
Information-Flow Types for Homomorphic Encryptions

Cédric Fournet
Microsoft Research

fournet@microsoft.com

Jérémy Planul
MSR–INRIA Joint Centre
jeremy.planul@inria.fr

Tamara Rezk
INRIA Sophia

Antipolis-Méditerranée
Tamara.Rezk@inria.fr

ABSTRACT
We develop a flexible information-flow type system for a range of
encryption primitives, precisely reflecting their diverse functional
and security features. Our rules enable encryption, blinding, ho-
momorphic computation, and decryption, with selective key re-use
for different types of payloads.

We show that, under standard cryptographic assumptions, any
well-typed probabilistic program using encryptions is secure (that
is, computationally non-interferent) against active adversaries, both
for confidentiality and integrity. We illustrate our approach using
ElGamal and Paillier encryption.

We present two applications of cryptographic verification by typ-
ing: (1) private search on data streams; and (2) the bootstrapping
part of Gentry’s fully homomorphic encryption. We provide a pro-
totype typechecker for our system.

Categories and Subject Descriptors
K.6.m [Security and Protection]: Security; D.2.0 [Software En-
gineering]: Protection Mechanisms; F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Specification techniques.

General Terms
Security, Verification, Design, Languages.

Keywords
Secure information flow, cryptography, confidentiality, integrity,
non-interference, type systems.

1. INTRODUCTION
Information flow security is a well-established, high-level frame-

work for reasoning about confidentiality and integrity, with a clear
separation between security specifications and mechanisms. At
a lower level, encryption provides essential mechanisms for con-
fidentiality, with a wide range of algorithms reflecting different
trade-offs between security, functionality, and efficiency. Thus, the
secure usage of adequate algorithms for a particular system is far
from trivial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Even with plain encryption, the confidentiality and integrity
of keys, plaintexts, and ciphertexts are interdependent: encryp-
tion with untrusted keys is clearly dangerous, and plaintexts should
never be more secret than their decryption keys. Integrity also
matters: attackers may swap ciphertexts, and thus cause the de-
classification of the wrong data after their successful decryption.
Conversely, to protect against chosen-ciphertext attacks, it may be
necessary to authenticate ciphertexts, even when plaintexts are un-
trusted.

Modern encryption schemes offer useful additional features,
such as the ability to blind ciphertexts, thereby hiding dependencies
between encrypted inputs and outputs, and more generally to com-
pute homomorphically on encrypted data, for instance by multiply-
ing ciphertexts instead of adding their plaintexts. These features
are naturally explained in terms of information flows; they enable
computations at a lower level of confidentiality—homomorphic op-
erations can be delegated to an “honest but curious” principal—but
they also exclude CCA2 security and require some care in the pres-
ence of active adversaries.

In this paper, we develop an information-flow type system for
cryptography, with precise typing rules to reflect the diverse func-
tional and security features of encryption schemes. Our goal is to
understand them better, and to guide protocol designers and pro-
grammers. We rely on standard cryptographic assumptions, ex-
pressed as probabilistic polynomial-time indistinguishability games
—this level of detail is necessary to reliably capture the informa-
tion flows of the underlying algorithms. Thus, our adversaries
are probabilistic polynomial-time programs, with limited read and
write access to data, that attempt to gain information about higher-
confidentiality data, or to influence higher-integrity data, by inter-
acting with our programs. Our main theorem states that well typed
probabilistic polynomial programs using any combination of en-
cryptions, blinding, homomorphic functions, and decryptions are
such that our adversaries succeed only with a negligible probabil-
ity. Depending on the relative security levels of keys, plaintexts,
and ciphertexts, we propose different typing rules. Our rules are
sound with regards to standard cryptographic assumptions such as
CPA or CCA2; they enable the selective re-use of keys for protect-
ing different types of payloads, as well as blinding and homomor-
phic properties.

Secure Distributed Computations Our work is part of a research
project on the synthesis and verification of distributed cryptogra-
phic implementations of programs from a description of their infor-
mation flow security requirements. Fournet et al. [10] present such
a security compiler that automatically generates code for encryp-
tion and authentication. As illustrated in our programming exam-
ples, an important motivation for a new type system is to justify its
efficient use of cryptography. For instance, we strive to re-use the

same keys for protecting different types of data at different levels
of security, so that we can reduce the overall cost of cryptographic
protection. More generally, we would like to automatically gen-
erate well-typed code for performing blind computations, such as
those supported by the systems of Henecka et al. [14] and Katz and
Malka [15].

Formally, our work is based on the type system of Fournet and
Rezk [9], who introduce the notion of computational non-inter-
ference against active adversaries to express information flow se-
curity in probabilistic polynomial-time cryptographic systems and
present a basic type system for encryption and authentication mech-
anisms. In comparison, their typing rules are much more restrictive,
and only support CCA2 public-key encryptions with a single pay-
load type.

Applications We illustrate our approach using programming ex-
amples based on classic encryption schemes with homomorphic
properties [8, 22]. We also develop two challenging applications of
our approach. Both applications rely on a security lattice with inter-
mediate levels, reflecting the structure of their homomorphic oper-
ations, and enabling us to prove confidentiality properties, both for
honest-but-curious servers and for compromised servers controlled
by an active attacker.

• We program and typecheck a practical protocol for private
search on data streams proposed by Ostrovsky and Skeith III
[21], based on a Paillier encryption of the search query. This
illustrates that our types protect against both explicit and im-
plicit information flows; for instance we crucially need to
apply some blinding operations to hide information about se-
cret loop indexes.

• We program and typecheck the bootstrapping part of Gen-
try’s fully homomorphic encryption [11]. Starting from the
properties of the bootstrappable algorithms given by Gentry–
being CPA and homomorphic for its own decryption and for
some basic operations—we obtain an homomorphic encryp-
tion scheme for an arbitrary function. This illustrates three
important features of our type system: the ability to encrypt
decryption keys (which is also important for typing key es-
tablishment protocols); the use of CPA encryption despite
some chosen-ciphertext attacks; and an interesting instance
of homomorphism where the homomorphic function is itself
a decryption.

This paper exclusively treats public-key encryptions. We believe
that their symmetric-key counterparts can be treated similarly. We
also refer to Fournet and Rezk [9] for cryptographic types for au-
thentication primitives, such as public-key signatures. This paper
omits many details and all proofs. The full paper, programming
examples, and a prototype typechecker for our system are available
online at msr-inria.inria.fr/projects/sec/cflow.

2. PROGRAMS, TYPES, AND POLICIES
We use an imperative probabilistic WHILE language with secu-

rity policies. A probabilistic semantics is necessary for modeling
encryption security [13]. Shared memory is sufficient to model a
wide range of interactions between programs and adversaries; for
instance public untrusted variables model an open network.

Language The grammar for expressions and commands is

e ::= x | op(e1, . . . , en)

P ::= x := e | x1, . . . , xm := f(e1, . . . , en) |
P ;P | if e then P else P | while e do P | skip

ASSIGNS
[[e]](µ) = v

〈x := e, µ〉;1 〈
√
, µ{x 7→ v}〉

SEQS
〈P, µ〉;p 〈P1, µ1〉 P1 6=

√

〈P ;P ′, µ〉;p 〈P1;P ′, µ1〉

SEQT
〈P, µ〉;p 〈

√
, µ1〉

〈P ;P ′, µ〉;p 〈P ′, µ1〉

SKIPS
〈skip, µ〉;1 〈

√
, µ〉

STABLE
〈
√
, µ〉;1 〈

√
, µ〉

CONDTRUE
[[e]](µ) 6= 0

〈if e then P else P ′, µ〉;1 〈P, µ〉

CONDFALSE
[[e]](µ) = 0

〈if e then P else P ′, µ〉;1 〈P ′, µ〉

WHILETRUE
[[e]](µ) 6= 0

〈while e do P, µ〉;1 〈P ;while e do P, µ〉

WHILEFALSE
[[e]](µ) = 0

〈while e do P, µ〉;1 〈
√
, µ〉

FUN
p = [[f]](µ(y1), . . . , µ(yn))(~v) p > 0

〈~x := f(y1, . . . , yn), µ〉;p 〈
√
, µ{~x 7→ ~v}〉

Figure 1: Probabilistic operational semantics

where op and f range over polynomial n-ary deterministic and
probabilistic functions respectively, with arity n ≥ 0.

Expressions e consist of variables and operations on data repre-
sented as bitstrings. We write op for nullary operations op(). We
assume given standard functions for boolean and arithmetic con-
stants (0, 1, . . .) and operators (||, +, . . .). We let =0 be compari-
son on booleans, true when both its arguments are either 0 or non-0.
We also have standard functions for pairs and functional arrays: we
use 〈e0, e1〉 and (e)i for constructing and projecting pairs, and use
e[ei] and update(x, e, ei) for reading and updating arrays.

Commands P consist of variable assignments, using determinis-
tic expressions and probabilistic functions (such as encryptions or
key generations) composed into sequences, conditionals, and loops.
We use syntactic sugar for arrays, writing x[ei] := e instead of
x := update(x, e, ei), and for loops, writing for x := e to e′ do P
instead of x := e;while x ≤ e′ do {P ;x := x+ 1}.
Semantics Configurations (s) range over pairs of a command and
a memory, written 〈P, µ〉, plus inert configurations, written 〈

√
, µ〉,

that represent termination with final memory µ.
Probabilistic reductions between distributions of configurations

are based on a probabilistic transition relation ;p defined in Fig-
ure 1. We lift these reduction steps to configuration distributions (d),
and write d; d′ when, for all configurations s′, we have d′(s′) =∑
s;ps′

p× d(s). We denote by ρ∞(〈P, µ〉) the final distribution
of memories after running program P with initial memory µ. We
write Pr[〈P, µ〉;ϕ] for the probability that P terminates with a final
memory that meets condition ϕ.

Confidentiality and Integrity We annotate variables, types, and
commands with security labels. These labels specify the program-
mer’s security intent, but they do not affect the behavior of pro-
grams. The security labels form a lattice (L,≤) obtained as the

product of two lattices, for confidentiality (LC ,≤C) and for in-
tegrity (LI ,≤I). We write⊥L and>L for the smallest and largest
elements of L, and t and u for the least upper bound and greatest
lower bound of two labels, respectively. We write ⊥C , ⊥I , >C ,
and>I for the smallest and largest elements of LC and LI , respec-
tively.

For a given label ` = (`C , `I) of L, the confidentiality label `C
specifies a read level for variables, while the integrity label `I spec-
ifies a write level; the meaning of ` ≤ `′ is that `′ is at least as
confidential (can be read by fewer entities) and at most as trusted
(can be written by more entities) than ` [20]. We let C(`) = `C
and I(`) = `I be the projections that yield the confidentiality
and integrity parts of a label. We overload ≤C and ≤I , writing
` ≤C `′ for C(`) ≤C C(`′) and ` ≤I `′ for I(`) ≤I I(`′).
Hence, the partial order on L is defined as ` ≤ `′ iff ` ≤C `′ and
` ≤I `′. In examples, we often use a four-point lattice defined by
LH < HH < HL and LH < LL < HL, where for instance LH
stands for low confidentiality and high integrity.
Types for Information-Flow Security We use the following
grammar for security types:

τ ::= t(`) | τ ∗ τ | Array τ Security types
t ::= Data Payload Data types
| Enc τ Kq | KeEK | KdEK Encryption Data types

where ` ∈ L is a security label, E is a set of security types, K is
a key label, and q is an encryption index, as explained below. We
have pairs at the level of the security types to keep track of tuples
of values with different labels, e.g. for encrypting tuples.

Let L be the projection from security types to labels defined by
L(τ ∗τ ′) = L(τ)uL(τ ′), L(Array (τ)) = L(τ), andL(t(`)) = `.
We overload ≤ for subtyping on security types (e.g. t(`) ≤ t(`′)
if ` ≤ `′) and as a relation between security types and labels (e.g.
t(`) ≤ `). We overload t from labels to types (e.g. t(`′) t ` ·=
t(`′ t `)). Memory policies are functions Γ from variables to se-
curity types. For a given policy Γ, we overload ≤ as a relation be-
tween variables, security types, and labels (e.g. x ≤ ` if Γ(x) ≤ `).

We explain our datatypes for encryptions, but defer their typ-
ing rules to the next sections. Enc τ K represents an encryption
of a plaintext with security type τ ; KeEK and KdEK represent
encryption and decryption keys, respectively, with a set E that in-
dicates the range of security types τ for the plaintexts that may be
encrypted and decrypted with these keys. This set enables us to
type code that uses the same key for encrypting values of different
types, which is important for efficiency.

The key labels K are used to keep track of keys, grouped by
their key-generation commands. In a given program, there should
be only one keypair generation for a given label. These labels are
attached to the types of the generated keypairs, and propagated to
the types of any derived cryptographic materials. They are used to
match the usage of key pairs and to prevent key cycles.

The encryption indexes q are used to distinguish between differ-
ent datatypes for encryptions, for instance when they range over
different groups before and after some homomorphic operations.
In all other cases, we use a single, implicit index q = 0.
Active adversaries For a given α ∈ L, we let α-adversaries range
over commands A that reads variables in a set V Cα = {x | x ≤C
α} and writes variables outside a set V Iα = {x | x ≤I α}, that
is, rv(A) ⊆ V Cα and wv(A) ∩ V Iα = ∅. We consider programs
obtained by composing commands with diverse levels of trust, in-
cluding any α-adversaries as well as fixed, trusted commands. To
this end, we write P [_] for a command context (with a grammar
obtained from that of P by adding a hole _) and P [P ′] for the
command obtained by replacing each occurrence of _ with P ′.

VAR
` x : Γ(x)

OP
op : τ1 . . . τn → τ
` ei : τi for i = 1..n

` op(e1, . . . , en) : τ

SUBE
` e : τ
τ ≤ τ ′

` e : τ ′

ASSIGN
` e : Γ(x)

` x := e : L(x)

PROBFUN
` e : Data (`) for e ∈ ~e
Data (`) ≤ Γ(x) for x ∈ ~x

` ~x := f(~e) : `

SEQ
` P : ` ` P ′ : `

` P ; P ′ : `

COND
` e : Data (`)
` P : ` ` P ′ : `

` if e then P else P ′ : `

WHILE
` e : Data (`) ` P : `

` while e do P : `

SUBC
` P : ` `′ ≤ `
` P : `′

SKIP
` skip : >L

HOLE
` _ : (C(α),>I)

Figure 2: Non-cryptographic typing rules with policy Γ.

Figure 2 defines a type system that prevents information flows in
command contexts that do not rely on cryptography: two runs of the
command obtained by inserting α-adversaries, starting with initial
memories that coincide on all variables in V Cα (resp. outside V Iα),
yield final memory distributions that also coincide on those vari-
ables. The typing rules are standard, except for Rule HOLE, which
safely accounts for any α-adversary, and Rule PROBFUN, which is
a probabilistic version of OP. In Rule OP, the first hypothesis gives
the type signature of op:

op : Data (`) ∗ · · · ∗ Data (`)→ Data (`)
〈〉 : τ0, τ1 → (τ0 ∗ τ1)
()i : (τ0 ∗ τ1)→ τi
[] : Array (τ)

cell : Array (τ),Data (L(τ))→ τ
update : Array (τ), τ,Data (L(τ))→ Array (τ)

+ : Array (τ), τ → Array (τ)
size : Array (τ)→ Data (L(τ))

We assume that all primitive operations run in polynomial time
in the size of their arguments, and that all primitive probabilistic
functions yield distributions that are polynomial-time samplable.
As we use cryptographic primitives, we assume that they take an
additional parameter included in the initial memory whose length
matches a security parameter η. We overload Pr[〈P, µ〉;ϕ] to de-
note a probability function parameterized by η. This function is
deemed negligible when, for all c > 0, there exists ηc such that, for
all η ≥ ηc, we have Pr[〈P, µ〉;ϕ] ≤ η−c.

3. TYPING ENCRYPTIONS
We consider cryptographic algorithms for asymmetric (public

key) encryption. We model them in our language as probabilis-
tic functions Ge, E , and D that meet both functional and security
properties, given below.

DEFINITION 1 (ENCRYPTION SCHEME). Let pubkeys, seck-
eys, plaintexts, and ciphertexts be sets of polynomially-bounded bit-
strings indexed by η. An asymmetric encryption scheme is a triple
of algorithms (Ge, E ,D) such that

1. Ge, used for key generation, ranges over pubkeys× seckeys;

2. E , used for encryption, ranges over ciphertexts;

3. D, used for decryption, ranges over plaintexts;

4. for all ke, kd := Ge(), if y := E(m, ke) withm ∈ plaintexts,
then D(y, kd) = m.

Next, we recast the usual game-based definition of resistance
against chosen plaintext attacks in our setting.

DEFINITION 2 (CPA SECURITY). The scheme (Ge, E ,D)
provides indistinguishability against adaptive chosen-plaintexts at-
tacks when, for the commands

E
·
= if b = 0 thenm := E(x0, ke) elsem := E(x1, ke)

CPA
·
= b := {0, 1}; ke, kd := Ge();A[E]

and for any polynomials command context A such that b, kd /∈
rv(A) and b, kd, ke, η /∈ wv(A), the advantage of the adversary
defined as |Pr[CPA; b =0 g]− 1

2
| is negligible.

The definition involves an indistinguishability game where the
adversary command A attempts to guess (and write in variable g)
whether the oracle encrypts x0 or x1. This notion of security does
not involve the decryption algorithm. In particular, it does not cover
chosen-ciphertext attacks.
Typing CPA encryptions Figure 3 gives cryptographic rules for
typing the algorithms of a CPA encryption scheme.

In Rule GENE for key generation, the first hypothesis requires
that the encryption scheme (implicitly parameterized by the key
label K) be at least CPA secure. The next two hypotheses give
matching encryption-key and decryption-key types to variables ke
and kd, with the same key label K and the same range of plain-
texts E. The constraint τ ≤C `d for every type τ ∈ E states that
the decryption key kd is at least as confidential as every plaintext,
thereby preventing confidentiality leaks by key compromise. (The
constraint appears in GENE rather than DECRYPT, to ensure that all
copies of the decryption key are sufficiently confidential.)

In Rule ENCRYPT, the first three hypotheses bind types to the ci-
phertext y, plaintext e, and key ke involved in the encryption; these
types are related by τ ∈ E and K. The type of y carries two
security labels: `y , the level of the encryption, and L(τ) within
Enc τ K, the level of the encrypted plaintext. The label `y in the
typing of ke records an ordinary flow from ke to y: by subtyping,
we must haveL(ke) ≤ `y . Conversely, there is no constraint on the
flow from e to y, so our typing rule may be sound only with cryp-
tographic assumptions: for confidentiality, this flow reflects that
encryption is a form of declassification: e can be more confidential
than y. In that case, that is τ 6≤C y, we say that K declassifies
C(τ). For integrity, this flow reflects that encryption is also a
form of endorsement: intuitively, y is only a carrier for e, not in
itself an observable outcome of the program; its integrity indicates
that y is the result of a correct encryption, even when e itself is
not trusted. Finally, the disjunction is a robustness condition on the
encryption key, requiring that its integrity be sufficient to protect
the confidentiality of the plaintext. The first disjunct excludes that
an α-adversary may affect the encryption key (for instance over-
writing it with a key she knows). The second disjunct states that
the confidentiality protection provided by the key is nil, since an
α-adversary may directly read the plaintext. Hence, in case E con-
tains plaintexts with different levels of secrecy, a key with relatively
low integrity may still be used to encrypt a plaintext with relatively
low confidentiality.

In Rule DECRYPT, the first three hypotheses on the left bind types
to the variables x, y, and kd involved in the decryption; these types

are related by τ and K. The label L(x) flows from y to x, as in a
normal assignment. The label `d and the hypothesis `d ≤I x record
integrity flows from kd to x, as in a normal assignment. Con-
versely, there is no constraint on the confidentiality flow from kd
to the plaintext x, so our typing rule may be sound only with cryp-
tographic assumptions. Informally, this reflects that the decrypted
plaintext yield no information on the decryption key itself, thereby
enabling decryptions of plaintexts with different confidentiality lev-
els. When `d 6≤C x, we say that K declassifies C(`d).

The disjunction deals with the integrity of the ciphertext y and
the decryption key kd, with three cases: either

• both ciphertext and decryption key have high integrity; or

• the plaintext is at least as confidential as the key; or

• cryptographic protection is nil, since an α-adversary may
read the decryption key then decrypt the plaintext.

The first case intuitively reflects our CPA security assumptions: it
requires that the integrity of the ciphertext and the decryption key
suffices to guarantee a correct decryption.

When y 6≤I α and `d 6≤C α, the second case covers some
chosen-ciphertext attacks, which may come as a surprise: in that
case, we say that K depends on C(x) and we rely on an additional
safety condition (see also Example 3 and 4). When `d 6≤I α and
`d 6≤C α, the second case also cover compromise of the decryption
key, which may then flow to the decrypted value, as discussed in
Example 2.

Examples We provide a series of examples that illustrate the rel-
ative information-flow security properties of encryptions. In the
examples, unless specified otherwise, we assume that α is LH and
ke, kd is a secure keypair, that is, we set L(ke) = LH and L(kd) =
HH and assume that (Ge, E ,D) is CPA. We also write for instance
xLH for a variable such that L(xLH) = LH. We first encrypt a pair
of mixed integrity into a ciphertext of high integrity:

EXAMPLE 1 (HIGHER-INTEGRITY ENCRYPTIONS).
Consider the command context

ke, kd := Ge();x := 〈xHH, xHL〉; yLH := E(x, ke); _;
x′ := D(yLH, kd);x

′
HH := (x′)0;x′HL := (x′)1

Let Γ(x) = Γ(x′) = Data (HH) ∗ Data (HL). This command
typechecks; it is safe, inasmuch as the adversary can influence the
values of xHL, x′HL and of the ciphertext yLH, but not the final value
of x′HH.

Encrypting with a low-integrity key clearly leads to confidential-
ity leaks, as the adversary may overwrite the key with its own key
before the encryption. Decrypting with a low-integrity decryption
key may also be problematic, especially when the plaintext is not
secret, as illustrated below:

EXAMPLE 2 (LOW-INTEGRITY KEYS).
Consider the command context

ke, kd := Ge(); k′d := kd; yLH := E(1, ke); _;
if xHH then k′′d := kd else k

′′
d := k′d;xLL := D(yLH, k

′′
d)

We let k′d and k′′d be low-integrity copies of the decryption key,
that is L(k′d) = L(k′′d) = HL. The command is not typable, and is
actually unsafe, since we may fill the hole with the command k′d :=
0; thus, k′′d to contain the correct key if and only if xHH 6= 0, and the
adversary can finally compare xLL with 1, the correct decryption,
and infer the confidential value xHH.

GENE
(Ge, E ,D) is CPA
Γ(ke) = KeEK(`e)
Γ(kd) = KdEK(`d)
∀τ ∈ E, τ ≤C `d

` ke, kd := Ge() : `e u `d

ENCRYPT
Γ(y) = Enc τK(`y)
` e : τ τ ∈ E
` ke : KeEK(`y)
ke ≤I α or τ ≤C α

` y := E(e, ke) : `y

DECRYPT
τ ≤ Γ(x) τ ∈ E
` y : Enc τK(L(x))
` kd : KdEK (`d) `d ≤I x
(y ≤I α and `d ≤I α) or `d ≤C x or `d ≤C α

` x := D(y, kd) : L(x)

Figure 3: Typing rules for CPA encryption with policy Γ.

Similarly, since we rely on CPA (for chosen plaintext) and not
CCA (for chosen ciphertext), decrypting a low-integrity ciphertext
may also be problematic, as illustrated below:

EXAMPLE 3 (CHOSEN-CIPHERTEXT ATTACKS). When dec-
rypted, low-integrity ciphertexts may leak information about their
decryption keys. For a given CPA encryption scheme (Ge, E ,D),
we derive a new scheme (G′e, E ′,D′) as follows:

G′e()
·
= Ge() E ′(x, ke)

·
= 1|E(x, ke)

D′(y, kd)
·
= b|y′ := y; if b = 0 then kd else D(y′, kd)

(where b|y′ := y abbreviates decomposing y into b and y′). In the
new scheme, decryption leaks its key when called on an ill-formed
ciphertext (prefixed with a 0 instead of a 1).

Although this scheme is CPA, decryption of a low-integrity ci-
phertext may cause a confidentiality flow from kd to the decrypted
plaintext, letting the adversary decrypt any other value encrypted
under ke.

CPA versus chosen ciphertext attacks As illustrated in Sections
7 and 8, our typing rules for CPA allow the decryption of low-
integrity ciphertexts when the plaintext is secret, as long as the re-
sulting plaintext never flows to any cryptographic declassification.

We define a notion of key dependencies, used to express the ab-
sence of key cycles in Section 6, and we give a counter-example
showing an implicit information flow for one such cycle.

DEFINITION 3 (KEY DEPENDENCIES). For given policy, ad-
versary, and typed command context P , K depends on K′ when

1. K occurs in the set E′ of plaintext types for K′; or

2. K depends on c, c ≤C c′, and K′ declassifies c′.

EXAMPLE 4. For a given CPA encryption scheme (Ge, E ,D),
we define a modified scheme (Ge, E ′,D′) as follows:

E ′(x, ke)
·
= r := random_plaintext();

if D(E(r, ke), x) = r then 0|x else 1|E(x, ke)

D′(b|y′, kd)
·
= if b = 0 then kd else D(y′, kd)

In the modified scheme, the encryption of a decryption key with
the corresponding encryption key leaks the decryption key. This
scheme is still CPA since an adversary would have to guess the
decryption key for a successful attack. However, this scheme leaks
kd when the decryption of a compromised plaintext appears in an
encryption:

ke, kd := Ge(); yLL := E(0, ke); _;
xHL := D(yLL, kd); y

′
LL := E(xHL, ke);

This command has a key-dependency cycle, but it is otherwise ty-
pable, and it is unsafe: we may fill the hole with a command in-
jecting an ill-formed ciphertext; thus y′LL = xHL = kd and the
adversary can obtain the private key by reading y′LL.

Typing CCA2 encryptions We recall the definition of CCA2, ob-
tained from CPA by adding a decryption oracle:

DEFINITION 4 (CCA2 SECURITY). The scheme (Ge, E ,D)
provides indistinguishability against adaptive chosen-plaintext and
chosen-ciphertext attacks when, for the commands

E
·
= if b = 0 thenm := E(x0, ke) elsem := E(x1, ke);

log := log +m

D
·
= ifm ∈ log then x := 0 else x := D(m, kd)

CCA ·
= b := {0, 1}; log := nil; ke, kd := Ge();A[E,D]

and for any polynomial command context A such that b, kd /∈
rv(A) and b, kd, ke, η, log /∈ wv(A), the advantage of the adver-
sary |Pr[CCA; b =0 g]− 1

2
| is negligible.

If the scheme is CCA2 secure, we may use an additional rule for
typing decryptions, given below.

DECRYPT CCA2
τ ≤ Γ(x) τ ∈ E (Ge, E ,D) is CCA2
` y : Enc τK(L(x))
` kd : KdEK (`d) `d ≤I x `d ≤I α or `d ≤C α
∀τ ′ ∈ E, τ ′ ≤ τ t (⊥,>)

` x := D(y, kd) : L(x)

Except for the CCA2 cryptographic assumption, the rule differs
from rule DECRYPT only on the last line of hypotheses, so DECRYPT

CCA2 effectively adds a fourth case for decryptions of low-integrity
ciphertexts. In this new case, the adversary may be able to mix
encryptions for values of type τ with those of values of any other
type τ ′ ∈ E, so we must statically exclude some of the resulting
flows between plaintexts: τ and τ ′ must have the same datatypes at
the same levels of confidentiality.

EXAMPLE 5 (CIPHERTEXT REWRITING). Consider a com-
mand context using the same keypair for payloads at levels HH
and LL:

ke, kd := Ge();
yLL := E(xLL, ke); y

′
LL := E(xHH, ke); _;x′LL := D(yLL, kd)

The command is not typable, and is unsafe: indeed, we may fill the
hole with an adversary command yLL := y′LL, thereby causing the
program to leak a copy of the secret xHH into x′LL.

4. BLINDING SCHEMES:
SECURITY AND TYPING

Blinding schemes, also known as reencryption schemes, have
been introduced by Blaze et al. [3] and can be seen as special cases
of homomorphic encryption schemes. To precisely keep track of
their information flows, we separate encryption into two stages,
each with its own primitive and typing rule:

• Pre-encryption P() inputs a plaintext and outputs its repre-
sentation as a ciphertext, but does not in itself provides con-
fidentiality; it can be deterministic; it is typed as an ordinary
operation and does not involve declassification.

• Blinding B() operates on ciphertexts; it hides the correlation
between its input and its output, by randomly sampling an-
other ciphertext that decrypts to the same plaintext; it is typed
with a declassification, similarly to rule ENCRYPT.

As shown below, some standard encryption schemes can easily be
decomposed into pre-encryption and blinding. This enables us for
instance to blind a ciphertext without knowing its plaintext, and
to perform multiple operations on ciphertexts before blinding. For
conciseness, we may still write E instead of P;B when the two op-
erations are executed together. We define the functional properties
of blinding encryption schemes:

DEFINITION 5 (BLINDING SCHEME). A blinding encryption
scheme is a tuple (Ge,P,B,D) such that (Ge,P;B,D) is an en-
cryption scheme and B is a probabilistic function such that, for all
ke, kd := Ge(), if v encrypts m, then D(v, kd) = m, where ‘en-
crypts’ is defined by

1. v encrypts m when v := B(P(m, ke)) with m ∈ plaintexts;

2. v′ encrypts m when v′ := B(v, ke) and v encrypts m.

Blinding hides whether an encrypted value is a copy of an other,
as shown in the following example.

EXAMPLE 6. Consider a service that, depending on a secret,
either forwards or overwrites an encrypted message. We distin-
guish a third confidentiality level S such that L ≤C S ≤C H .

ke, kd := Ge(); yLH := E(mHH, ke);
if sSH then ySH := P(mSH, ke) else ySH := yLH;
y′LH := B(ySH, ke)

The resulting ciphertext ySH is itself secret, as an adversary may
otherwise compare it with yLH and infer the value of sHH. After
blinding, however, y′LH still protects the same message but can be
safely treated as public, as an adversary reading yLH and y′LH learns
nothing about mHH or sSH.

CPA for Blinding A blinding scheme (Ge,P,B,D) is secure
enough to be used with our typing rules when (Ge,B,D) is CPA.
We have shown this property for the blinding schemes based on El-
Gamal [8] (GEe ,PE,BE,DE) , and Paillier [22] (GPe ,PP,BP,DP).

THEOREM 1. (GEe ,BE,DE) and (GPe ,BP,DP) are CPA.

Typing rules for Pre-Encryption and Blinding The typing rules
for pre-encryption and blinding appear in Figure 4.

Rule PRE-ENCRYPT is similar to ENCRYPT, but constrains the con-
fidentiality flow from e to y, which forbids any declassification by
typing.

The first three hypotheses of the Rule BLIND bind types to the
variables ke, z, and y. These types are related by τ, τ ′ ∈ E and K,
which are also typing assumptions for encryptions with key ke. The
label `y in the typing of ke records the flow from ke to y (by sub-
typing, we must have ke ≤ `y). The label L(τ) in the typing of z
records the flow from z to the encrypted value in y. The hypothesis
τ ≤ τ ′ ensure the correctness of the flow from the encrypted value
in z to the encrypted value in y. Similarly to ENCRYPT, there is no
constraint on the flow from z to y, so our typing rule may be sound
only with cryptographic assumptions. When z 6≤C y, we say that
K declassifies C(z).

5. HOMOMORPHIC ENCRYPTIONS
We now consider encryption schemes with homomorphic prop-

erties: some functions on plaintexts can instead be computed on
their ciphertexts, so that the command that performs the compu-
tation may run at a lower level of confidentiality. These schemes
enable private remote evaluation: supposing that fK is a function
that homomorphically compute a function f , a client may delegate
its evaluation to a server as follows:

1. the client encrypts the secret plaintext x into z1;

2. the server applies fK to the encrypted value (possibly en-
crypting its own secret inputs);

3. the client decrypts the result.

Programmatically, to implement x′ := f(x), we use a sequence of
three commands sharing the variables z and z′ and the encryption
key ke:

z := E(x, ke); z
′ := fK(z, ke);x

′ := D(z′, kd)

For simplicity, we do not consider probabilistic homomorphic
functions, or homomorphic functions that take non-ciphertext ar-
guments.

DEFINITION 6 (HOMOMORPHIC ENCRYPTION SCHEME).
An homomorphic encryption scheme is a tuple (Ge,P,B,D,F)
such that (Ge,P,B,D) is a blinding encryption scheme and F is
a partial map on polynomial deterministic functions such that for
all ke, kd := Ge(), if v encryptsq m, then D(v, kd) = m, where
‘encrypts’ is defined by

1. v encrypts0mwhen v := B(P(m, ke)) withm ∈ plaintexts;

2. v′ encryptsq m when v′ := B(v, ke) and v encryptsq m.

3. v encryptsq′ f(m1, . . . ,mn) when f 7→ fK : q → q′ ∈ F ,
v := fK(v1, . . . , vn), and each vi encryptsq mi for i ∈
1..n.

Homomorphic properties are usually incompatible with CCA2
security. Also, practical encryption schemes usually support a few
fixed functions f , and often put limits on the number of consec-
utive applications of fK . (This is the purpose of indexes in our
model.) Intuitively, these homomorphic application are not perfect;
they also produce noise, which may eventually leads to incorrect
decryptions. For example, [4] provides a scheme with an unlimited
number of additions but only one homomorphic multiplication. In
our model, this translate to: F = {+ 7→ +K : 0 → 0; ∗ 7→ ∗K :
0→ 1; + 7→ +K : 1→ 1}.

Figure 4 includes our additional rule for homomorphic computa-
tion, HOM-FUN. This rule is parametric on the homomorphic en-
cryption scheme, and relies on a typing assumption on the cor-
responding ‘virtual’ computation on plaintexts, using a security
policy extended with fresh plaintext variables: Γ, x : τ t `y, ~x :
~τ t `y ` x := f(~x) : L(τ) t `y.

The first hypotheses bind types to the variables ke, y, and ~z in-
volved in the homomorphic operation; these types are related by
~τ, τ ∈ E and K, which describe the typing assumptions for en-
cryptions with key ke. They also ensure that the function f is ho-
momorphically implementable in this encryption scheme with the
corresponding indexes. The last hypothesis ensure that f would be
typable if applied on the decrypted ciphertext. The label `y in the
typing of ke, y, and ~z records the flow from ke and ~z to y.

Our typing rule ensures that if an homomorphic function types,
its equivalent non-homomorphic version would also type, as illus-
trated in Example 7.

PRE-ENCRYPT
Γ(y) = Enc τKq(`y)
` e : τ τ ≤C y
` ke : KeEK(`y)
τ ∈ E

` y := P(e, ke) : `y

BLIND
(Ge,B,D) is CPA
Γ(y) = Enc τ Kq(`y) τ ′ ≤ τ
` z : Enc τ ′Kq(L(τ))
` ke : KeEK(`y) τ, τ ′ ∈ E
ke ≤I α or τ ≤C α

` y := B(z, ke) : `y

HOM-FUN
FK(f) = fK : ~q → q′

Γ(y) = Enc τ Kq′(`y)
` zi : Enc τiKqi(`y) for zi ∈ ~z
` ke : KeEK(`y) ~τ, τ ∈ E
Γ, x : τ t `y, ~x : ~τ t `y ` x := f(~x) : L(τ) t `y

` y := fK(~z, ke) : `y

Figure 4: Additional typing rules for pre-encryption, blinding, and encryption homomorphisms with policy Γ.

Examples The examples below use Paillier encryption, which en-
ables us to add plaintexts by multiplying their ciphertexts. Thus,
we use f = + and fK = ∗, and for F(+) = ∗ : 0 7→ 0 we obtain
a single instance of rule HOM-FUN:

HOM-PAILLIER
Γ(y) = Enc (Data (`))K (`y)
` zi : Enc (Data (`i))K (`y) for i = 0, 1
` ke : KeEK(`y) Data (`),Data (`0),Data (`1) ∈ E
`0 t `1 t `y ≤ ` t `y

` y := z0 ∗ z1 : `y

EXAMPLE 7. To illustrate our typing rule, we compare two pro-
grams that perform the same addition, on plaintexts (on the left)
and homomorphically (on the right):

P
·
= ke, kd := Ge(); P ′

·
= ke, kd := Ge();

z1 := E(x1, ke); z1 := E(x1, ke);
x′1 := D(z1, kd)
x := x′1 + x′1; y := z1 ∗ z1;
y := E(x, ke);
r := D(y, kd); r := D(y, kd);

Suppose that we type P with a policy Γ, then, relying on the plain-
text-typing assumption in rule HOM-FUN, we can also type P ′ with
the same policy.

EXAMPLE 8. We show how to homomorphically multiply an
encrypted value by a small integer factor.

ke, kd := Ge(); yLH := E(xHH, ke); zSH := E(0, ke);
for iSH := 1 to nSH do zSH := zSH ∗ yLH;
zLH := B(zSH, ke); _;xHH := D(zLH, kd)

By typing, we have that an honest-but-curious adversary (α = SH)
does not learn xHH, and that a network adversary (α = LH) learns
neither xHH nor nSH. The latter guarantee crucially relies on blind-
ing the result at the end of the loop, since otherwise the adversary
may also iterate multiplications of yLH and compare them to the
result to guess nSH.

Another classic example of homomorphic scheme is the ElGa-
mal encryption, which enables us to multiply plaintexts by mul-
tiplying their ciphertexts; we omit similar, typable programming
examples.

6. COMPUTATIONAL SOUNDNESS
We define security properties for probabilistic command con-

texts as computational variants of noninterference, expressed as
games [9].

DEFINITION 7 (COMPUTATIONAL NON-INTERFERENCE).
Let Γ be a policy, α an adversary level, and P a command context.
P is computationally non-interferent against α-adversaries

when, for both V = V Cα and V = V Iα , and for all polynomial

commands J , B0, B1, T containing no cryptographic variables,
such that wv(Bb)∩V = ∅ and rv(T) ⊆ V , ~A α-adversaries such
that P [~A] is a polynomial command, g /∈ v(J,B0, B1, P, ~A), and
some variable b /∈ v(J,B0, B1, P, ~A, T) in the command

CNI ·= b := {0, 1}; J ; if b = 0 then B0 else B1;P [~A]

if we have Pr[CNI;
∧
x∈rv(T) x 6= ⊥] = 1, then the advantage

|Pr[CNI;T ; b =0 g]− 1
2
| is negligible.

In the game, the command J ; if b = 0 then B0 else B1 probabilis-
tically initializes the memory, depending on b. Definition 7, then
runs the command context applied to adversaries P [~A]. Finally, T
attempts to guess the value of b and set g accordingly. T cannot
read cryptographic variables, which are not an observable outcome
of the program. The condition

∧
x∈rv(T) x 6= ⊥ rules out com-

mands T that may read uninitialized memory. Hence, the property
states that the two memory distributions for b = 0 and b = 1 after
running CNI cannot be separated by an adversary that reads V .

Besides the cryptographic assumptions, we state additional safety
conditions for soundness.

DEFINITION 8. Let α ∈ L be security label. A command con-
text P is safe against α-adversaries when Γ ` P and

1. Each key label is used in at most one key generation.

2. Each key variable read in P is first initialized by P .

3. There is no dependency cycle between key labels.

We rely on these conditions to apply cryptographic games in the
proof of type soundness, for instance to guarantee the integrity of
decrypted values. They can be enforced by static analysis, for in-
stance by collecting all relevant static occurrences of variables and
forbidding encryption-key generation within loops.

Condition 1 prevents decryption-key mismatches. Condition 2
recalls our assumption on uninitialized variables for keys. Condi-
tion 3 prevents leaks with low integrity ciphertext when using CPA.

We also assume that each static key label is associated to a fixed
scheme for encryption that meets Definitions 1, 5, or 6 and we im-
pose constraints on the length of ciphertexts in order to prevent
information leakage via the length of encrypted messages (see ap-
pendix for a formal definition).

Relying on these conditions, we obtain our main security theo-
rem: well-typed programs are computationally non-interferent.

THEOREM 2. Let α ∈ L be a security label. Let Γ be a pol-
icy. Let P be a polynomial-time command context, safe against
α-adversaries. P satisfies computational non-interference against
α-adversaries.

The proof relies on a series of typability-preserving program
transformations that match the structure of the games used in the

cryptographic security assumptions (Definition 2). These transfor-
mations replace, one static key label at a time, couples of encryp-
tions and decryption algorithms by an ideal implementation that
maintains a global table for all values encrypted so far and encrypts
0s instead of the actual plaintexts.

7. PRIVATE SEARCH ON DATA STREAMS
We illustrate the use of Paillier encryption on a simplified ver-

sion of a practical protocol developed by Ostrovsky and Skeith III
[21] for privately searching for keywords in data streams (without
the Bloom filter). The protocol has two roles: an agency P and
a service S. Assume that the service issues, or processes, confi-
dential documents such as mail orders or airline tickets, and that
the agency wishes to retrieve any such document whose content
matches some keywords on a secret black list. The two roles com-
municate using a public network. The black list is too sensitive to
be given to the service. Conversely, the service may be processing
a large number of documents, possibly at many different sites, and
may be unwilling to pass all those documents to the agency.

We formally assume that the agency is more trusted than the ser-
vice. We suppose that the documents are arrays of words, and that
all words (including the keywords on the black list) appear in a
public, trusted dictionary. We model the public network using vari-
ables shared between P and S. We rely on the additive property
of Paillier encryption, detailed in Section 5. We code the protocol
using three commands, explained below.

Initially, the agency generates a keypair and encodes the list of
keywords as an array (mask) of encryptions indexed by the public
dictionary that contains, for each word, either an encryption of 1 if
the word appears in the black list or an encryption of 0 otherwise.
The agency can distribute this array to the service without revealing
the black list.

P0
·
= ke, kd := Ge();

for i := 0 to size(words)− 1 do
if words[i] ∈ keywords then wb := 1 else wb := 0;
mask[i] := E(wb, ke)

Then, for each document d, the service homomorphically com-
putes the number of matching keywords, as the sum of the 0 and
1s encrypted in mask for all indexes of the words (d[j]) present
in the document, by multiplying those encryptions in e. Moreover,
the service homomorphically multiplies e and the value of the doc-
ument d (seen as a large integer) in z—the loop computes ed, and
may be efficiently replaced with a fast exponentiation. In particular,
if they were no matches, z is just an encryption of 0. Finally, the
serviceblinds both e and z before sending them to the agency—this
step is necessary to declassify these encryptions without leaking
information on the document.

S
·
= e := 1;

for j := 0 to size(d)− 1 do
e := e ∗mask[words−1(d[j])];

e′ := B(e, ke); z := 1;
for j := 0 to d− 1 do z := z ∗ e;
z′ := B(z, ke)

Last, for each pair e′ and z′, the agency decrypts the value con-
taining the number of matches (in n) and, if n is different from 0,
retrieves the value of the document by decrypting the product and
dividing by n.

P
·
= n := D(e′, kd);

if n > 0 then
nd := D(z′, kd); log := log + (nd/n)

Adding an outer loop for the documents processed by the service,
the whole protocol is modelled as the command

Q
·
= P0;

for l := 0 to nb_docs do
d := docs[l];S;P ; _

As discussed by Ostrovsky and Skeith III, this algorithm is reason-
ably efficient for the service, as it requires just a multiplication and
a table lookup for each word in each document. Relying on Bloom
filters, the authors of the protocol and Danezis and Diaz [6] develop
more advanced variants, requiring less bandwidth and guaranteeing
additional privacy properties for the service, but the overall struc-
ture of the protocol remains unchanged.

We now specify the security of the protocol as a policy Γ that
maps the variable of Q to labels. We distinguish three levels of
integrity: H for the agency, S for the service, and L for untrusted
data, with H <I S <I L. ke and keywords have high integrity
(H); all other variables have service integrity (S).

We also distinguish four levels of confidentiality: H and P for
the agency, S for the service, and L for public data. With L <C
P <C H and L <C S <C H .

• words, mask, e′, z′, i, nb_docs, ke are public (at level L);

• docs, d, e, z, j, l are readable by the service (S) and the
agency;

• keywords, kd, bw are readable only by the agency (P);

• log, n, nd are also readable by the agency, but they depend
on low-integrity decryptions, and thus should not flow to any
further encryption with key ke (H).

We prove the security properties of the protocol as instances
of computational non-interference, established by typing our code
with different choices of adversary level α.

THEOREM 3. Γ ` Q when α ranges over SH, SS, and LS,
hence Q is computationally non interferent against these adver-
saries.

The case α = SH corresponds to a powerful adversary that en-
tirely controls the service but still learns nothing about the black-
list: it cannot distinguish between any two runs of the protocol with
different values of keywords. If the service is honest but curious
(α = SS), the protocol also completes with the correct result. If
the adversary controls only the network (α = LS), it learns nothing
either about the documents contents (docs).

8. BOOTSTRAPPING HOMOMORPHIC
ENCRYPTIONS

Gentry [11] proposes a first fully homomorphic encryption
(FHE) scheme, that is, a scheme that supports arbitrary compu-
tations on encrypted data, thereby solving a long-standing crypto-
graphic problem [13]. Others, e.g. Smart and Vercauteren [23],
develop more efficient constructions towards practical schemes.

These constructions are based on bootstrappable encryption
schemes, equipped with homomorphic functions for the scheme’s
own decryption function as well as some more basic functions;
these basic operations may represent e.g. logical gates. (Designing
a bootstrappable encryption scheme is in itself very challenging,
as it severely constrains the decryption algorithm, but is not our
concern here.)

The bootstrap relies on a series of keys. Whenever the noise
accumulated as the result of homomorphic evaluation needs to be

canceled, the intermediate result (encrypted under the current key)
is encrypted using the next encryption key, then homomorphically
decrypted using an encryption of the current decryption key un-
der the next encryption key. This bootstrapping yields an homo-
morphic scheme for any function as long as the computation can
progress using other homomorphic functions between encryptions
and decryptions to the next key. (Following Gentry’s terminology,
the resulting scheme is a leveled FHE: the key length still depends
on the max size of the circuit for evaluating f; some additional key-
cycle assumption is required to get a fixed-length key.)

Next, we assume the properties of the base algorithms given by
Gentry—being CPA and homomorphic for its own decryption plus
basic operations fi that suffice to evaluate some arbitrary func-
tion f . We then show that these properties suffice to program and
verify by typing the bootstrapping part of Gentry’s construction,
leading to homomorphic encryption for this arbitrary function f .
Typing of Gentry’s bootstrapping relies on typing rules for CPA
with multiple keys and types of encrypted values, and on instances
of rule HOM-FUN with f = D.

We assume given a bootstrappable scheme using a set of homo-
morphic functions for decrypting and for computing: F = {D 7→
DK : 0→ 1; f i 7→ f iK : 1→ 2 for i = 1..n}.

We are now ready to program the bootstrapping for f . Both par-
ties agree on the function to compute, f , and its decomposition into
successive computation steps (fi)i=1..n such that f = f1; . . . ; fn.
This may be realized by producing a circuit to evaluate f and then
letting the fi be the successive gates of the circuit. For simplicity,
we assume that each fi operates on all the bits of the encrypted
values; Gentry instead uses a tuple of functions f j=1..w

i for each
step, each f ji computing one bit of the encrypted values. This more
detailed bootstrapping can be typed similarly.

For the plaintexts, we write x0 for the input, x1, . . . xn−1 for the
intermediate results, and xn for the final result, so the high-level
computation is just xi := fi(xi−1) for i = 1..n.

The client generates all keypairs; encrypts the input using the
first encryption key; encrypts each decryption key using the next
encryption key; calls the server; and decrypts the result using the
final key:

Pc
·
= kei, kdi := Ge(); for i = 1..n
skdi := E(kdi, kei+1); for i = 1..n− 1
y0 := E(x0, ke1);
_; calling the server
xn := D(zn, skn)

The message consists of the content of the shared variables y0,
ke1, skd1, . . . , ken−1, skdn−1, ken. The server performs the
homomorphic computation for each fi, interleaved with the re-
keying.

Ps
·
=
(
zi := f iKi

(yi−1, kei);
ti := E(zi, kei+1);
yi := DKi+1(ti, skdi, kei+1);

)
for i=1..n−1

zn := fnKn
(yn−1, ken); _

We specify the security of the protocol as a policy Γ that maps
the variable of Pc and Ps to labels. We distinguish three levels of
integrity: H for the agency, S for the service, and L for untrusted
data, with H <I S <I L. kei and kdi have high integrity (H) for
i = 1..n; all other variables have service integrity (S).

Since our scheme is only CPA, we need n+1 levels of confiden-
tiality to separate the results of low integrity decryptions: H0..Hn
for the agency and L for public data, such that L <C H0 <C
· · · <C Hn.

• kei, skdi, zi, ti, yi are public for i = 1..n (at level L);

• x0 is readable only by the agency (H0);

• kdi is readable only by the agency for i = 1..n (Hi);

• xn is also readable by the agency, but moreover it depends
on low-integrity decryptions, and thus should not flow to any
further encryption with any of the key kei for i = 1..n (Hn).

Let τi = Data (HiS). We type our variables as follows, for
i = 1..n− 1.

Γ(kei) =KeEiKi(LH)
Γ(kdi) =KdEiKi(HiH)
Γ(x0) = τ0
Γ(skdi) =Enc (KdEiKi(Hi−1S))Ki+10(LS)
Γ(y0) =Enc τ0K10(LS)
Γ(zi) =Enc τi−1Ki2(LS)
Γ(ti) =Enc (Enc τi−1Ki2(LS))Ki+10(LS)
Γ(yi) =Enc τiKi+11(LS)
Γ(zn) =Enc τn−1Kn2(LS)
Γ(xn) = τn

with the encrypted sets below, for i = 2..n:

E1 = {τ0}
Ei = {τi−1,KdEi−1Ki−1(Hi−2S),Enc τi−1Ki−1(HS)}

We verify that the commands above are typable with the resulting
policy Γ:

THEOREM 4. Γ ` Pc[Ps] when α ranges over LS and LH,
hence Pc[Ps] is computationally non-interferent against these ad-
versaries.

The theorem yields strong indistinguishability guarantees. The
case α = LS corresponds to an “honest but curious” adversary, who
can observe all server operations on ciphertexts (that is, read all
intermediate values) but still learn nothing about the plaintexts. The
case α = LH corresponds to an active adversary in full control of
the service, who can disrupt its operations, and still learns nothing
about the plaintexts. To clarify these confidentiality guarantees, we
verify by typing that our construction is in particular CPA. We let S
abbreviate the scheme (Ghe , Eh,Dh, {f 7→ fK : 0 → 1}) defined
as follows:

ke, kd := Ghe ()
·
=
(
kei, kdi := Ge();

)
for i=1..n(

skdi := E(kdi, kei+1);
)

for i=1..n−1

ke := (ke1, ..., ken, skd1, skdn−1);
kd := (kd1, kdn)

y := Eh(e, ke)
·
= y := E(e, (ke)1);

y := fhK(z, ke)
·
= y0 := z;(

zi := f iKi
(yi−1, (ke)i);

ti := E(zi, (ke)i+1);
yi := DKi+1(ti, (ke)i+n, (ke)i+1);

)
for i=1..n−1

y := fnKn
(yn−1, (ke)n)

x := Dh(y, kd)
·
= if is_enc(y, (kd)1)

then x := D(y, (kd)1)
else x := D(y, (kd)2)

THEOREM 5. S is a CPA homomorphic encryption scheme.

9. RELATED WORK
Information flow policies and types Non-interference was in-
troduced by Goguen and Meseguer [12]. Laud [17] introduces
computational non-interference in a model with passive adversaries

(CNIP). Laud and Vene [19] propose a type system (relying on
CPA) to verify CNIP in a language with symmetric encryption
but where decrypted values cannot be treated as keys. Fournet
and Rezk [9] generalize CNIP to the active case, with adversaries
that may interfere with the normal execution of programs, and also
covers integrity properties. We present a type system (relying on
CCA2) that enables typing of key establishment protocols. In a
similar line of work, Smith and Alpízar [24] present a type sys-
tem (relying on CCA2) with encryption and decryption but no ex-
plicit keys. Askarov et al. [1] propose a type system for crypto-
graphically masked flows. Their system also handles key reuse
for plaintexts at different levels, via subtyping, but their adver-
sary model is weaker than ours, and excludes in particular chosen-
ciphertext attacks. Laud [18] investigates conditions such that cryp-
tographically masked flow imply secrecy and proposes a simpler
computationally-sound execution model for passive adversaries.

Homomorphic encryptions The first CPA homomorphic encryp-
tion scheme is due to Goldwasser and Micali [13]. Additive homo-
morphic encryption schemes proved to be CPA include Benaloh [2]
and Paillier [22]. ElGamal [8] is a CPA multiplicative homomor-
phic encryption scheme. Other schemes [4, 11] allow both addition
and multiplication.

Protocol analysis featuring homomorphic encryptions Delaune
et al. [7] and Lafourcade [16] analyse protocols featuring homo-
morphic encryptions using equational theories (see Cortier et al.
[5]) to model homomorphisms.

Acknowledgments We thank Martín Abadi, Anupam Datta, Mar-
kulf Kohlweiss, Nikhil Swamy, and the anonymous reviewers for
their comments.

References
[1] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked

flows. In Proceedings of the 13th International Static Analysis Sym-
posium, LNCS, Seoul, Korea, 2006. Springer-Verlag.

[2] J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a
secret sharing. In A. M. Odlyzko, editor, CRYPTO, volume 263 of
LNCS, pages 251–260. Springer, 1986.

[3] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and
atomic proxy cryptography. In EUROCRYPT, pages 127–144, 1998.

[4] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Theory of Cryptography (TCC), number 3378 in
LNCS, pages 325–341. Springer, Feb. 2005.

[5] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic prop-
erties used in cryptographic protocols. Journal of Computer Security,
14(1):1–43, 2006.

[6] G. Danezis and C. Diaz. Space-efficient private search with applica-
tions to rateless codes. In Financial cryptography and data security:
11th international conference, FC 2007, and 1st International Work-
shop on Usable Security, USEC 2007, 2007.

[7] S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic pro-
tocol analysis in presence of a homomorphism operator and exclusive
or. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors,
ICALP (2), volume 4052 of LNCS, pages 132–143. Springer, 2006.

[8] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO, pages 10–18, 1984.

[9] C. Fournet and T. Rezk. Cryptographically sound implementa-
tions for typed information-flow security. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’08), pages 323–335, Jan. 2008.

[10] C. Fournet, G. le Guernic, and T. Rezk. A security-preserving com-
piler for distributed programs: From information-flow policies to
cryptographic mechanisms. In ACM Conference on Computer and
Communications Security, pages 432–441, Nov. 2009.

[11] C. Gentry. Fully homomorphic encryption using ideal lattices. In
ACM symposium on Theory of computing (STOC), pages 169–178,
2009.

[12] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[13] S. Goldwasser and S. Micali. Probabilistic encryption & how to play
mental poker keeping secret all partial information. In ACM sympo-
sium on Theory of computing (STOC), pages 365–377, 1982.

[14] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
TASTY: tool for automating secure two-party computations. In 17th
ACM Conference on Computer and Communications Security, pages
451–462, Oct. 2010.

[15] J. Katz and L. Malka. Secure text processing with applications to
private DNA matching. In 17th ACM Conference on Computer and
Communications Security, pages 485–492, Oct. 2010.

[16] P. Lafourcade. Vérification des protocoles cryptographiques en
présence de théories équationnelles. Thèse de doctorat, Laboratoire
Spécification et Vérification, ENS Cachan, France, Sept. 2006.

[17] P. Laud. Semantics and program analysis of computationally secure
information flow. In 10th European Symposium on Programming
(ESOP), volume 2028 of LNCS. Springer, Apr. 2001.

[18] P. Laud. On the computational soundness of cryptographically-
masked flows. In 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’08), pages 337–
348, Jan. 2008.

[19] P. Laud and V. Vene. A type system for computationally secure infor-
mation flow. In Fundamentals of Computation Theory, LNCS, pages
365–377. Springer, 2005.

[20] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust de-
classification and qualified robustness. Journal of Computer Security,
14(2):157–196, 2006.

[21] R. Ostrovsky and W. E. Skeith III. Private searching on streaming
data. In V. Shoup, editor, Advances in Cryptology–CRYPTO 2005,
volume 3621 of LNCS, pages 223–240, 2005.

[22] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In EUROCRYPT, pages 223–238, 1999.

[23] N. Smart and F. Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. Public Key Cryptography–
PKC 2010, pages 420–443, 2010.

[24] G. Smith and R. Alpízar. Secure information flow with random as-
signment and encryption. In FMSE ’06: fourth ACM workshop on
Formal methods in security, pages 33–44, 2006.

