
Information-Flow Attacks Based on Limited

Observations ⋆

Damas P. GRUSKA

Institute of Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia,

gruska@fmph.uniba.sk.

Abstract. Two formal models for description of timing attacks are pre-
sented, studied and compared with other security concepts. The models
are based on a timed process algebra and on a concept of observations
which make visible only a part of a system behaviour. An intruder tries
to deduce some private system activities from this partial information
which contains also timing of actions. To obtain realistic security char-
acterizations some limitations on observational power of the intruder are
applied. It is assumed that the intruder has only limited time window to
perform the attack or time of action occurrences can be measured only
with a given limited precision.

Keywords: process algebras, timing attacks, information flow

1 Introduction

Several formulations of a system security can be found in the literature. Many
of them are based on a concept of non-interference (see [GM82]) which assumes
the absence of any information flow between private and public systems activi-
ties. More precisely, systems are considered to be secure if from observations of
their public activities no information about private activities can be deduced.
This approach has found many reformulations for different formalisms, computa-
tional models and nature or “quality” of observations. They try to capture some
important aspects of systems behaviour with respect to possible attacks against
systems security, often they are tailored to some types of specific attacks. An
overview of language-based approaches to information flow based security can
be found in [SM03].

Timing attacks have a particular position among attacks against systems
security. They represent a powerful tool for “breaking” “unbreakable” systems,
algorithms, protocols, etc. For example, by carefully measuring the amount of
time required to perform private key operations, attackers may be able to find
fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems
(see [Ko96]). This idea was developed in [DKL98] where a timing attack against
smart card implementation of RSA was conducted. In [HH99], a timing attack

⋆ Work supported by the grant VEGA 1/3105/06 and APVV-20-P04805.

on the RC5 block encryption algorithm, in [SWT01] the one against the popular
SSH protocol and in [FS00] the one against web privacy are described.

In the literature several papers on formalizations of timing attacks can be
found. Papers [FGM00], [FGM03], [GM04] express the timing attacks in a frame-
work of (timed) process algebras. In all these papers system actions are divided
into private and public ones and it is required that there is not an interference
between them. More precisely, in [FGM00,FGM03] it is required that on a level
of system traces which do not contain internal actions one cannot distinguish
between system which cannot perform private actions and system which can
perform them but all of them are reduced to internal actions. In paper [GM04]
a concept of public channels is elaborated. In the above mentioned papers also
a slightly different approach to system security is presented - the system be-
haviour must be invariant with respect to composition with an attacker which
can perform only private actions ([FGM00], [FGM03]) or with an attacker which
can see only public communications ([GM04]).

In the presented approach actions are not divided to private and public ones
on a system description level. Instead of this we work with a concept of observa-
tions. These are mappings on the set of actions which can hide some of actions
(for example, internal actions, communications via encrypted channels, actions
hidden by a firewall etc) but not elapsing of time. Since many of timing attacks
described in the literature are based on observations of “internal” actions we
work also with this information what is not the case of the above mentioned
papers. Moreover we will study two (realistic) restrictions of an observational
power of an intruder. First we will assume that the intruder has only a limited
time window for observation, i.e. system to be attacked can be observed only for
some (finite) time interval (we will call this limited access attacks). In the second
case we will assume that the intruder can measure time of action occurrences
only with some given precision (limited precision attacks). In this way we can
consider timing attacks which could not be taken into account otherwise. More-
over, the resulting security properties are more adequate for real applications for
which standard non-information flow security property is too restrictive.

The paper is organized as follows. In Section 2 we describe the timed process
algebra which will be used as a basic formalism. In Section 3 we present the
notion of non-information flow property in the case of unlimited, limited access
and limited precision (timing) attacks for both passive and active cases. The
presented formalism is compared with other security concepts described in the
literature and it is shown that it is more general and stronger in the sense that
it can describe attacks which are not captured by the other concepts.

2 Timed Process Algebra

In this section we introduce the Timed Process Algebra, TPA for short. It is
based on Milner’s CCS (see [Mil89]) but the special time action t which ex-
presses elapsing of (discrete) time is added. The presented language is a slight
simplification of the Timed Security Process Algebra introduced in [FGM00].

2

We omit the explicit idling operator ι used in tSPA and instead of this we use
an alternative approach known in the literature and we allow implicit idling of
processes. Hence processes can perform either ”enforced idling” by performing t
actions which are explicitly expressed in their descriptions or ”voluntary idling”.
But in the both situations internal communications have priority to actions t in
the case of the parallel operator. Moreover we do not divide actions into private
and public ones as it is in tSPA. TPA differs also from the tCryptoSPA (see
[GM04]) besides absence of value passing, by semantics of choice operator +
which in some cases abandons time determinacy which is strictly preserved in
TPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols τ and t, and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}, Actt = Act ∪ {t}. We assume that
a, b, . . . range over A, u, v, . . . range over Act, and x, y . . . range over Actt. The
set of TPA terms over the signature Σ is defined by the following BNF notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
µX− is the binding construct, op ∈ Σ. Assume the signature Σ =

⋃
n∈{0,1,2} Σn,

where

Σ0 = {Nil}

Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}

Σ2 = {|, +}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt → Actt are such that S(a) = S(ā) for a ∈ A, S(τ) = τ
and S(t) = t. The set of CCS terms consists of TPA terms without t action. We
will use an usual definition of opened and closed terms where µX is the only
binding operator. Closed terms are called processes. Note that Nil will be often
omitted from processes descriptions and hence, for example, instead of a.b.Nil
we will write just a.b.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation → is a subset of TPA×Actt×TPA. We write
P

x
→ P ′ instead of (P, x, P ′) ∈ → and P 6

x
→ if there is no P ′ such that P

x
→ P ′.

The meaning of the expression P
x
→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x
→ we will denote that there exists a term P ′ such

that P
x
→ P ′. We define the transition relation as the least relation satisfying

3

the following inference rules:

x.P
x
→ P

A1
u.P

t
→ u.P

A2

Nil
t
→ Nil

A3
P

u
→ P ′

P | Q
u
→ P ′ | Q

Pa1

P
u
→ P ′

Q | P
u
→ Q | P ′

Pa2
P

a
→ P ′, Q

a
→ Q′

P | Q
τ
→ P ′ | Q′

Pa3

P
t
→ P ′, Q

t
→ Q′, P | Q 6

τ
→

P | Q
t
→ P ′ | Q′

Pa4
P

u
→ P ′

P + Q
u
→ P ′

S1

P
u
→ P ′

Q + P
u
→ P ′

S2
P

t
→ P ′, Q

t
→ Q′

P + Q
t
→ P ′ + Q′

S3

P
x
→ P ′

P \ M
x
→ P ′ \ M

, (x, x 6∈ M) Res
P [µXP/X]

x
→ P ′

µXP
x
→ P ′

Rec

P
x
→ P ′

P [S]
S(x)
→ P ′[S]

Rl

Here we mention rules that are new with respect to CCS. Axioms A2, A3
allow arbitrary idling. Concurrent processes can idle only if there is no possibil-
ity of an internal communication (Pa4). A run of time is deterministic (S3). In
the definition of the labeled transition system we have used negative premises
(see Pa4). In general this may lead to problems, for example with consistency
of the defined system. We avoid these dangers by making derivations of τ in-
dependent of derivations of t. For an explanation and details see [Gro90]. Re-
garding behavioral relations we will work with the timed version of weak trace
equivalence. Note that here we will use also a concept of observations which
contain complete information which includes also τ actions and not just actions
from A and t action as it is in [FGM00]. For s = x1.x2.xn, xi ∈ Actt we

write P
s
→ instead of P

x1→
x2→ . . .

xn→ and we say that s is a trace of P . The
set of all traces of P will be denoted by Tr(P). We will write P

x
⇒ P ′ iff

P (
τ
→)∗

x
→ (

τ
→)∗P ′ and P

s
⇒ instead of P

x1⇒
x2⇒ . . .

xn⇒. By ǫ we will denote the
empty sequence of actions, by Succ(P) we will denote the set of all successors

of P and Sort(P) = {x|P
s.x
−→ for some s ∈ Actt⋆}. If the set Succ(P) is finite

we say that P is finite state.

Definition 1. The set of timed traces of a process P is defined as
Trt(P) = {s ∈ (A ∪ {t})⋆|∃P ′.P

s
⇒ P ′}. Two process P and Q are weakly

timed trace equivalent (P ≈w Q) iff Trt(P) = Trt(Q).

4

3 Information Flow

In this section we will formalize a notion of timing attacks based on an informa-
tion flow between invisible (private) and visible (public) activities of a system.
At the beginning we assume that an attacker is just an eavesdropper who can
see a (public) part of the system behaviour and who tries to deduce from this
information some private information. In the case of timing attacks time of oc-
currences of observed events plays a crucial role i.e. timing of actions represents
a fundamental information. First we will not put any restrictions on intruder’s
capability. Later we will model two restricted or limited intruders.

To formalize the attacks we do not divide actions to public and private ones
on the level of process description as it is done for example in [GM04,BG04] but
instead of this we use more general concept of observations. This concept was
recently exploited in [BKR04], [Gru04] and [BKMR04] in a framework of Petri
Nets, process algebras and transition systems, respectively, where a concept of
opacity is defined with the help of the observations.

Definition 2. An observation O is a mapping O : Actt → Actt ∪ {ǫ} such that
O(t) = t and for every u ∈ Act,O(u) ∈ {u, τ, ǫ}.

An observation expresses what can an observer - eavesdropper see from a
system behaviour. It cannot rename actions but only hide them completely
(O(u) = ǫ) or indicate just a performance of some action but its name cannot
be observed (O(u) = τ). Observations can be naturally generalized to sequences
of actions. Let s = x1.x2.xn, xi ∈ Actt then O(s) = O(x1).O(x2).O(xn).
Since the observation expresses what an observer can see we will alternatively
use both terms (observation - observer) with the same meaning.

In general, systems respect the property of privacy if there is no leaking
of private information, namely there is no information flow from the private
level to the public level. This means that the secret behavior cannot influence
the observable one, or, equivalently, no information on the observable behavior
permits to infer information on the secret one. Moreover, in the case of timing
attacks, timing of actions plays a crucial role. In the presented setting private
actions are those that are hidden by the observation O, i.e. such actions a that
O(a) ∈ {τ, ǫ} and for public actions we have O(a) = a i.e the observer can see
them. Now we are ready to define Non-Information Flow property (NIF) for
TPA processes, but first some notations are needed. An occurrence of action x
(or of sequence s′) in a sequence of actions s we will indicate by x ∈ s (s′ ∈ s)
i.e. x ∈ s (s′ ∈ s) iff s = s1.x.s2 (s = s1.s

′.s2) for some s1, s2 ∈ Actt⋆ and for
S ⊆ Actt we indicate S ∩ s 6= ∅ iff x ∈ s for some x ∈ S otherwise we write
S ∩ s = ∅. By s|M we will denote a sequence obtained from s by removing all
elements not belonging to the set M .

Clearly, NIF property has to be parameterized by observation O and by set
of private actions S which occurrence is of interest. In other words, process P
has NIF property if from the observation of its behaviour (given by O) it cannot
be deduced that some of given private actions (S) were performed. We expect

5

a consistency between O and S in the sense that the observation does not see
actions from S. The formal definition follows.

Definition 3. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ǫ}
for a ∈ S. We say that process P has NIFS

O property (we will denote this by
P ∈ NIFS

O) iff whenever S ∩ s1 6= ∅ for some s1 ∈ Tr(P) then there exists
s2 ∈ Tr(P) such that S ∩ s2 = ∅ and O(s1) = O(s2).

Informally, process P has NIFS
O property if the observer given by O (note

that (s)he can always see timing of actions) cannot deduce that process P has
performed a sequence of actions which includes some private (secrete) actions
from S. In other words, P ∈ NIFS

O means that observer O cannot deduce any-
thing about execution of actions from S and hence P is robust against attacks
which try to deduce that some private action from S was performed. By NIFS

O

we will denote also the set of processes which have NIFS
O property.

Example 1. Let P = ((b.t.c̄ + a.c̄)|c) \ {c} and O(a) = O(b) = ǫ,O(τ) = τ .
The observer given by O can detect occurrence of the action a but not b i.e.

P ∈ NIF
{b}
O but P 6∈ NIF

{a}
O since from observing just τ action (without any

delay) it is clear that action a was performed. ⊓⊔

Now we compare NIF property with another security concept known in the
literature, with Strong Nondeterministic Non-Interference, SNNI, for short (see
[FGM00]). We recall its definition . Suppose that all actions are divided in two
groups, namely public (low level) actions L and private (high level) actions H
i.e. A = L∪H, L∩H = ∅. Then process P has SNNI property if P \H behaves
like P for which all high level actions are hidden for an observer. To express this
hiding we introduce hiding operator P/M, M ⊆ A, for which if P

a
→ P ′ then

P/M
a
→ P ′/M whenever a 6∈ M ∪ M̄ and P/M

τ
→ P ′/M whenever a ∈ M ∪ M̄ .

Formal definition of SNNI follows.

Definition 4. Let P ∈ TPA. Then P ∈ SNNI iff P \ H ≈w P/H.

Relationship between NIFS
O and SNNI express the following theorem (see

[Gru04]). Note that it is clear from this theorem that SNNI property is just a
special case of NIFS

O property.

Theorem 1. P ∈ SNNI iff P ∈ NIFH
O for O(h) = τ , h ∈ H and O(x) = x,

x 6∈ H.

3.1 Passive attacks with limited access

Now we will assume that an intruder can observe system behaviour only for a
limited amount of time, what is more realistic than unlimited access to system to
be attacked. First some notation is needed. Let s ∈ Actt, by time length we will
mean the number of t actions occurring in s, and we will denote it by |s|t. Now
we can define non-information flow under the condition that an intruder can
observe system behaviour for time n (this property will be denoted by NIFS

On
).

6

Definition 5. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ǫ}
for a ∈ S. We say that process P has NIFS

On
property (we will denote this by

P ∈ NIFS
On

) iff whenever S ∩ s′
1
6= ∅ for some s′

1
∈ s1, s1 ∈ Tr(P) then there

exists s′
2
∈ s2, s2 ∈ Tr(P) such that S ∩ s′

2
= ∅ and |s′

1
|t = |s′

2
|t = n and it holds

O(s′
1
) = O(s′

2
).

Example 2. Let P = l1.t.t.t.h.l2 + l1.t.t.l2 and O(h) = ǫ,O(li) = li. It is easy

to check that P ∈ NIF
{h}
O2

but P 6∈ NIF
{h}
O . In other words, the “unlimited”

observer given by O can detect occurrence of the action h but it cannot be
performed if only time window of length 2 is at disposal. If a time window of

length 3 (and more) is at disposal, then P 6∈ NIF
{h}
O3

. ⊓⊔

The relationship between NIFS
O and NIFS

On
states the following theorem.

Theorem 2. NIFS
O ⊂ NIFS

On
for every n and NIFS

Om
⊂ NIFS

On
for m > n.

Proof. The main idea. Clearly NIFS
Om

⊆ NIFS
On

for m > n. The rest follows
from Example 2 and its generalization. ⊓⊔

In many cases it seems to be sufficient to check occurrence of only one private
action instead of a bigger set, i.e. the cases S = {a} for some a ∈ A. In these cases
an observer tries to deduce whether confident action a was or was not performed.
But even in this simplest possible case the NIF properties are undecidable, but
in general they are decidable for finite state processes.

Theorem 3. NIF
{a}
On

property is undecidable but NIFS
On

is decidable for finite
state processes if O(x) 6= ǫ for every x ∈ Actt and n ≥ 1.

Proof. The main idea. Let Ti is i-th Turing machine (according to some order-
ing). Let machine T accept a sequence ai and also τ i but this only in the case
that Ti halts with the empty tape as an input. Let O(a) = τ . The rest of the
proof follows from undecidability of the halting problem. Note that CCS process
and so TPA process as well have power of Turing machines.

Regarding the second part of the theorem, we construct from a finite labeled
transition system which corresponds to P a finite state automaton A with all
sates treated as final. From this automaton we construct a new automaton A′

in such a way that transitions labeled by actions which are seen as τ action are
labeled by τ and again all sates treated as final. The rest of the proof follows
from decidability properties for finite automata. ⊓⊔

Even if NIFS
On

is decidable the corresponding algorithms are of exponential
complexity. On way how to overcome this disadvantage is a bottom-up design of
processes. Hence compositionality of NIFS

On
plays an important role. We have

the following property.

7

Theorem 4. (Compositionality) Let P, Q ∈ NIFS
On

. Then

x.P ∈ NIFS
On

if x 6∈ S ∪ {t}
P + Q ∈ NIFS

On

P |Q ∈ NIFS
On

P [f] ∈ NIFS
On

for any f such that f(S) ⊆ S

P \ M ∈ NIFS
On

for any M, M ⊆ S.

Proof. We will prove the first three cases which are the most interesting.
(1) Let P ∈ NIFS

On
and S ∩ s′

1
6= ∅ for some s′

1
∈ s1, s1 ∈ Tr(x.P). If

s1 = x then since x 6∈ S the NIF condition holds. Hence let s1 = x.s′′
1
, s′

1
∈ s′′

1
,

s′′
1
∈ Tr(x.P). Since P ∈ NIFS

On
there exists s′

2
∈ s2, s2 ∈ Tr(P) such that

S ∩ s′
2

= ∅ and |s′
1
|t = |s′

2
|t = n and it holds O(s′

1
) = O(s′

2
). Hence for

s2, s2 = x.s′
2

we have s2 ∈ Tr(x.P) and hence x.P ∈ NIFS
On

.

(2) Let P, Q ∈ NIFS
O and S ∩ s′

1
6= ∅ for some s′

1
∈ s1, s1 ∈ Tr(P + Q).

Without lost of generality we can assume that s1 ∈ Tr(P). Since P ∈ NIFS
On

there exists s′
2
∈ s2, s2 ∈ Tr(P) such that S ∩ s′

2
= ∅ and |s′

1
|t = |s′

2
|t = n and

it holds O(s′
1
) = O(s′

2
). But since s2 ∈ Tr(P + Q) we have P + Q ∈ NIFS

On
.

(3) Let P, Q ∈ NIFS
On

but P |Q 6∈ NIFS
On

. Let s1 is the shortest trace of

P |Q such that S ∩ s′
1
6= ∅ for some s′

1
∈ s1 and since P |Q 6∈ NIFS

On
then

for every trace s′
2
∈ s2, s2 ∈ Tr(P |Q) such that |s′

1
|t = |s′

2
|t = n and it holds

O(s′
1
) = O(s′

2
) it holds S ∩ s′

2
6= ∅. Since s1 is the shortest trace clearly only

its last element belong to S. This element was performed either by P or by
Q. By case analysis and structural induction we came to a contention with the
assumption that P, Q ∈ NIFS

On
. ⊓⊔

3.2 Passive attacks with limited precision

Till know we have considered the situation when an intruder has only a limited
access to a system to be attacked i.e. (s)he has only a limited time for which
the system behaviour can be observed. Now we investigate a different situation.
We assume that the intruder can observe the system behaviour only with lim-
ited time precision. Say, than the intruder has unprecise stop-watch at disposal
when time of occurrence of actions is observed. This models situations when the
system to be attacked is remote and interconnection network properties (mainly
throughput) cannot be predicted. Now we define non-information flow for the
case that the intruder can measure time with precision k.

Definition 6. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ǫ}
for a ∈ S. We say that process P has NIFS

Opk
property (we will denote this by

P ∈ NIFS
Opk

) iff whenever S∩s1 6= ∅ for some s1 ∈ Tr(P) then there exists s2 ∈

Tr(P) such that S ∩ s2 = ∅, ||s1|t − |s2|t| ≤ k and it holds
O(s1|Act) = O(s2|Act).

Example 3. Let P = l1.t.t.t.h.l2 + l1.t.t.l2,P
′ = l1.t.t.t.t.h.l2 + l1.t.t.l2 and

O(h) = ǫ,O(li) = li. It is easy to check that P ∈ NIF
{h}
Op1

but P ′ 6∈ NIF
{h}
Op1

.

Note that P, P ′ ∈ NIF
{h}
O1

. ⊓⊔

8

By generalization of this example we get the following relationships among

NIF
{h}
On

and NIF
{h}
Opk

properties.

Theorem 5. NIFS
On

6⊆ NIFS
Opk

and NIFS
Opk

6⊆ NIFS
On

.

The relationship between NIFS
O and NIFS

Opk
states the following theorem.

Theorem 6. NIFS
O ⊂ NIFS

Opk
for every k and NIFS

Opk
⊂ NIFS

Opl
for k < l.

Proof. The main idea. Clearly NIFS
Opk

⊆ NIFS
Opl

for k < l. The rest follows
from Example 2 and its generalization obtained by appropriate choice of an
amount of t actions between actions l1 and l2. ⊓⊔

Combining Theorems 2 and 6 we get a hierarchy of NIF properties (see Fig.
1).

'

&

$

%

TPA'

&

$

%

NIFS

Opk

'

&

$

%

NIFS

O1

'

&

$

%

NIFS

On

'

&

$

%

NIFS

Op1

.

.

.

'

&

$

%

NIFS

O = NIFS

Op0

Fig. 1. NIF Hierarchy

For the NIFS
Opk

properties can be similar theorems as for NIFS
On

(see The-

orem 3 and 4) formulated. But for the lack of space, instead of this, we turn our
attention from passive to active attacks.

3.3 Active attacks

Up to now we have considered so called passive attacks. An intruder could only
observe system behaviour. Now we will consider more powerful intruders which
can employ some auxiliary processes to perform attacks. There is a natural

9

restriction for such processes (see [FG01]), in the presented context this means
that such the processes could perform only actions u for which O(u) = ǫ. We
formulate the concept of active attacks (we will denote them by index a) in
the framework of NIF property. A process which is considered to be safe also
represents a safe context for the auxiliary private processes.

Definition 7. (Active NIF) P ∈ NIFa
S
On

(NIFa
S
Opk

) iff (P |A) ∈ NIFS
On

(NIFS
Opk

) for every A, Sort(A) ⊆ S ∪ {τ, t} and for every x ∈ Sort(A), x 6= t it

holds O(x) = ǫ.

Active attacks are really more powerful than passive ones for both limited
access and limited precision attacks.

Theorem 7. NIFa
S
On

⊂ NIFS
On

and NIFa
S
Opk

⊂ NIFS
Opk

.

Proof. Sketch. Clearly NIFa
S
On

⊆ NIFS
On

and NIFa
S
Opk

⊆ NIFS
Opk

. For the

rest of the proof we construct processes P, A such that P ∈ NIFS
On

but

(P |A) 6∈ NIFS
On

and P ∈ NIFS
Opk

but (P |A) 6∈ NIFS
Opk

, respectively. For ex-

ample we can consider processes P = h1.t
i.l + h2.t

j .l and A = t.h̄1. By choosing
appropriate values for i and j we get counterexamples which shows that both
the inclusions are proper. ⊓⊔

The definition of active NIF properties contain two universal quantifications
(over all possible intruders and over all possible traces). To avoid them we could
exploit an idea of generalized unwinding introduced by Bossi, Focardi, Piazza
and Rossi (see [BFPR03,BMPR05]) and in this way we can obtain decidability
results for active NIF for finite state systems.

Note that also for NIFa
S
On

and NIFa
S
Opk

similar properties as for NIFS
On

(see Theorem 3 and 4) can be formulated.

4 Conclusions and further work

Timing attacks can “break” systems which are often considered to be “unbreak-
able”. More precisely, the attacks usually do not break system algorithms them-
selves but rather their bad, from security point of view, implementations. For
example, such implementations, due to different optimizations, could result in
dependency between time of computation and data to be processed, and as a
consequence systems might become open to timing attacks. An attacker can de-
duce from time information also some information about private data, despite
the fact that safe algorithms were used.

In real applications an intruder very often has not full and complete access
to systems to be attacked. In this case non-information flow property as it is
known in the literature is too restrictive. There are systems which exhibit some
information flow but only in case of an ”ideal” condition for the intruder, i.e.
when the intruder has unlimited access to system and when time of action occur-
rences can be measured with absolute precision. In both these cases the standard

10

non-information flow property is rather strong and for many applications too re-
strictive.

In this paper we have presented two formal models which model two different
types of intruders. The first one has access to a system to be attacked only
within some time window, i.e. (s)he can see its behaviour only during some
time interval. The second one can measure time of actions occurrences only with
some given precision. The presented formalisms are studied and compared with
other concepts described in the literature and it is shown that they are more
general and stronger in the sense that they can describe attacks which are not
captured by the other concepts. With the help of presented models we can check
systems with respect to more adequate security requirements. In this paper we
have studied these requirements and we have obtained some decidability and
undecidability results for them.

We see our work as a first step towards an analysis of timing attacks. Further
study will concern on more efficient decision algorithms, modeling of more elab-
orated active time attacks where an attacker can implement some less restricted
processes to the system to be attacked (for example in the style of Trojan horse)
to deduce some private activities. To have better described system activities
(particularly to be able to perform traffic analysis), we consider to use formal-
ism which can express also some network properties in style of [GM01,Gru06].
This approach was used in [GM03] to study Bisimulation-based Non-deducibility
on Composition which is an (stronger) alternative to SNNI. Since many of tim-
ing attacks are based on statistic behaviour it seems to be reasonable to exploit
also some features of probabilistic process algebras.

References

[BMPR05] Bossi A., D. Macedonio, C. Piazza and S. Rossi. Information Flow in Secure
Contexts. Journal of Computer Security, Volume 13, Number 3, 2005

[BKR04] Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri
Nets. Proc. of the 2nd International Workshop on Security Issues with Petri
Nets and other Computational Models, 2004.

[BKMR04] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to
Transition Systems. CS-TR-868, University of Newcastle upon Tyne, 2004.

[BFPR03] Bossi A., R. Focardi, C. Piazza and S. Rossi. Refinement Operators and In-
formation Flow Security. Proc. of SEFM’03, IEEE Computer Society Press,
2003.

[BG04] Busi N. and R. Gorrieri: Positive Non-interference in Elementary and Trace
Nets. Proc. of Application and Theory of Petri Nets 2004, LNCS 3099,
Springer, Berlin, 2004.

[DKL98] Dhem J.-F., F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L.
Willems: A practical implementation of the timing attack. Proc. of the Third
Working Conference on Smart Card Research and Advanced Applications
(CARDIS 1998), LNCS 1820, Springer, Berlin, 1998.

[FS00] Felten, E.W., and M.A. Schneider: Timing attacks on web privacy. Proc. of
the 7th ACM Conference on Computer and Communications Security, 2000.

11

[FG01] Focardi, R. and R. Gorrieri: Classification of security properties. Part I:
Information Flow. Proc. of Foundations of Security Analysis and Design,
LNCS 2171, Springer, Berlin, 2001.

[FGM00] Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in a
discrete-time process algebra. Proc. of the 13th Computer Security Founda-
tion Workshop, IEEE Computer Society Press, 2000.

[FGM03] Focardi, R., R. Gorrieri, and F. Martinelli: Real-Time information flow anal-
ysis. IEEE Journal on Selected Areas in Communications 21 (2003).

[GM04] Gorrieri R. and F. Martinelli: A simple framework for real-time crypto-
graphic protocol analysis with compositional proof rules. Science of Com-
puter Programing, Volume 50, Issue 1-3, 2004.

[GM82] Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc.
of the IEEE Symposium on Security and Privacy, 1982.

[Gro90] Groote, J. F.: “Transition Systems Specification with Negative Premises”.
Proc. of CONCUR’90, Springer Verlag, Berlin, LNCS 458, 1990.

[GM01] Gruska D.P. and A. Maggiolo-Schettini: Process algebra for network com-
munication. Fundamenta Informaticae 45(2001).

[GM03] Gruska, D., Maggiolo-Schettini, A.: Nested Timing Attacks, Proc. of FAST
2003, 2003.

[Gru04] Gruska D.P.: Information Flow in Timing Attacks. Proc. of CS&P’04, 2004.
[Gru06] Gruska D.P.: Network Information Flow, Fundamenta Informaticae 72

(2006).
[HH99] Handschuh H. and Howard M. Heys: A timing attack on RC5. Proc. of the

Selected Areas in Cryptography, LNCS 1556, Springer, Berlin, 1999.
[Ko96] Kocher P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,

DSS and other systems. Proc. of the Advances in Cryptology - CRYPTO’96,
LNCS 1109, Springer, Berlin, 1996.

[Mil89] Milner, R.: Communication and concurrency. Prentice-Hall International,
New York,1989.

[SM03] Sabelfeld A. and A.C. Myers: Language-Based Information Flow Security.
IEEE Journal on Selected Areas in Communication, 21(1), 2003.

[SWT01] Song. D., D. Wagner, and X. Tian: Timing analysis of Keystrokes and SSH
timing attacks. Proc. of the 10th USENIX Security Symposium, 2001.

12

