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1 Introduction

In the 1980s, most of the rigorous work in information security was focused on
operating systems, but the 1990s saw a strong trend toward network and dis-
tributed system security. The difficulty of having an impact in securing operating
systems was part of the motivation for this trend.

There were two major obstacles. First, the only operating systems with sig-
nificant deployment were large proprietary systems. Superimposing a security
model and gaining assurance that the implementation enforced the model seemed
intractable [6]. Second, the prime security model [2] was oriented toward pre-
venting disclosure in multi-level secure systems [1], and this required ensuring
that even Trojan horse software exploiting covert channels in the system’s im-
plementation could compromise information only at a negligible rate. This was
ultimately found to be unachievable [10].

These obstacles seem more tractable now. Open-source secure operating sys-
tems are now available, which are compatible with existing applications software,
and hence attractive for organizations wanting more secure platforms for pub-
licly accessible servers. Security Enhanced Linux (SELinux) in particular offers
well thought out security services [4, 5].

Moreover, a less stringent model of security, not focused on covert channels, is
now relevant. Commonly, a network server must service unauthenticated clients
(as in retail electronic commerce), or must provide its own authentication and
access control for its clients (as in a database server). Sensitive resources must
reside on the same server so that transactions can complete. The programs ma-
nipulating the resources directly must be trustworthy; direct manipulation by
Trojan horses is not our concern. The core goals are protecting the confidentiality
and integrity of these resources.

To preserve integrity, each causal chain of interactions leading from untrusted
sources to sensitive destinations must traverse a program considered trusted to
filter transactions. Dually, to preserve confidentiality, causal chains leading from
sensitive sources to untrusted destinations must traverse a program trusted to
filter outbound data. The trustworthy program determines what data can be
released to the untrusted destination. In both cases, the security goal is an
information flow goal. Each says that information flowing between particular
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endpoints must traverse specific programs along its path. As an example focused
on integrity, consider the e-commerce processing system described in Figure 1.
In this scenario, orders are submitted by customers through an SSL-protected
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Fig. 1. An E-Commerce Processing System

network socket at the left. An e-sales program ensures that the order is properly
formatted, and if so, that the purchase prices for the different items are correct.
For simplicity, we let the program write accepted orders to a file in a directory
meant for new orders. Files in this directory will be read by an accounts receivable
program, which after some on-line interaction with a credit card clearing house,
causes the company’s account to be credited. The order may now be written
to the directory for paid orders. The shipping department program then checks
inventory and causes the order to be shipped as soon as the goods are available.
Thus, the company wants to ensure that orders with erroneously low prices
cannot arrive at accounts receivable, and that unpaid orders cannot arrive at
the shipping department.

In this paper, we aim at three goals. First, we develop a highly abstract
model of the SELinux operating system access control mechanism. In this model,
the system configuration determines a labeled transition system representing
possible information flows (Section 2). Second, we propose a diagram-like way
to state security goals, and give meanings to these diagrams using temporal logic
(Section 3). Third, we describe briefly how to determine, using model checking,
whether a goal is enforced by a particular configuration (Section 4). We regard
this as an example of the “eager formal methods” approach (Section 5, cf. [3]).

2 An SELinux Model

The SELinux security server makes decisions about system calls, for instance
whether a process should be allowed to write to a particular file, or whether a
process should be allowed to overlay its memory with the binary image contained
at a particular pathname, and continue executing the result. For each system
call, SELinux specifies one or more checks that must be satisfied in order for the
call to be allowed. Each check is labeled by a pair consisting of a class and a
permission. The class describes a kind of resource that the access involves, such as
file, process, or filesystem. The permission describes the action itself, such
as read, write, mount, or execute. By a resource, we mean any object in an
SELinux system; processes, files, sockets, etc. are all regarded as resources. Each
resource has a security context which summarizes its security relevant status.
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In making a check, the security server receives as input two facts, the security
contexts of the process and of another resource involved in the system call. A
security context is a tuple consisting of three components,1 called a type, a role,
and a user. The user is similar in intent to the normal Unix notion of user, and
represents the person on behalf of whom the system is executing a process or
maintaining a resource. The role, derived from the literature on role-based access
control, is an intermediate notion intended to specify that collections of users
should be permitted to execute corresponding collections of programs. The main
purpose of the user component is to specify what roles that user is permitted;
the main purpose of the role is to specify what types of processes those users
are permitted to execute.

The main component is the type, accounting for at least 22,000 out of the
22,500 access control statements in the example policy file contained in the
distribution. The type is used to specify the detailed interactions permitted
between processes and other resources. Each type specification determines some
actions that are allowed; in the SELinux configuration file they are introduced
by the keyword allow. For a request to succeed, some allow statement in the
configuration file must authorize it. Each allow statement specifies a set of
process types δ, a set of resource types τ , and a set of class-permission pairs γ.
If a process whose type is in δ requests an action with class-permission pair in
γ against a resource with type in τ , then that request is authorized.

Since we abstract from auditing and other issues that do not affect information-
flow security goals, the configuration file defines five relations of interest. Each
relation is built up by statements contained in the same configuration file.

– α(t1, t2, c, p) is the relation built up by the allow statements. It holds if
t1 ∈ δ, t2 ∈ τ , and 〈c, p〉 ∈ γ for some allow statement in the configuration.

– αρ(r1, r2) is the role transition relation. When a process changes security
context, the role may change, but the old and new roles must satisfy αρ.

– ρ(r, t) is the role-type relation. Each process in the system must have a
security context such that ρ(r, t) holds.

– µ(u, r) is the user-role relation. Each process in the system must have a
security context such that µ(u, r) holds.

– χc,p(t1, r1, u1; t2, r2, u2) is the constraint relation. Whenever c, p is requested,
the system checks that the constraint χc,p(t1, r1, u1; t2, r2, u2) holds between
the process security context and the resource security context. Constraints
may be used to ensure that only privileged types of process change the user
or role of existing resources, for instance.

A type t is called a domain if t is the type of any process. There is a distinguished
role ro such that ρ(ro, t) and µ(u, ro) whenever t is not a domain.

1 or four components, if the system is compiled with support for multi-level security
as it can be, but normally is not. For definiteness, we will assume MLS support is
not compiled into the kernel in the remainder of this paper, although the approach
we describe is equally applicable if it is.
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Our formal model of the SELinux authorization mechanism puts these five
relations together in a specific way. The class-permission pair c, p is authorized
for a process with security context t1, r1, u1 against a resource t2, r2, u2 if:

α(t1, t2, c, p)
∧ ρ(r1, t1) ∧ ρ(r2, t2)
∧ µ(u1, r1) ∧ µ(u2, r2)
∧ χc,p(t1, r1, u1; t2, r2, u2)
∧ if c = process ∧ p = transition then αρ(r1, r2).

This relation ∆c,p(t1, r1, u1; t2, r2, u2) is the SELinux authorization predicate.
Some events (file write, for instance) transfer information from process to

resource, while others (file read, for instance) transfer it from resource to process.
SELinux has a file that describes how each c, p transfers information, whether like
a read, like a write, in both directions, or in neither. Information flows from an
entity with security context t, r, u to an entity with security context t′, r′, u′ if
for some event c, p either

c, p has write-like flow and ∆c,p(t, r, u; t′, r′, u′)

or else
c, p has read-like flow and ∆c,p(t′, r′, u′; t, r, u).

Φc,p(t, r, u; t′, r′, u′) means that at least one of these conditions holds, hence
that there is flow from context t, r, u to context t′, r′, u′ through event c, p.

The file defining the direction of flow for each class-permission pair contains
only a simple approximation. It does not take into account indirect flows caused
by error conditions or variations in timing, and it does not consider flow into
other system resources besides the process requesting the event and the resource
against which the event is requested. This is why our analysis avoids the sub-
tleties of covert channels.

Having defined the information flow relation Φc,p(t, r, u; t′, r′, u′), we regard
it as a transition relation and consider what can be expressed in standard tem-
poral logic in terms of this transition relation.

We regard the state as a sextuple 〈t, r, u, c, p, k〉 consisting of a type, user, and
role, as well as a class and permission signifying the transition about to occur;
the last component k is a Boolean flag used to make the transition relation total.
When true, it indicates that all transitions so far have been legitimate.

The transition relation is highly non-deterministic. If k is false, then in the
next state k must remain false, although the remaining components can take
any value. If k is true, then k′ is true in the next state only when the type,
user, and role are values t′, r′, u′ such that Φc,p(t, r, u; t′, r′, u′); the next c′, p′ is
unconstrained. Otherwise, k′ is false.

The initial states 〈t, r, u, c, p, k〉 for this model are the ones that are compat-
ible with ρ and µ in that

ρ(r, t) ∧ µ(u, r).
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Φ says that there is a causal effect of one state on the next, and iterates of
the relation say that there is some sequence of events (possibly involving many
different processes and resources) creating a causal chain from the first state of
the sequence to the last.

The model we have just developed, and encoded in the information flow pred-
icate Φc,p, is an enormous simplification of the SELinux system. It concentrates
on the information flow consequences of individual events, and abstracts from
all aspects of system resources apart from their security contexts. The benefit of
this approach is to provide a minimal representation still allowing us to analyze
core security goals achieved by an SELinux configuration.

3 Security Goals

Core goals in the SELinux system are protecting the confidentiality and integrity
of sensitive resources on the system. As described above, protecting these re-
sources entails ensuring that information flowing from one place to another must
traverse specific points along its path. Security goals of this sort are examples of
intransitive noninterference: information flow from one security context to an-
other is only acceptable if it happens through another, trustworthy, program [8].

Consider the case of raw disk access. Since this bypasses other access controls,
a system administrator would want only specific administrative programs to
access it directly. In the sample SELinux policy, raw disk data has the type
fixed disk device t, and the type fsadm t is used for administrative programs
requiring direct disk access. The system administrator aims to ensure that all
one-step paths ending in fixed disk device t begin with fsadm t.

Information flow goals can be used to ensure more complicated causal chains
as well. Returning to the e-commerce example in Figure 1, we have an integrity
goal: although untrusted users may connect to the server, only paid orders should
be shipped. A process with SELinux type esales t checks new orders read from
a resource with type sales socket t; after being checked they are written to
a file with type new order type. The accounts receivable program has type
acct recv t, and writes out paid orders to files with type paid orders t, which
are readable by a process having type shipping t.

3.1 Visualizing Causal Chains: Diagrams

While it is easy to reason about the simple causal chain protecting raw disk
access, our e-commerce example highlights the need for an alternate way of
expressing more complicated information flow goals. We wish to ensure that
all paths through a system from a starting security context to a final security
context go through a series of intermediate steps. These intermediate steps can
be viewed, as in Figure 1, as security contexts. We may also sometimes wish
to specify the means by which one security context can affect another: in other
words, we may wish to label the arrows in Figure 1 with class-permission pairs
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such as socket read, file create, file write, etc. Information flow security
goals are expressed in this alternating pattern of security contexts and actions.

When constructing a chain, one has four degrees of freedom. First, one can
define what security contexts appear at a stage in the process; we refer to these
sets by symbols such as σi. Second, one may characterize what actions or events
may transfer information from one context to the next; we refer to these sets by
symbols such as γi. Members of γi are SELinux class-permission pairs.

The third kind of freedom captures the intuitive notion of the length of the
arrows. Between two security contexts in our causal path, we may be interested
in constraining the paths to a single event (as in our raw disk access example).
However, we may also be interested in potentially longer paths between contexts.
In the e-commerce example, perhaps some customers receive a special discount
on their order, which may need to be checked between the e-sales program and
the new orders file. Thus, flow from esales t to new order type may go by way
of a process with a different type that validates the discount, and possibly other
intermediate types.

We indicate the two types of arrows by decorating γi with a superscript 1
(single event) or + (iterated events). Let λi be a label of one of the forms γ1

i or
γ+
i . Finally, we may specify exceptions, although we will return later to fill in

this detail. Ignoring exceptions, we can write an information flow policy goal in
the following visual form:

σ0
λ0−→ σ1

λ1−→ · · · λn−2−→ σn−1
λn−1−→ σn (1)

Note the similarity between this form and our e-commerce example in Figure 1.
In that example, σ1 would be sales socket t, and σ6 would be shipping t,
and so forth.

3.2 Formalizing Diagrams in Linear Temporal Logic

We interpret an information flow policy as an assertion about all sequences of
state transitions leading from a state in σ0 to a state in σn. It asserts that this
path must encounter the σi in the order given, executing events from λi in each
stage, and that there must be just one such event if the decoration is 1 and may
be more events if the decoration is +.

To formalize these assertions, we first represent the fact that they concern
only state transitions leading from states in σ0 to states in σn. We may express
this as the hypothesis H = σ0 ∧ ♦(σn ∧ k), stating that σ0 currently holds and
σn will eventually hold, and where k is true because all transitions so far have
satisfied Φ. We interpret an information flow diagram (1) by two formulas of
Linear Temporal Logic (LTL).

Order Assertions The first formula asserts that states are encountered in the
right order, subject to the hypothesis H that we are passing from σ0 to σn:

H ⇒
∧

0<i<n

σi R¬σi+1. (2)
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The operator R (“releases”) asserts that its right hand operand is true and
remains true until its left hand operator has been true at least once. Thus, this
formula asserts that each set σi+1 is not encountered until after σi has been
encountered, along paths from σ0 to σn.

Event Assertions The other formula asserts that the transitions along a path
from σ0 to σn proceed using the right class-permission pairs. From the time that
σi has been encountered but σi+1 has not yet been reached, all of the transitions
should be in the set γi. In the case the decorations are all 1 rather than +, this
leads to the formula

H ⇒ γ0 ∧ X (σ1 ∧ γ1 ∧ X (· · · )).

X φ asserts of a state that φ is true in the next state immediately after it. Thus,
we start with a γ0 which brings us to σ1 and then continue with a γ1 which brings
us to. . . . If the decorations are all +, then we want to say that a γi occurs, and
then γis continue until a σi+1 is reached, and so on:

H ⇒ γ0 ∧ X (γ0 U (σ1 ∧ γ1 ∧ X (γ1 U · · · ))).

φ U ψ is true in a state if ψ eventually becomes true, and φ remains true until
the first such occasion. We combine the two forms into a formula

H ⇒ γ0 O0 (σ1 ∧ (γ1 O1 (σ2 . . .))). (3)

When the label λi is of the form γ1
i , then φOi ψ is defined to be φ∧X ψ. When

the label λi is of the form γ+
i , then φOi ψ is defined to be φ ∧ X (φ U ψ).

Formulas 2 and 3 do not need a leading “always” �, because, for states such
that k is true, all accessible states are also initial states.

Exceptions In some cases, we want to make an assertion subject to some
exceptions. If the exception occurs, we do not care what the information flow
is; if the exception does not occur, then we want the information flow diagram
to hold true as before. The exceptional condition may be either a state or a
transition.

For instance, in the e-commerce case, an example of an exceptional state
could arise from queries about order status. There may be a directory for status
queries, with type query t, such that flow from a network socket to the shipping
department program is permitted if it comes by way of query t. There is then a
corresponding security requirement on the shipping department program, stating
that input from files of this type never cause products to be shipped, but verifying
that requirement is a matter for programming language security analysis (see
e.g. [9]) rather than operating system security analysis.

The exceptional condition may also be a transition, that is, a class-permission
pair. For instance, perhaps the accounts receivable program can send a signal to
the shipping program to tell it when to stat the shared directory. This signal is a
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flow of information to shipping that does not traverse the type paid orders t.
However, it is merely advisory, and we know it causes nothing to be shipped
unless the program succeeds in reading a new paid order. Thus, there is no need
to prohibit this flow.

We incorporate exceptions without changing the form of Equations 2 and 3.
Instead, let σe be the set of exceptional states, and let γe be the set of exceptional
transitions; we redefine H to take the form:

σ0 ∧ ((¬σe ∧ ¬γe) U (σn ∧ k))

Thus, we concern ourselves with a path only if it started at σ0 and avoided σe
and γe until reaching a state in which σn ∧ k. If a path is of this form, then we
require that the bodies of Equations 2 and 3 hold.

4 Goal Enforcement and Implementation

We have written software that reads and analyzes an SELinux configuration file.
In effect, it constructs the information flow relation Φc,p, and defines the initial
states where ρ(r, t) ∧ µ(u, r). It may then either construct Binary Decision Dia-
grams (BDDs) directly to represent these values, or alternatively emit a NuSMV
specification defining them [7]. In addition, given values σi and λi defining a di-
agram of the form of Formula 1, the software emits a specification for NuSMV to
check. We find (as of this writing) that NuSMV can successfully answer a prelim-
inary set of queries of this form, although we have primarily checked never-allow
assertions in which the operator is and there are only two states of interest.
Execution typically requires about 150MB of store, and answers a list of a cou-
ple of dozen never-allow queries in about 10 minutes of CPU time on a 500MHz
Intel Linux machine.

A direct translation to BDDs has also been implemented. Specially designed
algorithms to resolve security goals of the form (1) will be preferable to NuSMV
for several reasons. First, time-consuming parts of the construction can be per-
formed once, and maintained in memory to quickly resolve a variety of interac-
tively posed security goals. Second, information can be returned to the user in
a form more adapted to this application domain. And third, the algorithms can
return more informative results, for instance defining what subset of the states
in a set σi are in fact traversed in Formula (1).

5 Conclusion: Eager Formal Methods

In this paper, we have presented a systematic way to analyze the information
flow goals achieved by an SELinux system. A formalization of the access control
mechanism of the SELinux security server together with a labeled transition
system representing an SELinux configuration provides our framework. Security
goal statements in Linear Temporal Logic provide a clear description of the
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objectives that SELinux is intended to achieve. We use model checking techniques
to determine whether security goals hold in a given system.

The approach used in developing these formalizations and analysis methods
has been used in other security management contexts over the past decade,
under the name Eager Formal Methods [3]. Eager formal methods front-loads
the contribution of formal methods to problem-solving. The focus is on modeling
devices, their behavior as a function of configurations, and the consequences of
their interactions. A class of practically important security goals must also be
expressible in terms of these models.

These models suggest algorithms taking as input information about system
configuration, and returning the security goals satisfied in that system. In some
cases, although not as yet in the case of SELinux, we can also derive algorithms to
generate configurations to satisfy given security goals. The formal models provide
a rigorous justification of soundness. By contrast, algorithms are implemented
as ordinary computer programs requiring no logical expertise to use. Resolving
practical problems then requires little time, and no formal methods specialists.
Eager formal methods consists of four steps.

Modeling Construct a simple formal model of the problem domain. In this
paper, we have seen the formalization of the access control mechanism of the
SELinux security server, and the transition relation of an SELinux security
policy.

Security Goals SELinux is intended to achieve information flow security goals.
These take the forms given in Equations 2 and 3.

Goal Enforcement The security goals and underlying model must be chosen
so that there is an algorithm that, given a system as represented in the
model, and a particular goal statement of one of the selected logical forms,
determines whether the system satisfies that goal. In the SELinux system,
model checking provides our assurance.

Implementation Having defined and verified one or several goal enforcement
algorithms, one writes a program to check goal enforcement. The inputs to
this program consist of goal statements that should be enforced, and sys-
tem configuration information. In this paper, we have briefly discussed two
potential implementations; based on NuSMV and our own specially adapted
BDD software.

For systems such as SELinux, formal models of access control configuration
and checking reasonable security goals are tractable. A combination of this for-
mal model and an appropriate algorithm has led to automatic tools for the ver-
ification of security properties in an SELinux system. While much future work
remains, we believe this use of the eager formal methods approach to be an
important step toward increasing the use of secure operating systems.
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