convex

function φ : R+ →R the generative Bregman divergence between the distributions P and Q is (con-

fer (14))

Bφ(P,Q) := EM

[
Bφ(p,q)

]
= EX∼M

[
Bφ(p(X),q(X))

]
.

We call this Bregman divergence “generative” to distinguish it from the “discriminative” Bregman

divergence introduced in Section 4 below, where the adjectives “generative” and “discriminative”

are explained further.
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Csiszár (1995) notes that there is only one divergence common to the class of f -divergences and

the generative Bregman divergences. In this sense, these two classes of divergences are “orthogonal”

to each other. Their only common point is when the respective convex functions satisfy f (t) =
φ(t) = t ln t −at +b (for a,b ∈ R) in which case both I f and Bφ are the KL divergence.

4. Risk and Statistical Information

The above discussion of f -divergences assumes an arbitrary reference measure M over the space

X to define the densities p and q. In the previous section, the choice of reference measure was

irrelevant since f -divergences are invariant to this choice.

In this section an assumption is made that adds additional structure to the relationship between

P and Q. Specifically, we assume that the reference measure M is a mixture of these two distribu-

tions. That is, M = πP+(1−π)Q for some π∈ (0,1). In this case, by construction, P and Q are

absolutely continuous with respect to M. Intuitively, this can be seen as defining a distribution over

the observation space X by first tossing a coin with a bias π for heads and drawing observations

from P on heads or Q on tails.

This extra assumption allows us to interpret a binary experiment (P,Q) as a generalised super-

vised binary task (π,P,Q) where the positive (y = 1) and negative (y =−1) labels y ∈ Y := {−1,1}
are paired with observations x ∈ X through a joint distribution P over X×Y. (We formally define

a task later in terms of an experiment plus loss function.) Given an observation drawn from X ac-

cording to M, it is natural to try to predict its corresponding label or estimate the probability it was

drawn from P.

Below we will introduce risk, regret, and proper losses and show how these relate to discrimina-

tive Bregman divergence. We then show the connection between the generative view ( f -divergence

between the class conditional distributions) and Bregman divergence.

4.1 Generative and Discriminative Views

Traditionally, the joint distribution P of inputs x ∈ X and labels y ∈ Y is used as the starting point

for analysing risk in statistical learning theory. In order to better link risks to divergences, in our

analysis we will consider two related representations of P.

The generative view decomposes the joint distribution P into two class-conditional distributions

defined as P(X) := P(X |y = 1), Q(X) := P(X |y = −1) for all X ⊆ X and a mixing probability or

prior π:= P(X,y = 1). The discriminative representation decomposes the joint distribution into an

observation distribution M(X) := P(X ,Y) for all X ⊆ X and an observation-conditional density or

posterior η(x) = dH
dM

(x) where H(X) := P(X ,y = 1). The terms “generative” and “discriminative”

are used here to suggest a distinction made by Ng and Jordan (2002): in the generative case, the aim

is to model the class-conditional distributions P and Q and then use Bayes rule to compute the most

likely class; in the discriminative case the focus is on estimating η(x) directly. Although we are not

directly interested in this paper in the problems of modelling or estimating we find the distinction a

useful one.12

12. The generative-discriminative distinction usually refers to whether one is modelling the process that generates each

class-conditional distribution, or instead wishes solely to perform well on a discrimination task (Drummond, 2006;

Lasserre et al., 2006; Minka, 2005; Rubinstein and Hastie, 1997). There has been some recent work relating the two

in the sense that if the class conditional distributions are well estimated then will one perform well in discrimination

(Long and Servedio, 2006; Long et al., 2006; Goldberg, 2001; Palmer and Goldberg, 2006).
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Figure 2: The generative and discriminative view of binary experiments.

Both these decompositions are exact since P can be reconstructed from either. Also, translating

between them is straight-forward, since

M = πP+(1−π)Q and η = π
dP

dM
,

so we will often swap between (η,M) and (π,P,Q) as arguments to functions for risk, divergence

and information. A graphical representation of the generative and discriminative views of a binary

experiment is shown in Figure 2.

The posterior η is closely related to the likelihood ratio dP/dQ in the supervised binary task

setting. For each choice of π∈ (0,1) this relationship can be expressed by a mapping λπ : [0,1]→
[0,∞] and its inverse λ−1

π defined by

λπ(c) :=
1−π

π
c

1− c
, (17)

λ−1
π (t) =

πt

πt +1−π

for all c ∈ [0,1) and t ∈ [0,∞), and λπ(1) := ∞. Thus

η = λ−1
π

(
dP

dQ

)

and, conversely,
dP

dQ
= λπ(η).

These will be used later when relating f -divergences and risk.

4.2 Estimators and Risk

We will call a (M-measurable) function η̂ : X→ [0,1] a class probability estimator. Overloading the

notation slightly, we will also use η̂ = η̂(x) ∈ [0,1] to denote an estimate for a specific observation

x ∈ X. Many of the subsequent arguments rely on this conditional perspective.

Estimate quality is assessed using a loss function ℓ : Y× [0,1]→ R̄ and the loss of the estimate

η̂ with respect to the label y ∈ Y is denoted ℓ(y, η̂). If η ∈ [0,1] is the probability of observing the

label y = 1 then the point-wise risk of the estimate η̂ ∈ [0,1] is defined to be the η-average of the

point-wise loss for η̂:

L(η, η̂) := EY∼η[ℓ(Y, η̂)] = ℓ(0, η̂)(1−η)+ ℓ(1, η̂)η. (18)
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(This is what Steinwart 2006 calls the inner risk.) When η : X→ [0,1] is an observation-conditional

density, taking the M-average of the point-wise risk gives the (full) risk of the estimator η̂:

L(η, η̂,M) := EM [L(η, η̂)] = EX∼M[L(η(X), η̂(X))]

=
∫
X

L(η(x), η̂(x))dM(x) =: L(π, η̂,P,Q).

The convention of using ℓ, L and L for the loss, point-wise and full risk is used throughout this

paper. Any names or parameters associated to ℓ will be propagated to L and L.

We call the combination of a loss ℓ and the distribution P a task and denote it discriminatively

as T = (η,M;ℓ) or generatively as T = (π,P,Q;ℓ). A natural measure of the difficulty of a task is

its minimal achievable risk, or Bayes risk:

L(η,M) = L(π,P,Q) := inf
η̂∈[0,1]X

L(η, η̂,M) = EX∼M [L(η(X))] ,

where

[0,1] ∋ η 7→ L(η) := inf
η̂∈[0,1]

L(η, η̂)

is the point-wise Bayes risk. Note the use of the underline on L and L to indicate that the corre-

sponding functions L and L are minimised.

4.3 Proper Losses

If η̂ is to be interpreted as an estimate of the true positive class probability η then it is desirable to

require that L(η, η̂) be minimised when η̂ = η for all η ∈ [0,1]. Losses that satisfy this constraint

are said to be Fisher consistent and are known as proper scoring rules (Buja et al., 2005; Gneiting

and Raftery, 2007). To use common machine learning terminology we will refer to Fisher consistent

losses as proper losses. This implies that a proper loss ℓ satisfies L(η) = L(η,η) for all η ∈ [0,1].
There are a few properties of losses that we will require to establish certain key theorems below.

The first of these is that we will say a loss is fair whenever η 7→ ℓ(0,η) and η 7→ ℓ(1,η) are,

respectively, right continuous at 0 and left continuous at 1, and

ℓ(0,0) = ℓ(1,1) = 0.

That is, no loss incurred for perfect prediction and there are no sudden “jumps” in penalty for

near-perfect prediction. The main place fairness is relied upon is in the integral representation of

Theorem 16 where it is used to get rid of some constants of integration. In order to explicitly

construct a proper loss from its associated “weight function” as shown in Theorem 17 we will

require that the loss be definite, that is, its point-wise Bayes risk at 0 and 1 must be bounded from

below:

L(0)>−∞ , L(1)>−∞.

Since properness of a loss ensures L(η)= L(η,η) we see that a fair proper loss is necessarily definite

since L(0,0) = ℓ(0,0) = 0 > −∞, and similarly for L(1,1). Conversely, if a proper loss is definite

then the finite values ℓ(0,0) and ℓ(1,1) can be subtracted from ℓ(0, ·) and ℓ(1, ·) to make it fair.

Finally, for Theorem 7 below to hold at the endpoints of the unit interval we require a loss to be

regular, that is,

lim
ηց0

ηℓ(1,η) = lim
ηր1

(1−η)ℓ(0,η) = 0. (19)
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Intuitively, this condition ensures that making mistakes on events that never happen should not incur

a penalty. It is not difficult to show that any fair, definite loss is also regular (thus, a proper and fair

loss is also regular) but the converse does not hold. Since properness and fairness imply definiteness

and regularity, most of the situations we consider in the remainder of this paper will involve losses

which are both proper and fair.

Proper losses for probability estimation and surrogate margin losses (confer Bartlett et al. 2006)

for classification are closely related. (Surrogate margin losses are considered in more detail in

Appendix D.) Buja et al. (2005) note that “the surrogate criteria of classification are exactly the

primary criteria of class probability estimation” and that most commonly used surrogate margin

losses are just proper losses mapped from [0,1] to R via a link function. The main exceptions are

hinge losses;13 Buja et al. (2005, pg. 4) state that SVMs are “the only case that truly bypasses

estimation of class probabilities and directly aims at classification.” However, commonly used

margin losses of the form φ(yF(x)) are a more restrictive class than proper losses since, as Buja et al.

(2005, §23) note, “[t]his dependence on the margin limits all theory and practice to a symmetric

treatment of class 0 and class 1”. The relation between link functions, proper losses and margin

losses is considered in more detail by Reid and Williamson (2010).

The following important property of proper losses seems to be originally due to Savage (1971).

It shows that a proper loss is completely characterised by a concave function defining its point-wise

Bayes risk along with a simple structural relationship between its point-wise risk and Bayes risk.

Theorem 7 A loss function ℓ is proper if and only if its point-wise Bayes risk L(η) is concave and

for each η, η̂ ∈ (0,1)
L(η, η̂) = L(η̂)+(η− η̂)L′(η̂).

Furthermore if ℓ is regular this characterisation also holds at the endpoints η, η̂ ∈ {0,1}.

For general concave functions L which may not be differentiable, (−L)′ is to be taken to be a

right derivative as discussed in Section 2.4. The following proof uses an argument in Buja et al.

(2005, §17) for the forward direction and the generalised Taylor’s theorem due to Liese and Vajda

(2006) for the converse.

Proof By definition, the point-wise Bayes risk L(η) = infη̂ L(η, η̂) which, for each η ∈ [0,1] is just

the lower envelope of the lines L(η, η̂) = (1− η)ℓ(0, η̂)+ ηℓ(1, η̂) and thus L is concave.14 The

properness of ℓ means L(η) = L(η,η) and the η̂-derivative of L is 0 when η̂ = η. Hence

∂
∂η̂

L(η, η̂)
∣
∣
∣
∣
η̂=η

= (1−η)ℓ′(0,η)+ηℓ′(1,η) = 0

for all η ∈ [0,1]. Using this and expanding L′(η) via the product rule, a little algebra shows L′(η) =
ℓ(1,η)− ℓ(0,η). Thus

L(η̂)+(η− η̂)L′(η̂) = (1−η̂)ℓ(0, η̂)+ η̂ℓ(1, η̂)+(η−η̂)[ℓ(1, η̂)− ℓ(0, η̂)]
= (1−η)ℓ(0, η̂)+ηℓ(1, η̂),

which is the definition of L(η, η̂). The result holds at the endpoints if the loss is regular by applying

the assumptions in (19).

13. And powers of absolute divergence |y− r|α for α 6= 2.

14. Since this argument made no use of the properness of ℓ we see the concavity of the Bayes risk holds for any loss.
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Conversely, now suppose Λ is a concave function and let ℓ(y, η̂) = Λ(η̂)+ (y− η̂)Λ′(η̂). The

Taylor expansion of Λ is

Λ(η) = Λ(η̂)+(η− η̂)Λ′(η̂)+
∫ η

η̂
(η− c)Λ′′(c)dc

and so

L(η, η̂) = Λ(η̂)−
∫ η

η̂
(η− c)Λ′′(c)dc ≥ Λ(η) = L(η)

because the concavity of Λ means Λ′′ ≤ 0 and so the integral term is positive and is minimised to 0

when η̂ = η. This shows ℓ is proper, completing the proof.

This characterisation of the concavity of L means proper losses have a natural connection to

Bregman divergences.

4.4 Discriminative Bregman Divergence

Recall from Section 2.5 that if S ⊆ Rd is a convex set, then a convex function φ : S→ R defines a

Bregman divergence

Bφ(s,s0) := φ(s)−φ(s0)−〈s− s0, ∇φ (s0)〉 .
When S = [0,1], the concavity of L means φ(s) = −L(s) is convex and so induces the Bregman

divergence15

Bφ(s,s0) =−L(s)+L(s0)− (s0 − s)L′(s0) = L(s,s0)−L(s)

by Theorem 7. The converse also holds. Given a Bregman divergence Bφ over S= [0,1] the convex-

ity of φ guarantees that L =−φ is concave. Thus, we know that there is a proper loss ℓ with Bayes

risk equal to −φ. As noted by Buja et al. (2005, §19), the difference

Bφ(η, η̂) = L(η, η̂)−L(η)

is also known as the point-wise regret of the estimate η̂ w.r.t. η. The corresponding (full) regret is

the M-average point-wise regret

EX∼M[Bφ(η(X), η̂(X))] = L(η, η̂,M)−L(η,M).

4.5 Bregman Information

Banerjee et al. (2005a) recently introduced the notion of the Bregman information Bφ(S) of a ran-

dom variable S drawn according to some distribution σ over S. It is the minimal σ-average Bregman

divergence that can be achieved by an element s∗ ∈ S (the Bregman representative). In symbols,

Bφ(S) := inf
s∈S

ES∼σ
[
Bφ(S,s)

]
= ES∼σ

[
Bφ(S,s

∗)
]
.

The authors show that the mean s̄ := ES∼σ[S], is the unique Bregman representative. That is,

Bφ(S) = Eσ[Bφ(S, s̄)]. Surprisingly, this minimiser only depends on S and σ, not the choice of φ

15. Technically, S is the 2-simplex {(s1,s2) ∈ [0,1]2 : s1 + s2 = 1} but we identify s ∈ [0,1] with (s,1− s). Also, we once

again interpret (−L)′ as a right derivative for general concave L as discussed in Section 2.4.
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defining the divergence and is a consequence of Jensen’s inequality and the form of the Bregman

divergence.

Since regret is a Bregman divergence, it is natural to ask what is the corresponding Bregman

information. In this case, φ= −L and the random variable S = η(X) ∈ [0,1], where X ∈ X is

distributed according to the observation distribution M. Noting that EX∼M[η(X)] = π, the proof of

the following theorem stems from the definition of Bregman information and some simple algebra

showing that infη L(η,π,M) = L(π,M), since by assumption ℓ is a proper loss.

Theorem 8 Suppose ℓ is a proper loss. Given a discriminative task (η,M) and letting φ=−L, the

corresponding Bregman information of η(X) satisfies

Bφ(η(X)) = Bφ(η,M) := L(π,M)−L(η,M).

4.6 Statistical Information

The reduction in risk (from prior π∈ [0,1] to posterior η ∈ [0,1]X)

∆L(η,M) = ∆L(π,P,Q) := L(π,M)−L(η,M) (20)

is known as statistical information and was introduced by DeGroot (1962) motivated by Lindley

(1956). This reduction can be interpreted as how much risk is removed by knowing observation-

specific class probabilities η rather than just the prior π.

DeGroot originally introduced statistical information in terms of what he called an uncertainty

function which, in the case of binary experiments, is any function U : [0,1]→ [0,∞). The statistical

information is then the average reduction in uncertainty which can be expressed as a concave Jensen

gap

−JM[U(η)] = JM[−U(η)] =U(EX∼M [η(X)])−EX∼M [U(η(X))] .

DeGroot noted that Jensen’s inequality implies that for this quantity to be non-negative the uncer-

tainty function must be concave, that is, −U must be convex.

Theorem 8 shows that statistical information is a Bregman information and corresponds to the

Bregman divergence obtained by setting φ=−L. This connection readily shows that ∆L(η,M)≥ 0

(DeGroot, 1962, Thm 2.1) since the minimiser of the Bregman information is π= EX∼M[η(X)]
regardless of loss and Bφ(η,π)≥ 0 since it is a regret.

4.7 Unifying Information and Divergence

From a generative perspective, f -divergences can be used to assess the difficulty of a learning task by

measuring the divergence between the class-conditional distributions P and Q. The more divergent

the distributions for the two classes, the easier the classification task. Österreicher and Vajda (1993,

Thm 2) made this relationship precise by showing that f -divergence and statistical information have

a one-to-one correspondence:

Theorem 9 If (π,P,Q;ℓ) is an arbitrary task and L is the associated conditional Bayes risk then

defining

f π(t) := L(π)− (πt +1−π)L
(

πt

πt +1−π

)

(21)
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for π∈ [0,1] implies f π is convex, f π(1) = 0 and

I f π(P,Q) = ∆L(π,P,Q)

for all distributions P and Q. Conversely, if f is convex and f (1) = 0 then defining

Lπ(η) :=−1−η
1−π

f

(
1−π

π
η

1−η

)

, π∈ [0,1]

implies

I f (P,Q) = ∆Lπ(π,P,Q)

for all distributions P and Q, where ∆Lπ is the statistical information associated with Lπ.

The proof, given in Appendix A.3, is a straight-forward calculation that exploits the relation-

ships between the generative and discriminative views presented earlier. Combined with the link

between Bregman and statistical information, this result means that they and f -divergences are in-

terchangeable as measures of task difficulty. The theorem leads to some correspondences between

well known losses and divergence: log-loss with KL(P,Q); square loss with triangular discrimina-

tion; and 0-1 loss with V (P,Q). (See Section 5.5 for an explicitly worked out example.)

This connection generalises the link between f -divergences and F-errors (expectations of con-

cave functions of η) in Devroye et al. (1996) and can be compared to the more recent work of

Nguyen et al. (2005) who show that each f -divergence corresponds to the negative Bayes risk for a

family of surrogate margin losses. The one-to-many nature of their result may seem at odds with the

one-to-one relationship here. However, the family of margin losses given in their work can be recov-

ered by combining the proper losses with link functions. Working with proper losses also addresses

a limitation pointed out by Nguyen et al. (2005, pg. 14), namely that “asymmetric f -divergences

cannot be generated by any (margin-based) surrogate loss function” and extends their analysis “to

show that asymmetric f -divergences can be realized by general (asymmetric) loss functions”.

4.8 Summary

The main results of this section can be summarised as follows.

Theorem 10 Let f : R+ → R be a convex function and for each π∈ [0,1] define for c ∈ [0,1):

φ(c) :=
1− c

1−π
f (λπ(c)) ,

L(c) := −φ(c),

where λπ is defined by (17). Then for every binary experiment (P,Q) we have

I f (P,Q) = ∆L(η,M) = Bφ(η,M),

where M := πP+(1−π)Q, η := πdP/dM and L is the expectation (in X) of the conditional Bayes

risk L. Equivalently,

JQ[ f (dP/dQ)] = JM[−L(η)] = JM[φ(η)].
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What this says is that for each choice of π the classes of f -divergences I f , statistical informations

∆L and (discriminative) Bregman informations Bφ can all be defined in terms of the Jensen gap of

some convex function. Additionally, there is a bijection between each of these classes due to the

mapping λπ that identifies likelihood ratios with posterior probabilities.

The class of f -divergences is “more primitive” than the other measures since its definition does

not require the extra structure that is obtained by assuming that the reference measure M can be

written as the convex combination of the distributions P and Q. Indeed, each I f is invariant to the

choice of reference measure and so is invariant to the choice of π. The results in the next section

provide another way of looking at this invariance of I f . In particular, we see that every f -divergence

is a weighted “average” of statistical informations or, equivalently, I f π divergences.

5. Primitives and Weighted Integral Representations

When given a class of functions like f -divergences, risks or measures of information it is natural to

ask what the “simplest” elements of these classes are. We would like to know which functions are

“primitive” in the sense that they can be used to express other measures but themselves cannot be

so expressed.

The connections between risk, f -divergence, and statistical information discussed in Section 4

are all in terms of the convex functions that define each type of measurement. As discussed in

Section 2.3, integral representations allow these convex functions to be expressed as weighted com-

binations of simple, convex, piecewise linear functions. By thinking of the set of these simple

functions as a “basis” for convex functions, we are able to identify any convex function with its

“coordinates”—that is, its weight function—relative to this basis.

The main result of this section essentially “lifts” this weight function representation of convex

functions through the definitions of proper risks and f -divergence (and therefore also statistical

and Bregman information) so they can be expressed as weighted integrals of primitive elements

corresponding to the simple convex functions acting as the “basis”. In the case of f -divergences

and information the weight function in these integrals completely determines their behaviour. This

means the weight functions can be used as a proxy for the analysis of these measures, or as a knob

the user can adjust in choosing what to measure.

We also show that the close relationships between information and f -divergence in terms of

their convex generators can be directly translated into a relationship between the respective weight

functions associated with these measures. That is, given the weight function that determines an

f -divergence there is, for each choice of the prior π, a simple transformation that yields the weight

function for the corresponding statistical information, and vice versa.

This shift from “function as graph of evaluations” to “function as weighted combination of

primitive functions” permeates the remainder of the paper and is (loosely!) analogous to the way

the Fourier transform represents functions as sums of simple, periodic signals. In Section 6, risk

curves are used to graphically summarise the values of all the primitive risks for a given binary

experiment. In Section 7, surrogate regret bounds for proper losses and a tight generalisation of

Pinsker’s inequality are derived by considering the relationship between general regrets or diver-

gences and the primitive ones comprising them. In both cases, the bounds are established by using

weight functions to understand the relative contribution of each primitive to the weighted sum. In

particular, the Pinkser-like inequalities in Appendix B for specific f -divergences are obtained via

direct manipulation of their weight functions.
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5.1 Integral Representations of f -divergences

The following result shows that the class of f -divergences (and, by the result of the previous section,

statistical and Bregman information) is closed under conic combination.

Theorem 11 For all convex functions f1, f2 : (0,∞)→ R and all α1,α2 ∈ [0,∞), the function

(0,∞) ∋ t 7→ g(t) := α1 f1(t)+α2 f2(t) (22)

is convex. Furthermore, for all distributions P and Q, we have

Ig(P,Q) = α1I f1
(P,Q)+α2I f2

(P,Q). (23)

Conversely, given f1, f2, α1 and α2, if (23) holds for all P and Q then g must be, up to affine

additions, of the form (22).

The proof is a straight-forward application of the definition of convexity and of f -divergences.

One immediate consequence of this result is that the set of f -divergences is closed under conic

combinations ∑i αiI fi
. Furthermore, the arguments in Section 2.4 can be used to extend this obser-

vation beyond finite linear combination to generalised weight functions α. By Corollary 2, if f is a

convex function then expanding it about 1 in (5) and setting α(s) = f ′′(s) means that

I f (P,Q) =
∫ ∞

0
IFs

(P,Q)α(s)ds (24)

where Fs(t) = Js ≤ 1K(s− t)++ Js > 1K(t − s)+.16 The functions Fs, s ∈ R+ can therefore be seen

as the generators of the class of primitive f -divergences. As a function of t, each Fs is piecewise

linear, with a single “hinge” at s. Of course, any affine translation of any Fs is also a primitive. In

fact, each Fs may undergo a different affine translation without changing the f -divergence I f . The

weight function α is what completely characterises the behaviour of I f .

The integral in (24) need not always exist since the integrand may not be integrable. When the

Cauchy Principal Value diverges we say the integral takes on the value ∞. We note that many (not

all) f -divergences can sometimes take on infinite values.

The integral form in (24) can be readily transformed into an integral representation that does

not involve an infinite integrand. This is achieved by mapping the interval [0,∞) onto [0,1) via the

change of variables π= 1
1+s

∈ [0,1]. In this case, s = 1−π
π and so ds =− dπ

π2 and the integral of (24)

becomes

I f (P,Q) = −
∫ 0

1
IF1−π

π
(P,Q)α( 1−π

π )π−2 dπ

=
∫ 1

0
I f̃π

(P,Q)γ(π)dπ (25)

where

f̃π(t) := πF1−π
π
(t) =

{

(1−π(1+ t))+ , π≥ 1
2

(π(1+ t)−1)+ , π< 1
2

(26)

16. Technically, one must assume that f is twice differentiable for this result to hold. However, the convexity of f

implies it has well-defined one-sided derivatives f ′+ and α(s) can be expressed as the measure corresponding to

d f ′+/dλ for the Lebesgue measure λ. Details can be found in Liese and Vajda (2006). The representation of a general

f -divergence in terms of elementary ones is not new; see for example Österreicher and Feldman (1981) and Feldman

and Österreicher (1989).
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and

γ(π) :=
1

π3
f ′′
(

1−π
π

)

.

This observation forms the basis of the following restatement of a theorem by Liese and Vajda

(2006). We include it here with a short proof to discuss the connection between f -divergences and

statistical information.17

Theorem 12 Let f be convex such that f (1) = 0. Then there exists a (generalised) function γ :

(0,1)→ R such that, for all P and Q:

I f (P,Q) =
∫ 1

0
I fπ(P,Q)γ(π)dπ, where fπ(t) = (1−π)∧π− (1−π)∧ (πt).

Proof The earlier discussion giving the derivation of Equation (25) implies the result. The only

discrepancy is over the form of fπ. We determine the precise form by noting that the family of

f̃π given in (26) can be transformed by affine addition without affecting the representation of I f .

Specifically,

fπ(t) := (1−π)∧π− (1−π)∧ (πt)

=

{

(1−π(1+ t))+ , π≥ 1
2

(π(1+ t)−1)++π(1− t) , π< 1
2

= f̃π(t)+ Jπ< 1
2
Kπ(1− t),

and so f̃π and fπ are in the same affine equivalence class for each π∈ [0,1]. Thus, by Theorem 6 we

have I fπ = I f̃π
for each π∈ [0,1], proving the result.

The specific choice of fπ in the above theorem from all of the affine equivalents was made to

make simpler the connection between integral representations for losses and f -divergences, dis-

cussed in Section 5.4.

One can easily verify that fπ are convex hinge functions of t with a hinge at 1−π
π and fπ(1) =

0. Thus {I fπ}π∈(0,1) is a family of primitive f -divergences; confer Österreicher and Feldman

(1981) and Feldman and Österreicher (1989). This theorem implies an existing representation of

f -divergences due to Österreicher and Vajda (1993, Theorem 1) and Gutenbrunner (1990). They

show that an f -divergence can be represented as a weighted integral of statistical informations for

0-1 loss: for all P,Q

I f (P,Q) =
∫ 1

0
∆L0−1(π,P,Q)γ(π)dπ, (27)

γ(π) =
1

π3
f ′′
(

1−π
π

)

. (28)

An f divergence is symmetric if I f (P,Q) = I f (Q,P) for all P,Q. The representation of I f in

terms of γ and Theorem 15 provides an easy test for symmetry:

17. The 1/π3 term in the definition of γ seems a little unusual at first glance. However, it is easily understood as the

product of two terms: 1/π2 from the second derivative of (1−π)/π, and 1/π from a transformation of variables

within the integral to map the limits of integration from (0,∞) to (0,1) via λπ.
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Corollary 13 Suppose I f is an f -divergence with corresponding weight function γ given by (28).

Then I f is symmetric iff γ(π) = γ(1−π) for all π∈ [0,1].

The proof is in Appendix A.4.

Corollary 13 provides a way of generating all convex f such that I f is symmetric that is sim-

pler than that proposed by Hiriart-Urruty and Martı́nez-Legaz (2007): let γ(π) = β(π∧ (1−π))

where β ∈ (R+)[0,
1
2
]

(i.e., all symmetric weight functions) and generate f from γ by inverting (28);

explicitly,

f (s) =
∫ s

0

(∫ t

0

1

(τ+1)3
γ
(

1

τ+1

)

dτ
)

dt, s ∈ R
+.

5.2 Proper Losses and Cost-Weighted Risk

We now consider a representation of proper losses in terms of primitive losses that originates with

Shuford et al. (1966). Our discussion follows that of Buja et al. (2005) and then examines its

implications in light of the connections between information and divergence just presented.

The cost-weighted losses are a family of losses parameterised by a false positive cost c ∈ [0,1]
that defines a loss for y ∈ {±1} and η̂ ∈ [0,1] by

ℓc(y, η̂) = cJy =−1KJη̂ ≥ cK+(1− c)Jy = 1KJη̂ < cK. (29)

Intuitively, a cost-weighted loss thresholds η̂ at c and assigns a cost if the resulting classification

disagrees with y. These correspond to the “signatures” for eliciting the probability η as described by

Lambert et al. (2008). Substituting c = 1
2

will verify that 2ℓ 1
2

is equivalent to 0-1 misclassification

loss ℓ0−1. Taking expectations with respect to Y we have

Lc(η, η̂) = (1−η)cJη̂ ≥ cK+η(1− c)Jη̂ < cK. (30)

We will use Lc, Lc and ∆Lc to denote the cost-weighted point-wise risk, full risk and statistical

information associated with each cost-weighted loss. The following theorems collect some useful

observations about these primitive quantities. The first shows that the point-wise Bayes risk is a

simple, concave “tent” function. The second shows that cost-weighted statistical information is

invariant under the switching of the classes provided the costs are also switched and that πand 1−c

are interchangeable.

Theorem 14 For all η,c ∈ [0,1] the point-wise Bayes risk Lc(η) = (1−η)c∧(1−c)η and is there-

fore concave in both c and η.

Proof From the definition of ℓc in Equation 29 and the definition of point-wise Bayes risk, we have,

for η ∈ [0,1],

Lc(η) = inf
η̂∈[0,1]

Lc(η, η̂)

= inf
η̂∈[0,1]

{(1−η)cJη̂ ≥ cK+η(1− c)Jη̂ < cK}

= inf
η̂∈[0,1]

{η(1− c)+(c−η)Jη̂ ≥ cK},

where the last step makes use of the identity Jη̂ < cK = 1− Jη̂ ≥ cK. Since (c−η) is negative if and

only if η > c, the infimum is obtained by having Jη̂ ≥ cK = 1 if and only if η ≥ c, that is, by letting
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η̂ = η. In this case, when η̂ ≥ c we have Lc(η) = c(1−η) and when η̂< c we have Lc(η) = (1−c)η.

The concavity of Lc is evident as this function is the minimum of two linear functions of c and η.

Theorem 15 For all c ∈ [0,1] and tasks (η,M;ℓc) = (π,P,Q;ℓc) the statistical information satisfies

1)

∆Lc(1−η,M) = ∆L1−c(η,M),

or equivalently,

∆Lc(1−π,Q,P) = ∆L1−c(π,P,Q);

and 2)

∆Lπ(1− c,P,Q) = ∆Lc(1−π,P,Q).

Proof By Theorem 14 we know Lc(η) = min{(1−η)c,(1− c)η} and so Lc(1−η) = L1−c(η) for

all η,c ∈ [0,1]. Therefore, Lc(1− η,M) = L1−c(η,M) for any η : X → [0,1] including the con-

stant function EM[η]. By definition, ∆Lc(η,M) = L(EM[η],M)−L(η,M) and so ∆L1−c(η,M) =
∆Lc(1−η,M) proving part 1.

Part 2 also follows from Theorem 14 by noting that Lc(1−π) = Lπ(1− c) and EM[Lc(η)] =∫
X min{(1− c)πdP,(1−π)cdQ}.

5.3 Integral Representations of Proper Losses

The cost-weighted losses are primitive in the sense that they form the basis for a Choquet integral

representation of proper losses. This representation is essentially a consequence of Taylor’s theorem

and was originally studied by Shuford et al. (1966) and later generalised by Schervish (1989). The

recent presentation of this result by Lambert et al. (2008) gives yet a more general formulation

in terms of the elicitability of properties of distributions, along with a geometric derivation. An

historical summary of decompositions of scoring rules is given by Winkler et al. (1990, Section 4).

Theorem 16 Let ℓ : Y× [0,1]→ R be a fair, proper loss. Then for each η̂ ∈ (0,1) and y ∈ Y

ℓ(y, η̂) =
∫ 1

0
ℓc(y, η̂)w(c)dc (31)

where the weight function18 w : (0,1)→ R+ satisfies

w(c) =−L′′(c)≥ 0 (32)

for all c ∈ (0,1). Conversely, if ℓ is defined by (31) for some weight function w : (0,1)→R+ then it

is proper.

The proof is almost a direct consequence of Taylor’s theorem.

18. The weight function and second derivative of −L are to be interpreted distributionally as discussed in Section 2.4.
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Proof We first assume ℓ is a proper loss so that L(η, η̂) = EY∼η[ℓ(Y, η̂)] and L(η) = L(η,η).
Expanding L(η) about η̂ ∈ (0,1) using Corollary 2 yields

L(η) = L(η̂)+(η− η̂)L′(η̂)+
∫ 1

0
φc(η, η̂)L′′(c)dc

= L(η, η̂)+
∫ 1

0
φc(η, η̂)L′′(c)dc (33)

by Theorem 7. The generalised function w(c) = −L′′(c) ≥ 0 by the concavity of L. Rearranging

(33) gives

L(η, η̂) = L(η)+
∫ 1

0
φc(η, η̂)w(c)dc.

The definition of L in (18) implies L(y, η̂) = ℓ(y, η̂) for y ∈ {0,1} and so

ℓ(y, η̂) = L(y)+
∫ 1

0
φc(y, η̂)w(c)dc, (34)

where

φc(y, η̂) = Jη̂ ≤ c< yK(y− c)+ Jy ≤ c< η̂K(c− y),

which is equal to the definition of ℓc in (29) since the left (resp. right) term is only non-zero when

y = 1 (resp. y = 0). Observe that L(0) = L(1) = 0 since L(0) = L(0,0) = ℓ(0,0) = 0 by the

assumption that the loss is fair, and similarly for L(1).
This shows that (34) is equivalent to (31), completing the forward direction of the theorem.

If we now assume the function w ≥ 0 is given and ℓ defined as in (31) then it suffices to show

L(η) = L(η,η). First note that

L(η, η̂) = EY∼η

[∫ 1

0
ℓc(Y, η̂)w(c)dc

]

=
∫ 1

0
Lc(η, η̂)w(c)dc.

Each of the Lc are proper and so are minimised when η̂ = η. Since w(c) ≥ 0 this must also be

sufficient to minimise L.

We will write ℓw, Lw and Lw to explicitly indicate the parameterisation of the loss, conditional

loss and expected loss by the weight function w. A proper loss ℓw corresponding to a given weight

function can be explicitly derived using the following theorem.

Theorem 17 Given a weight function w : [0,1]→R+, let W (t) =
∫ t

w(c)dc and W (t) =
∫ t

W (c)dc.

Then the loss ℓw defined by

ℓw(y, η̂) =−W (η̂)− (y− η̂)W (η̂)

is a proper loss. Additionally, if W (0) and W (1) are both finite then

(y, η̂) 7→ ℓw(y, η̂)+(W (1)−W (0))y+W (0) (35)

is a fair, proper loss.
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Proof First we define the loss

ℓ(y, η̂) :=
∫ 1

0
ℓc(y, η̂)w(c)dc

and proceed to show it is equal to the definition of ℓw. Theorem 16 guarantees that ℓ is proper and

that w = −L′′. By definition of the improper integrals W and W and the fundamental theorem of

calculus we know that W ′ = w =−L′′ and so W
′
(t) =W (t) =−L′(t)+a and

W (t) =−L(t)+at +b, (36)

where a,b ∈ R are constants of integration. Substituting these into the Savage representation of

Theorem 7 for proper losses we see that

L(η, η̂) = L(η̂)+(η− η̂)L′(η̂)
= −W (η̂)+aη̂+b+(η− η̂)[−W (η̂)+a]

= −W (η̂)− (η− η̂)W (η̂)+aη+b.

Since L(y, η̂) = ℓ(y, η̂) for y ∈ {0,1} we have ℓ(0, η̂) = ℓw(0, η̂)+b and ℓ(1, η̂) = ℓw(1, η̂)+a+b

for all a,b ∈ R. Choosing a = b = 0 achieves the result.

If W (0) and W (1) are both finite then letting a = W (1)−W (0) and b = W (0) means (36) im-

plies W (0) =−L(0)+W (0) and so L(0) = 0. Similarly, L(1) = 0 showing that (35) is fair.

As an example of how this theorem lets us explicitly construct proper losses from weight func-

tions, consider the weight function w(c) = 1. In this case, W (t) = t and W (t) = t2

2
. Thus, noting

that y2 = y for y ∈ {0,1} we have

ℓw(y, η̂) =− 1
2
η̂2 − (y− η̂)η̂+ 1

2
y = 1

2
(η̂− y)2

which is the square loss.

As a second example, consider w(c) = 1
(1−c)c . In this case, W (t) = ln

(
t

1−t

)
and W (t) = (1−

t) ln(1 − t) + t ln(t). Since limε→0 ε ln(ε) = 0 we define 0ln(0) := 0 so that b = W (0) = 0 and

a =W (1)−W (0) = 0. This implies

ℓw(y, η̂) = −(1− η̂) ln(1− η̂)− η̂ ln(η̂)− (y− η̂) ln

(
η̂

1− η̂

)

= [−(1− η̂)+(y− η̂)] ln(1− η̂)+ [−η̂− (y− η̂)] ln(η̂)
= −(1− y) ln(1− η̂)− y ln(η̂)

which is log loss.

5.4 Relating Integral Representations for L and I f

There is also the following direct relationship between the weight functions γ for an f -divergence

and w for the corresponding statistical information. Since the weight functions are an attractive

parameterization, it is convenient to be able to directly translate between the two respective weight

functions. The proof is in Appendix A.5.
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Theorem 18 Let f : R+ → R be convex (with f (1) = 0) define I f with corresponding weight func-

tion γ. Then for each π∈ (0,1) the weight function wπ in Theorem 16 for the loss ℓπ given by

Theorem 9 satisfies

wπ(c) =
π(1−π)
ν(π,c)3

γ
(
(1− c)π
ν(π,c)

)

or, inversely,

γ(c) =
π2(1−π)2

ν(π,c)3
w

(
π(1− c)

ν(π,c)

)

,

where ν(π,c) = (1− c)π+(1−π)c.

The representation (27,28) allows the determination of weights for standard f -divergences.

Kullback-Liebler divergence KL(P,Q) corresponds to γ(π) = 1
π2(1−π) . Thus J(P,Q) = KL(P,Q)+

KL(Q,P) corresponds to γ(π) = 1
π2(1−π)2 . Several f -divergences are presented with their corre-

sponding weight function in Table 2. The weight for KL(P,Q) has a double pole at π= 0 which is

why KL-divergence is hard to estimate—it puts a lot of weight on ∆L0−1(π,PQ) for π≈ 0 which by

Theorem 15 means a lot of weight on ∆Lc(
1
2
) for c ≈ 1 which requires a good estimate of Lc(η,M)

which is difficult with modest data sample sizes.19

A loss function corresponding to each f -divergence in Table 2 is also shown. The weight func-

tion w(c) for the loss is for the case when π= 1
2
, that is, it is a loss for a binary classification problem

with equal proportions of positive and negative examples. In this case, the relationship between w

and γ simplifies to w
1
2 (c) = 2γ(1− c) since ν( 1

2
,c) = 1

2
c+ 1

2
(1− c) = 1

2
.

The entries in Table 2 without a name for the loss correspond to losses that are not definite. It

turns out that weight functions whose tail behaviour is not o(c−2) or o((1− c)−2) as c goes to 0 or

1, respectively (confer Buja et al., 2005, §6) imply non-definiteness of a proper loss.

5.5 Example—Squared Loss

We illustrate some of the above concepts with a simple example. Consider squared loss. We have

L(η, η̂) = η̂2(1−η)+(η̂−1)2η

and thus L(η) = L(η,η) = η(1−η) and L′′(η) =−2 and thus by (32) w(η) = 2. From (21) we thus

have

f π(t) =
π(1−π)(πt +1−π)− (1−π)πt

πt +1−π
.

Choosing π= 1
2

this becomes f
1
2 (t) = 1−t

4t+4
. One can check that 8 · f

1
2 (t)+ t − 1 = (t−1)2

t+1
which

agrees with the f corresponding to Triangular Discrimination in Table 2. Scaling is just a question

of normalisation and we have already seen that I f is insensitive to affine offsets in f . This illus-

trates the awkwardness of parameterising I f in terms of f : at first sight 1−t
4t+4

and
(t−1)2

t+1
seem quite

19. Considering KL-divergence from the weight function perspective suggests a scheme to estimate it: avoid attempting

to estimate the regions near zero and one where the weight function diverges. A particular example of this is the

divergence KLε(P,Q) which has weight function γ(π) = 1
π2(1−π) Jπ∈ [ε,1− ε]K. The corresponding f can be worked

out but has the rather less intuitively clear form f (t) = Jt < ε
1−ε K(t(ln( ε

1−ε )+ 1)− ε
1−ε )+ J ε

1−ε ≤ t ≤ 1−ε
ε Kt ln t +

J 1−ε
ε < tK(t(ln( 1−ε

ε )+1)− 1−ε
ε ), ε ∈ [0,1). This approach to regularizing the estimation of the KL-divergence was

suggested by Gutenbrunner (1990, page 454).
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different. Using weight functions automatically filters out the effect of any affine offsets—if the

weight functions corresponding to f1 and f2 match, then I f1
= I f2

. Finally observe that substituting

γ(π) = 8 from the table into Theorem 18 we obtain w
1
2 (c) = 1/4

ν(π,c)3 ·8= 2, consistent with the weight

obtained above.

6. Graphical Representations

The last section described representations of risks and f -divergences in terms of weighted integrals

of primitive functions. The values of the primitive functions lend themselves to a graphical inter-

pretation that is explored in this section. In particular, a diagram called a risk curve is introduced.

Risk curves are a useful aid to intuition when reasoning about risks, divergences and information

and they are used in Section 7 to derive bounds between various divergences and risks.

Risk curves are closely related to the cost curves of Drummond and Holte (2006) as well as

idealised receiver operating characteristic, or ROC curves (Fawcett, 2004). Proposition 20 makes

this latter relationship explicit via a point-line duality between risk and ROC curves. Additionally,

results about the Neyman-Pearson function by Torgersen (1981) allow us to establish a transforma-

tion between suitably smooth maximal ROC and minimal risk curves in Theorem 22. Despite the

close ties between f -divergences and risks, and between risk curves and ROC curves, we show in

Proposition 19 that the area under an ROC curve cannot be interpreted as an f -divergence.

6.1 ROC Curves

Plotting a receiver operating characteristic curve or ROC curve is a way of graphically summarising

the performance of a test statistic. Recall from Section 3.1 that in the context of a binary experiment

(P,Q) on a space X, a test statistic τ is any function that maps points in X to the real line. Each choice

of threshold τ0 ∈R results in a classifier r(x)= Jτ(x)≥ τ0K and its corresponding classification rates.

An ROC curve for the test statistic τ is simply a plot of the true positive rate of these classifiers as a

function of their false positive rate as the threshold τ0 varies over R. Formally,

ROC(τ) := {(FPτ(τ0),TPτ(τ0)) : τ0 ∈ R} ⊂ [0,1]2. (37)

A graphical example of an ROC curve is shown as the solid black line in Figure 3.

For a fixed experiment (P,Q), the Neyman-Pearson lemma provides an upper envelope for ROC

curves. It guarantees that the ROC curve for the likelihood ratio τ∗ = dP/dQ will lie above, or

dominate, that of any other test statistic τ as shown in Figure 3. This is an immediate consequence

of the likelihood ratio being the most powerful test since for each false positive rate (or size) α it

will have the largest true positive rate (or power) β of all tests (Eguchi and Copas, 2001). Thus

ROC(dP/dQ) is the maximal ROC curve.

The performance of a test statistic τ shown in an ROC curve is commonly summarised by

the Area Under the ROC Curve, AUC(τ), and is closely related to the Mann-Whitney-Wilcoxon

statistic. Formally, if (P,Q) is a binary experiment and τ a test statistic the AUC is

AUC(τ) :=
∫ 1

0
βτ(α)dα (38)

=
∫ ∞

−∞
TPτ(τ0)FP′

τ(τ0)dτ0, (39)
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Figure 3: Example of an ROC diagram showing an ROC curve for an arbitrary statistical test τ
(middle, bold curve) as well as an optimal statistical test τ∗ (top, grey curve). The dashed

line represents the ROC curve for a random, or uninformative statistical test.

where βτ(α) = TPτ(τ0) for a τ0 ∈ R such that FPτ(τ0) = α.

In Section 3.1 the Neyman-Pearson lemma was used to argue that the curve β(α) for the likeli-

hood ratio dominates all other curves. Since the likelihood ratio is used to define f -divergences, it

is natural to ask whether the area under the maximal ROC curve is an f -divergence. Interestingly,

the answer is “no”.

Proposition 19 There is no convex f such that I f (P,Q) = AUC(dP/dQ) for all distributions P and

Q.

Proof Note that an f -divergence’s integral can be decomposed as follows

I f (P,Q) =
∫ ∞

0
f (t)

∫
Xt

dQdt, (40)

where Xt := {x ∈ X : dP/dP(x) = t} = (dP/dQ)−1(t). Compare this to the definition of AUC(τ)
given in (39) when τ = dP/dQ

AUC(dP/dQ) =
∫ ∞

−∞
TPτ(t)FP′

τ(t)dt

= −
∫ ∞

0
(P◦ τ−1)([t,∞))

∫
Xt

dQdt (41)

since FP′
τ(t) = d/dt

∫ ∞
t

∫
Xt

dQ(x)dt = −∫
Xt

dQ and dP/dQ ≥ 0. If we assume there exists an f

such that for all binary experiments (P,Q), I f (P,Q) = AUC(dP/dQ) we would require the integrals

in (40) and (41) to be equal for all (P,Q). This would require f (t) =−(P◦ (dP/dQ)−1)([t,∞)) for
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all t ∈ [0,∞) which is not possible for all binary experiments (P,Q) simultaneously.

Although the maximal AUC for (P,Q) cannot be expressed as an f -divergence, Torgersen (1991)

shows how it can be expressed as the variational divergence between the product measures P×Q

and Q×P. That is, AUC(dP/dQ) =V (P×Q,Q×P). Following up this connection and considering

other f -divergences of product measures is left as future work.

It is important to realise that AUC is not a particularly intrinsic measure—just a common

one. As the earlier discussion of integral representations has shown, there is value in consider-

ing weighted versions of integrals such as (38). As Hand (2008) notes in his commentary on a

recent paper (outlining another type of performance curve): “To use all the values of the diagnos-

tic instrument, when integrating to yield the overall AUC measure, it is necessary to decide what

weight to give to each value in the integration. The AUC implicitly does this using a weighting

derived empirically from the data.” Along these lines, Xie and Priebe (2002) and Eguchi and Copas

(2001) have suggested generalisations of the AUC that incorporates weights and show that certain

choice of weight functions yield well-known losses.

A closer investigation of these generalisations of AUC and their connection to measures of

divergence is also left as future work.

6.2 Risk Curves

Risk curves are a graphical representation closely related to ROC curves that take into account a

prior π in addition to the binary experiment (P,Q). They provide a concise summary of the risk of

an estimator η̂ for the full range of costs c ∈ [0,1] for a fixed prior π∈ [0,1], or, alternatively, for

the full range of priors πgiven a fixed cost c.

A risk curve for costs for the estimator η̂ is the set {(c,Lc(η̂,π,P,Q)) : c ∈ [0,1]} of points

parameterised by cost.20 A risk curve for priors for the estimator η̂ is the set {(π,L0-1(η̂,π,P,Q)) :

π∈ [0,1]}.

Figure 4 shows an example of a risk curve diagram. On it is plotted the cost curves for an

estimate η̂ of a true posterior η on the same graph. The “tent” function also shown is the risk curve

for the majority class predictor min{(1−π)c,(1− c)π}. Here π= 1
2
. Other choices of π∈ (0,1)

skew the tent and the curves under it towards 0 or 1.

In light of the weighted integral representations described in Theorem 16, several of the quanti-

ties can be associated with properties of a cost curve diagram. The weight function w(c) associated

with a loss ℓ can be interpreted as a weighting on the horizontal axis of a risk curve diagram. When

the area under a risk curve is computed with respect to this weighting the result is the full risk L

since L(η, η̂) =
∫ 1

0 Lc(η, η̂)w(c)dc.

Furthermore, the weighted area between the risk curves for an estimate η̂ and the true posterior

η is the regret L(η, η̂)−L(η) and the statistical information ∆L(η,M) = L(π,M)−L(η,M) is the

weighted area between the “tent” risk curve for πand the risk curve for η.

The correspondence between ROC and risks curves is due to the relationship between the true

class probability η and the likelihood ratio dP/dQ for a fixed π. As shown in Section 4.1, this

20. Unlike the cost curves originally described by Drummond and Holte (2006), the version presented here does not

normalise the risk, and plots the cost on the horizontal axis rather than the product of the prior probability and cost.
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Figure 4: Example of a risk curve for costs diagram showing risk curves for costs for the true

posterior probability η (bottom, solid curve), an estimate η̂ (middle, bold curve) and the

majority class or prior estimate (top, dashed curve).

relationship is
dP

dQ
= λπ(η) =

1−π
π

η
1−η

.

Each cost c ∈ [0,1] can be mapped to a corresponding test statistic threshold τ0 = λπ(c) and vice

versa.

Drummond and Holte (2006) show that their cost curves have a point-line dual relationship with

ROC curves. As can be established with some straight-forward algebra, the same result holds for

our risk diagrams.

Proposition 20 For a given point (FP,TP) on an ROC diagram the corresponding line in a risk

diagram is

Lc = (1−π)cFP+π(1− c)(1−TP), c ∈ [0,1]

Conversely, the line in ROC space corresponding to a point (c,Lc) in risk space is

TP =
(1−π)c
π(1− c)

FP+
(1−π)c−Lc

π(1− c)
, FP ∈ [0,1].

An example of this relationship is shown graphically21 in Figure 5 between the point A and the

line A*.

21. An applet that demonstrates the relationship can be found at http://mark.reid.name/iem/

visualising-roc-and-cost-curve-duality.html.
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Figure 5: Cost curve diagram (left) and corresponding ROC diagram (right). The black curves on

the left and right represent risk and classification rates of an example predictor. The grey

Bayes risk curve on the left corresponds to the dominating grey ROC curve on the right

for the likelihood statistic. Similarly, the dashed tent on the left corresponds to the dashed

diagonal ROC line on the right. The point labelled A in the risk diagram corresponds to

the line labelled A* in the ROC diagram.

6.3 Transforming from ROC to Risk Curves and Back

As mentioned earlier, the Neyman-Pearson lemma guarantees the ROC curve for η is maximal.

This corresponds to the cost curve being minimal. In fact, these relationships are dual in the sense

that there exists a transformation from one to the other as we shall now show. We make use of

a connection between the Neyman-Pearson function in (11) and the maximal ROC curve due to

Torgersen (1981). For completeness, a proof using our nomenclature can be found in Appendix A.7.

Theorem 21 Let β(α,P,Q) be the Neyman-Pearson function for the binary experiment (P,Q) and

let L(π,P,Q) be the 0-1 Bayes risk on the same experiment for the prior π. Then, for any choice of

π∈ [0,1] we have

L(π,P,Q) = L= min
α∈[0,1]

((1−π)α+π(1−β(α,P,Q)) (42)

and conversely for any α ∈ [0,1],

β(α,P,Q) = inf
π∈(0,1]

1

π
((1−π)α+π−L(π,P,Q)). (43)

π 7→ L(π,P,Q) is the lower envelope of a parameterized (by π) family of affine functions (in α)

and is thus concave. When β(·) and L(·) are smooth, explicit closed form formulas can be found:
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Theorem 22 Suppose β and L are differentiable on (0,1] and [0,1] respectively. Then

L(π) = (1−π)β̌(π)+π(1−β(β̌(π))), π∈ [0,1], (44)

where

β̌(π) := β′−1

(
1−π

π

)

and

β(α) =
1

Ľ(α)
[
(1− Ľ(α))α+ Ľ(α)−L(Ľ(α))

]
, α ∈ (0,1], (45)

where

Ľ(α) := L̃
−1
(α)∧1,

L̃(π) := L(π)−πL′(π).

The proof can be found in Appendix A.6.

Using (45) we present an example. Consider L(π) = γπ(1−π) for γ∈ [0,1] One can readily

check that L̃(γ)(π) = γπ2. Hence L̃
−1

(γ)(α) =
√

α
γ ∈
[

0, 1
γ

]

. Thus Ľ(γ)(α) = 0∨ L̃
−1

(γ)(α)∧1=
√

α/γ∧
1. Substituting and rearranging we find that the corresponding β is given by

βγ(α) =
α+γ+(

√

α/γ∧1)(1−α−γ)
√

α/γ∧1
.

A graph of this β(·) is given in figure 6.

By construction β(1) = 1 and β is concave and continuous on (0,1]. The following lemma is due

to Torgersen (1991). Given mild conditions on the space of instances, this gives a corollary which

guarantees that all concave curves on a risk diagram can be realised by some pair of distributions.

Their proofs can be found in Appendix A.8 and Appendix A.9, respectively.

Lemma 23 Suppose X contains a connected component C. Let φ: [0,1] → [0,1] be an arbitrary

function that is concave and continuous on (0,1] such that φ(1) = 1. Then there exists distributions

P and Q on X such that β(α,P,Q) = φ(α) for all α ∈ [0,1].

Corollary 24 Suppose X contains a connected component. Let ψ : [0,1] → [0,1] be an arbitrary

concave function such that for all π∈ [0,1], 0 ≤ ψ(π)≤ π∧ (1−π). Then there exists distributions

P and Q on X such that L(π,P,Q) = ψ(π) for all π∈ [0,1].

The corollary shows that reasoning about cost-weighted risks for all possible binary experiments

(P,Q) can be done purely geometrically. Each experiment can be associated with a concave curve

and vice versa so that the existence of an experiment becomes equivalent to the existence of a

concave curve with certain properties. This relationship is exploited in the next section to establish

bounds for f -divergences in Theorem 30.
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Figure 6: Graph of the parameterised Neyman-Pearson function α 7→ βγ(α,P,Q) for γ= i/20, i =
1, . . . ,20. (See text.)

7. Bounding General Objects in Terms of Primitives

All of the above results are exact—they are exact representations of particular primitives or general

objects in terms of other primitives. Another type of relationship is an inequality. In this section we

consider how we can (tightly) bound the value of a general object (I f or Bw) in terms of primitive

objects (Vπ—the generalised variational divergence defined below—or Bc, the regret with respect to

the cost weight loss (29)). Bounding I f (P,Q) in terms of Vπ(P,Q) is a generalisation of the classical

Pinsker inequality (Pinsker, 1964). Bounding Bw(η, η̂) in terms of Bc(η, η̂) is a generalisation of

the so-called “surrogate regret bounds” (Zhang, 2004b; Bartlett et al., 2006).

As explained previously, we work with the conditional Bregman divergence Bw(η, η̂). Results

in terms of Bw(η, η̂), η, η̂ ∈ [0,1] immediately imply results for Bw(η, η̂), where η, η̂ ∈ [0,1]X by

taking expectations with respect to X.

7.1 Surrogate Regret Bounds

Suppose for some fixed c0 ∈ (0,1) that Bc0
(η, η̂) = α. What can be said concerning the value

of Bw(η, η̂) for an arbitrary weight function w? Surrogate regret bounds answer this question by

showing how the value of Bc0
is controlled by a function of Bw. That is, Bc0

≤ F(Bw) for some

non-decreasing F . The main result of this subsection, Theorem 25, presents a general surrogate
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bound for proper losses implicitly as Bw ≥ F−1(Bc0
). However, as Corollary 28 shows, this implicit

bound can always be inverted.

Previous work on this problem is summarised in Appendix D. Apart from their theoretical

interest, these bounds have direct practical implications: it can often be much simpler to minimise

Bw(η, η̂) over η̂ than to minimise Bc(η, η̂). The bounds below will tell the user of such a scheme

the maximum price they will have to pay, in terms of statistical performance, for using a particular

surrogate.

Theorem 25 Let c0 ∈ (0,1) and let Bc0
(η, η̂) denote the point-wise regret for the cost-weighted

loss ℓc0
. Suppose it is known that Bc0

(η, η̂) = α. Then the point-wise regret B(η, η̂) for any proper

surrogate loss ℓ with point-wise risk L and Bayes risk L satisfies

B(η, η̂)≥ ψ(c0,α)∨ψ(c0,−α), (46)

where

ψ(c0,α) := B(c0,c0 +α) = L(c0)−L(c0 +α)+αL′(c0).

Furthermore (46) is tight.

The proof of this bound is almost a direct consequence of the fact that regrets for proper losses

are Bregman divergences (see Section 4.4). This is a simplified version of an earlier proof by Reid

and Williamson (2009). We will make use of the following expression for Bc derived by Buja et al.

(2005). Its proof can be found in Appendix A.10.

Lemma 26 Suppose Lc is the conditional risk for cost-sensitive misclassification loss (see 5.2). For

any loss c ∈ [0,1] the cost-weighted regret Bc(η, η̂) := Lc(η, η̂)−Lc(η) satisfies

Bc(η, η̂) = |η− c|Jη∧ η̂ < c ≤ η∨ η̂K.

Proof (Theorem 25) Let B be the conditional regret associated with some arbitrary proper loss

ℓ and suppose that we know the cost-weighted regret Bc0
(η, η̂) = α. By Lemma 26, this implies

that α = η − c0 when η̂ ≤ c0 < η and α = c0 +η when η ≤ c0 < η̂. Since B(η, η̂) is a Bregman

divergence its value decreases as |η− η̂| decreases (see Section 2.5). Thus, in the first case we have

η̂ ≤ c0 < c0 +α = η and so B(η, η̂) = B(c0 +α, η̂)≥ B(c0 +α,c0) and is minimised when η̂ = c0.

The proof of the second case, when η = c0 −α ≤ c0 < η̂ proceeds identically. Thus, B(η, η̂) is

no smaller than each of B(c0 +α,c0) and B(c0 −α,c0), giving the required result.

By restricting attention to the case when c0 =
1
2

and symmetric losses we obtain, as a corollary,

a result similar to that presented by Bartlett et al. (2006) for surrogate margin losses since B 1
2

is

easily shown to be half the 0-1 regret. It is obtained by substituting α = 1
2

and noting the symmetry

of L implies L′( 1
2
) = 0; Appendix D contains some examples illustrating this special case.

Corollary 27 If L is symmetric—that is, L( 1
2
−c) = L( 1

2
+c) for c ∈ [0, 1

2
]—and B 1

2
(η, η̂) = α, then

B(η, η̂)≥ L( 1
2
)−L( 1

2
+α).

The bounds in Theorem 25 can be inverted to allow the approximate minimisation of a cost-

weighted loss via the minimisation of a surrogate loss.
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Corollary 28 Minimising B(η, η̂) w.r.t. η̂ minimises the bound on Bc(η, η̂) for each c ∈ (0,1).

Proof To see this, let ψ′(c0,α) := ∂
∂α ψ(c0,α) = −L′(c0 +α)+ L′(c0). Since L is concave, L′ is

non-increasing and hence L′(c0 +α) ≤ L′(c0) and so ψ′(c0,α) ≥ 0 and therefore α 7→ ψ(c0,α) is

non-decreasing and thus invertible (although there may be non-uniqueness at points where ψ(c0,α)
is constant in α). This invertibility means minimising B(η, η̂) w.r.t. η̂, minimises the bound on

Bc(η, η̂).

Finally, Theorem 25 can be used to immediately establish a loose, second-order bound in α for

symmetric losses in terms of their weight function, similar to a result due to Buja et al. (2005).

Corollary 29 Suppose Bw is the regret for a symmetric proper loss ℓwith associated weight function

w. Then

Bw(η, η̂)≥
w( 1

2
)

2

[

B 1
2
(η, η̂)

]2

.

Proof A Taylor series expansion of the second term in the bound of Corollary 27 about α = 1
2

gives

Bw(η, η̂)≥
w( 1

2
)

2
α2 +

w′′( 1
2
)

24
α4 + · · ·

since the linear term cancels and there is no third order term since w is symmetric and thus w′( 1
2
)= 0.

Setting α = B 1
2
(η, η̂) gives the result.

Some extensions to the above result have been recently presented by Scott (2010).

7.2 General Pinsker Inequalities for Divergences

The many different f divergences are single number summaries of the relationship between two

distributions P and Q. Each f -divergence emphasises different aspects. Merely considering the

functions f by which f -divergences are traditionally defined makes it hard to understand these

different aspects, and harder still to understand how knowledge of I f1
constrains the possible values

of I f2
. When I f1

= V (a special primitive for I f ) and I f2
= KL, this is a classical problem that has

been studied for decades; Appendix E summarises the history.

Vajda (1970) posed the question of a tight lower bound on KL-divergence in terms of variational

divergence. This “best possible Pinsker inequality” takes the form

L(V ) := inf
V (P,Q)=V

KL(P,Q), V ∈ [0,2), (47)

where the infimum is over all P and Q such that V (P,Q) = V . Recently Fedotov et al. (2003)

presented an implicit (parametric) version of the form

(V (t),L(t))t∈R+ , (48)

V (t) = t

(

1−
(

coth(t)− 1

t

)2
)

, L(t) = ln

(
t

sinh(t)

)

+ t coth(t)− t2

sinh2(t)
.
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We will now show how viewing f -divergences in terms of their weighted integral representation

simplifies the problem of understanding the relationship between different divergences and leads,

amongst other things, to an explicit formula for (47).

We make use of a generalised notion of variational divergence:

Vπ(P,Q) := 2 sup
r∈[−1,1]X

|πEPr− (1−π)EQr|, (49)

where π∈ (0,1) and the supremum is over all measurable functions from X to [−1,1].
Fix a positive integer n. Consider a sequence 0<π1 <π2 < · · ·<πn < 1. Suppose we “sampled”

the value of Vπ(P,Q) at these discrete values of π. Since π 7→ Vπ(P,Q) is concave, the piecewise

linear concave function passing through points

{(πi,Vπi
(P,Q))}n

i=1

is guaranteed to be an upper bound on the variational curve (π,Vπ(P,Q))π∈(0,1). This therefore gives

a lower bound on the f -divergence given by a weight function γ. This observation forms the basis

of the theorem stated below.

Theorem 30 For a positive integer n consider a sequence 0< π1 < π2 < · · ·< πn < 1. Let π0 := 0

and πn+1 := 1 and for i = 0, . . . ,n+1 let

ψi := (1−πi)∧πi −Vπi
(P,Q)

(observe that consequently ψ0 = ψn+1 = 0). Let

An :=

{

a = (a1, . . . ,an) ∈ R
n : (50)

ψi+1 −ψi

πi+1 −πi

≤ ai ≤
ψi −ψi−1

πi −πi−1

, i = 1, . . . ,n

}

.

The set An defines the allowable slopes of a piecewise linear function majorizing π 7→Vπ(P,Q) and

matching it at each of π1, . . . ,πn. For a = (a1, . . . ,an) ∈ An, let

π̃i :=
ψi−ψi+1+ai+1πi+1−aiπi

ai+1 −ai

, i = 0, . . . ,n, (51)

j := {k ∈ {1, . . . ,n} : π̃k <
1
2
≤ π̃k+1}, (52)

π̄i := Ji< jKπ̃i + Ji = jK1
2
+ J j < iKπ̃i−1, (53)

αa,i := Ji ≤ jK(1−ai)+ Ji> jK(−1−ai−1), (54)

βa,i := Ji≤ jK(ψi−aiπi)+Ji> jK(ψi−1−ai−1πi−1) (55)

for i = 0, . . . ,n+1 and let γf be the weight corresponding to f given by (28).

For arbitrary I f and for all distributions P and Q on X the following bound holds. If in addition

X contains a connected component, it is tight.

I f (P,Q) ≥ min
a∈An

n

∑
i=0

∫ π̄i+1

π̄i

(αa,iπ+βa,i)γf (π)dπ (56)

= min
a∈An

n

∑
i=0

[
(αa,iπ̄i+1 +βa,i)Γ f (π̄i+1)−αa,iΓ̄ f (π̄i+1)

−(αa,iπ̄i +βa,i)Γ f (π̄i)+αa,iΓ̄ f (π̄i)
]
, (57)
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where Γ f (π) :=
∫ πγf (t)dt and Γ̄ f (π) :=

∫ πΓ f (t)dt.

Equation 57 follows from (56) by integration by parts. The remainder of the proof is in Section A.12.

Although (57) looks daunting, we observe: (1) the constraints on a are convex (in fact they are a

box constraint); and (2) the objective is a relatively benign function of a.

When n = 1 the result simplifies considerably. If in addition π1 =
1
2

then V1
2
(P,Q) = 1

4
V (P,Q).

It is then a straightforward exercise to explicitly evaluate (56), especially when γf is symmetric. The

following theorem expresses the result in terms of V (P,Q) for comparability with previous results.

The result for KL(P,Q) is a (best-possible) improvement on the classical Pinsker inequality.

Theorem 31 For any distributions P,Q on X, let V := V (P,Q). Then the following bounds hold

and, if in addition X has a connected component, are tight.

When γ is symmetric about 1
2

and convex,

I f (P,Q)≥ 2
[
Γ̄ f

(
1
2
− V

4

)
+ V

4
Γ f

(
1
2

)
− Γ̄ f

(
1
2

)]

and Γ f and Γ̄ f are as in Theorem 30.

This theorem gives the first explicit representation of the optimal Pinsker bound.22

Corollary 32 The following special cases hold (γ symmetric about 1/2).

h2(P,Q) ≥ 2−
√

4−V 2,

J(P,Q) ≥ 2V ln
(

2+V
2−V

)
,

Ψ(P,Q) ≥ 8V 2

4−V 2
,

I(P,Q) ≥
(

1
2
− V

4

)
ln(2−V )+

(
1
2
+ V

4

)
ln(2+V )− ln(2),

T(P,Q) ≥ ln
(

4√
4−V 2

)

− ln(2).

The following special cases hold (γ is not symmetric)

χ2(P,Q) ≥ JV < 1KV 2 + JV ≥ 1K V
(2−V ) , (58)

KL(P,Q) ≥ min
β∈[V−2,2−V ]

(
V+2−β

4

)

ln
(

β−2−V

β−2+V

)

+
(

β+2−V

4

)

ln
(

β+2−V

β+2+V

)

. (59)

By plotting both (48) and (59) one can confirm that the two bounds (implicit and explicit) coincide;

see Figure 7.

The above theorem suggests a means by which one can estimate an f -divergence by estimating a

sequence (Lci
(π,P,Q))n

i=1. A simpler version of such an idea (more directly using the representation

(27)) has been studied by Song et al. (2008).

22. A summary of existing results and their relationship to those presented here is given in Appendix E.
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Figure 7: Lower bound on KL(P,Q) as a function of the variational divergence V (P,Q). Both the

explicit bound (59) and Fedotorev et al.’s implicit bound (48) are plotted.

8. Variational Representations

We have already seen a number of connections between the Bayes risk

L(π,P,Q) = inf
η̂∈[0,1]X

EX∼M [ℓ(η(X), η̂(X))]

and the f -divergence

I f (P,Q) = EQ

[

f

(
dP

dQ

)]

. (60)

Comparing these definitions leads to an obvious and intriguing point: the definition of L involves

an optimisation, whereas that for I f does not. Observe that the normal usage of these quantities

is that one wishes to know not just the real number L(π,P,Q), but also the estimate η̂ : X→ [0,1]
that attains the minimal risk. In this section we will explore two views of I f —relating the standard

definition to a variational one that explains where the optimisation is hidden in (60). We then

explore some simpler relationships when using the linear “loss”. In Appendix F we consider the

variational representation of I f obtained by representing f in terms of the LF dual f ⋆. We also

explore some generalisations that naturally arise from this representation and relate them to each

other and to the standard f -divergence.
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The easiest place to start, unsurprisingly, is with the variational divergence. Below we derive a

straight-forward extension of the classical result relating L
0−1( 1

2
,P,Q) to V (P,Q). We then explore

variational representations for general f -divergences.

8.1 Generalised Variational Divergence

Let C ⊆ {−1,1}X denote a collection of measurable binary classifiers on X. Consider the (con-

strained23) Bayes risk for 0-1 loss minimised over this set:

L
0−1
C

(π,P,Q) = inf
r∈C

E(X,Y)∼P[ℓ
0−1(r(X),Y)]. (61)

The variational divergence is so called because it can be written

V (P,Q) = 2 sup
A⊆X

|P(A)−Q(A)|, (62)

where the supremum is over all measurable subsets of X. Since

V (P,Q) = sup
r∈[−1,1]X

|EPr−EQr|,

consider the following generalisation of V :

VR,π(P,Q) := 2 sup
r∈R⊆[−1,1]X

|πEPr− (1−π)EQr|, (63)

where π∈ (0,1) and the supremum is over all measurable functions from X to [−1,1]. (If R =
[−1,1]X we just write Vπ(P,Q).) When π= 1

2
this is a scaled version of what Müller (1997a,b) calls

an integral probability metric.24

If R is symmetric about zero (r ∈ R ⇒ −r ∈ R), then the absolute value signs in (63) can

be removed. To see this, suppose the supremum was attained at r and that α := πEPr − (1 −
π)EQr < 0. Choose r′ := −r and observe that πEPr′− (1−π)EQr′ = −α > 0. Thus VR,π(P,Q) =
2supr∈R⊆[−1,1]X(πEPr− (1−π)EQr).

Let sgnR := {sgnr : r ∈ R} and for a,b ∈ R, let aR+b := {ar+b : r ∈ R}.

Theorem 33 Suppose R⊆ [−1,1]X is symmetric about zero and sgnR⊆ R. For all π∈ (0,1) and

all P and Q

L
0−1
(sgnR+1)/2

(π,P,Q) = 1
2
− 1

4
VR,π(P,Q) (64)

and the infimum in (61) corresponds to the supremum in (63).

The proof is in Appendix A.11.

23. Tong and Koller (2000) call this the restricted Bayes risk.

24. Zolotarev (1984) calls this a probability metric with ζ-structure. There are probability metrics that are neither f -

divergences nor integral probability metrics. A large collection is due to Rachev (1991). A recent survey on rela-

tionships (inequalities and some representations) has been given by Gibbs and Su (2002). The idea of generalising

variational divergence by restricting the set the supremum is taken over is also used by Ben-David et al. (2010).
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8.2 The Linear “Loss” and the Generalised Variational Divergence

Theorem 33 shows that computing VR,π involves an optimisation problem equivalent to that arising

in the determination of L. The argmin in the definition of L is usually called the hypothesis (or

Bayes optimal hypothesis). Following Borgwardt et al. (2006) we will call the argmax in (63) the

witness.

When R= [−1,1]X and π= 1
2
, sgnR⊆R and furthermore C= (sgnR+1)/2 = {0,1}X and so

Theorem 33 reduces to the classical result that L0−1( 1
2
,P,Q) = 1

2
− 1

4
V (P,Q) (Devroye et al., 1996).

The requirement that sgnR ⊆ R is unattractive. It is necessitated by the use of 0-1 loss. It can

be removed by instead considering the linear loss

ℓlin(r(x),y) := 1− yr(x), y ∈ {−1,1}.

If r is unrestricted, then there is no guarantee that ℓlin > −∞ and is thus a legitimate loss function.

Below we will always consider r ∈ R such that the linear loss is bounded from below. Observe that

the common hinge loss (Steinwart and Christmann, 2008) is simply ℓhinge( f (x),y)= 0∨ℓlin( f (x),y).

Theorem 34 Assume that R ⊆ [−a,a]X for some a > 0 and is symmetric about zero. Then for all

π∈ (0,1) and all distributions P and Q on X

L
lin
R (π,P,Q) = 1− 1

2
VR,π(P,Q)

and the r that attains Llin
R (π,P,Q) corresponds to the r that obtains the supremum in the definition

of VR,π(P,Q).

Proof

L
lin
R (π,P,Q) = inf

r∈R

(
πEX∼Pℓ

lin(r(X),−1)+(1−π)EX∼Qℓ
lin(r(X),+1)

)

= inf
r∈R

(πEX∼P(1+ r(X))+(1−π)EX∼Q(1− r(X)))

= inf
r∈R

(π+πEPr+(1−π)− (1−π)EQr)

= 1+ inf
r∈R

(πEPr− (1−π)EQr)

= 1− sup
r∈R

(πEP(−r)− (1−π)EQ(−r))

= 1− sup
r∈R

(πEPr− (1−π)EQr)

= 1− 1

2
VR,π(P,Q),

where the penultimate step exploits the symmetry of R.

Now suppose that R= BH := {r : ‖r‖H ≤ 1}, the unit ball in H, a Reproducing Kernel Hilbert

Space (RKHS) (Schölkopf and Smola, 2002). Thus for all r ∈ R there exists a feature map φ: X→
H such that r(x) = 〈r,φ(x)〉H and 〈φ(x),φ(y)〉H = k(x,y), where k is a positive definite kernel func-

tion. Borgwardt et al. (2006) show that

V 2
BH,

1
2

(P,Q) =
1

4
‖EPφ−EQφ‖2

H. (65)
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Given Assumed Derived

(P,Q) f ↔ γ I f (P,Q)

(π,P,Q) U ↔ w,W,W J(U(η)) = ∆L(π,P,Q)
L(η)

η̂ Lw(η, η̂), Bw(η, η̂)

Table 3: Summary relationships between key objects arising in Binary Experiments. “Given” in-

dicates the object is given or provided by the world; “Assumed” is something the user of

assumes or imposes in order to create a well defined problem; “Derived” indicates quanti-

ties that are derived from the primitives.

Thus

L
lin
R (π,P,Q) = 1− 1

4
‖EPφ−EQφ‖H. (66)

Empirical estimators derived from the correspondence between (65) and (66) lead to the ν-Support

Vector Machine and Maximum Mean Discrepancy; see Appendix H. Further generalizations of

variational representations of I f are explored in Appendix F.

9. Conclusions

There are several existing concepts that can be used to quantify the amount of information in a task

and its difficulty: Uncertainty, Bregman information, statistical information, Bayes risk and regret,

and f -divergences. Information is a difference in uncertainty; regret is a difference in risk. In the

case of supervised binary class probability estimation, we have connected and extended several

existing results in the literature to show how to translate between these perspectives. The represen-

tations allow a precise answer to the question of what are the primitives for binary experiments.

We have derived the integral representations in a simple and unified manner, and illustrated

the value of the representations. Along the way we have drawn connections to a diverse set of

concepts related to binary experiments: risk curves, cost curves, ROC curves and the area under

them; variational representations of f -divergences, risks and regrets.

Two key consequences are surrogate regret bounds that are at once more general and simpler

than those in the literature, and a generalisation of the classical Pinkser inequality providing, inter

alia, an explicit form for the best possible Pinsker inequality relating Kullback-Leibler divergence

and Variational divergence. We have also presented a new derivation of support vector machines

and their relationship to Maximum Mean Discrepancy (integral probability metrics).

The key relationships between the basic objects of study are summarised in Table 3 and Figure 1

in §1.2.

All of the results we have presented demonstrate the fundamental and elementary nature of the

cost-weighted misclassification loss, which is becoming increasingly appreciated in the Machine

Learning literature (Bach et al., 2006; Beygelzimer et al., 2008). The viewpoint developed in this

paper has also recently been used to better understand the structure of composite binary losses

(losses involving a link function)—see Reid and Williamson (2010).
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More generally, the present work is small part of a larger structural research agenda to under-

stand the whole field of machine learning in terms of relations between problems. We envisage

these relations being richer and more powerful than the already valuable reductions between learn-

ing problems. Much of the present literature on machine learning is highly solution focussed. Of

course one does indeed like to solve problems, and we do not suggest otherwise. But it is hard to

see structure in the panoply of solutions which continue to grow each year. The present paper is a

first step to a pluralistic unification of a diverse set of machine learning problems. The goal we have

in mind can be explained by analogy. There are several such analogies:

Computational Complexity Within the field of NP-completeness (Garey and Johnson, 1979; John-

son, 1982–1992; 2005–2007) lead to a detailed and structured understanding of the relation-

ships between many fundamental problems and consequently guides the search for solutions

for new problems.

Functional Analysis Compare Machine Learning problems with mathematical functions. In the

19th century, each function was considered separately. Functional Analysis (Lindström,

2008) catalogued them by considering sets of functions and relations (mappings) between

them and subsequently developed many new and powerful tools. The increasing abstraction

and focus on relations has remained a powerful force in mathematics (Wikipedia, 2007).

Biology A systematic cataloging (taxonomy) resonates with Biology’s Linnean past—and tax-

onomies can indeed lead to standardisation and efficiency (Bowker and Star, 1999). But

taxonomies alone are inadequate—it seems necessary to understand the relationships in a

manner analogous to Systems Biology which “is about putting together rather than taking

apart, integration rather than reduction. . . . Successful integration at the systems level must

be built on successful reduction, but reduction alone is far from sufficient” (Noble, 2006).

Geology Finally, Lyell’s Principles of Geology (Lyell, 1830) was a watershed in Geology’s history

(Bowker, 2005); prior work is pre-historical. Lyell’s key insight was to explain the huge di-

versity of geological formations in terms of a relatively simple set of transformations applied

repeatedly.

These analogies encourage our aspiration that by more systematically understanding the rela-

tionships between machine learning problems and how they can be transformed into each other, we

will develop a better organised and more powerful toolkit for solving existing and future problems,

and will make progress along the lines suggested by Hand (1994).
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Appendix A. Proofs

This appendix presents the proofs that were omitted in the main body of the paper.

A.1 Proof of Corollary 3

Integration by parts of tφ′′(t) gives
∫ 1

0 t φ′′(t)dt = φ′(1)− (φ(1)−φ(0)) which can be rearranged to

give

φ′(1) =
∫ 1

0
t φ′′(t)dt +(φ(1)−φ(0)).

Substituting this into the Taylor expansion of φ(s) about 1 yields

φ(s) = φ(1)+φ′(1)(s−1)+
∫ 1

s
(t − s)φ′′(t)dt

= φ(1)+
[∫ 1

0
t φ′′(t)dt +(φ(1)−φ(0))

]

(s−1)+
∫ 1

0
(t − s)+φ′′(t)dt

= φ(1)+(φ(1)−φ(0))(s−1)+
∫ 1

0
t(s−1)φ′′(t)dt +

∫ 1

0
(t − s)+φ′′(t)dt

= φ(0)+(φ(1)−φ(0))s−
∫ 1

0
ψ(s, t)φ′′(t)dt,

where ψ(s, t) := min{(1− t)s,(1− s)t}. This form of ψ is valid since

−(t(s−1)+(t − s)+) =

{

−ts+ t − t + s, t ≥ s

−ts+ t, t < s

=

{

s− ts, t ≥ s

t − ts, t < s

= min{(1− t)s,(1− s)t}

as required.

A.2 Proof of Theorem 6

Expanding the definition of the Jensen gap using the definition of ψ gives

Jµ[ψ(S)] = Eµ[ψ(S)]−ψ(Eµ[S])

= Eµ[φ(S)+bS+a]− (φ(Eµ[S])+bEµ[S]+a)

= Eµ[φ(S)]+bEµ[S]+a−φ(Eµ[S])−bEµ[S]−a

= Jµ[φ(S)]

as required.
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A.3 Proof of Theorem 9

Proof Given a task (π,P,Q;ℓ) we need to first check that

f π(t) := L(π)− (πt +1−π)L
(

πt

πt +1−π

)

(67)

is convex and that f π(1) = 0. This latter fact is obtained immediately by substituting t = 1 into

f π(t) yielding L(π)−L(π) = 0. The convexity of f π is guaranteed by Theorem 7, which shows that

L is concave and the fact that the perspective transform of a convex function is always convex (see

Section 2.1). Thus the function

t 7→ I−L(πt,πt +1−π) =−(πt +1−π)L
(

πt

πt +1−π

)

is the composition of a convex function and an affine one and therefore convex.

Substituting (67) into the definition of f -divergence in (13) yields

EQ [ f π(dP/dQ)] = EQ

[

L(π)−
(

π
dP

dQ
+1−π

)

L

(
πdP

πdP+(1−π)dQ

)]

= L(π)−
∫
X

L

(

π
dP

dM

)

dM

since dM = πdP + (1 −π)dQ. Recall that η = πdP/dM. Since L(π) is constant we note that

L(π) = EM [L(π)] = L(π,M) and so

EQ [ f π(dP/dQ)] = L(π)−EM [L(η)]
= L(π,M)−L(η,M)

= ∆L(η,M)

as required for the forward direction.

Starting with

Lπ(η) :=−1−η
1−π

f

(
1−π

π
η

1−η

)

and substituting into the definition of statistical information in (20) gives us

∆Lπ(η,M) = EM [Lπ(π)]−EM [Lπ(η)]

=
∫
X

−1−π
1−π

f (1)dM−
∫
X

−1−η
1−π

f

(
1−π

π
η

1−η

)

dM

= 0+
∫
X

f

(
dP

dQ

)

dQ

since f (1) = 0, dQ = (1−η)/(1−π)dM and

dP/dQ =
1−π

π
η

1−η

by the discussion in Section 4.1. This proves the converse statement of the theorem.
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A.4 Proof of Corollary 13

Proof Let f ♦(t) := t f (1/t) denote the Csiszár-dual of f as described in Section 2.1 above. It is

known (see (16) and, for example, Liese and Vajda, 2006) that

I f (P,Q) = I f♦(Q,P) if and only if f (t) = f ♦(t)+ c1t + c2

for some c1,c2 ∈ R. Since f and γ are related by f ′′
(

1−π
π
)
= π3γ(π) we can argue as follows. Ob-

serve that f ♦
′
(t)= f (1/t)− f ′(1/t)/t and f ♦

′′
(t)= f ′′(1/t)/t3. Hence f ♦

′′( 1−π
π
)
= f ′′

( π
1−π
)( π

1−π
)3

.

Let π′ = 1−π. Thus 1−π
π = π′

1−π′ . Hence

f ♦
′′
(

1−π
π

)

= f ′′
(

1−π′

π′

)(
π

1−π

)3

= π′3γ(π′)

(
π

1−π

)3

= π3γ(1−π).

Thus if γ(1−π) = γ(π), we have shown π 7→ γ(1−π) is the weight corresponding to f♦. Observing

that ∂2

∂t2 ( f ♦(t)+ c1t + c2) = f ♦
′′

concludes the proof.

A.5 Proof of Theorem 18

Proof Theorem 9 shows that

Lπ(η) =−1−η
1−π

f

(
1−π

π
η

1−η

)

. (68)

and we have seen from (32) that wπ(c) = −(Lπ)′′(c). The remainder of this proof involves taking

the second derivative of L, doing some messy algebra and matching the result to the relationship

between γ and f ′′ in (Equation 28).

Letting rπ= rπ(η) = 1−π
π

η
1−η and taking derivatives of (68) yields

−(Lπ)′(η) = (1−π)−1[− f (rπ)+(1−η) f ′(rπ)r
′
π]

−(Lπ)′′(η) = (1−π)−1[− f ′(rπ)r
′
π+(1−η)( f ′(rπ)r

′′
π+ f ′′(rπ)(r

′
π)

2)− f ′(rπ)r
′
π]

= (1−π)−1[(−2r′π+(1−η)r′′π) f ′(rπ)+(1−η)(r′′π)
2 f ′′(rπ)].

However, the form of rπ means r′π = 1−π
π

1
(1−η)2 and so r′′π = 1−π

π
2

(1−η)3 . This means the coefficient

of f ′(rπ) in the above expression vanishes

(−2r′π+(1−η)r′′π) =
1−π

π

[ −2

(1−η)2
+(1−η)

2

(1−η)3

]

= 0.

Substituting this back into −(L)′′ gives us

−(Lπ)′′(η) =
1−η
1−π

f ′′(rπ)(r
′
π)

2

=
1−η
1−π

f ′′
(

1−π
π

η
1−η

)
(1−π)2

π2

1

(1−η)4

w(η) =
1−π

π2(1−η)3
f ′′
(

1−π
π

η
1−η

)

.
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By Equation 28 we have

γ(t) =
1

t3
f ′′
(

1− t

t

)

.

Letting t = (1−c)π
(1−c)π+(1−π)c in that expression gives

γ
(
(1− c)π
ν(π,c)

)

=
ν(π,c)3

(1− c)3π3
f ′′
(

1−π
π

c

1− c

)

.

Thus
π(1−π)
ν(π,c)3

γ
(
(1− c)π
ν(π,c)

)

=
1−π

π2(1− c)3
f ′′
(

1−π
π

c

1− c

)

= w(c)

as required. The argument to show the inverse relationship is essentially the same.

A.6 Proof of Theorem 22

Proof Consider the right side of (42) and differentiate with respect to α:

∂
∂α

(1−π)α+π(1−β(α)) = (1−π)−πβ′(α).

Setting this to zero we have (1−π) = πβ′(α) and thus β′(α) = 1−π
π . Since β is monotonically

increasing and concave, β′ is monotonically decreasing and non-negative. Thus we can set

α = β′−1

(
1−π

π

)

∈ [0,1].

Substituting back into (1−π)α+π(1−β(α)) we obtain (44).

Now consider the right side of (43):

1

π
((1−π)α+π−L(π)). (69)

Differentiating with respect to πwe have −α
π − L

′(π)
π + L(π)

π2 . Setting this equal to zero we obtain

−α
π

− L
′(π)
π

+
L(π)
π2

= 0, π∈ (0,1]

⇒ α+πL′(π)−L(π) = 0.

Observing the definition of L̃ we thus have that L̃(π) = α. Now

L̃
′
(π) =

∂
∂π

(−πL′(π)+L(π))

= −πL′′(π)−L
′(π)+L

′(π)
= −πL′′(π)
≥ 0

since L is concave. Thus L̃(·) is monotonically non-decreasing and we can write π= L̃
−1
(α). In

order to ensure π∈ [0,1] we substitute π= Ľ(α) into (69) to obtain (45).
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A.7 Proof of Theorem 21

Proof Since the true positive rate for r ∈ {−1,1}X is TPr = P(r−1(1)) and the false positive rate

for r is FPr = Q(r−1(1)) we have

β(α,P,Q) = sup
r∈{−1,1}X

{P(X+
r ) : Q(X+

r )≤ α},

where X+
r := r−1(1).

Noting that the 0-1 loss of r is simply its probability of error—that is, the average of the false

positive and false negative rates—we have for each π∈ [0,1] that the Bayes optimal 0-1 loss is

L(π,P,Q) = inf
r∈{−1,1}X

{(1−π)Q(X+
r )+π(1−P(X+

r ))},

since the false negative rate FNr = P(X \X+
r ) = 1 − P(X+

r ). Thus for all π,α ∈ [0,1], and all

measurable functions r : X→{−1,1},

L(π,P,Q) ≤ (1−π)Q(X+
r )+π(1−P(X+

r ))

≤ (1−π)α+π(1−P(X+
r ))

≤ (1−π)α+π(1−β(α,P,Q)).

Thus, we see that L(π,P,Q) is the largest number L such that (1−π)α +π(1−β(α)) ≥ L for all

α ∈ [0,1] and hence one can set

L(π,P,Q) = L= min
α∈[0,1]

((1−π)α+π(1−β(α))

for each π∈ [0,1].

Conversely, we can express the Neyman-Pearson function β in terms of the Bayes risk. That is,

for any α ∈ [0,1], β(α,P,Q) is the largest number β such that

∀π∈ [0,1] (1−π)α+π(1−β)≥ L(π)
⇔ ∀π∈ [0,1] (1−π)α−L(π)≥ π(β−1)

⇒ ∀π∈ (0,1]
1

π
((1−π)α−L(π))≥ β−1

⇔ ∀π∈ (0,1] β ≤ 1

π
((1−π)α+π−L(π)).

Thus we can set

β(α) = inf
π∈(0,1]

1

π
((1−π)α+π−L(π)), α ∈ [0,1].
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A.8 Proof of Lemma 23

Proof Let X′ = [0,1] and P be the uniform distribution on X′. Overload P and Q to also denote the

respective cumulative distribution functions (i.e., P(x) = P([0,x])). Thus P(π) = π). Set Q(π) =
φ(π). Since φ(·) is increasing it suffices to consider r(·) of the form rπ(x) = Jx< πK. Hence

β(α) = max{φ(π) : 0 ≤ π≤ 1, π≤ α}, α ∈ [0,1].

The maximum will always be obtained for π= α and thus β(α) = φ(α) for α ∈ [0,1]. Finally, a

pair of distributions on X can be constructed by embedding the connected component C ⊂ X into

X′. Choose g : C→ X′ such that g is invertible. Such a g always exists since C is connected. Then

g−1 induces distributions P′ and Q′ on C and thus on X by subsethood.

A.9 Proof of Corollary 24

Proof Choose a ψ satisfying the conditions and substitute into (43). This gives a corresponding

φ(·). We know from the preceding lemma that there exist P and Q such that β(·,P,Q) = φ(·) which

corresponds to L(·,P,Q). Thus it remains to show that the function φdefined by

φ(α) = inf
π∈(0,1]

1

π
((1−π)α+π−ψ(π))

is concave and satisfies φ(1) = 1. Observe that β(1) = infπ∈(0,1]
1−ψ(π)

π . Now by the upper bound on

ψ, we have
1−ψ(π)

π ≥ 1−1+π
π = 1

π ≥ 1. But limπ→1
1−ψ(π)

π = 1 and thus β(1) = 1. Finally note that

β(α) = inf
π∈(0,1]

(
1−π

π

)

α+(1−ψ(π)).

This is the lower envelope of a parameterized (by π) family of affine functions (in α) and is thus

concave.

A.10 Proof of Lemma 26

Proof From Theorem 14 we know that Lc(η) = min{(1−η)c,(1− c)η} and note that (1−η)c ≤
(1− c)η ⇐⇒ c ≤ η. Then, by the definition of Lc and the identity 1− JpK = J¬pK we have

Bc(η, η̂) = (1−η)cJη̂ ≥ cK+(1− c)ηJη̂ < cK−min{(1−η)c,(1− c)η}
= (1−η)cJη̂ ≥ cK+(1− c)ηJη̂ < cK− (1−η)cJη ≥ cK− (1− c)ηJη < cK

= (1−η)c(Jη̂ ≥ cK− Jη ≥ cK)+(1− c)η(Jη̂ < cK− Jη < cK).

Note that Jη̂ ≥ cK− Jη ≥ cK is either 1 or -1 depending on whether η̂ ≥ c > η or η̂ < c ≤ η and is

zero otherwise. Similarly, Jη̂ < cK− Jη < cK is 1 when η̂ < c ≤ η, is -1 when η̂ ≥ c> η and is zero
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otherwise. This means

Bc(η, η̂) =

{

(1−η)c− (1− c)η, η̂ ≥ c> η
−(1−η)c+(1− c)η, η ≥ c> η̂

=

{

c−η, η̂ ≥ c> η
η− c, η ≥ c> η̂

= |η− c|Jmin{η, η̂} ≤ c<max{η, η̂}K

as required.

A.11 Proof of Theorem 33

Proof Let C := (sgnR+1)/2 ⊆ {0,1}X and so sgnR= 2C−1. Then

L
0−1
C

(π,P,Q) = inf
r∈C

E(X,Y)∼Pℓ
0−1(r(X),Y)

= inf
r∈C

(
πEX∼Pℓ

0−1(r(X),0)+(1−π)EX∼Qℓ
0−1(r(X),1)

)

= inf
r∈C

(πEX∼PJr(X) = 1K+(1−π)EX∼QJr(X) = 0K)

= inf
r∈C

(πEPr+(1−π)EQ(1− r))

since Ranr = {0,1}⇒ EX∼PJr(X) = 1K = EX∼Pr(X) and EX∼QJr(X) = 0K = EX∼Q(1− r(X)). Let

ρ = 2r−1 ∈ 2C−1. Thus r = ρ+1
2

. Hence

L
0−1
C

(π,P,Q) = inf
ρ∈2C−1

(

πEP

(
ρ+1

2

)

− (1−π)EQ

(

1− ρ+1

2

))

=
1

2
inf

ρ∈2C−1
(πEP(ρ+1)+(1−π)EQ(1−ρ))

=
1

2
inf

ρ∈2C−1
(πEPρ+(1−π)EQ(−ρ)+π+(1−π))

=
1

2
+

1

2
inf

ρ∈2C−1
(πEPρ− (1−π)EQρ)

=
1

2
− 1

2
sup

ρ∈2C−1

(πEP(−ρ)− (1−π)EQ(−ρ)).

Since R is symmetric about zero, sgn(R) = 2C− 1, C ⊆ {0,1}X is symmetric about 1
2
; that is,

ρ ∈ C⇒ (1−ρ) ∈ C. Thus

L
0−1
C

(π,P,Q) =
1

2
− 1

2
sup

ρ∈2C−1

(πEPρ− (1−π)EQρ)

=
1

2
− 1

4
V2C−1,π(P,Q)

=
1

2
− 1

4
VsgnR,π(P,Q). (70)
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Since by assumption sgnR ⊆ R, the supremum in (63) will be ±1-valued everywhere. Thus

VsgnR,π(P,Q) =VR,π(P,Q). Combining this fact with (70) leads to (64).

Finally observe that by replacing inf and sup by argmin and argmax the final part of the theorem

is apparent.

A.12 Pinsker Theorems

Proof (Theorem 30) Given a binary experiment (P,Q) denote the corresponding statistical infor-

mation as

φ(π) = φ(P,Q)(π) := ∆L0−1(π,P,Q) = π∧ (1−π)−ψ(P,Q)(π),

where ψ(P,Q)(π) = ψ(π) = L
0−1(π,P,Q). We know that ψ is non-negative and concave and satisfies

ψ(π)≤ π∧ (1−π) and thus ψ(0) = ψ(1) = 0.

Since

I f (P,Q) =
∫ 1

0
φ(π)γf (π)dπ, (71)

I f (P,Q) is minimized by minimizing φ(P,Q) over all (P,Q) such that

φ(πi) = φi = πi ∧ (1−πi)−ψ(P,Q)(πi).

Let ψi := ψ(πi) =
1
2
− 1

4
Vπi

(P,Q). The problem becomes:

Given (πi,ψi)
n
i=1 find the maximal ψ : [0,1]→ [0, 1

2
] such that (72)

ψ(πi) = ψi, i = 0, . . . ,n+1, (73)

ψ(π)≤ π∧ (1−π), π∈ [0,1], (74)

ψ is concave. (75)

This will tell us the optimal φ to use since optimising over ψ is equivalent to optimizing over

L(·,P,Q). Under the additional assumption on X, Corollary 24 implies that for any ψ satisfying

(73), (74) and (75) there exists P,Q such that L(·,P,Q) = ψ(·).
Let Ψ be the set of piecewise linear concave functions on [0,1] having n+1 segments such that

ψ ∈ Ψ ⇒ ψ satisfies (73) and (74). We now show that in order to solve (72) it suffices to consider

ψ ∈ Ψ.

If g is a concave function on R, then

ðg(x) := {s ∈ R : g(y)≤ g(x)+ 〈s,y− x〉, y ∈ R}

denote the sup-differential of g at x. (This is the obvious analogue of the sub-differential for convex

functions Rockafellar, 1970.) Suppose ψ̃ is a general concave function satisfying (73) and (74). For

i = 1, . . . ,n, let

G
ψ̃
i :=

{

[0,1] ∋ g
ψ̃
i : πi 7→ ψi ∈ R is linear and ∂

∂πg
ψ̃
i (π)

∣
∣
∣
π=πi

∈ ðψ̃(πi)

}

.

Observe that by concavity, for all concave ψ̃ satisfying (73) and (74), for all g ∈ ⋃n
i=1 G

ψ̃
i , g(π) ≥

ψ(π), π∈ [0,1].
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Figure 8: Illustration of construction of optimal ψ(π) = L(π,P,Q). The optimal ψ is piecewise

linear such that ψ(πi) = ψi, i = 0, . . . ,n+1.

Thus given any such ψ̃, one can always construct

ψ∗(π) = min(g
ψ̃
1 (π), . . . ,g

ψ̃
n (π)) (76)

such that ψ∗ is concave, satisfies (73) and ψ∗(π)≥ ψ̃(π), for all π∈ [0,1]. It remains to take account

of (74). That is trivially done by setting

ψ(π) = min(ψ∗(π),π∧ (1−π)) (77)

which remains concave and piecewise linear (although with potentially one additional linear seg-

ment). Finally, the pointwise smallest concave ψ satisfying (73) and (74) is the piecewise linear

function connecting the points (0,0),(π1,ψ1),(π2,ψ2), . . . ,(πm,ψm),(1,0).
Let g : [0,1]→ [0, 1

2
] be this function which can be written explicitly as

g(π) =
(

ψi +
(ψi+1 −ψ)(π−πi)

πi+1 −πi

)

· Jπ∈ [πi,πi+1]K, i = 0, . . . ,n,

where we have defined π0 := 0, ψ0 := 0, πn+1 := 1 and ψn+1 := 0.

We now explicitly parameterize this family of functions. Let pi : [0,1] → R denote the affine

segment the graph of which passes through (πi,ψi), i = 0, . . . ,n+ 1. Write pi(π) = aiπ+ bi. We

know that pi(πi) = ψi and thus

bi = ψi −aiπi, i = 0, . . . ,n+1.
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In order to determine the constraints on ai, since g is concave and minorizes ψ, it suffices to only

consider (πi−1,g(πi−1)) and (πi+1,g(πi+1)) for i = 1, . . . ,n. We have (for i = 1, . . . ,n)

pi(πi−1) ≥ g(πi−1)

⇒ aiπi−1 +bi ≥ ψi−1

⇒ aiπi−1 +ψi −aiπi ≥ ψi−1

⇒ ai (πi−1 −πi)
︸ ︷︷ ︸

<0

≥ ψi−1 −ψi

⇒ ai ≤ ψi−1 −ψi

πi−1 −πi

.

Similarly we have (for i = 1, . . . ,n)

pi(πi+1) ≥ g(πi+1)

⇒ aiπi+1 +bi ≥ ψi+1

⇒ aiπi+1 +ψi −aiπi ≥ ψi+1

⇒ ai (πi+1 −πi)
︸ ︷︷ ︸

>0

≥ ψi+1 −ψi

⇒ ai ≥ ψi+1 −ψi

πi+1 −πi

.

We now determine the points at which ψ defined by (76) and (77) change slope. That occurs at the

points πwhen

pi(π) = pi+1(π)
⇒ aiπ+ψi −aiπi = ai+1π+ψi+1 −ai+1πi+1

⇒ (ai+1 −ai)π = ψi −ψi+1 +ai+1πi+1 −aiπi

⇒ π =
ψi −ψi+1 +ai+1πi+1

ai+1 −ai

=: π̃i

for i = 0, . . . ,n. Thus

ψ(π) = pi(π), π∈ [π̃i−1, π̃i], i = 1, . . . ,n.

Let a = (a1, . . . ,an). We explicitly denote the dependence of ψ on a by writing ψa. Let

φa(π) := π∧ (1−π)−ψa(π)
= αa,iπ+βa,i, π∈ [π̄i−1, π̄i], i = 1, . . . ,n+1,

where a ∈ An (see (50)), π̄i, αa,i and βa,i are defined by (53), (54) and (55) respectively. The extra

segment induced at index j (see (52)) is needed since π 7→ π∧ (1−π) has a slope change at π= 1
2
.

Thus in general, φa is piecewise linear with n+ 2 segments (recall i ranges from 0 to n+ 2); if

π̃k+1 =
1
2

for some k ∈ {1, . . . ,n}, then there will be only n+1 non-trivial segments.

Thus {

π 7→
n

∑
i=0

φa(π) · Jπ∈ [π̄i, π̄i+1]K : a ∈ An

}
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Figure 9: The optimisation problem when n = 1. Given ψ1, there are many risk curves consistent

with it. The optimisation problem involves finding the piecewise linear concave risk curve

ψ ∈ Ψ and the corresponding φ= π∧ (1−π) that maximises I f . L and U are defined in

the text.

is the set of φ consistent with the constraints and An is defined in (50). Thus substituting into (71),

interchanging the order of summation and integration and optimizing we have shown (56). The

tightness has already been argued: under the additional assumption on X, since there is no slop

in the argument above since every φ satisfying the constraints is the Bayes risk function for some

(P,Q).

Proof (Theorem 31) In this case n= 1 and the optimal ψ function will be piecewise linear, concave,

and its graph will pass through (π1,ψ1). Thus the optimal φwill be of the form

φ(π) =







0, π∈ [0,L]∪ [U,1]

π− (aπ+b), π∈ [L, 1
2
]

(1−π)− (aπ+b), π∈ [ 1
2
,U ].

where aπ1+b=ψ1 ⇒ b=ψ1−aπ1 and a∈ [−2ψ1,2ψ1] (see Figure 9). For variational divergence,

π1 =
1
2

and thus

ψ1 = π1 ∧ (1−π1)−
V

4
=

1

2
− V

4
(78)
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and so φ1 =V/4. We can thus determine L and U :

aL+b = L

⇒ aL+ψ1 −aπ1 = L

⇒ L =
aπ1 −ψ1

a−1
.

Similarly aU +b = 1−U ⇒U = 1−ψ1+aπ1

a+1
and thus

I f (P,Q)≥ min
a∈[−2ψ1,2ψ1]

1
2∫

aπ1−ψ1
a−1

[(1−a)π−ψ1 +aπ1]γf (π)dπ+

1−ψ1+aπ1
a+1∫

1
2

[(−a−1)π−ψ1 +aπ1 +1]γf (π)dπ.

(79)

If γf is symmetric about π= 1
2

(so by Corollary 13 I f is symmetric) and convex and π1 =
1
2
, then

the optimal a = 0. Thus in that case,

I f (P,Q) ≥ 2

∫ 1
2

ψ1

(π−ψ1)γf (π)dπ

= 2
[
( 1

2
−ψ1)Γ f (

1
2
)+ Γ̄ f (ψ1)− Γ̄ f (

1
2
)
]

= 2
[

V
4
Γ f (

1
2
)+ Γ̄ f

(
1
2
− V

4

)
− Γ̄ f (

1
2
)
]
. (80)

Appendix B. Examples of Generalised Pinsker Inequality

Combining the above with (78) leads to a range of Pinsker style bounds for symmetric I f :

Jeffrey’s Divergence J(P,Q) = KL(P,Q) +KL(Q,P). Thus γ(π) = 1
π2(1−π) +

1
π(1−π)2 = 1

π2(1−π)2 .

(As a check, f (t) = (t −1) ln(t), f ′′(t) = t+1
t2 and so γf (π) = 1

π3 f ′
(

1−π
π
)
= 1

π2(1−π)2 .) Thus

J(P,Q) ≥ 2

∫ 1/2

ψ1

(π−ψ1)

π2(1−π)2
dπ

= (4ψ1 −2)(ln(ψ1)− ln(1−ψ1)).

Substituting ψ1 =
1
2
− V

4
gives

J(P,Q)≥V ln

(
2+V

2−V

)

.

Observe that the above bound behaves like V 2 for small V , and V ln
(

2+V
2−V

)
≥V 2 for V ∈ [0,2].

Using the traditional Pinkser inequality (KL(P,Q)≥V 2/2) we have

J(P,Q) = KL(P,Q)+KL(Q,P)

≥ V 2

2
+

V 2

2

= V 2
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Jensen-Shannon Divergence Here f (t) = t
2

ln t− (t+1)
2

ln(t+1)+ ln2 and thus the weight function

γf (π) = 1
π3 f ′′

(
1−π

π
)
= 1

2π(1−π) . Thus

JS(P,Q) = 2

∫ 1
2

ψ1

π−ψ1

2π(1−π)
dπ

= ln(1−ψ1)−ψ1 ln(1−ψ1)+ψ1 lnψ1 + ln(2).

Substituting ψ1 =
1
2
− V

4
leads to

JS(P,Q)≥
(

1

2
− V

4

)

ln(2−V )+

(
1

2
+

V

4

)

ln(2+V )− ln(2).

Hellinger Divergence Here f (t) = (
√

t −1)2. Consequently the weight function

γf (π) =
1

π3
f ′′
(

1−π
π

)

=
1

π3

1

2((1−π)/π)3/2
=

1

2[π(1−π)]3/2

and thus

h2(P,Q) ≥ 2

∫ 1
2

ψ1

π−ψ1

2[π(1−π)]3/2
dπ

=
4
√ψ1(ψ1 −1)+2

√
1−ψ1√

1−ψ1

=
4

√
1
2
− V

4

(
1
2
− V

4
−1
)
+2

√

1− 1
2
+ V

4
√

1− 1
2
+ V

4

= 2− (2+V )
√

2−V√
2+V

= 2−
√

4−V 2.

For small V , 2−
√

4−V 2 ≈V 2/4.

Arithmetic-Geometric Mean Divergence Here f (t) = t+1
2

ln
(

t+1
2
√

t

)

. Thus f ′′(t) = t2+1
4t2(t+1)

and

hence γf (π) = 1
π3 f ′′

(
1−π

π
)
= γf (π) = 2π2−2π+1

π2(π−1)2 and thus

T (P,Q) ≥ 2

∫ 1
2

ψ1

(π−ψ1)
2π2 −2π+1

π2(π−1)2
dπ

= −1

2
ln(1−ψ)− 1

2
ln(ψ)− ln(2).

Substituting ψ1 =
1
2
− V

4
gives

T (P,Q) ≥ −1

2
ln

(
1

2
+

V

4

)

− 1

2
ln

(
1

2
− V

4

)

− ln(2)

= ln

(
4√

4−V 2

)

− ln(2).
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Symmetric χ2-Divergence Here Ψ(P,Q) = χ2(P,Q)+χ2(Q,P) and thus (see below) γf (π) = 2
π3 +

2
(1−π)3 . (As a check, from f (t) = (t−1)2(t+1)

t
we have f ′′(t) = 2(t3+1)

t3 and thus γf (π) =
1
π3 f ′′

(
1−π

π
)

gives the same result.)

Ψ(P,Q) ≥ 2

∫ 1
2

ψ1

(π−ψ1)

(
2

π3
+

2

(1−π)3

)

dπ

=
2(1+4ψ2

1 −4ψ1)

ψ1(ψ1 −1)
.

Substituting ψ1 =
1
2
− V

4
gives Ψ(P,Q)≥ 8V 2

4−V 2 .

When γf is not symmetric, one needs to use (79) instead of the simpler (80). We consider two

special cases.

χ2-Divergence Here f (t) = (t−1)2 and so f ′′(t) = 2 and hence γ(π) = f ′′
(

1−π
π
)
/π3 = 2

π3 which is

not symmetric. Upon substituting 2/π3 for γ(π) in (79) and evaluating the integrals we obtain

χ2(P,Q)≥ 2 min
a∈[−2ψ1,2ψ1]

1+4ψ2
1 −4ψ1

2ψ1 −a
− 1+4ψ2

1 −4ψ1

2ψ1 −a−2
︸ ︷︷ ︸

=:J(a,ψ1)

.

One can then solve ∂
∂a

J(a,ψ1) = 0 for a and one obtains a∗ = 2ψ1 −1. Now a∗ >−2ψ1 only

if ψ1 >
1
4
. One can check that when ψ1 ≤ 1

4
, then a 7→ J(a,ψ1) is monotonically increasing

for a ∈ [−2ψ1,2ψ1] and hence the minimum occurs at a∗ = −2ψ1. Thus the value of a

minimising J(a,ψ1) is

a∗ = Jψ1 > 1/4K(2ψ1 −1)+ Jψ1 ≤ 1/4K(−2ψ1).

Substituting the optimal value of a∗ into J(a,ψ1) we obtain

J(a∗,ψ1) = Jψ1>1/4K(2+8ψ2
1 −8ψ1)+ Jψ1≤1/4K

(
1+4ψ2

1 −4ψ
4ψ

− 1+4ψ2
1 −4ψ

4ψ1 −2

)

.

Substituting ψ1 =
1
2
− V

4
and observing that V < 1 ⇒ ψ1 > 1/4 we obtain

χ2(P,Q)≥ JV < 1KV 2 + JV ≥ 1K
V

(2−V )
.

Observe that the bound diverges to ∞ as V → 2.

Kullback-Leibler Divergence In this case f (t)= t ln t and thus f ′′(t)= 1/t and the weight function

γf (π) = 1
π3 f ′′

(
1−π

π
)
= 1

π2(1−π) which is clearly not symmetric. From (79) we obtain

KL(P,Q)≥ min
[−2ψ1,2ψ1]

(

1− a

2
−ψ1

)

ln

(
a+2ψ1 −2

a−2ψ1

)

+
(a

2
+ψ1

)

ln

(
a+2ψ1

a−2ψ1 +2

)

.

Substituting ψ1 =
1
2
− V

4
gives KL(P,Q)≥ min

a∈[V−2
2
, 2−V

2 ]δa(V ), where

δa(V ) =

(
V +2−2a

4

)

ln

(
2a−2−V

2a−2+V

)

+

(
2a+2−V

4

)

ln

(
2a+2−V

2a+2+V

)

.

Set β := 2a and we have (59).
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Appendix C. Background and Prior Work

Specific prior results are referred to in the body of the paper. We now briefly indicate the broad

sweep of prior work along the lines of the present paper.

The most important precursors and inspiration are the three nearly simultaneous25 works by

Buja et al. (2005), Liese and Vajda (2006) and Nguyen et al. (2005). The work by Dawid (2007)

is also very similar in spirit to that presented here. A crucial difference is that he relies on a para-

metric viewpoint, and can use the machinery of Riemannian geometry. Zhang (2004a); Zhang and

Matsuzoe (2009) have developed a number of connections between convex functions, the Bregman

divergences they induce, and Riemannian geometry. All of the results in the present paper are, in

contrast, “coordinate-free.” The motivation of the present work is closely aligned with that of Hand

(1994) whose avowed aim was to “stimulate debate about the need to formulate research questions

sufficiently precisely that they may be unambiguously and correctly matched with statistical tech-

niques.” Hand and Vinciotti (2003) develop some refined machine learning tasks that can be viewed

as weighted problems (in the sense of the weight functions we make extensive use of in this paper);

confer Buja et al. (2005).

The paper presents a unification of sorts. This, in itself, is hardly new in machine learning.

There are different approaches to unification. One distinction is between Monistic and Pluralistic

approaches (James, 1909; Turkle and Papert, 1992); this corresponds to the hedgehog/fox distinction

of Berlin (1953).

Monistic approaches aim for a single all encompassing theory.26 A problem with most monistic

approaches is that you have to accept it “all or nothing.” There are many unifying approaches

developed in Statistics and Machine learning that have left little trace; For example, Nelson’s use

of non-standard analysis (Nelson, 1987; Lutz and Musio, 2005) as the foundations for probability;

Topsøe’s (2006), Shafer and Vovk’s (2001) game theory as a basis, and Le Cam’s use of Riesz

measures on a vector lattice to replace the traditional sample space (LeCam, 1964).

Pluralistic approaches are closer to what is proposed here (where, instead of searching for a

single master representation, we study relationships and translations between a range of different

representations). It resonates with Kiefer’s assertion that “Statistics is too complex to be codified in

terms of a simple prescription that is a panacea for all settings, and . . . one must look as carefully

as possible at a variety of possible procedures. . . ” (Kiefer, 1977). Examples of existing pluralistic

attempts include limited problem catalogs such as for different notions of cost (Turney, 2000) or a

restricted set of problems (Raudys, 2001).

The decision theoretic approach (DeGroot, 1970; Berger, 1985; Kiefer, 1987) due to Wald

(1950, 1949) is central to the present paper. The idea of seeking primitives for statistics dates

back at least to the elementary experiments of Birnbaum (1961). The relationship between risks

and Bregman divergences is studied by Grünwald and Dawid (2004) and Buja et al. (2005).

25. Nguyen et al. (2005) is dated 13 October, 2005, Liese and Vajda (2006) was received on 26 October 2005 and Buja

et al. (2005) is dated 3 November 2005. Shen’s PhD thesis (Shen, 2005), which contains most of the material in Buja

et al. (2005), is dated 16 October 2005. The paper by Nguyen et al. (2005) has now appeared as Nguyen et al. (2009).

26. Monistic approaches can be categorised into at least four distinct categories. They are briefly summarised in Ap-

pendix C.1.
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There are numerous possible definitions of information. Many of them are sterile; Csiszár

(1978) and Aczél (1984) provide a critical analysis. Floridi (2004) discusses pluralistic versus

monistic approach: is there one single definition of information, or should there be many different

definitions depending on the particular problem? Our view, like Shannon (1948), is that there are

many types. Shannon information was developed with communications problems in mind—there is

no reason why it is the only notion of information that makes sense for learning and inference.

There are many known relationships between risks and divergences between distributions many

of which we explicitly discuss later in the paper. General results include those due to Österreicher

(2003), Österreicher and Vajda (1993), Gutenbrunner (1990), Liese and Vajda (2006), Goel and De-

Groot (1979) and Golic (1987). Particular relations between risk in binary classification problems

and f -divergences are not new (Poor and Thomas, 1977; Kailath, 1967). Some more general re-

sults that relate the choice of loss function in a binary learning problem to particular f -divergences

between the class-conditional distributions have been (re)-discovered (Eguchi and Copas, 2001;

Nguyen et al., 2005; Österreicher and Vajda, 1993). Known results relating different distances be-

tween probability distributions are summarised by Gibbs and Su (2002).

The idea of solving a machine learning problem by using a solution to some other learning

problem is now called a machine learning reduction (Beygelzimer et al., 2008, 2005) The idea is

not new. Equivalences are a natural structuring device and were explicit in Ashby’s foundational

work on cybernetics (Ashby, 1956), a precursor to Machine Learning. Ben-Bassat (1978) studied

the concept of ε-equivalence, Conover and Iman (1981) showed how rank tests can be derived

by applying nonparametric tests to order statistics, and Goldman et al. (1989) and Bartlett et al.

(1996) used reductions for theoretical purposes. However recently there has been a large number

of explicit constructions of reductions (Zadrozny et al., 2003; Langford, 2006; Beygelzimer et al.,

2005; Langford and Beygelzimer, 2005; Langford and Zadrozny, 2005; Langford et al., 2006; Li and

Lin, 2007; Beygelzimer et al., 2007; Langford, 2007; Scott and Davenport, 2007),or development

of results which although not explicitly called reductions are effectively so (Brown et al., 2002;

Brown and Low, 1996; Brown and Zhao, 2003; Chaudhuri and Loh, 2002; Cossock and Zhang,

2006; Cuevas and Fraiman, 1997; Domingos, 1999; Steinwart et al., 2005; Tasche, 2001). Two key

differences between the recent machine learning reductions literature and the present paper is that

our relationships between problems are (usually) exact (instead of approximate) and we work with

the true underlying distributions (rather than finite sample distributions).

The theory of Comparison of Experiments, developed by Blackwell (1951, 1953), and signif-

icantly extended by LeCam (1964, 1986) is also related to the overall goal set out here. It has

been used to define notions of isomorphism for statistical problems (Morse and Sacksteder, 1966;

Sacksteder, 1967) and is the subject of three books (Strasser, 1985; Torgersen, 1991; Heyer, 1982)

and a recent review (Goel and Ginebra, 2003). The key difference with the present work is that the

comparison of experiments theory seeks results that hold for all loss functions rather than for a par-

ticular one; with a few exceptions (Torgersen, 1991, Chapter 10). Blackwell related comparisons to

sufficient statistics and characterised comparisons. LeCam (1964) quantified comparisons in terms

of the degree to which one experiment is “better than” another (the deficiency distance). There are

very few known examples of deficiency distance (Carter, 2002). Furthermore LeCam’s theory is

formulated in a particularly abstract way to make its theorems elegant (Yang and Le Cam, 1999).

Renowned probabilists concur that its arcane formulation has made it inaccessible (van der Vaart,

2002; Pollard, 2000; Strasser, 2000). Consequently the subject has had relatively limited impact.
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Graphical representations have been used for a long while to better understand binary experi-

ments. In the main body of the paper we develop connections between Receiver Operating Charac-

teristic (ROC) curves, (Fawcett, 2006, 2004; Flach, 2003; Flach and Wu, 2005; Maxion and Roberts,

2004) the Area Under ROC Curve (AUC), (Cortes and Mohri, 2004; Hand, 2008; Hand and Till,

2001; Hanley and McNeil, 1982) and Cost Curves (Drummond and Holte, 2006; Torgersen, 1991).

These can be seen as representations of Binary Experiments.

C.1 Summary of Previous “Monistic” Approaches to Unification

There are are range of different approaches to unifying machine learning from a monistic perspec-

tive:

Low level data interchange: There is a small amount of work on developing standards for inter-

changing data sets (Grossman et al., 2002; Carey et al., 2007; Wettschereck and Muller, 2001)—this

is analogous to PDDL (Ghallab et al., 1998). There are also some limited higher level attempts such

as ontologies (Soldatova and King, 2006) and general frameworks (Fayyad et al., 1996).

Modelling frameworks: To solve a machine learning problem, one needs models. There is a

rich literature on graphical models (Jordan, 1999), factor graphs (Kschischang et al., 2001) and

Markov logic networks (Domingos and Richardson, 2004; Richardson and Domingos, 2006) which

have allowed the unification of sets of problems (Worthen and Stark, 2001), with a focus on the

modelling and computational techniques for particular problems.

Comparison of frameworks: There are several philosophical frameworks/approaches to design-

ing inference and learning algorithms. Barnett (1999), Bayarri and Berger (2004) and Berger (2003)

compare and contrast these. They are effectively comparing different monistic frameworks, not

comparing problems.

Overarching frameworks: These include frameworks such as Bayesian (Robert, 1994), informa-

tion theoretic (Jenssen, 2005b; Harremoës, 1993), game-theoretic (Vovk et al., 2005; Grünwald and

Dawid, 2004), MDL (Grünwald, 2007; Rissanen, 2007), regularised distance minimisation (Bor-

wein and Lewis, 1991; Altun and Smola, 2006; Broniatowski, 2004), and more narrowly focussed

“unifying frameworks” such as information geometry (Dawid, 2007; Eguchi, 2005), exponential

families (Canu and Smola, 2006) and the information bottleneck (Tishby et al., 2000).

Appendix D. Examples and Prior Work on Surrogate Regret Bounds

Surrogate regret bounds have garnered interest in the machine learning community (Zhang, 2004b;

Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christmann, 2008). Steinwart and Christmann

(2008, Chapter 3) have presented a good summary of recent work.

All of the recent work has been in terms of margin losses of the form

Lφ(η, ĥ) = ηφ(ĥ)+(1−η)φ(−ĥ).

As Buja et al. (2005) discuss, such margin losses can not capture the richness of all possible proper

losses. Bartlett et al. (2006) prove that for any ĥ

ψ
(
L0−1(η, ĥ)−L0−1(η)

)
≤ Lφ(η, ĥ)−Lφ(η),

where ψ = ψ̃⋆⋆ is the LF biconjugate of ψ̃,

ψ̃(θ) = H−
(

1+θ
2

)

−H

(
1+θ

2

)

,
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H(η) = Lφ(η) and

H−(η) = inf
α : α(2η−1)≤0

(ηφ(α)+(1−η)φ(−α))

is the optimal conditional risk under the constraint that the sign of the argument α disagrees with

2η−1.

We will consider two examples presented by Bartlett et al. (2006) and show that the bounds we

obtain with the above theorem match the results we obtain with Theorem 25.

Exponential Loss Consider the link ĥ = ψ(η̂) = 1
2

ln
η̂

1−η̂ with corresponding inverse link η̂ =
1

1+e−2ĥ
. Buja et al. (2005) showed that this link function combined with exponential margin

loss φ(γ) = e−γ results in a proper scoring rule

L(η, η̂) = η
(

1− η̂
η̂

) 1
2

+(1−η)
(

η̂
1− η̂

) 1
2

.

From (32) we obtain

w(η) =
1

2[η(1−η)] 3
2

.

(Note Buja et al., 2005 have missed the factor of 1
2
.) Thus W (η) = 2η−1√

η(1−η)
and W (η) =

−2
√

η(1−η). Hence we obtain

L(η) = 2
√

η(1−η) (81)

and from (46) we obtain that if B 1
2
(η, η̂) = α then

B(η, η̂)≥ 1−
√

1−4α2. (82)

Equations 81 and 82 match the results presented by Bartlett et al. (2006) upon noting that

B 1
2
(η, η̂) measures the loss in terms of ℓ 1

2
and Bartlett et al. (2006) used ℓ0−1 = 2ℓ 1

2
.

Truncated Quadratic Loss Consider the margin loss φ(ĥ) = (1+ ĥ∨ 0)2 = (2η̂ ∨ 0)2 with link

function ĥ(η̂) = 2η̂ − 1. From (32) we obtain L(η) = 4η(1− η) and from (46) the regret

bound B(η, η̂)≥ 4α2. These match the results presented by Bartlett et al. (2006) when again

it is noted we used ℓ 1
2

and they used ℓ0−1.

The above results are for c0 =
1
2
. Generalisations of margin losses to the case of uneven weights are

presented by Steinwart and Christmann (2008, Section 3.5). Nevertheless, since the same φfunction

is still used for both components of the loss (albeit with unequal weights) such a scheme can still

not capture the full generality of all proper scoring rules in the manner achieved by the results in

Section 7.1.

Appendix E. History of Pinsker Inequalities

Pinsker (1964) presented the first bound relating KL(P,Q) to V (P,Q): KL ≥ V 2/2 and it is now

known by his name or sometimes as the Pinsker-Csiszár-Kullback inequality since Csiszár (1967)
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presented another version and Kullback (1967) showed KL ≥ V 2/2+V 4/36. Much later Topsøe

(2001) showed KL ≥ V 2/2+V 4/36+V 6/270. Non-polynomial bounds are due to Vajda (1970):

KL ≥ LVajda(V ) := ln
(

2+V
2−V

)
− 2V

2+V
and Toussaint (1978) who showed KL ≥ LVajda(V )∨ (V 2/2+

V 4/36+V 8/288).

Care needs to be taken when comparing results from the literature as different definitions for the

divergences exist. For example Gibbs and Su (2002) use a definition of V that differs by a factor of

2 from ours. There are some isolated bounds relating V to some other divergences, analogous to the

classical Pinkser bound; Kumar and Chhina (2005) have presented a summary as well as new bounds

for a wide range of symmetric f -divergences by making assumptions on the likelihood ratio: r ≤
p(x)/q(x)≤ R< ∞ for all x ∈X. This line of reasoning has also been developed by Dragomir et al.

(2001) and Taneja (2005a,b). Topsøe (2000) has presented some infinite series representations for

capacitory discrimination in terms of triangular discrimination which lead to inequalities between

those two divergences. Liese and Miescke (2008, p.48) give the inequality V ≤ h
√

4−h2 (which

seems to be originally due to LeCam, 1986) which when rearranged corresponds exactly to the

bound for h2 in theorem 31. Withers (1999) has also presented some inequalities between other

(particular) pairs of divergences; his reasoning is also in terms of infinite series expansions.

Unterreiter et al. (2000) considered the case of n = 1 but arbitrary I f (that is they bound an

arbitrary f -divergence in terms of the variational divergence). Their argument is similar to the

geometric proof of Theorem 30. They do not compute any of the explicit bounds in theorem 31

except they state (page 243) χ2(P,Q)≥V 2 which is looser than (58).

Gilardoni (2006a) showed (via an intricate argument) that if f ′′′(1) exists, then I f ≥ f ′′(1)V 2

2
. He

also showed some fourth order inequalities of the form I f ≥ c2, fV
2 + c4, fV

4 where the constants

depend on the behaviour of f at 1 in a complex way. Gilardoni (2006b,c) presented a completely

different approach which obtains many of the results of theorem 31.27 Gilardoni (2006c) improved

Vajda’s bound slightly to KL(P,Q)≥ ln 2
2−V

− 2−V
2

ln 2+V
2

.

Gilardoni (2006b,c) presented a general tight lower bound for I f (P,Q) in terms of V (P,Q) which

is difficult to evaluate explicitly in general:

I f ≥
V

2

(
f [g−1

R (k(1/V ))]

g−1
R (k(1/V ))−1

+
f [g−1

L (k(1/V ))]

1−g−1
L (k(1/V ))

)

,

where k−1(t) = 1
2

(
1

1−g−1
L (t)

+ 1

g−1
R (t)−1

)

, g(u) = (u−1) f ′(u)− f (u), g−1
R [g(u)] = u for u ≥ 1 and

g−1
L [g(u)] = u for u ≤ 1. He presented a new parametric form for I f = KL in terms of Lambert’s W

function. In general, the result is analogous to that of Fedotov et al. (2003) in that it is in a parametric

form which, if one wishes to evaluate for a particular V , one needs to do a one dimensional numerical

search—as complex as (59). However, when f is such that I f is symmetric, this simplifies to the

elegant form I f ≥ 2−V
2

f
(

2+V
2−V

)
− f ′(1)V . He presented explicit special cases for h2, J, ∆ and I

identical to the results in Theorem 31. It is not apparent to us how the approach of Gilardoni

(2006b,c) could be extended to more general situations such as that in Theorem 30 (i.e., n> 1).

Finally Bolley and Villani (2005) have considered weighted versions of the Pinsker inequalities

(bounds for a weighted generalisation of Variational divergence) in terms of KL-divergence that are

related to transportation inequalities.

27. We were unaware of these two papers until completing the results presented in the main paper.
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Appendix F. Variational Representation of I f and its Generalizations

The variational representation of the Variational divergence (62) suggests the question of whether

there is a variational representation for a general f -divergence. This has been considered previously.

We briefly summarise the approach, and then explore some (new) implications of the representation.

One can obtain a variational representation for I f by substituting a variational representation

for f into the definition of I f (Keziou, 2003a,b; Broniatowski, 2004; Broniatowski and Keziou,

2009). Let p and q denote the densities corresponding to P and Q and assume for now they ex-

ist. Recall from Section 2.2 above, that the Legendre-Fenchel conjugate of f is given by f ⋆(s) =
supu∈Dom f us− f (u). In general Ran f ⋆ = R⋆ := R∪{+∞}. Since f (u) = supρ∈R uρ− f ⋆(ρ), we

can write

I f (P,Q) =
∫
X

q(x) sup
ρ∈R

(

ρ
p(x)

q(x)
− f ⋆(ρ)

)

dx

= sup
ρ∈RX

∫
X

ρ(x)p(x)− f ⋆(ρ(x))q(x)dx.

= sup
ρ∈RX

(EPρ−EQ f ⋆(ρ)). (83)

We make this concrete by considering the variational divergence. The corresponding f is given by

f (t) = |t − 1| and (adopting the convention that JfalseK is a “very strong zero” so JfalseK ·∞ = 0;

confer Knuth, 1992)

f ⋆(x) = Jx 6∈ [−1,1]K∞+ Jx ∈ [−1,1]Kx.

Since the supremum in (83) will not be attained if the second term is infinite, one can restrict the

supremum to be over F = {ρ ∈ RX : ‖ρ‖∞ ≤ 1}. Thus

V (P,Q) = sup
ρ : ‖ρ‖∞≤1

(EPρ−EQρ) = sup
ρ∈{−1,1}X

(EPρ−EQρ)

= sup
ρ∈{0,2}X

(EPρ−EQρ) = 2 sup
ρ∈{0,1}X

(EPρ−EQρ)

= 2sup
A

|P(A)−Q(A)|,

since the supremum will be attained for functions ρ taking on values only in {−1,1} and the re-

maining steps are simply a shift and rescaling (to {0,2} by adding 1, and then to {0,1}).

The representation (83) suggests the generalisation

I f ,F(P,Q) := sup
ρ∈F⊆RX

∫
X

ρ(x)p(x)− f ⋆(ρ(x))q(x)dx

= sup
ρ∈F

(EPρ−EQ f ⋆(ρ)).

Observing this is not symmetric in p and q suggests a further generalisation:

I f ,g,F(P,Q) := sup
ρ∈F⊆RX

∫
X

−g⋆(ρ(x))p(x)− f ⋆(ρ(x))q(x)dx

= sup
ρ∈F

(−EPg⋆(ρ)−EQ f ⋆(ρ)).
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Here g⋆ is the R⋆-valued LF conjugate of a convex function g. Set I f ,g := I f ,g,RX .

An alternative generalisation of I f is

Ĩ f ,g,F(P,Q) := sup
ρ∈F

(EPg⋆(ρ)−EQ f ⋆(ρ))

which is identical to (84) except for removal of the minus sign preceding g⋆. Set Ĩ f ,g := Ĩ f ,g,RX . If

ρ∈ F are such that ‖ρ‖∞ is unbounded, then in general Ĩ f ,g,F(P,Q) will be infinite. Properties of the

alternative definition relate to the extended infimal convolution between two convex functions.

Definition 35 Suppose f ,g : R+ → R∗ are convex. The extended infimal convolution is

( f�g)(τ) := inf
x∈R+

f (x)+ τg(x/τ), τ ∈ R
+.

Note that the second term in this convolution is the perspective function (Section 2.1) applied to g,

that is, Ig(x,τ).

Theorem 36 Suppose f ,g : R+ → R∗ are convex. Then

1. I f (P,Q) = I f ,RX(P,Q), Ĩ f ,id,F(P,Q) = I f ,F(P,Q), and

It 7→|t−1|,F(P,Q) = 2V
F,

1
2

(P,Q).

2. Ĩ f1,g1,F = I f2,g2,F only if f1 − f2 = fa and g1 −g2 = ga and f1, f2, fa,g1,g2,ga are affine.

3. I f , f ,F = Iid,id, f ⋆(F)(P,Q).

4. Ĩ f , f ,F = Ĩid,id, f ⋆(F)(P,Q) = 2Vf ⋆(F)(P,Q).

5. I f ,g = I f�g.

Proof Part 1 follows immediately from the various definitions. Since affine functions are the only

functions that are simultaneously convex and concave, Ĩ f1,g1,F = I f2,g2,F only if f1, f2 (resp. g1,g2)

are affine and their differences are affine (since an affine offset will not change Ĩ). This proves part

2.

We have by change of variables

Ĩ f , f ,F(P,Q) = sup
ρ∈F

(EP f ⋆(ρ)−EQ f ⋆(ρ)) = sup
ψ∈ f ⋆(F)

(EPψ−EQψ) = Ĩid,id, f ⋆(F)(P,Q),

where f ⋆(F) := { f ⋆◦ρ : ρ∈F}. (The same argument applies to I f , f ,F although supψ∈g⋆(F)(−EPψ−
EQψ) does not correspond to a generalised variational divergence.) This proves parts 3 and 4.

In order to prove 5 we need the following lemma.

Lemma 37 Let f : R → R and K : R×R → R be convex and bounded from below. Then the

extended infimal convolution

( f�K)(x) = inf
y∈R

f (y)+K(x,y), x ∈ R

is convex in x ∈ R.
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Observe that if K(x,y) = g(x−y) for convex g, then f�K = f ⊕g, the standard infimal convolution

(Hiriart-Urruty and Lemaréchal, 1993b). This extended infimal convolution seems little studied

with the exception owith the exception of Cepedello-Boiso (1998).

Proof Let f̃ (x,y) := f (y), x ∈ R. Clearly f̃ is convex on R×R. Let h̃(x,y) = f̃ (x,y)+K(x,y).
Hiriart-Urruty and Lemaréchal (1993b, Proposition 2.1.1) show that h̃ is convex on R×R. Observe

that ( f�K)(x) = inf{h̃(x,y) : y ∈ R}, that is, the marginal function of h̃. Since by construction h̃ is

bounded from below, using the result of Hiriart-Urruty and Lemaréchal (1993b, p.169) proves the

result.

Corollary 38 For any convex f and g, f�g is convex.

Proof Observe that ( f�g)(x) = infy∈R+ f (y)+ xg(y/x) = infy∈R+ f (y)+ Ig(x,y), x ∈ R+, where Ig

is the perspective function (1). Hiriart-Urruty and Lemaréchal (1993b, Proposition 2.2.1) show that

if g : Rn →R is convex then the perspective Ig is convex on Rn+1. The corollary then follows from

the lemma.

Proof (part 5 of Theorem 36) Observe that if h(x) = tφ(x) then the LF conjugate h∗(s) = tφ(s/t).
Thus using the Fenchel duality theorem (Rockafellar, 1970) we have, using (Rockafellar and Wets,

2004, Theorem 14.60) to justify the swapping the order of the supremum and integration,

I f ,g(P,Q) = sup
ρ∈R̄X

∫
X

−g⋆(ρ(x))p(x)− f ⋆(ρ(x))q(x)dx

=
∫
X

sup
ρ∈R̄

−g⋆(ρ)p(x)− f ⋆(ρ)q(x)dx

=
∫
X

inf
ρ∈R̄

f

(
ρ

q(x)

)

+g

(
ρ

p(x)

)

dx

=
∫
X

inf
ρ∈R̄

q(x) f

(
ρ

q(x)

)

+ p(x)g

(
ρ

p(x)

)

dx

=
∫
X

i f ,g(p,q)(x)dx,

where

i f ,g(p,q)(·) := inf
ρ∈R̄

q(·) f

(
ρ

q(·)

)

+ p(·)g
(

ρ
p(·)

)

.

Let x := ρ
q
∈ R̄+. Thus ρ = xq and

i f ,g(p,q) = inf
x∈R̄+

q f (x)+ pg(xq/p).

Let τ = p
q
∈ R̄+. Thus

i f ,g(p,q)(τ) = inf
x∈R+

q f (x)+ pg(x/τ)

= q

[

inf
x∈R̄+

f (x)+ τg(x/τ)
]

= q · ( f�g)(τ). (84)
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Let h := f�g. Observe from (84) that i f ,g(p,q) = qh(p/q) and thus

I f ,g(p,q) =
∫
X

q(x)h

(
p(x)

q(x)

)

dx = Ih(p,q)

if h is convex, which we know to be the case from Corollary 38.

It suggests the question: given a suitable convex f , does there always exist g such that f = g�g?

This is analogous to the question of spectral factorisation (Sayed and Kailath, 2001) for ordinary

linear convolution. We do not know the answer to this question, but have collected a few examples

in Appendix G that demonstrates it is certainly true for some f . There does not appear to be a result

analogous to part 5 of Theorem 36 for Ĩ f ,g.

We have seen how f -divergences are related to integral probability metrics VF. It turns out that

the variational divergence is special in being both. Many integral probability metrics are true metrics

(Müller, 1997a,b). The only f -divergence that is a metric is the variational divergence. Whether

there exist F such that VF(·, ·) is not a metric but equals I f (·, ·) for some f 6= t 7→ |t − 1| (or affine

transformation thereof) is left as an open problem.28

We end with another open problem. We have seen how LF and VF are related. This begs the

question whether there is a representation of the form

I f ,F(P,Q)
?
=

∫ 1

0
∆L0−1

F
(π,P,Q)γf (π)dπ.

Appendix G. Examples of Extended Convolution Factorisation

In this section we present three examples of f which can be written as f = g�g.

If g(t) = (t − 1)2 (corresponding to Pearson χ2 divergence), (g�g)(τ) = infx∈R+(x − 1)2 +
τ(x/τ − 1)2. Differentiating the right-hand side with respect to x, setting to zero and solving for

x gives x = 4
2(1+1/τ) . Substituting we obtain (g�g)(τ) = (τ−1)2

τ−1
which is the f for ∆(P,Q), the

triangular discrimination.

If g(t) = t ln(t), a similar straightforward calculation yields (g�g)(τ) = −2
√

τ
e

.

If g(t) = (
√

t − 1)2 (corresponding to Hellinger divergence) then a similar calculation yields

(g�g)(τ)= 1
2
(
√

τ−1)2 = g(τ)/2. Thus this g plays a role analogous to a gaussian kernel in ordinary

convolution. The significance of this is unclear.

We summarise the results (and the associated g⋆) in the following table.

g(t) (g�g)(τ) g⋆(s)

(t −1)2 (τ−1)2

τ−1
s2

4
+ s

t ln t
−2

√
τ

e
es−1

(
√

t −1)2 1
2
(
√

τ−1)2 s
1−s

Js< 1K+∞Js ≥ 1K

28. This has in fact been solved by Sriperumbudur et al. (2009) since an earlier version of the present paper was published

as an ArXiV preprint.
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Whilst it is indeed straightforward to compute (g�g) given g (although a simple closed form is

not always possible), it is far from obvious how to go from a given f to a g such that f = g�g.

Hiriart-Urruty and Lemaréchal (1993a, page 69) show that for f convex on R+, g convex and

increasing on R+,

(g◦ f )⋆(s) = inf
α>0

α f ⋆( s
α )+g⋆(α) = f ⋆�g⋆.

This illuminates the difficulty of the above “factorisation problem”. It is equivalent to: given a

convex increasing f ⋆, find a convex increasing g⋆ such that f ⋆ = g⋆ ◦g⋆.

Appendix H. Empirical Estimators of V
BH,

1
2
(P,Q) and SVMs

This appendix further develops the observations made in Section 8.2 regarding the relationship be-

tween divergence and risk when R = BH, a unit ball in a reproducing kernel Hilbert space H. In

contrast to the rest of the paper (which focussed on relationships involving the underlying distri-

butions), in this appendix we will consider the practical situation where there is only an empirical

sample. We will see how the general results have interesting implications for sample based machine

learning algorithms.

If we require an empirical estimate of VR,π(P,Q) we can replace P and Q by empirical distribu-

tions. We will use weighted empirical distributions. Given an independent identically distributed

sample w= (w1, . . . ,wm)∈Xm the ααα-weighted empirical distribution P̂ααα
w with respect to w is defined

by

dP̂ααα
w :=

m

∑
i=1

αiδ(·−wi)

where ααα = (α1, . . . ,αm), αi ≥ 0, i = 1, . . . ,m and ∑m
i=1 αi = 1. We will write Êααα

wφ := EP̂ααα
w
φ=

∑m
i=1 αiφ(wi). Thus

V 2
R, 1

2

(P̂ααα
w , P̂

βββ
z ) =

1

2
‖Êααα

wφ− Ê
βββ
z ‖2

H.

Suppose now that P and Q correspond to the positive and negative class conditional distributions.

Let x := (x1, . . . ,xm) be a sample drawn from M = πP+(1−π)Q with corresponding label vector

y = (y1, . . . ,ym). Let I := {1, . . . ,m}, I+ := {i ∈ I : yi = 1}, I− := {i ∈ I : yi = −1}. Consider a

weight vector ααα = (α1, . . . ,αm) over the whole sample. Thus

ÊPφ= ∑
i∈I+

αiφ(xi) and ÊQφ= ∑
i∈I−

αiφ(xi)

where we also require

∑
i∈I+

αi =
m+

m
and ∑

i∈I−
αi =

m−

m

and hence

∑
i∈I

αiyi =
m+−m−

m
.
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Substituting into (65) we have

2VBH,
1
2
(P̂, Q̂) =

〈
ÊPφ− ÊQφ, ÊPφ− ÊQφ

〉

=

〈

∑
i∈I+

αiφ(xi)− ∑
i∈I−

αiφ(xi), ∑
j∈I+

α jφ(x j)− ∑
j∈I−

α j

〉

=

〈

∑
i∈I

αiyiφ(xi),∑
j∈I

α jy jφ(x j)

〉

= ∑
i∈I

∑
j∈I

αiα jyiy j〈φ(xi),φ(x j)〉

= ∑
i∈I

∑
j∈I

αiα jyiy jk(xi,x j) =: J(ααα,x). (85)

We now consider three different choices of ααα.

Uniform weighting If we set αi =
1
m

, i = 1, . . . ,m, then (85) becomes

1

m2 ∑
i, j∈I

yiy jk(xi,x j) = MMD2
b[BH,xxx

+,xxx−]

where xxx+ := (xi)i∈I+ , xxx− := (xi)i∈I− and MMDb is the biased estimator of the Maximum Mean

Discrepancy (Gretton et al., 2008), an alternate name for VR. Observe that from theorem 34, this

case corresponds to using a Fisher linear discriminant in feature space (Devroye et al., 1996) when

it is assumed that the within-class covariance matrices are both the identity matrix. This follows by

observing that the constructed hypothesis is identical in both cases.

Pessimistic Weighting Instead of weighting each sample equally, one can optimise over ααα. By

theorem 34, minimizing J(ααα,x) over ααα will maximize L
lin and is thus the most pessimistic choice.

Explicitly, we have

min
ααα

m

∑
i=1

m

∑
i=1

αiα jyiy jk(xi,x j) (86)

s.t. αi ≥ 0, i = 1, . . . ,m (87)
m

∑
i=1

αiyi =
m+−m−

m
(88)

m

∑
i=1

αi = 1 (89)

which can be recognized as the support vector machine (Cortes and Vapnik, 1995). The SVM uses

the sign of the “witness” (Gretton et al., 2008), x 7→ ∑m
i=1 αiyik(xi,x) as its predictor.

Interpolation between above two cases A parameterized interpolation between the above two

cases can be constructed by the addition of the constraints

αi ≤
1

νm
, i = 1, . . . ,m, (90)

where ν ∈ (0,1] is an adjustable parameter. Observe that ν controls the sparsity of ααα since (90),

(87) and (89) together imply that |{i ∈ I : αi 6= 0}| ≥ νm. Crisp and Burges (2000) have shown that

(86),. . .,(90) is equivalent to the ν-SVM algorithm (Schölkopf et al., 2000).
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While “information-theoretic” approaches to the SVM and weighted kernel representations are

hardly new,29 the results presented here are novel and provide a simple and direct derivation of the

SVM via the generalised variational divergence.

If VBH,
1
2
(P̂www, Q̂zzz) is used as a test statistic to infer whether two samples www and zzz are drawn from

the same distribution (as Gretton et al., 2008 do), then when the distributions from which www and zzz

are drawn are close, the classification performance of the corresponding classifier (i.e., the classifier

that uses the sign of the witness function) will be close to the worst possible. Thus one will be

operating in a regime distinct from the normal situation, where the risk is typically small.

Finally observe that the derivation of the SVM presented here could be viewed as an application

of an alternate “inductive principle”—a general recipe for constructing learning algorithms from

learning task specification (Vapnik, 1989, 2006). The traditional Empirical Risk Minimization prin-

ciple entails replacing (P,Q) with (P̂xxx+ , Q̂xxx−) in the definition of L(π,P,Q). Then, in order to not

overfit, one restricts the class of functions from which hypotheses are drawn. That is, there are two

approximations:

L(π,P,Q) Empirical Approximation (uniform)−−−−−−−−−−−−−−−−−−−−−→ L(π, P̂xxx+ , Q̂xxx−) Restrict Class−−−−−−−−→ LR(π, P̂xxx+ , Q̂xxx−).

Upon setting ααα+ = (αi)i∈I+ and ααα− = (αi)i∈I− , the derivation presented above, in contrast, can be

summarised schematically by

“L(π,P,Q)” Restrict Class−−−−−−−−→ LR(π,P,Q) Empirical Approximation (ααα-weighted)−−−−−−−−−−−−−−−−−−−−−−−→ LR(π, P̂ααα+

xxx+ , Q̂
ααα−
xxx− ),

where a different loss (the “linear” loss) was used at the start. With that loss function, reversing the

order of the two approximations would not work, and is (thus) not equivalent to the ERM inductive

principle. The first step makes L well defined—with no restriction it is not, hence the quotes; and

will avoid overfitting in any case. The second step is the more general (ααα-weighted) empirical

approximation.

We believe that this alternate derivation of the SVM is of interest because it is simpler (avoids

the need to introduces margins) and it elucidates the connection between the kernel methods for

29. The use of kernel representations for classification is of course not new: from the classical kernel classifier (where

αi = 1/m for all i ∈ I) (Devroye et al., 1996, Chapter 10) to the Generalised Portrait (Aizerman et al., 1964), the

Generalised Discriminant (Baudat and Anouar, 2000) and the panoply of techniques inspired by Support Vector

Machines (Schölkopf and Smola, 2002; Herbrich, 2002). None of these techniques is designed from the perspective

of minimising a f -divergence.

Principe et al. (2000a) have developed an approach to machine learning problems based on information theoretic

criteria (Principe et al., 2000b; Jenssen et al., 2004; Xu et al., 2005; Jenssen, 2005a; Jenssen et al., 2006; Pavia et al.,

2006). Jenssen et al. (2004, 2006) considered kernel methods from the perspective of Renyi’s quadratic entropy.

They do not exploit the formal relationship between maximising divergence and minimising risk. They interpret the

SVM as being constructed from weighted Parzen windows density estimates. Gretton et al. (2008) explained the

relationship between their MMD estimators and those derived from (unweighted) Parzen windows estimates of the

class-conditional distributions. Weighted Parzen windows estimates were used as a basis for building a classifier by

Babich and Camps (1996). Weighted empirical distributions are widely used in particle filtering (Crisan and Doucet,

2002).

McDermott and Katagiri (2002) considered the direct optimisation of a classifier built on top of Parzen windows

density estimates. They showed that the minimum classification error criterion is equivalent to a Parzen windows

estimate of the theoretical Bayes risk. They re-derive the traditional approach of minimising an estimate of the

expected loss. McDermott and Katagiri (2003) extended their approach to the multi-class setting in a way that takes

account of all the “other” classes better in estimating the probability of error of a given class.
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classification and MMD—indeed MMD is nothing but the Fisher linear discriminant applied to a

binary problem induced by the given distributions P and Q.
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