
 1

Information Extraction and Integration from Heterogeneous,
Distributed, Autonomous Information Sources – A Federated

Ontology-Driven Query-Centric Approach

Jaime A Reinoso Castillo, Adrian Silvescu, Doina Caragea, Jyotishman Pathak, Vasant G Honavar
Artificial Intelligence Research Laboratory, Department of Computer Science

Iowa State University, Ames, Iowa, 50011

 Abstract- This paper motivates and describes the data
integration component of INDUS (Intelligent Data Understanding
System) environment for data-driven information extraction and
integration from heterogeneous, distributed, autonomous
information sources. The design of INDUS is motivated by the
requirements of applications such as scientific discovery, in which
it is desirable for users to be able to access, flexibly interpret, and
analyze data from diverse sources from different perspectives in
different contexts. INDUS implements a federated, query-centric
approach to data integration using user-specified ontologies.

 Keywords- Data Integration, Federated Database, Ontology

I. INTRODUCTION

Development of high throughput data acquisition in a
number of domains (e.g. biological sciences, space
sciences, commerce) along with advances in digital storage,
computing, and communication technologies have resulted
in unprecedented opportunities in data-driven knowledge
acquisition and decision making. The effective use of
increasing amounts of data from disparate information
sources presents several challenges in practice [1]:
a) Data repositories are large in size, dynamic, and

physically distributed. Consequently, it is neither
desirable nor feasible to gather all of the data in a
centralized location for analysis. Hence, there is a need
for algorithms that can efficiently extract the relevant
information from disparate sources on demand.

b) Data sources of interest are autonomously owned and
operated. Consequently, the range of operations that
can be performed on the data source (e.g., the types of
queries allowed), and the precise mode of allowed
interactions can be quite diverse. Hence, strategies for
obtaining the necessary information (e.g., statistics
needed by data mining algorithms) within the
operational constraints imposed by the data source are
needed.

c) Data sources are heterogeneous in structure (e.g.,
relational databases, flat files) and content. Each data
source implicitly or explicitly uses its own ontology
(concepts, attributes and relations among attributes)
[22] to represent data. For example, domain-specific
ontologies are being developed in many areas (e.g.,
The gene ontology project (www.geneontology.org) is
aimed at development of ontologies and their XML
encodings for use in Bioinformatics). Thus, effective
integration of information from different sources

bridging the syntactic and semantic mismatches among
the data sources is needed.

d) In many applications (e.g., scientific discovery),
because users often need to examine data in different
contexts from different perspectives, there is no single
universal ontology [22] that can serve all users, or for
that matter, even a single user, in every context. Hence,
methods for context-dependent dynamic information
extraction and integration from distributed data based
on user-specified ontologies are needed to support
knowledge acquisition and decision making from
heterogeneous distributed data.

This paper describes the data integration component of
INDUS (Intelligent Data Understanding System) – a
modular, extensible, platform independent environment for
information integration and data-driven knowledge
acquisition from heterogeneous, distributed, autonomous
information sources. INDUS when equipped with machine
learning algorithms for ontology-guided knowledge
acquisition, can accelerate the pace of discovery in
emerging data-rich domains (e.g., biological sciences,
atmospheric sciences, economics, defense, social sciences)
by enabling scientists and decision makers rapidly and
flexibly explore and analyze vast amounts of data from
disparate sources.

The rest of the paper is organized as follows: Section II
briefly introduces the data integration problem and
describes the considerations that had an impact on the
choice of the overall approach to data integration in
INDUS. Section III provides more precise definitions of the
relevant terminology and operations on data. Section IV
describes the implementation of the data integration
component of INDUS. We conclude in Section V with a
summary and related work.

II. DATA INTEGRATION SYSTEMS

Data Integration systems [2,5,10] attempt to provide users
with seamless and flexible access to information from
multiple autonomous, distributed and heterogeneous data
sources through a unified query interface. Ideally, a data
integration system should allow users to specify what
information is needed without having to provide detailed
instructions on how or from where to obtain the
information. Thus, in general, a data integration system
must provide mechanisms for the following:

 2
a) Communications and interaction with each data source

as needed.
b) Specification of a query, expressed in terms of a user-

specified vocabulary (ontology), across multiple
heterogeneous and autonomous data sources

c) Specification of mappings between user ontology and
the data-source specific ontologies.

d) Transformation of a query into a plan for extracting the
needed information by interacting with the relevant
data sources.

e) Integration and presentation of the results in terms of a
vocabulary known to the user.

There are two broad classes of approaches to data
integration: Data Warehousing and Database Federation
[4].

In the data warehousing approach, data from heterogeneous
distributed information sources is gathered, mapped to a
common structure and stored in a central location. In order
to ensure that the information in the warehouse reflects the
current contents of the individual sources, it is necessary to
periodically update the warehouse. In the case of large
information repositories, this is not feasible unless the
individual information sources support mechanisms for
detecting and retrieving changes in their contents. This is
often an unreasonable expectation in the case of
autonomous information sources. The warehousing
approach to data integration has another important
drawback in the case of applications such as scientific
discovery in which users often need to analyze the same
data from multiple points of view: The data warehouse
relies on a single common ontology for all users of the
system. This ontology is typically specified as part of the
design of the data warehouse. Each user queries the
warehouse using a common vocabulary and a common
query interface.

In the case of Database Federation, information needed to
answer a query is gathered directly from the data sources in
response to the posted query. Hence, the results are up-to-
date with respect to the contents of the data sources at the
time the query is posted. More importantly, the database
federation approach lends itself to be more readily adapted
to applications that require users to be able to impose their
own ontologies on data from distributed autonomous
information sources. Because our focus is on data
integration for scientific application, which requires users to
be able to flexibly integrate data from multiple autonomous
sources, we adopt the Database Federation approach to
information integration.

Typically, a query posted by the user must be decomposed
into a set of operations corresponding to the information
that needs to be gathered from each data source and the
form in which this information must be returned to the

system. To accomplish this, data integration systems must
support two basic set of operations:
• get() to query the information sources; and
• transform() for mapping the results in the desired

form.

These operations should be capable of dealing with
syntactic and semantic mismatches between the vocabulary
(names of entities and relationships) of the user (user
ontology or global ontology) to query for information and
the vocabulary understood by each information source
(source-specific ontologies or local ontologies).

There are two basic approaches for dealing with semantic
mismatches between global ontology and local ontologies:
Source-Centric Approach and the Query-Centric Approach
[5]. In the case of the source-centric approach, each
individual data source determines how the concepts in a
local (source-specific) ontology are mapped to concepts in
the global ontology. Thus, the user has little control on the
true meaning of concepts in the global ontology (and hence
the results of a query). In other words, the semantics are
source-centric. This frees the user or the administrator of
the integration system from the task of specifying the
transformations between global concepts and local concepts
– these transformations are specified by the local source(s).
In contrast, in the query-centric approach to information
integration, concepts in the global ontology are defined in
terms of concepts in local ontology (source-specific
ontologies). Thus, the query-centric approach is better
suited for data integration in applications in which the users
need the ability to impose the ontologies (and semantics) of
their choice to flexibly interpret and analyze information
from autonomous sources. But this requires the user or
administrator of the integration system to specify precisely
how global concepts can be composed from local concepts.

Consider the case of a scientist who has defined a set of
queries Q to obtain information about a set of proteins.
Assume that a new data source A becomes available. In this
case, the scientist may want to decide whether (and how) to
utilize the new data source in answering queries in Q. This
decision may be based on the way proteins have been
classified by the data source and what such classification
means to the scientist relative to concepts in the global
(user) ontology. The source-centric approach puts the
information sources in control of the semantics. In contrast,
the query-centric approach puts the user in control of
semantics. Hence, we adopt the Query-Centric approach to
data integration in INDUS.
Thus, INDUS offers a federated, query-centric approach to
information integration from heterogeneous, distributed,
autonomous information sources. The overall architecture
of INDUS is shown in Figure 1.

 3

Fig. 1 INDUS (Intelligent Data Understanding System) for Information
Extraction, Integration, and Knowledge Acquisition from Heterogeneous,
Distributed, Autonomous Information Sources. PROSITE, MEROPS,
SWISSPROT, and MEME are examples of data sources used by
Computational Biologists.

 INDUS enables a scientist to view a collection of
physically distributed, autonomous, heterogeneous data
sources (regardless of their location, internal structure, and
query interfaces) as though they were relational databases,
(i.e. a collection of inter-related tables), structured
according to an ontology supplied by the scientist. The
current prototype of INDUS makes explicit, the implicit
ontologies associated with each of the data sources. Each
data source is viewed as a repository of instances of
concepts associated with the data source. Each concept is
simply a collection of instances or records in a relational
database i.e. a set of tables, and a set of associations
between pair of tables. The input from a typical user
(scientist) includes: an ontology that links the various data
sources from the user’s point of view, executable code that
performs specific computations (if they are not supported
directly from data sources), and a query expressed in terms
of user-specified ontology. This allows the scientist to
extract and combine data from multiple data sources and
store the results in a relational database which is structured
according to his or her own ontology and can be
manipulated using application programs or relational
database operations.

III. DATA INTEGRATION IN INDUS

As noted above, INDUS implements a federated, query-
centric approach to information extraction and integration
from heterogeneous, distributed and autonomous data
sources. The system uses a three-layer architecture
consisting of the physical layer, the ontological layer, and
the user-interface layer.

The physical layer allows the system to communicate with
the information sources. It is based on federated database
architecture. The ontological layer contains global
ontology (or ontologies) specified by users and their
mappings to local ontologies associated with the
information sources. It automatically transforms queries
expressed in terms of concepts in a global ontology into
execution plans. The plans describe what information to

extract from each data source and how to combine the
results. Finally, the user interface layer enables users to
interact with the system, define ontologies, post queries and
receive answers. All the complexity associated with the
process of gathering the information is hidden from the
final user. In what follows, we formally introduce the
notions of a concept, ontology and query as we use them in
INDUS.

A. Concepts

A “concept” in INDUS is equivalent to the mathematical
entity for a relation underlying the relational model. Thus, a
concept is a subset of the Cartesian product of a list of
domains, i.e., if D1,…,Dn is a list of domains,
then nDDX ××⊆ ...1 is a concept. Here a domain is a set
of values. Each domain is assumed to be finite, but is
typically unknown a priori.

If Χ is a concept, the structure of a concept, Χ.atts, is
described by the list of domains (called also attributes).
The elements of this list are drawn from Θ, the set of all
domains. The i-th element of Χ.atts is represented by Χ.atts[i];
its name by Χ.atts[i].name and the associated domain by
Χ.atts[i].domain. For example, Χ.atts = ((“name”, S), (“age”, N)),
where S represents the set of strings and N represents the
set of natural numbers, is the structure of a concept with
two attributes.

The extensional definition of a concept Χ, denoted by
Χ.insts, is the enumeration of all instances from the Cartesian
product D1,…, Dn , such that Di ∈ Χ.atts. Each instance is
represented by a list of attribute values. For example, a
concept Χ, based on D1 × D2 × D3 = { (a,b,d), (a,b,e),
(b,b,d), (b,b,e)}, may be extensionally defined as Χ.insts ={
(a,b,d), (a,b,e)}.

The intentional definition of a concept Χ, Χ.I, consists of a
description of instances that belongs to that concept. Thus,
an intentional definition for the concept Χ used before may
be: Χ.I = { i ∈ D1 × D2 × D3 | the first element of the i tuple
is an ‘a’}. In general, intentional definitions offer a shorter
representation than extensional definitions.

An operational definition of a concept Χ, Χ.D, is a
procedure that specifies how to obtain the set of instances
of Χ.

We use relational databases to store instances of a concept.
Therefore, the set of instances that belong to a concept
(relation) are rows of the corresponding table.Two types of
concepts are defined in INDUS: Ground Concepts and
Compound Concepts.

The ground concepts are those whose instances can be
retrieved from one or more data sources using a set of pre-
defined operations. The operational definition of a ground
concept describes a procedure for retrieving Χ.inst from a set

S W IS S P R O T M E M E

IN D U S D a ta In teg ra tio n E n v iro n m en t

D e rived D a taba se I D e rived D a ta ba se II

O n tolo g y I O n to lo g y II

IN D U S D a ta M in in g A lgo rith m s

R e su lts D a ta b a se III

P R O S IT E M E R O P S

O n to lo g y III

 4
of relevant data sources. In order to accomplish this task,
INDUS provides an extensible set of components called
instantiators that are able to interact with data sources and
retrieve a set of instances for a particular concept. They
encapsulate the interaction of the system with the data
sources through a common uniform interface. This common
interface allows the system to invoke instantiators and also
to receive instances from the data sources.

The core of an instantiator is an iterator. An iterator is
completely specified in terms of the name of the program to
be executed and the parameters that control the behavior of
the iterator. Let Τ be the set of iterators provided by
INDUS. If τ ∈ Τ, then τ.name corresponds to the name of the
program to be executed and τ.param specifies the list of
parameters associated with τ. The i-th parameter is
represented by τ.param[i]

In order to fully specify an instantiator, the following
information must be provided:
• An iterator,
• An assignment of values for the iterators parameters,
• A mapping indicating how to create an instance of a

particular concept Χ based on the information returned
by the iterator, and

• The query capabilities offered by the data sources
when it is accessed though this instantiator.

Formally, if Χ is a ground concept, its operational
definition (Χ.D) corresponds to the set of instantiators that
can be used to retrieve instances of Χ. If ι ∈ Χ.D,
• The concept associated with the instantiator must be Χ

(ι.concept ≡Χ).
• ι.iterator ∈ Τ.
• ι.values is the list of values assigned to the parameters of

ι.iterator. Note that |ι.iterator.param| must be equal to |ι.values|,
and the value assigned to the ith-parameter,
ι.iterator.param[i], corresponds to ι.values[i].

• ι.mapping specifies how to build an instance of Χ based
on the values returned by the instantiator. Therefore,
ι.mapping is a list where each element specifies which
attribute returned by the instantiator must be assigned
to which attribute of Χ. Thus, any information returned
by the instantiator which is marked as ι.mapping[i] must be
assigned to the corresponding Χ.atts[i].

• ι.queryCapabilities is the list of conditions associated with the
instantiator ι where the ith-element of the list is
ι.queryCapaibilities[i]. If b ∈ ι.queryCapabilities, then b.attribute ∈
Χ.atts and b.operator ∈ Ο, where Ο is the set of operators
supplied by INDUS.

The definition of a compound concept X specifies the set of
operations that must be applied over a set of instances of
other previously defined concepts in order to determine the
set of instances of X. INDUS uses four operations for
operationally defining new compound concepts based on
the existing concepts: selection, projection, vertical

integration and horizontal integration. We say that two
concepts X and Y have equivalent structure if:
• |Χ.atts| = |Υ.atts|, and
• ∀1 ≤ i ≤ |Χ.A| the ith-element of both lists has the same

domain or there is a natural transformation between the
corresponding domains of Χ andΥ.

Selection: Given two concepts X and Y that have
equivalent structure, the operational definition of Υ in terms
of some selection operation on Χ can be described as Υ.D :=
σs (X), where s is a conjunction of built-in predicates. A
built-in predicate is of the form (argument operator
argument), where argument follows the format
function1(attribute1,attribute2,…). Thus, the previous
definition implies that the set of instances of Υ is the set of
instances of Χ that satisfy the condition expressed by s.

Projection: Let X and Y be two concepts and let p be a list
with equivalent structure with Y. The operational definition
of Y in terms of a projection over the concept X can be
expressed as: Υ.D := πp (Χ), where p is a list of functions
applied over Χ attributes. Thus, when Υ is instantiated, the
set of instances of Υ is the set of instances of Χ after
applying the functions specified in p to the attributes in Χ.

Vertical Integration: Vertical fragmentation occurs when
the instances of a concept are fragmented across two or
more data sources. Thus, each data source stores values of
a subset of attributes of the concept. We assume the
existence of a special attribute (corresponding to a unique
key or index) that is stored at each source so that the
corresponding fragments of each instance can be combined.
Vertical integration of two concepts A and B into a new
concept AB involves combining each instance of A with the
corresponding instance of B followed by selection and
projection operations (as needed). Let Χ, Υ and Ζ be three
concepts such that |Χ.atts| = |Υ.atts|⋅|Ζ.atts|, where “⋅”
represents the list concatenation operation. The operational
definition of Χ in terms of the Cartesian product of Υ and Ζ
can be written as X.D := Υ× Ζ. Thus, the operational
definition of Χ is described in terms of the vertical
integration of Υ and Ζ as follows: Χ.D := πp (σs (Υ× Ζ)). In
general, a concept Χ may include n concepts Υ1, Υ2,…, Υn
in its operational definition using a vertical integration
operation, as follows: Χ.D := πp (σs (Υ1 × Υ2 × … × Υn)).

Horizontal Integration: In the case of horizontal
fragmentation, instances of a concept X are distributed
across several information sources. If Χ, Υ, and Ζ are three
concepts with equivalent structure Χ.D, the operational
definition of Χ, is defined in terms of the concepts Υ and Ζ
using a horizontal integration operation, as follows: Χ.D :=
Υ ∪ Z. Thus, the set of instances of Χ is obtained by taking
the union of the instances of Υ and instances of Ζ. A more
general definition of a horizontal integration operation may
include a selection, a projection and the union of more than
two concepts. Thus, if Χ is a concept, its operational
definition can be based on a horizontal integration operation

 5
as follows: Χ.D := πp (σs (Υ1 ∪ Υ2 ∪ … ∪ Υn)). We
assume the union operation is applied over bags (not over
sets) in our current prototype. This means that duplicated
instances are not eliminated.

Note that the selection and projection operations are special
cases of the vertical integration or the horizontal
integration. Therefore, the general form of the operational
definition of a compound concept is of the form: Χ.D := πp
(σs (Υ1 • Υ2 • … • Υn)), where Χ stands for a compound
concept, s is the selection criteria, p is the projection
criteria, and each Υi makes reference to a predefined
concept and • is one of the compositional operations
defined in INDUS (e.g., ∪ or × in our current
implementation).

C. Global Ontology

 In general, an Ontology specifies terms and relationships
among terms [22]. In INDUS, a global ontology consists of
the set of concepts that are used to describe entities and
relationships in the domain of discourse (e.g., molecular
biology). In principle, the global ontology can be tailored to
suit the needs of each user or each group of users that share
a common vocabulary. Queries are expressed in terms of
concepts in the global ontology. The global ontology can
be extended by defining new concepts in terms of existing
concepts using a well-defined set of compositional
operations. From a user’s perspective, the global ontology
used in INDUS hides the complexity of accessing and
retrieving the information from the data sources. Semantics
of user-defined concepts in the global ontology are mapped
to the semantics associated with the ground concepts
associated with the individual information sources (i.e.,
concepts in the respective local ontologies) using
compositional operations and/or predefined or user-
supplied functions.

This mapping process allows the user to resolve semantic
mismatches among the different sources. Examples of
semantic mismatches include: the use of the same term to
describe two semantically different concepts, or when two
different concepts are denoted by the same term. INDUS
also supports transformations between values of attributes
that are used to define concepts. Such transformations can
be used to map values of attributes associated with
instances retrieved from different sources so that they are
expressed in terms of a common unit (e.g., to transform
temperature values from degrees Fahrenheit to degrees
Celsius) or to compute values of an attribute associated
with instances of a compound concept in terms of values of
one or more attributes in the corresponding instances of its
component concepts.

 The ontological layer includes the global ontology, the
data-source specific ontologies (i.e., the corresponding set
of ground concepts) and the information needed for
obtaining instances of a ground concept from a
corresponding data source. Figure 2 shows the definition of

a simplified ontology for the PROSITE database, composed
of two basic concepts: Family and Motif. Each concept is
described in terms of the corresponding attributes (which
define the structure of the concept).

D. Queries

In INDUS, a query over a concept Χ allows users to obtain
instances of Χ. Formally, if Q is a query over a concept Χ,
it is specified by a projection and selection operation over
instances of Χ as follows: Q := πp (σs (Χ)).

Fig. 2 Basic Ontology for PROSITE

INDUS provides a query-centric algorithm that takes as
input a query Q and returns the set of instances that satisfy
Q. We illustrate the query-centric approach through an
example. Assume a global concept corresponding to a table
called PROTEIN with columns ID, NAME, TYPE. Assume
that there are two data sources A and B that contain
information about proteins. In a query-centric approach, the
PROTEIN concept is described in terms of ground concepts
associated with the sources A and B as follows:

Create Or Replace View PROTEIN (Id, Name, Type) As
Select Id, Name, Type From A.Protein
Union
Select Id, Name, Type From B.Protein;

If a new data source D stores different chemical compounds
(including proteins) in a table, it can be added to the
definition as follows:

Create Or Replace View PROTEIN (Id, Name, Type) As
Select Id, Name, Type From A.Protein
Union
Select Id, Name, Type From B.Protein
Union
Select Id, Name, ‘Enzyme’ From C.Protein
Union
Select Id, Name, Type From D.chemical_compound
Where D.kind = ‘Protein’;

The procedure for answering a query Q finds an equivalent
rewriting Q’ of Q expressed in terms of ground concepts
and compositional operations (vertical integration and

 6
horizontal integration in our current prototype). Q’ is
represented by an expression tree, where each internal node
corresponds to a well-defined operation (union, projection
etc.) and each leaf node corresponds to a ground concept.

Any compound concept that appears in the query is
recursively replaced by its definition to arrive at a plan (an
expression tree) in which only the ground concepts appear
as leaves. Therefore, each non leaf represents an operational
definition described by πp (σs (node1• node2 • … • noden)),
where nodej represents a descendant node of nodei, for i > j.
Here, • corresponds to a cross product operations (×) if
vertical integration operation is required. Similarly, a union
operation (∪) is used if a horizontal integration is needed.
In the case of a leaf node nodei, the associated operational
definition of nodei corresponds to the formula πp(σs (Χ))
where Χ is a ground concept. The algorithm for finding the
expression tree of a query Q is presented Figure 3.

Fig 3. The ConstructTree algorithm

Fig. 4 Pseudo-algorithm for Executing the Expression Tree.

 After the plan is created, the next step is execution. The
instances that correspond to the extensional definition of
each ground concept associated with an information source
are extracted from the respective source. The instances
corresponding to each internal node of the plan (execution

tree) are constructed by appropriately combining the set of
instances returned by its descendents. The process
terminates when the set of instances for the root of the tree
is obtained. The algorithm for executing an expression tree
is shown in Figure 4. For example, consider a query posted
over the PROTEIN concept as follows (Figure 5):

Select Id, Name From PROTEIN Where type=’Enzyme’

The first step is to create an expression tree for the query
based on the definition of the PROTEIN concept. The
definition of the PROTEIN concept is recursively rewritten
until it is expressed in terms of ground concepts associated
with the available data sources. The resulting plan
(execution tree) is traversed in post-order fashion. The leaf
nodes corresponding to ground concepts are `executed’ by
invoking the corresponding instantiators. One of the
common optimization approaches we adopt is to push down
the selection and projection operations as close to the leaves
of the tree as possible.

Fig. 5 Execution order of the expression tree

IV. IMPLEMENTATION OF INDUS

This section describes the implementation of the data
integration component of INDUS. This component of
INDUS consists of five principal modules as shown in
Figure 6: graphical user interface, common global ontology
area, instantiator library, query resolution module, and
private user workspace.

Fig. 6 INDUS modules

The graphical user interface allows the users to interact
with the INDUS. It enables users to describe ontologies,
define operational definitions of ground concepts;
compound concepts and queries, register the iterators, and
execute queries.

 7

The common global ontology area manages the repository
where definitions of ontologies, ground concepts,
compound concepts, queries, and iterator signatures are
stored.

The instantiator library contains the set of functions used to
interact with the individual data sources. Each instantiator
is based on a particular iterator. The latter interacts directly
with a data source. Each iterator is implemented by a Java
class. An instantiator supplies the parameters that control
the behavior of the corresponding iterator. It also maps the
instances returned by the iterator into instances of the
corresponding ground concept. Thus, the functionality of an
instantiator (together with the corresponding iterator)
corresponds roughly to that of a wrapper. However, unlike
wrapper-based data integration systems that often have
ontologies and the required semantic mappings hardwired
into the wrappers, INDUS enforces a clear separation of
functionality between ontologies defined by the users and
the instantiators that call the relevant iterators to retrieve
instances associated with ground concepts.

The query resolution module accepts a query expressed in
terms of concepts in the global ontology as input and
returns the answer to the query constructed from the
relevant data sources.

Finally, the user workspace module allows INDUS to
manage the private workspace where users store answers
for posted queries. The required partial results are also
stored in this area. In particular, the set of instances
associated with each ground concept present in the
expression tree associated with the query are stored as
populated relational tables. Furthermore, each internal node
of the expression tree, which represents a set of
compositional operations described in the operational
definition of a particular compound concept, is materialized
as a relational view defined in terms of tables or views
previously created and materialized by the query resolution
algorithm.

The modular design of INDUS ensures that each module
can be updated and alternative implementation easily
explored. Modularization enables INDUS to use different
network architectures. For example, INDUS may be
implemented in a centralized architecture, locating all the
modules in a single server, or in an architecture where
modules are distributed across several servers. Thus, an
application server may support the operation of the
graphical user interface, the Iterators library and the query
resolution modules sharing the same Java virtual machine.
A repository server may support the operation of the
common global ontology area and the user workspace
modules sharing the same relational database system. For
the current prototype of INDUS, we used JSP (Java Server
Pages) for developing the graphical user interface. It is
hosted in an Apache Tomcat 4.0 web server. The common
global ontology area was developed under a relational
database in order to provide a robust environment to store

and manipulate ontologies of large size. Relational database
technology also offers us an efficient way to support
multiple concurrent users. Standard protocols such as
ODBC and JDBC can be used to share the ontology with
other applications as needed. The user workspace resides in
a relational database. This enables users to manipulate the
results of queries using relational database operations.
Although the workspaces are private for each user, using
mechanisms for granting privileges provided by the
relational database management system (RDBMS) enables
users to share their results with others if they so desire. The
Iterators and the resolution algorithm are implemented in
Java. Thus, all essential components of INDUS are platform
independent.

At least four different roles may be played by a user when
interacting with INDUS. As a domain scientist, a user may
define ontologies, compound concepts and queries. Also, a
user may execute queries and manipulate the retrieved data.
In this role, the user is expected to have knowledge of the
relevant domain, some familiarity with the data sources and
their capabilities, but no deep knowledge of programming.
As an ontology engineer, a user may expand the iterator
library by programming new iterators, define the ground
concepts associated with new data sources, or new modes
of interaction with existing data sources. As an
administrator, a user is able to install the INDUS software,
including the graphical user interface and the query
resolution module, and set up and manage the databases
supporting the common global ontology module and the
user workspace, which includes adding new users to the
system. As a developer, a user may add new compositional
operations to INDUS, modifying the graphical user
interface and the query resolution module. In practice, a
given user may play multiple roles.

Setting up the INDUS data integration environment
involves installation of INDUS and a relational database
system that is to be used by INDUS for the ontolgies and
user workspace. Incorporation of new data sources into
INDUS involves registering the data sources, defining the
relevant ground concepts and implementing the necessary
instantiators and iterators. Using INDUS to extract and
integrate data from multiple sources involves defining the
relevant compound concepts and functions and formulating
and executing queries expressed in terms of concepts in the
global ontology.

V. SUMMARY AND DISCUSSION

A. Summary

In this paper, we have described the design and
implementation of the data integration component of
INDUS (Intelligent Data Understanding System)
environment for flexible information extraction and
information integration and knowledge acquisition from
heterogeneous, distributed, autonomous information
sources. INDUS implements a federated, query-centric
approach to data integration. Hence, the information

 8
extraction operations to be executed are dynamically
determined on the basis of the user-supplied ontology and
the query supplied by the user or an application program
(e.g. a decision tree learning program which needs counts
of instances that satisfy certain criteria).

B. Related Work

There has been a large body of related work on data
integration. Early work on multi-database systems [21]
focused on relational or object-oriented database views for
integrated access to data from several relational databases.
More recently, mediators [24] and wrappers have been
developed for information integration from multiple data
repositories (including semi-structured and unstructured
data). Examples include the TSIMMIS project at Stanford
University [7], the SIMS project [17], the Ariadne project
[26] at the University of Southern California, the Hermes
project at the University of Maryland [23], NIMBLE -- a
commercial system based on research at the University of
Washington [20], and the TAMBIS project in UK [8].

INDUS has been inspired by, and builds on previous work
by several groups on data integration, and in particular,
logic-based and ontology-based approaches to data
integration [5,6]. A major goal of the INDUS project is to
provide modular, extensible, open source software
environment for ontology-based information integration
and data-driven knowledge acquisition from heterogeneous,
distributed, autonomous information sources.

The Information Manifold System developed at AT&T Bell
Laboratories [3] is a heterogeneous data integration system
offering a unified query interface for retrieving structured
information stored in the WWW and in internal sources.
Unlike INDUS which uses a query-centric approach,
Information Manifold uses a source-centric approach for
answering queries. Like INDUS, Information Manifold
utilizes definition of data sources capabilities to perform
query decomposition and query resolution. However,
unlike Information Manifold, INDUS allows users to define
several access points for a concept in a data source, each
allowing different binding parameters. Information
Manifold allows definition of only one capability record per
data source. INDUS offers support for several operands (=,
<, > etc.), while in Information Manifold only the equality
operator is supported.

The Stanford-IBM Manager of Multiple Information
Sources (TSIMMIS) is a system that facilitates the rapid
integration of heterogeneous data sources [7]. The data
integration TSIMMIS architecture is based on the concept
of wrappers and mediators. Each wrapper knows how to
deal with a particular data source and it is able to receive a
query in a common language -- Object Exchange Model
(OEM) and to transform it into a particular language
understood by the data sources. Both INDUS and
TSIMMIS use query-centric approach to data integration.
However, unlike TSIMMIS, INDUS maintains a clear
separation between ontologies used for data integration

(which are supplied by users) and the procedures that use
ontologies to perform data integration. This allows INDUS
users to replace ontologies used for data integration ‘on the
fly’. This makes INDUS attractive for data integration tasks
that arise in exploratory data analysis wherein scientists
might want to experiment with alternative ontologies.

The Transparent Access to Multiple Bioinformatics
Information System (TAMBIS) is an ontology centered
system for evaluating queries that offers access to multiple
heterogeneous bioinformatics data sources [8]. TAMBIS is
based on three-layer wrapper/mediator architecture. Like
INDUS, it uses a query-centric approach to data integration.
It includes an ontological layer and a graphical user
interface for querying. The ontology allows the creation of
new concepts based on compositional operations of
previously defined concepts using a restricted grammar
based on the description logic language GRAIL [9].
TAMBIS returns the answer for a query as an HTML file.
Thus, the size of the main memory may limit the amount of
data that may be returned in response to a query. In
contrast, INDUS stores the answer for a query in a user
private area implemented by a relational database system.
Thus, queries that return large amounts of data are
manipulated more efficiently in terms of hardware and
software resources. INDUS also provides better support for
defining multiple ontologies for use in different contexts by
different users.

C. Work in Progress

INDUS is a prototype for a data integration system for a
scientific discovery environment. As a prototype, it has
helped us to understand and demonstrate elements of a
promising approach for design of software environments
for information integration and knowledge acquisition from
heterogeneous, distributed information sources. Some
directions for ongoing and future research include:
a) Further development of the INDUS prototype into a

platform to support exploratory data analysis and
knowledge acquisition in representative problems in
bioinformatics and computational biology e.g., data-
driven construction of classifiers of protein function
[11, 12]; and predictors of protein-protein interaction
[25].

b) Extending the information integration framework to
support extraction of sufficient statistics (e.g., counts
that satisfy certain constraints on attribute values)
needed for construction of classifiers. This can be
accomplished by utilizing aggregate operators for
retrieving such statistics (if such operators are
supported by the data sources) or by supplying
executable code in the form of mobile agents [13] that
can execute in a secure environment where the data and
computation resources are available to compute the
desired statistics instead of bringing the raw data to the
user. This would allow us to extend the recently
developed distributed learning algorithms [14,15] to
work with heterogeneous data sources.

 9
c) Extending recently-developed algorithms for learning

from multiple relational databases [16] to work with
heterogeneous data sources, taking advantage of the
capability of INDUS to view heterogeneous
information sources as though they were a collection of
relational databases.

d) Extending recently developed algorithms for learning
from attribute value taxonomies (a special type of
ontologies) and partially specified data [18] to work
with data from heterogeneous sources.

e) Performance improvements in INDUS through the use
of more sophisticated query optimization methods, and
data caching methods.

f) Exploration of the use of emerging frameworks for
data and metadata description, ontologies, and data
source (or more generally resource description), and
registry services, being developed as part of the
Semantic Web project and related efforts in INDUS.

g) Exploration of methods for automatically learning
mappings between data sources from examples [19],
algorithms for ontology merging, and algorithms for
learning specific types of ontologies (e.g., attribute
value taxonomies) from data.

h) Extension of approaches used in INDUS to support
user and context-specific information integration in
peer-to-peer environments and distributed sensor
networks.

Acknowledgements
This research is sponsored in part by National Science Foundation ITR
(Grant Number IIS – 0219699). The views and conclusions contained in
this document are those of author(s) and should not be interpreted as
necessarily representing official policies or endorsements, either expressed
or implied, of the United States Government or of the sponsoring
institution.

REFERENCES

[1] Honavar, V., Millar, L., and Wong, J. 1998. Distributed Knowledge
Networks. Design, Implementation, and Applications In: Proceedings of
the IEEE Information Technology Conference. pp. 87-90. IEEE Press.
[2] Calvanese, D., Giacomo, G., Lenzerini, M., et al., 1998. Information
integration: Conceptual modeling and reasoning support. In: CoopIS’98
[3] Levy, A., 1998. The Information Manifold approach to data
integration. In: IEEE Intelligent Systems, 13 12-16, August 19 1998.
[4] Haas L.M., Schwarz, P.M., Kodali, P., Kotlar, E., Rice, J.E., Swope,
W.P., 2001. DiscoveryLink: A system for integrated access to life sciences
data sources. In: IBM System Journal . Vol 40. No 2. 2001.
[5] Levy, A., 2000. Logic-based techniques in data integration. Logic
Based Artificial Intelligence, Edited by Jack Minker. Kluwer Publishers.
[6] Ullman, J., 1997. Information integration using logical views. In: 6th

ICDT.Pages 19-40, Delphi, Greece.
[7] Garcia-Molina , Y. Papakonstantinou , D. Quass , A. Rajaraman , Y.
Sagiv , J. Ullman , V. Vassalos , J. Widom (1996). The TSIMMIS
approach to mediation: Data models and Languages. Journal of Intelligent
Information Systems
[8] Paton, N.W., Stevens, R., Baker, P.G., Goble, C.A., Bechhofer, S.,
1999. Query processing in the TAMBIS bioinformatics source integration
system. In: Proc. 11th Int. Conf. on Scientific and Statistical Databases
(SSDBM), IEEE Press, 138-147, 1999.
[9] Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.,
Goble, C., Brass, A, 2000. TAMBIS: Transparent access to multiple
bioinformatics information sources. Bioinformatics, 16:2 PP.184-186.
[10] Reinoso Castillo, J 2002. Ontology-Driven Information Extraction
and Integration from Autonomous, Heterogeneous, Distributed data
sources – A Federated Query-Centric approach. Masters Thesis. Artificial

Intelligence Research Laboratory, Department of Computer Science, Iowa
State University.
[11] Wang, X., Schroeder, D., Dobbs, D., and Honavar, V. (2003).
Data-Driven Discovery of Rules for Protein Function Classification Based
on Sequence Motifs. Information Sciences. In press.
[12] Andorf, C., Dobbs, D., and Honavar, V. (2003) Reduced Alphabet
Representations of Amino Acid Sequences for Protein Function
Classification. Information Sciences. In press.
[13] Wong, J., Helmer, G., Naganathan, V. Polavarapu, S., Honavar, V.,
and Miller, L. (2001) SMART Mobile Agent Facility. Journal of Systems
and Software. Vol. 56. pp. 9-22.
[14] Caragea, D., Silvescu, A., and Honavar, V. (ISDA 2003) Decision
Tree Induction from Distributed, Heterogeneous, Autonomous Data
Sources. In: Proceedings of the Conference on Intelligent Systems Design
and Applications. In press
[15]Caragea, D., Silvescu, A., and Honavar, V. (2001a). Analysis and
Synthesis of Agents that Learn from Distributed Dynamic Data Sources.
Invited chapter. In: Wermter, S., Willshaw, D., and Austin, J. (Ed.).
Emerging Neural Architectures Based on Neuroscience. Springer-Verlag.
In press.
[16] Atramentov, A., Leiva, H., and Honavar, V. (ILP 2003). Learning
Decision Trees from Multi-Relational Data. In: Proceedings of the
Conference on Inductive Logic Programming To appear.
[17] Arens,Y., Chee, C., Hsu, C., and Knoblock, C. (1993) Retrieving and
Integrating Data from Multiple Information Sources. International Journal
of Intelligent and Cooperative Information Systems. Vol. 2, No. 2. Pp. 127-
158
[18] Zhang, J. and Honavar, V. (2003). Learning Decision Tree
Classifiers from Attribute-Value Taxonomies and Partially Specified Data.
In: Proceedings of the International Conference on Machine Learning.
Washington, DC. In press.
[19] Madhavan, J., Bernstein, P., Halevy, A., and Domingos, P.
2002. Representing and Reasoning about Mappings between Domain
Models. Proceedings of the Eighteenth National Conference on Artificial
Intelligence(pp.80-86). Edmonton, Canada: AAAI Press.
[20] Draper, D., Halevy, A., and Weld, D. (2001). The NIMBLE XML
Data integration System. In: Proceedings of the International Conference
on Data Engineering (ICDE 01).
[21] Sheth, A.P. and J. A. Larson (1990) Federated database systems for
managing distributed, heterogeneous and autonomous databases, ACM
Computing Surveys 22 pp. 183--236.
[22] Sowa, J. (1999) Knowledge Representation: Logical, Philosophical,
and Computational Foundations. New York: PWS Publishing Co.
[23] Subrahmanian, V.S., Sibel Adali, Anne Brink, James J. Lu, Adil
Rajput, Timothy J. Rogers, Robert Ross, Charles Ward (2000). HERMES
A Heterogeneous Reasoning and Mediator System.
[24] Wiederhold, G. and M. Genesereth (1997) The Conceptual Basis for
Mediation Services, IEEE Expert, Vol.12 No.5 pp. 38-47
[25] Yan, C., Dobbs, D., Honavar, V.,(2003) Identification of Residues
Involved in Protein-Protein Interaction from amino acid sequence – A
Support Vector Machine approach. In: Proceedings of Intelligent Systems
Design and Application
[26] Knoblock, C.A., Minton, S. Ambite J.L., Ashish, N. Muslea, I.
Philpot, A.G. and Tejada, S. The Ariadne Approach to Web-Based
Information Integration. International the Journal on Cooperative
Information Systems 10(1/2), pp145-169, 2001.

