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Abstract—The cross-entropy loss commonly used in deep learning is closely related to the defining properties of optimal

representations, but does not enforce some of the key properties. We show that this can be solved by adding a regularization term,

which is in turn related to injecting multiplicative noise in the activations of a Deep Neural Network, a special case of which is the

common practice of dropout. We show that our regularized loss function can be efficiently minimized using Information Dropout,

a generalization of dropout rooted in information theoretic principles that automatically adapts to the data and can better exploit

architectures of limited capacity. When the task is the reconstruction of the input, we show that our loss function yields a Variational

Autoencoder as a special case, thus providing a link between representation learning, information theory and variational inference.

Finally, we prove that we can promote the creation of optimal disentangled representations simply by enforcing a factorized prior, a fact

that has been observed empirically in recent work. Our experiments validate the theoretical intuitions behind our method, and we find

that Information Dropout achieves a comparable or better generalization performance than binary dropout, especially on smaller

models, since it can automatically adapt the noise to the structure of the network, as well as to the test sample.

Index Terms—Representation learning, deep learning, information bottleneck, nuisances, invariants, minimality

Ç

1 INTRODUCTION

WE call “representation” any function of the data that is
useful for a task. An optimal representation is most

useful (sufficient), parsimonious (minimal), and minimally
affected by nuisance factors (invariant). Do deep neural net-
works approximate such sufficient invariants?

The cross-entropy loss most commonly used in deep
learning does indeed enforce the creation of sufficient rep-
resentations, but the other defining properties of optimal
representations do not seem to be explicitly enforced by
the commonly used training procedures. However, we
show that this can be done by adding a regularizer, which
is related to the injection of multiplicative noise in the acti-
vations, with the surprising result that noisy computation
facilitates the approximation of optimal representations. In this
paper we establish connections between the theory of opti-
mal representations for classification tasks, variational
inference, dropout and “disentangling” in deep neural net-
works. Our contributions can be summarized in the follow-
ing steps:

1) We define optimal representations using established
principles of statistical decision and information the-
ory: sufficiency, minimality, invariance (cf. [1], [2])
(Section 3).

2) We relate the defining properties of optimal repre-
sentations for classification to the loss function most
commonly used in deep learning, but with an added
regularizer (Section 4, Eq. (3)).

3) We show that, counter-intuitively, injecting multi-
plicative noise to the computation improves the
properties of a representation and results in better
approximation of an optimal one (Section 6).

4) We relate such a multiplicative noise to the regular-
izer, and show that in the special case of Bernoulli
noise, regularization reduces to dropout [3], thus
establishing a connection to information theoretic
principles. We also provide a more efficient alterna-
tive, called Information Dropout, that makes better
use of limited capacity, adapts to the data, and is
related to Variational Dropout [4] (Section 6).

5) We show that, when the task is reconstruction, the
procedure above yields a generalization of the Varia-
tional Autoencoder, which is instead derived from
a Bayesian inference perspective [5]. This establishes
a connection between information theoretic and
Bayesian representations, where the former explains
the use of a multiplier used in practice but unex-
plained by Bayesian theory (Section 7).

6) We show that “disentanglement of the hidden
causes,” an often-cited but seldom formalized desid-
eratum for deep networks, can be achieved by
assuming a factorized prior for the components of
the optimal representation. Specifically, we prove
that computing the regularizer term under the sim-
plifying assumption of an independent prior has
the effect of minimizing the total correlation of the
components, a phenomenon previously observed
empirically by [6] (Section 5).
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7) We validate the theory with several experiments
including: improved insensitivity/invariance to nui-
sance factors using Information Dropout using (a)
ClutteredMNIST [7] and (b) MNIST+CIFAR, a newly
introduced dataset to test sensitivity to occlusion
phenomena critical in Vision applications; (c) we
show improved efficiency of Information Dropout
compared to regular dropout for limited capacity
networks, (d) we show that Information Dropout
favors disentangled representations; (e) we show that
Information Dropout adapts to the data and allows
different amounts of information to flow between
different layers in a deep network (Section 8).

In the next section we introduce the basic formalism to
make the above statements more precise, which we do in
subsequent sections.

2 PRELIMINARIES

In the general supervised setting, we want to learn the con-
ditional distribution pðyjxÞ of some random variable y,
which we refer to as the task, given (samples of the) input
data x. In typical applications, x is often high dimensional
(for example an image or a video), while y is low dimen-
sional, such as a label or a coarsely-quantized location.
In such cases, a large part of the variability in x is actually
due to nuisance factors that affect the data, but are otherwise
irrelevant for the task [1]. Since by definition these nuisance
factors are not predictive of the task, they should be disre-
garded during the inference process. However, it often hap-
pens that modern machine learning algorithms, in part due
to their high flexibility, will fit spurious correlations, present
in the training data, between the nuisances and the task,
thus leading to poor generalization performance.

In view of this, [8] argue that the success of deep learning
is in part due to the capability of neural networks to build
incrementally better representations that expose the relevant
variability, while at the same time discarding nuisances. This
interpretation is intriguing, as it establishes a connection
betweenmachine learning, probabilistic inference, and infor-
mation theory. However, common training practice does not
seem to stem from this insight, and indeed deep networks
may maintain even in the top layers dependencies on easily
ignorable nuisances (see for example Fig. 2).

To bring the practice in line with the theory, and to better
understand these connections, we introduce a modified cost
function, that can be seen as an approximation of the Infor-
mation Bottleneck Lagrangian of [2], which encourages the
creation of representations of the data which are increas-
ingly disentangled and insensitive to the action of nuisan-
ces, and we show that this loss can be minimized using a
new layer, which we call Information Dropout, that allows
the network to selectively introduce multiplicative noise in
the layer activations, and thus to control the flow of infor-
mation. As we show in various experiments, this method
improves the generalization performance by building better
representations and preventing overfitting, and it consider-
ably improves over binary dropout on smaller models,
since, unlike dropout, Information Dropout also adapts the
noise to the structure of the network and to the individual
sample at test time.

Apart from the practical interest of Information Dropout,
one of our main results is that Information Dropout can be
seen as a generalization to several existing dropout methods,
providing a unified framework to analyze them, together with
some additional insights on empirical results. Aswe discuss in
Section 3, the introduction of noise to prevent overfitting has
already been studied from several points of view. For example
the original formulation of dropout of [3], which introduces
binary multiplicative noise, was motivated as a way of effi-
ciently training an ensemble of exponentially many networks,
that would be averaged at testing time. Kingma et al. [4] intro-
duce Variational Dropout, a dropout method which closely
resemble ours, and is instead derived from a Bayesian analysis
of neural networks. Information Dropout gives an alternative
information-theoretic interpretation of thosemethods.

As we show in Section 7, other than being very closely
related to Variational Dropout, Information Dropout
directly yields a variational autoencoder as a special case
when the task is the reconstruction of the input. This result
is in part expected, since our loss function seeks an optimal
representation of the input for the task of reconstruction,
and the representation given by the latent variables of a var-
iational autoencoder fits the criteria. However, it still rises
the question of exactly what and how deep are the links
between information theory, representation learning, varia-
tional inference and nuisance invariance. This work can be
seen as a small step in answering this question.

3 RELATED WORK

The main contribution of our work is to establish how two
seemingly different areas of research, namely dropout
methods to prevent overfitting, and the study of optimal
representations, can be linked through the Information Bot-
tleneck principle.

Dropout was introduced by Srivastava et al. [3]. The origi-
nal motivation was that by randomly dropping the activa-
tions during training, we can effectively train an ensemble
of exponentially many networks, that are then averaged dur-
ing testing, therefore reducing overfitting. Wang et al. [9]
suggested that dropout could be seen as performing a
Monte-Carlo approximation of an implicit loss function, and
that instead of multiplying the activations by binary noise,
like in the original dropout, multiplicative Gaussian noise
with mean 1 can be used as a way of better approximating
the implicit loss function. This led to a comparable perfor-
mance but faster training than binary dropout.

Kingma et al. [4] take a similar view of dropout as intro-
ducing multiplicative (Gaussian) noise, but instead study
the problem from a Bayesian point of view. In this setting,
given a training dataset D ¼ ðxi; yiÞi¼1;...;N and a prior distri-
bution pðwÞ, we want to compute the posterior distribution
pðwjDÞ of the weights w of the network. As is customary in
variational inference, the true posterior can be approxi-
mated by minimizing the negative variational lower bound
LðuÞ of the marginal log-likelihood of the data,

LðuÞ ¼ 1

N

XN

i¼1

Ew�puðwjDÞ½�log pðyijxi;wÞ�

þ 1

N
KLðpuðwjDÞkpðwÞÞ:

(1)
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This minimization is difficult to perform, since it requires to
repeatedly sample new weights for each sample of the data-
set. As an alternative, [4] suggest that the uncertainty about
the weights that is expressed by the posterior distribution
puðwjDÞ can equivalently be encoded as a multiplicative
noise in the activations of the layers (the so called local repar-
ametrization trick). As we will see in the following sections,
this loss function closely resemble the one of Information
Dropout, which however is derived from a purely informa-
tion theoretic argument based on the Information Bottleneck
principle. One difference is that we allow the parameters of
the noise to change on a per-sample basis (which, as we
show in the experiments, can be useful to deal with nuisan-
ces), and that we allow a scaling constant b in front of the
KL-divergence term, which can be changed freely. Interest-
ingly, even if the Bayesian derivation does not allow a
rescaling of the KL-divergence, Kingma et al. notice that
choosing a different scale for the KL-divergence term can
indeed lead to improvements in practice. A related method,
but derived from an information theoretic perspective was
also suggested previously by [10].

The interpretation of deep neural network as a way of
creating successively better representations of the data has
already been suggested and explored by many. Most
recently, Tishby et al. [8] put forth an interpretation of deep
neural networks as creating sufficient representations of the
data that are increasingly minimal. In parallel simultaneous
work, [11] approximate the information bottleneck similarly
to us, but focus on empirical analysis of robustness to adver-
sarial perturbations rather than tackling disentanglement,
invariance and minimality analytically.

Sufficient dimensionality reduction [12] and Optimal
Component Analysis [13] follow a similar idea to us, in that
they focus on finding the smallest (usually linear) sufficient
statistic of the data that is sufficient for a given task. How-
ever, while they define small in term of dimension of the
representation, we focus on finding a (non-linear) represen-
tation with minimal information content, but whose dimen-
sion can, in fact, be even larger than the original data. By
allowing large non-linear representations, we can exploit
the full representational power of deep networks, while the
minimality of the information content still promotes nui-
sance invariance and prevents overfitting. Our framework
also has connections with Independent Component Analy-
sis (ICA), which we discuss further in Section 7.

Some have focused on creating representations that are
maximally invariant to nuisances, especially when they have
the structure of a (possibly infinite-dimensional) group act-
ing on the data, like [14], or, when the nuisance is a locally
compact group acting on each layer, by successive approxi-
mations implemented by hierarchical convolutional archi-
tectures, like [15] and [16]. In these cases, which cover
common nuisances such as translations and rotations of an
image (affine group), or small diffeomorphic deformations
due to a slight change of point of view (group of diffeomor-
phisms), the representation is equivalent to the data modulo
the action of the group. However, when the nuisances
are not a group, as is the case for occlusions, it is not possible
to achieve such equivalence, that is, there is a loss. To
address this problem, [1] defined optimal representations
not in terms of maximality, but in terms of sufficiency, and

characterized representations that are both sufficient and
invariant. They argue that the management of nuisance
factors common in visual data, such as changes of view-
point, local deformations, and changes of illumination, is
directly tied to the specific structure of deep convolutional
networks, where local marginalization of simple nuisances
at each layer results in marginalization of complex nuisances
in the network as a whole.

Our work fits in this last line of thinking, where the goal is
not equivalence to the data up to the action of (group) nuisan-
ces, but instead sufficiency for the task. Our main contribution
in this sense is to show that injecting noise into the layers, and
therefore using a non-deterministic function of the data, can
actually simplify the theoretical analysis and lead to disentan-
gling and improved insensitivity to nuisances. This is an alter-
nate explanation to that put forth by the references above.

4 OPTIMAL REPRESENTATIONS AND THE

INFORMATION BOTTLENECK LOSS

Given some input data x, we want to compute some (possi-
bly nondeterministic) function of x, called a representation,
that has some desirable properties in view of the task y, for
instance by being more convenient to work with, exposing
relevant statistics, or being easier to store. Ideally, we want
this representation to be as good as the original data for the
task, and not squander resources modeling parts of the data
that are irrelevant to the task. Formally, this means that we
want to find a random variable z satisfying the following
conditions:

i) z is a representation of x; that is, its distribution
depends only on x, as expressed by the following
Markov chain:

ii) z is sufficient for the task y, that is Iðx; yÞ ¼ Iðz; yÞ,
expressed by the Markov chain:

iii) among all random variables satisfying these require-
ments, the mutual information Iðx; zÞ is minimal.
This means that z discards all variability in the data
that is not relevant to the task.

Using the identity Iðx; yÞ � Iðz; yÞ ¼ Iðx; yjzÞ, where I the
mutual information, it is easy to see that the above condi-
tions are equivalent to finding a distribution pðzjxÞ which
solves the optimization problem

minimize Iðx; zÞ
s.t. Iðx; yjzÞ ¼ 0:

The minimization above is difficult in general. For this rea-
son, Tishby et al. have introduced a generalization known
as the Information Bottleneck Principle and the associated
Lagrangian to be minimized [2]:

L ¼ Iðx; yjzÞ þ bIðx; zÞ:
When y is a discrete random variable, such as a label, as we
will often assume through this work, we can further use the
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identity Iðx; yjzÞ ¼ HðyjzÞ �HðyjxÞ and the fact that HðyjxÞ
is constant to obtain the equivalent Lagrangian

L ¼ HðyjzÞ þ bIðx; zÞ; (2)

where b is a positive constant that manages the trade-off
between sufficiency (the performance on the task, as mea-
sured by the first term) and minimality (the complexity of
the representation, measured by the second term). It is easy
to see that, in the limit b ! 0þ, this is equivalent to the origi-
nal problem, where z is a minimal sufficient statistic. When
all random variables are discrete and z ¼ T ðxÞ is a determin-
istic function of x, the algorithm proposed by [2] can be used
to minimize the IB Lagrangian efficiently. However, no algo-
rithm is known to minimize the IB Lagrangian for non-
Gaussian, high-dimensional continuous random variables.

One of our key results is that, when we restrict to the
family of distributions obtained by injecting noise to one
layer of a neural network, we can efficiently approximate
and minimize the IB Lagrangian.1 As we will show, this
process can be effectively implemented through a generali-
zation of the dropout layer that we call Information Dropout.

To set the stage, we rewrite the IB Lagrangian as a per-
sample loss function. Let pðx; yÞ denote the true distribution
of the data, from which the training set ðxi; yiÞ

� �
i¼1;...;N

is
sampled, and let puðzjxÞ and puðyjzÞ denote the unknown
distributions that we wish to estimate, parametrized by u.
Then, we can write the two terms in the IB Lagrangian as

HðyjzÞ ’ Ex;y�pðx;yÞ Ez�puðzjxÞ½�log puðyjzÞ�
� �

Iðx; zÞ ¼ Ex�pðxÞ½KLðpuðzjxÞkpuðzÞÞ�;
where KL denotes the Kullback-Leibler divergence. We can
therefore approximate the IB Lagrangian empirically as

L ¼ 1

N

XN

i¼1

Ez�pðzjxiÞ½�log pðyijzÞ� þ bKLðpuðzjxiÞkpuðzÞÞ: (3)

Notice that the first term simply is the average cross-
entropy, which is the most commonly used loss function in
deep learning. The second term can then be seen as a regu-
larization term. In fact, many classical regularizers, like the
L2 penalty, can be expressed in the form of Eq. (3) (see also
[17]). In this work, we interpret the KL term as a reuglarizer
that penalizes the transfer of information from x to z. In the
next section, we discuss ways to control such information
transfer through the injection of noise.

Remark (Deterministic versus stochastic representa-
tions). Aside from being easier to work with, stochastic
representations can attain a lower value of the IB
Lagrangian than any deterministic representation. For
example, consider the task of reconstructing single ran-
dom bit y given a noisy observation x. The only determin-
istic representations are equivalent to the either the noisy
observation itself or to the trivial constant map. It is not
difficult to check that for opportune values of b and of the
noise, neither realize the optimal tradeoff reached by a
suitable stochastic representation.

Remark (Approximate sufficiency). The quantity Iðx;
yjzÞ ¼ HðyjzÞ �HðyjxÞ � 0 can be seen as a measure of
the distance between pðx; y; zÞ and the closest distribution
qðx; y; zÞ such that x ! z ! y is a Markov chain. There-
fore, by minimizing Eq. (2) we find representations that
are increasingly “more sufficient”, meaning that they are
closer to an actual Markov chain.

5 DISENTANGLEMENT

In addition to sufficiency and minimality, “disentanglement
of hidden factors” is often cited as a desirable property of a
representation [18], but seldom formalized. We may think
that the observed data is generated by a complex interplay
of independent causes, or factors. Ideally, the components
of the learned representation should capture these indepen-
dent factors by disentangling the correlations in the
observed data. We can then quantify disentanglement by
measuring the total correlation [19], also known as multiinfor-
mation [20],2 defined as

TCðzÞ :¼ KLðqðzÞkQj qjðzjÞÞ:
Notice that the components of z are mutually independent
if and only if TCðzÞ is zero. Adding this as a penalty in the
IB Lagrangian, with a factor g yields

L ¼ 1

N

XN

i¼1

Ez�pðzjxiÞ½�log pðyijzÞ�

þ bKLðpuðzjxiÞkpuðzÞÞ þ gTCðzÞ:
(4)

In general, minimizing this augmented loss is intractable,
since to compute both the KL term and the total correla-
tion, we need to know the marginal distribution puðzÞ,
which is not easily computable. However, the following
proposition, that we prove in Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2784440,
shows that if we choose g ¼ b, then the problem simplifies,
and can be easily solved by adding an auxiliary variable.

Proposition 1. The minimization problem

minimize
p

1

N

XN

i¼1

Ez�pðzjxiÞ½�log pðyijzÞ�

þ b KLðpðzjxiÞkpðzÞÞ þ TCðzÞf g;
is equivalent to the following minimization in two variables

minimize
p;q

1

N

XN

i¼1

Ez�pðzjxiÞ½�log pðyijzÞ�

þ b KLðpðzjxiÞk
Qjzj

i¼1 qiðziÞÞ:

In other words, minimizing the standard IB Lagrangian
assuming that the activations are independent, i.e., having

1. Since we restrict the family of distributions, there is no guarantee
that the resulting representation will be optimal. We can, however,
iterate the process to obtain incrementally improved approximations.

2. As pointed out by a reviewer, multi-information would be a more
appropriate name for this quantity. We chose to use Total Correlation
both for historical reasons, after its introduction in [19], and to empha-
size the relation with disentanglement also in recent work on unsuper-
vised learning [21]. Other measures of independence are of course
possible. Total Correlation has the advantage of being enforced natu-
rally when optimizing other information-theoretic quantities.
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qðzÞ ¼ Q
i qiðziÞ, is equivalent to enforcing disentanglement

of the hidden factors. It is interesting to note that this inde-
pendence assumption is already adopted often by practi-
tioners on grounds of simplicity, since the actual marginal
pðzÞ ¼ R

x pðx; zÞdx is often incomputable. That using a factor-
ized model results in “disentanglement” was also observed
empirically by [6] which, however, introduced an ad-hoc
metric based on classifiers of low VC-dimension, rather than
the more natural Total Correlation adopted here.

In view of the previous proposition, from now on we will
assume that the activations are independent and ignore the
total correlation term.

6 INFORMATION DROPOUT

Guided by the analysis in the previous sections, and to
emphasize the role of stochasticity, we consider representa-
tions z obtained by computing a deterministic map fðxÞ of
the data (for instance a sequence of convolutional and/or
fully-connected layers of a neural network), and then multi-
plying the result component-wise by a random sample �
drawn from a parametric noise distribution pa with unit
mean and variance that depends on the input x:

" � paðxÞð"Þ; z ¼ "� fðxÞ;

where “�” denotes the element-wise product. Notice that, if
paðxÞð"Þ is a Bernoulli distribution rescaled to have mean 1,
this reduces exactly to the classic binary dropout layer. As
we discussed in Section 3, there are also variants of dropout
that use different distributions.

A natural choice for the distribution paðxÞð"Þ, which also
simplifies the theoretical analysis, is the log-normal distri-
bution paðxÞð"Þ ¼ logNð0;a2

uðxÞÞ. Once we fix this noise dis-
tribution, given the above expression for z, we can easily
compute the distribution puðzjxÞ that appears in Eq. (3).
However, to be able to compute the KL-divergence term,
we still need to fix a prior distribution quðzÞ. The choice of
this prior largely depends on the expected distribution of
the activations fðxÞ. Recall that, by Section 5, we can assume
that all activations are independent, thus simplifying the
computation. Now, we concentrate on two of the most com-
mon activation functions, the rectified linear unit (ReLU),
which is easy to compute and works well in practice, and
the Softplus function, which can be seen as a strictly positive
and differentiable approximation of ReLU.

A network implemented using only ReLU and a final
Softmax layer has the remarkable property of being scale-
invariant, meaning that multiplying all weights, biases, and
activations by a constant does not change the final result.
Therefore, from a theoretical point of view, it would be
desirable to use a scale-invariant prior. The only such prior
is the improper log-uniform, qðlog ðzÞÞ ¼ c, or equivalently
qðzÞ ¼ c=z, which was also suggested by [4], but as a prior
for the weights of the network, rather than the activations.

Since the ReLU activations are frequently zero, we also
assume qðz ¼ 0Þ ¼ q0 for some constant 0 � q0 � 1. There-
fore, the final prior has the form qðzÞ ¼ q0d0ðzÞ þ c=z, where
d0 is the Dirac delta in zero. In Fig. 1a, we compare this prior
distribution with the actual empirical distribution pðzÞ of a
network with ReLU activations.

In a network implemented using Softplus activations, a
log-normal is a good fit of the distribution of the activations.
This is to be expected, especially when using batch-normali-
zation, since the pre-activations will approximately follow
a normal distribution with zero mean, and the Softplus
approximately resembles a scaled exponential near zero.
Therefore, in this case we suggest using a log-normal distri-
bution as our prior qðzÞ. In Fig. 1b, we compare this prior
with the empirical distribution pðzÞ of a network with
Softplus activations.

Using these priors, we can finally compute the KL diver-
gence term in Eq. (3) for both ReLU activations and Softplus
activations. We prove the following two propositions in
Appendix A, available online.

Proposition 2 (Information Dropout cost for ReLU). Let
z ¼ " 	 fðxÞ, where " � pað"Þ, and assume pðzÞ ¼ qd0ðzÞ þ
c=z. Then, assuming fðxÞ 6¼ 0, we have

KLðpuðzjxÞkpðzÞÞ ¼ �HðpaðxÞðlog "ÞÞ þ log c

In particular, if pað"Þ is chosen to be the log-normal distribu-
tion pað"Þ ¼ logNð0;a2

uðxÞÞ, we have

KLðpuðzjxÞkpðzÞÞ ¼ �logauðxÞ þ const: (5)

If instead fðxÞ ¼ 0, we have

KLðpuðzjxÞkpðzÞÞ ¼ �log q:

Proposition 3 (Information Dropout cost for Softplus).
Let z ¼ " 	 fðxÞ, where " � pað"Þ ¼ logNð0;a2

uðxÞÞ, and
assume puðzÞ ¼ logNðm; s2Þ. Then, we have

KLðpuðzjxÞkpðzÞÞ ¼ 1

2s2
a2ðxÞ þ m2
� �� log

aðxÞ
s

� 1

2
:

(6)

Substituting the expression for the KL divergence in
Eq. (5) inside Eq. (3), and ignoring for simplicity the special
case fðxÞ ¼ 0, we obtain the following loss function for
ReLU activations

Fig. 1. Comparison of the empirical distribution pðzÞ of the post-noise
activations with our proposed prior when using: (a) ReLU activations,
for which we propose a log-uniform prior, and (b) Softplus activations, for
which we propose a log-normal prior. In both cases, the empirical
distribution approximately follows the proposed prior. Both histograms
where obtained from the last dropout layer of the All-CNN-32 network
described in Table 2, trained on CIFAR-10.
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L ¼ 1

N

XN

i¼1

Ez�puðzjxiÞ½log pðyijzÞ� þ b log auðxiÞ; (7)

and a similar expression for Softplus. Notice that the first
expectation can be approximated by sampling (in the experi-
ments we use one single sample, as customary for dropout),
and is just the average cross-entropy term that is typical in
deep learning. The second term, which is new, penalizes
the network for choosing a low variance for the noise, i.e., for
letting more information pass through to the next layer.
This loss can be optimized easily using stochastic gradient
descent and the reparametrization trick of [5] to back-propa-
gate the gradient through the sampling operation.

7 CONNECTIONS WITH OTHER FRAMEWORKS

In this section, we outline strong connections between Infor-
mation Dropout, Variational Autoencoders (VAEs) [5], and
Independent Component Analysis (ICA) [22], [23].

Variational autoencoders aim to reconstruct, given a
training dataset D ¼ xif g, a latent random variable z such
that the observed data x can be thought as being generated
by the, usually simpler, variable z through some unknown
generative process puðxjzÞ. In practice, this is done by mini-
mizing the negative variational lower-bound to the mar-
ginal log-likelihood of the data

LðuÞ ¼ 1

N

XN

i¼1

Ez�puðzjxiÞ½�log puðxijzÞ�

þKLðpuðzjxiÞk
Y

i

quðziÞÞ;

where the optimization is joint over the factorized prior
quðzÞ, which is often assumed to be factorized, and the pos-
terior puðzjxÞ. The optimization can now be performed easily
through sampling using the SGVB method of [5].

We now show that this procedure can be seen as a special
case of Information Dropout: Consider again the loss in
Eq. (4) in the special case y ¼ x, that is, when the task is
reconstruction of the input:

L ¼ 1

N

XN

i¼1

Ez�pðzjxiÞ½�log pðxijzÞ�

þ bKLðpuðzjxiÞkpuðzÞÞ þ g TCðzÞ:
(8)

By Proposition 1, in the special case b ¼ g, this reduces to

LðuÞ ¼ 1

N

XN

i¼1

Ez�puðzjxiÞ½�log puðxijzÞ�

þ b KLðpuðzjxiÞk
Y

i

quðziÞÞ;
(9)

where again the optimization is joint over prior quðzÞ and
posterior puðzjxÞ, leading to the same optimization problem
of a VAE when b ¼ 1, that is when all quantities have the
same weight in the loss function. This derivation also pro-
vides some additional insights: when using a factorized
prior, a VAE will try to find a representation of the data
which is sufficient for reconstruction (cross-entropy term),
maximally compressed (KL term) and disentangled (total
correlation term). We can also see that, while using instead
a non factorized prior increases the complexity of the opti-
mization problem, it spares the VAE from having to find a

disentangled representation, allowing it to obtain a better
compression result [24]. In the same setting as Eq. (9) we
can use larger values of b to force Information Dropout, and
hence, in the case of reconstruction, a VAE, to recover repre-
sentations that are increasingly more compressed and also
disentangled. This fact is implicitly used in contemporary
work [6], that derive the loss in Eq. (9) taking inspiration
from experimental evidence in neuroscience. They empiri-
cally verify that, as expected from this theoretical deriva-
tion, for higher values of b the representation z recovered
by the VAE is increasingly more disentangled.

Eq. (8) has two other important cases: As we have
already seen, the case g ¼ 0 and b > 0 is the standard Infor-
mation Bottleneck Lagrangian: A VAE trained with this loss
will focus purely on compression of the input, without
squandering resources to also disentangle the representa-
tion. In the case b ¼ 0 and g > 0we obtain instead the stan-
dard loss function of Independent Component Analysis
(ICA), whereby we try to reconstruct a perfectly disen-
tangled representation of the data, without any constraint
on its complexity (quantity of information). While both
cases are important on their own right, Proposition 1 does
not apply for them, thus the loss function does not generally
simplify and cannot be computed in closed form.

8 EXPERIMENTS

The goal of our experiments is to validate the theory, by
showing that indeed increasing noise level yields reduced
dependency on nuisance factors, a more disentangled repre-
sentation, and that by adapting the noise level to the data
we can better exploit architectures of limited capacity.

To this end, we first compare Information Dropout with
the Dropout baseline on several standard benchmark data-
sets using different networks architecture, and highlight a
few key properties. All the models were implemented using
TensorFlow [25]. As [4] also notice, letting the variance of
the noise grow excessively leads to poor generalization. To
avoid this problem, we constraint aðxÞ < 0:7, so that the
maximum variance of the log-normal error distribution will
be approximately 1, the same as binary dropout when using
a drop probability of 0.5. In all experiments we divide the
KL-divergence term by the number of training samples, so
that for b ¼ 1 the scaling of the KL-divergence term in simi-
lar to the one used by Variational Dropout (see Section 3).

Cluttered MNIST. To visually asses the ability of Informa-
tion Dropout to create a representation that is increasingly
insensitive to nuisance factors, we train the All-CNN-96 net-
work (Table 2) for classification on a Cluttered MNIST data-
set [7], consisting of 96
 96 images containing a single
MNIST digit together with 21 distractors. The dataset is
divided in 50,000 training images and 10,000 testing images.
As shown in Fig. 2, for small values of b, the network lets
through both the objects of interest (digits) and distractors,
to upper layers. By increasing the value of b, we force the
network to disregard the least discriminative components
of the data, thereby building a better representation for the
task. This behavior depends on the ability of Information
Dropout to learn the structure of the nuisances in the data-
set which, unlike other methods, is facilitated by the ability
to select noise level on a per-sample basis.
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Occluded CIFAR. Occlusions are a fundamental phenome-
non in vision, for which it is difficult to hand-design invari-
ant representations. To assess that the approximate minimal
sufficient representation produced by Information Dropout
has this invariance property, we created a new dataset by
occluding images from CIFAR-10 with digits from MNIST
(Fig. 4). We train the All-CNN-32 network (Table 2) to clas-
sify the CIFAR image. The information relative to the occlud-
ingMNIST digit is then a nuisance for the task, and therefore
should be excluded from the final representation. To test
this, we train a secondary network to classify the nuisance
MNIST digit using only the the representation learned for
the main task. When training with small values of b, the net-
work has very little pressure to limit the effect of nuisances
in the representation, so we expect the nuisance classifier to
perform better. On the other hand, increasing the value of b
we expect its performance to degrade, since the representa-
tion will become increasingly minimal, and therefore invari-
ant to nuisances. The results in Fig. 4 confirm this intuition.

MNIST and CIFAR-10. Similar to [4], to see the effect of
Information Dropout on different network sizes and archi-
tectures, we train on MNIST a network with three fully con-
nected hidden layers with a variable number of hidden
units, and we train on CIFAR-10 [26] the All-CNN-32 con-
volutional network described in Table 2, using a variable
percentage of all the filters. The fully connected network
was trained for 80 epochs, using stochastic gradient descent
with momentum with initial learning rate 0.07 and drop-
ping the learning rate by 0.1 at 30 and 70 epochs. The CNN
was trained for 160 epochs with initial learning rate 0.1 and
dropping the learning rate by 0.1 at 80 and 120 epochs. We
show the results in Fig. 3. Information Dropout is compara-
ble or outperforms binary dropout, especially on smaller
networks. A possible explanation is that dropout severely
reduces the already limited capacity of the network, while

Information Dropout can adapt the amount of noise to the
data and to the size of the network so that the relevant infor-
mation can still flow to the successive layers. Fig. 6 shows
how the amount of transmitted information adapts to the
size and hierarchical level of the layer.

Disentangling. As we saw Section 6, in the case of Softplus
activations, the logarithm of the activations approximately
follow a normal distribution. We can then approximate the
total correlation using the associated covariance matrix S.
Precisely, we have

TCðzÞ ¼ �log jS�1
0 Sj

where S0 ¼ diag S is the variance of the marginal distribu-
tion. In Fig. 5 we plot the testing error and the total correla-
tion of the representation learned by All-CNN-32 on
CIFAR-10 when using 25 percent of the filters for different
values of b. As predicted, when b increases the total correla-
tion diminishes, that is, the representation becomes disen-
tangled, and the testing error improves, since we prevent
overfitting. When b is to large, information flow is insuffi-
cient, and the testing error rapidly increases.

Fig. 4. A few samples from our Occluded CIFAR dataset and the plot of
the testing error on the main task (classifying the CIFAR image) and on
the nuisance task (classifying the occluding MNIST digit) as b varies.
For both tasks, we use the same representation of the data trained
for the main task using Information Dropout. For larger values of b the
representation is increasingly more invariant to nuisances, making
the nuisance classification task harder, but improving the performance
on the main task by preventing overfitting. For the nuisance task, we test
using the learned noisy representation of the data, since we are inter-
ested specifically in the effects of the noise. For the main task, we show
the result both using the noisy representation (N), and the deterministic
representation (D) obtained by disabling the noise at testing time.

Fig. 3. (a) Average classification error on MNIST over 3 runs of several
dropout methods applied to a fully connected network with three hidden
layers and ReLU activations. Information Dropout outperforms binary
dropout, especially on smaller networks, possibly because dropout
severely reduces the already limited capacity of the network, while Infor-
mation Dropout can adapt the amount of noise to the data and the size
of the network. Information dropout also outperforms a dropout layer
that uses constant log-normal noise with the same variance, confirming
the benefits of adaptive noise. (b) Classification error on CIFAR-10 for
several dropout methods applied to the All-CNN-32 network (see Table 2)
using Softplus activations.

Fig. 2. Plot of the total KL-divergence at each spatial location in the first
three Information Dropout layers (of sizes 48
48, 24
24 and 12
12
respectively) of All-CNN-96 (see Table 2) trained on Cluttered MNIST
with different values of b. This measures how much information from
each part of the image the Information Dropout layer is transmitting to
the next layer. For small b information about the nuisances is transmitted
to the next layers, while for higher values of b the dropout layers drop
the information as soon as the receptive field is big enough to recognize
it as a nuisance. The resulting representation is thus more robust to nui-
sances, improving generalization. Notice that the noise added by Infor-
mation Dropout is tailored to the specific sample, to the point that the
digit can be localized from the noise mask.
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VAE. To validate Section 7, we replicate the basic varia-
tional autoencoder of [5], implementing it bothwith Gaussian
latent variables, as in the original, and with an Information
Dropout layer. We trained both implementations for 300
epochs dropping the learning rate by 0.1 at 30 and 120 epochs.
We report the results in Table 1. The Information Dropout
implementation has similar performance to the original,
confirming that a variational autoencoder can be considered
a special case of InformationDropout.

9 DISCUSSION

We relate the Information Bottleneck principle and its asso-
ciated Lagrangian to seemingly unrelated practices and con-
cepts in deep learning, including dropout, disentanglement,
variational autoencoding. For classification tasks, we show
how an optimal representation can be achieved by injecting
multiplicative noise in the activation functions, and there-
fore into the gradient computation during learning.

A special case of noise (Bernoulli) results in dropout,
which is standard practice originally motivated by ensemble
averaging rather than information-theoretic considerations.
Better (adaptive) noise models result better exploitation of
limited capacity, leading to a method we call Information

Dropout. We also establish connections with variational
inference and variational autoencoding, and show that
“disentangling of the hidden causes” can be measured by
total correlation and achieved simply by enforcing indepen-
dence of the components in the representation prior.

Fig. 5. For different values of b, plot of the test error and total correlation
of the final layer of the All-CNN-32 network with Softplus activations
trained on CIFAR-10 with 25 percent of the filters. Increasing b the test
error decreases (we prevent overfitting) and the representation becomes
increasingly disentangled. When b is too large, it prevents information
from passing through, jeopardizing sufficiency and causingia drastic
increase in error.

TABLE 1
Average Variational Lower-Bound L on the

Testing Dataset for a Simple VAE, Where the Size of the
Latent Variable z Is 256 	 k and the Encoder/Decoder

Each Contain 512 	 k Hidden Units

k Gaussian Information

1 �98.8 �100.0
2 �99.0 �99.1
3 �98.7 �99.1

The latent variable z is implemented either using a Gaussian vector or
using InformationDropout. Bothmethods achieve a similar performance.

Fig. 6. Plots of (a) the total information transmitted through the two
dropout layers of a All-CNN-32 network with Softplus activations trained
on CIFAR and (b) the average quantity of information transmitted
through each unit in the two layers. From (a) we see that the total quan-
tity of information transmitted does not vary much with the number of
filters and that, as expected, the second layer transmits less informa-
tion than the first layer, since prior to it more nuisances have been
disentangled and discarded. In (b) we see that when we decrease the
number of filters, we force each single unit to let more information flow
(i.e., we apply less noise), and that the units in the top dropout layer
contain on average more information relevant to the task than the units
in the bottom dropout layer.

TABLE 2
Structure of the Networks Used in the Experiments

(a) All-CNN-32

Input 32
32
3
3 conv 96 ReLU
3
3 conv 96 ReLU
3
3 conv 96 ReLU stride 2
dropout
3
3 conv 192 ReLU
3
3 conv 192 ReLU
3
3 conv 192 ReLU stride 2
dropout
3
3 conv 192 ReLU
1
1 conv 192 ReLU
1
1 conv 10 ReLU
spatial average
softmax

(b) All-CNN-96

Input 96x96
3
3 conv 32 ReLU
3
3 conv 32 ReLU
3
3 conv 32 ReLU stride 2

dropout

3
3 conv 64 ReLU
3
3 conv 64 ReLU
3
3 conv 64 ReLU stride 2

dropout

3
3 conv 96 ReLU
3
3 conv 96 ReLU
3
3 conv 96 ReLU stride 2

dropout

3
3 conv 192 ReLU
3
3 conv 192 ReLU
3
3 conv 192 ReLU stride 2

dropout

3
3 conv 192 ReLU
1
1 conv 192 ReLU
1
1 conv 10 ReLU
spatial average
softmax

The design of network is based on [27], but we also add batch normaliza-
tion before the activations of each layer. Depending on the experiment,
the ReLU activations are replaced by Softplus activations, and the drop-
out layer is implemented with Binary Dropout, Information Dropout or
completely removed.
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So, what may be done by necessity in some computational
systems (noisy computation), turns out to be beneficial towards
achieving invariance and minimality. Analogously, what has
been done for convenience (assuming a factorized prior) turns
out to be the beneficial towards achieving “disentanglement.”

Another interpretation of Information Dropout is as a
way of biasing the network towards reconstructing repre-
sentations of the data that are compatible with a Markov
chain generative model, making it more suited to data com-
ing from hierarchical models, and in this sense is comple-
mentary to architectural constraint, such as convolutions,
that instead bias the model toward geometric tasks.

It should be noticed that injecting multiplicative noise to
the activations can be thought of as a particular choice of a
class of minimizers of the loss function, but can also be
interpreted as a regularization terms added to the cost
function, or as a particular procedure utilized to carry out
the optimization. So the same operation can be interpreted
as either of the three key ingredients in the optimization:
the function to be minimized, the family over which to
minimize, and the procedure with which to minimize. This
highlight the intimate interplay between the choice of mod-
els and algorithms in deep learning.
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