
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Information fusion‑based storage and retrieve
algorithms for WSNs in disaster scenarios
Xiao, Zhe; Huang, Ming; Shi, Jihong; Niu, Wenwei; Yang, Jingjing
2012
Xiao, Z., Huang, M., Shi, J., Niu, W., & Yang, J. (2012). Information fusion‑based storage and
retrieve algorithms for WSNs in disaster scenarios. International journal of distributed
sensor networks, 2012, 1‑16.
https://hdl.handle.net/10356/104976
https://doi.org/10.1155/2012/524543

© 2012 The Authors. This paper was published in International journal of distributed sensor
networks and is made available as an electronic reprint (preprint) with permission of the
authors. The paper can be found at the following official DOI:
[http://dx.doi.org/10.1155/2012/524543]. One print or electronic copy may be made for
personal use only. Systematic or multiple reproduction, distribution to multiple locations
via electronic or other means, duplication of any material in this paper for a fee or for
commercial purposes, or modification of the content of the paper is prohibited and is
subject to penalties under law.; Published version

Downloaded on 23 Aug 2022 20:30:56 SGT

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 524543, 16 pages
doi:10.1155/2012/524543

Research Article

Information Fusion-Based Storage and
Retrieve Algorithms for WSNs in Disaster Scenarios

Zhe Xiao,1 Ming Huang,2 Jihong Shi,2 Wenwei Niu,2 and Jingjing Yang2

1 School of Electrical and Electronic Engineering, Nanyang Technological University, Western Catchment Area, Singapore 639798
2 School of Information Science and Engineering, Yunnan University, Kunming 650091, China

Correspondence should be addressed to Zhe Xiao, zxiao1@e.ntu.edu.sg

Received 12 July 2011; Revised 13 September 2011; Accepted 19 September 2011

Academic Editor: Yuhang Yang

Copyright © 2012 Zhe Xiao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sensor networks are especially useful in catastrophic or disaster scenarios such as abysmal sea, floods, fires, or earthquakes where
human participation may be too dangerous. Storage technologies take a critical position for WSNs in such scenarios since the
sensor nodes may themselves fail unpredictably, resulting in the loss of valuable data. This paper focuses on fountain code-based
data storage and recovery solutions for WSNs in disaster scenarios. A review on current technologies is given on challenges posed
by disaster environments. Two information fusion-based distributed storage (IFDS) algorithms are proposed in the “few global
knowledge” and “zero-configuration” paradigm, respectively. Correspondingly, a high-efficient retrieve algorithm is designed
for general storage algorithms using Robust Soliton distribution. We observe that the successful decoding probability can be
provisioned by properly selecting parameters—the ratio of number of source node and total nodes, and the storage capacity
M in each node.

1. Introduction

WSNs have attracted a lot of attention recently due to
their broad applications. With the rapid development of
microelectromechanical system, sensor nodes can be made
much smaller with less cost. “Smart dust”, as a form of WSNs,
will become one of the most potential applications in real
world [1]. They can be deployed in tragedy, isolated, and
obscured fields to monitor objects, detect fires, temperature,
flood, and other disaster incidents such as earthquakes,
landslides, and ice damage. Sensing networks are ideal for
such scenarios since conventional sensing methods that
involve human participation within the sensing region are
often too dangerous. These scenarios offer a challenging
design environment because the nodes used to collect and
transmit data can fail suddenly and unpredictably as they
may melt, corrode, or get smashed. Hence, it is necessary to
design reliable storage strategies to collect sensed data from
sensors before they disappear from the network.

In 2006, Kamra et al. [2] designed and analyzed tech-
niques to increase “persistence” of sensed data based on
growth code—a variant of fountain code. Later on, Lin et al.

[3] proposed an algorithm that uses random walks with
traps to disseminate the source packets in the WSNs. They
employed the Metropolis algorithm to specify transition
probabilities of the random walks. However, the knowledge
of the total number of sensors N , sources K , and the
maximum node degree of the graph are required in their
works. Recently, Aly et al. [4] proposed two new decen-
tralized algorithms with limited or no knowledge of global
information based on raptor codes. They afterward proposed
two distributed flooding-based storage algorithms [5] for a
WSNs wherein all nodes serve as sources as well as storage
nodes, and the results demonstrated that it is required to
query only 20–30% of the network nodes in order to retrieve
the data collected by the N sensing nodes, in such a specific
scenario where the buffer size is 10% of the network size.
As a conclusion, a review on fountain code-based storage
technologies is elaborated in Section 2.

The ultimate goal of any storage strategies is to get the
maximum data recovering possibilities while encountering
loss of data. A storage strategy needs to include two parts,
that is, “how to store” and “how to retrieve”. The two
parts should be well matched with each other just like a

2 International Journal of Distributed Sensor Networks

decoding algorithm needs to be suitable for the encoding
process. However, most of the previous works only focus
on the storage part involving how to network the backup
of sensing packages to each storage node and how to
process the back-up packages in distributed way. In this
paper, we extend the works to a complete solution including
both storage and recovery sections. With respect to the
storage part, two IFDS algorithms are proposed in the “lim-
ited global knowledge” and “zero-configuration” paradigm,
respectively. For the recovery part, a belief propagation and
Gaussian elimination-based recovery Algorithm (BGRA) is
designed for data retrieve in close connection with the
proposed storage algorithms, and it is suitable for any storage
algorithms using Robust Soliton distribution. Moreover, the
general scenarios with consideration of the percentage of
source node number K among total number of nodes N and
the storage capacity M of each node are studied. We analyze
in detail how the three parameters affect the data retrieve.
The results indicate that a WSN with designable successful
decoding probability can be deployed by selecting proper N ,
K , and M, which lays some foundation for the application of
WSNs in disaster scenarios.

2. Fountain Code-Based Storage in WSNs

Fountain codes are a new class of rateless codes with finite
dimension and infinite block length. The first class of effi-
cient universal fountain codes was invented by Luby [6] and
is called LT codes. The codes are designed for channels with
erasures such as internet, but many distinctive characteristics
make the codes become an excellent solution in a wide
variety of situations. MacKay [7] mentioned two major
applications in his review of fountain code, one is for
broadcast and the other is for storage. In storage applications,
fountain codes can be used to spray encoded packets as
backup of a file on more than one storage device so as to
prevent data loss caused by catastrophic failures of unreliable
storage device; and to recover the file, one simply needs
to gather enough packets from any intact devices and skip
over the corrupted packets on the broken devices. Actually,
the distributed storage model in WSNs is very similar to
the case, and it seems easier to implement in WSN since
the communication network used to bridge nodes makes
it convenient to spray the back-up packages. In a sensor
network, the storage device is the node with storage units.
In order to prevent data loss caused by unexpected failure
of the storage node, a similar solution is to network the
important sensed data to multiple storage nodes, encoding
them distributedly using fountain code and to store them
as a backup. The original sensed data can be retrieved as
long as to query enough storage nodes with enough encoded
packages.

Based on these points, many researchers follow closely
with fountain code-based decentralized storage technology
and give specialized solutions to the storage problems of
WSNs in disaster environments [2–6, 8]. The basic approach
is to achieve distributed encoding in each storage node using
simple exclusive-or operations. Specific implementations

adopt the encoding process of growth code [2], LT code [3],
or raptor code [4], respectively.

The way to disseminate the original sensed data to each
storage node assumes crucial role in recovery performance
of storage data in WSNs. Random walks [3, 4] and flooding
[5] are two major ways to spray sensed data. The flooding
dissemination adopts a very simple operation that each
node floods the sensed data to all its neighbors and decides
whether to store or discard the received packages according
to the probability computed by random algorithms. Random
walks employ Metropolis algorithm to disseminate the
source packets. The number of random walks launched from
each sensing node and the probabilistic forwarding tables for
random walks are computed by the Metropolis algorithm.
As long as a source block stops at a node at the end of the
random walk, this node will store this source block. After all
source blocks are disseminated, each storage node generates
its encoded block. The basic features of the methods are
summarized in Table 1.

According to global information requirements, the stor-
age algorithm can be classified into two categories—“limited
global knowledge” or “zero-configuration” algorithms [3–
5]. If each node in the network knows the value of K—
the number of sources, and the value of N—the number
of storage nodes as a prerequisite for the designed storage
algorithm, then the algorithm works in the “limited global
knowledge” paradigm. However, in many scenarios, espe-
cially, when changes of network topologies may occur due
to node joining-in or node failures, the exact value of N
may not be available for all nodes. On the other hand, the
number of sources K usually depends on the environment
measurements or some events, and thus the exact value
of K may not be known by each node either. As a result,
to design a fully distributed storage algorithm which does
not require any global information with “zero configura-
tion” is very important and useful. In previous literatures,
exact decentralized fountain codes (EDFC) and approximate
decentralized fountain codes (ADFC) [3], distributed storage
algorithms (DSA)-I [5] and raptor codes based distributed
storage (RCDS)-I [4] are “limited global knowledge” based
algorithms, and distributed storage algorithms (DSA)-II [5]
and raptor codes based distributed storage (RCDS)-II [4]
functions in “zero configuration”. In the mode of “zero
configuration”, random walks can be used to estimate the
network scale and further to approximately compute N , K
in order to decide how to set the TTL segment (or maximum
hop) of the package.

Viewed from the perspective of the recovery behavior,
LT codes or Raptor codes based storage algorithm adopts
the belief propagation (BP) process, which is recommended
by Luby for decoding of fountain codes [6], as the recovery
algorithm due to its low complexity. However, even though
BP algorithm is simple and easy to implement, it does not
explore all the encoding information in generator matrix
G, so we do some amelioration on BP algorithm for a full
exploitation of all the encoding information to enhance the
retrieve performance. The detailed description is presented
in Section 5. In addition, Growth code takes two situations
into account—full recovery or optimal partial recovery.

International Journal of Distributed Sensor Networks 3

Table 1: Comparison of flooding- and random walks-based data dissemination.

Flooding Random walks

Communication overhead Big communication overhead Small communication overhead

Global information requirements

Global Information is not required.
Flooding disseminations can work in zero
configuration combined with certain
estimation of the global information

The global information of the total
number of sensors N , sources K , and the
maximum node degree of the graph are
required. (However, the specific
algorithm can be used for estimation of
global information)

Implementation complexity Simple and easy operations Complex operations

Degree distribution guarantee
Distributed encoding process can be well
guaranteed to satisfy Robust Soliton
distribution

Using specific strategies to guarantee or
approximate the Robust Soliton
distribution

The goal is trying to completely recover all the storage data,
but while it does not achieve full recovery, then pursuing the
maximum of partial recovery to retrieve more storage data.
This is a reasonable consideration in storage application.
Inspired by these works, we proposed the information fusion
based storage and retrieve algorithms for WSNs in disaster
scenarios. Compared with the classic WSN paradigm, the
major advantages using IFDS are the following. (i) IFDS
algorithms adopt “flooding” to achieve data dissemination
task, and each node never needs to keep a route table to
sink node. Hence, each node never needs to rebuild new
routing and update the route table due to failure of the nodes
on the path to sink node. It is suitable for application in
disaster environment. (ii) Over the various paths to sink
node by flooding, each path transmits the “supplementary
data” which includes not only the data information but
also its relationship with other encoded blocks, so it has
certain degree of redundancy, serving as a kind of “back
up” for storage purpose. However, these advantages are at
the cost of increasing a degree of communication overhead,
computational overhead, and complexity.

With respect to the previous algorithms, several improve-
ments are provided by IFDS algorithms. In the storage block
assembling phase, the proposed IFDS algorithms do not need
judge to accept or reject a data packet every time while the
packet arrives a node, and each node in WSN calculates its
own degree in preprocessing phase, which does once for all.
In data dissemination phase, IFDS has a robust estimation
method for hop segment Chop(sSi) in order to guarantee the
desired dissemination task, so that all the sensed data can
arrive at each node at least one time. Moreover, most of
present algorithms never consider the node storage capacity
which is actually an important factor affecting the data
retrieve performance. The IFDS algorithms adopt a simple
storage model for each node and give a detailed analysis on
its behavior on data retrieve. Overall, the algorithms enhance
the successful decoding probability, and we observe that a
WSN with designable successful decoding probability can
be deployed by selecting proper parameters—the ratio of
source node number K and total number of nodes N , and
the storage capacity M of each node. In what follows, the
algorithms are discussed in detail.

3. Preliminaries and Modeling

In a real WSN, sensors are usually classified into several types
based on different functions they assume. In Figure 1, we
classify the set of sensors into the three kinds. Source sensors
are located in the area where we expect to monitor for specific
application. Source sensors are able to perform monitoring
and generate packets of sensed data. Relay sensors collect
received data into their buffer memory and are able to
produce encoded blocks based on the distributed storage
algorithm. Collector sensors or base station represents one
or small number of WSNs nodes that are connected with
the external network. The collector nodes is to collect data
from their neighbors, recover the set of K source packets
{Bs1,Bs2, . . . ,Bsk} that originated at the source sensor nodes
during a single time period, and forward this data to a
database in the external network. Three classes of sensors
are equipped with memory for data storage. Suppose that
the WSN consists of N nodes that are uniformly distributed
at random in a three-dimensional region. Among these N
nodes, there are K source nodes that have information to
be disseminated throughout the network for storage. The K
nodes are uniformly and independently chosen at random
among the N nodes. If all the nodes are assigned with
sensing tasks, then K is equal to N , so the model is a
general model which covers all the application scenarios with
different ratio of N and K . We assume that no node has
knowledge about the locations of other nodes and no routing
table is maintained. Moreover, except the information of
neighbor nodes, we assume that each node has limited or no
knowledge of global information, working at “limited global
knowledge” or “zero-configuration” status. The limited
global information refers to the total number of nodes N
and the total number of source nodes K . Any further global
information, for example, the maximal number of neighbors
in the network, is not available. In order to illustrate the two
algorithms clearly, we will use the definitions of Node Degree
dn(u) and Code Degree dc(y) in [5]. In order to achieve a
better recovery performance, we hope that source data can
be stored with balance in each node as a backup. Therefore, it
is required to make data coming from different source nodes
fused and stored throughout the network. These data stored

4 International Journal of Distributed Sensor Networks

Encoded packet at each storage nodes

or sensed data

Reserved for
traditional
storage tech

F

F

or
fusion
data

Buffer blocks

Relay nodes

Packet collected

Received
sensed data

Source node

Collector

Figure 1: Illustration of information fusion-based distributed storage for WSNs.

in each node should be complementary and correlated. The
process of data fusion is similar to the fountain code based
on exclusive-or operations, but the process of encoding is
a decentralized treatment in each node, so it works in a
distributed way. Robust Soliton distribution [6] is adopted
in our algorithms. In order to analyze the effect of the node
capacity on the successful decoding probability as well as
to make implementation of our algorithm easier, we model
the node buffer as follows. The total buffer at each node is
divided into several blocks according to the principle that
each block has the size of sensed data package as a unit. For
the source node, the first storage block is used for storing
its own sensing data, the rest for distributed storage. For
the relay nodes, all the blocks are used to store fused data.
Each node reserves one storage block for traditional storage
technology; in our implementation, we just simply store a
selected packet copy with degree one. The buffer model is
shown in Figure 1. Each block is labeled with one code
degree to store fused data of certain several source packets.
It is convenient to achieve the buffer model in practical
applications using the existing hardware and software storage
technology. In disaster areas, two cases of the node failure
might happen. One is that a few nodes disappear due to out-
charge, smash, or other reasons; the other is mass destruction
or failure of nodes in a local area. Our storage strategy is
designed for both scenarios.

4. Data Dissemination and
Decentralized Storage

The concept of fountain code is a basis for the decentralized
storage in WSNs. Although it is centralized in many coding
literatures, we want to give a brief introduction of LT codes,
especially concerning the Robust Soliton distribution for a
better discussion on our storage and recovery algorithms
in the following sections. Two storage algorithms are then
presented to explain how to disseminate the sensed data and
how to implement the encoding of LT codes at each storage
node in decentralized way.

4.1. A Brief Introduction of LT Codes and Degree Distribution.
Fountain is a class of erasure codes capable of reaching
optimal erasure recovery on the binary erasure channels
without fixing the rate. Fountain codes have remarkably
simple encoding and decoding algorithms. In order to create
an encoded symbol, an encoding host runs the encoding
process as follows. Firstly, randomly choose the degree dn of
the packet from a degree distribution r(d); the appropriate
choice of r depends on the source file size k. Then, choose,
uniformly at random, dn distinct input packets, and then
the sum of these input symbols over a suitable finite field
(typically F2) comprises the value of the encoded symbol.
The concrete process of generating an encoding symbol using
LT codes consists of three simple steps as follows [6]:

(i) randomly choose the degree d of the encoding
symbol from a degree distribution. The design and
analysis of a good degree distribution is a primary
focus of the remainder of this paper;

(ii) choose uniformly at random d distinct input symbols
as neighbors of the encoding symbol;

(iii) the value of the encoding symbol is the exclusive-or
of the d neighbors.

Each encoding symbol has a degree chosen independently
from a degree distribution. Degree distribution ρ(d) is the
probability that an encoding symbol has degree d. Luby gives
two degree distributions—the Ideal Soliton distribution and
its melioration—the Robust Soliton distribution.

Definition 1 (Robust Soliton distribution [1]). For constants
c > 0 and δ ∈ [0, 1], the Robust Soliton distribution µ(i) is
given by

µ(i) =
ρ(i) + τ(i)

β
, for 1 ≤ i ≤ k, (1)

where β =
∑k

i=1(ρ(i) + τ(i)).

International Journal of Distributed Sensor Networks 5

Here, ρ(i) is Ideal Soliton distribution which is a prob-
ability distribution over 1 ≤ i ≤ k; ρ(i) and τ(i) are given
by

ρ(i) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

k
, for i = 1,

1

i(i− 1)
, for 2 ≤ i ≤ k,

τ(i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S

ik
, for 1 ≤ i ≤

k

S
− 1,

S ln(S/δ)

k
, for i =

k

S
,

0, otherwise.

(2)

The parameter S represents the average number of degree one
code symbols and is defined as

S = c ·
√

k · ln

(

k

δ

)

. (3)

As for decoding system, the most used is the BP algorithm
and GE algorithm. BP algorithm first searches all degree-
one symbol or say the column j that contains only one 1.
And then all the 1’s in its rows are canceled and their Ti are
xored with T j . The above process is iterated until the matrix
G becomes all-0 matrix (decoding success) or until no more
degree-one symbols can be found (decoding failure). BP is
simple and fast, but while it encounters decoding failure,
it may never use all the encoding columns of encoding G
matrix as this causes a waste of part of encoding information.
GE decoding algorithm adopts Gaussian elimination to solve
problem T = SG over typically F2, which consists of two
steps: triangularization step and back-substitution step. In
the triangularization step, the goal is to convert the given
matrix using row operations to upper triangular matrix.
If the triangularization step is successful, then the back-
substitution step can proceed by converting the triangular
matrix into the identity matrix after which the GE is success-
fully finished. GE could exert a higher successful decoding
probability with smaller overhead but costs more time to
complete decoding process due to its high complexity. BP
algorithm is recommended by Luby as decoding methods
for LT codes [5], which depends on the specific encoding
process and degree distribution function of LT codes. Our
study finds that Robust Soliton and Ideal Soliton distribution
have a common characteristic. The probability of degree 2 is
the greatest; the sum probability of smaller degrees is usually
greater, or say that most probability exists at small degrees.
Such a degree distribution provides a large probability for
directly obtaining a degree-one column in each iteration of
BP process. Ideal Soliton and Robust Soliton distribution
with k = 100 are shown in Figures 2 and 3, respectively.
We can see degree 2 is greatest with possibility around half
maximum. Comparative larger possibility is distributed at
smaller degrees such as degree 1, 2, 3, and 4. Based on
these observations, BP algorithm can be basically adopted
as the recovery algorithm for WSNs; however, in order to
obtain a high successful retrieve probability and while never
fully recovering all the data and then trying the best to

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h

e
d

eg
re

e
p

o
ss

ib
il

it
y

Ideal oliton degree diss tribution

egd()

Figure 2: The Ideal Soliton degree distribution with k = 100.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h

e
d

eg
re

e
p

o
ss

ib
il

it
y

egd()

Robust oliton degree diss tribution

Figure 3: The Robust Soliton distribution µ (0.01, 0.01) with k =
100.

retrieve more data, we make some improvements over the
BP algorithm. The part of works are focused in Section 5
concerning the recovery algorithm.

4.1.1. IFDS-I. In IFDS-I, each node in the network knows the
limited global information N and K . Let S = {s1, s2, . . . , sn}
be a set of sensing nodes or source nodes that are distributed
randomly and uniformly in a field. Each of both source
node and relay node acts as a storage node. Every node
does not maintain routing or geographic tables, and the
network topology G is not known. Every node can send a
flooding message to the neighboring nodes and can detect
the total number of neighbors by broadcasting a simple
keep-alive message. Here we adopt flooding as the data
dissemination method in order to satisfy the Robust Soliton
distribution with reliability, based on which the proposed
recovery algorithm can develop its advantages. We define the

6 International Journal of Distributed Sensor Networks

IFDS-I Storage Algorithm
WHILE For each node in WSN S = {s1, s2, . . . sn}

DO {Receive packets from neighbors N(si)}
{IF1 (hop segment /= 0)

{IF2 (The node code of the received packet belongs to
elements in dc(si).)

{IF3 (It is the first time to receive the packet Bsi)
{Then accepting the packet into corresponding
storage unit according to d(n) & dc(si). If there is no
other packets stored in storage block before, then store
it directly.}

ELSE

{M j = exclusive-or (M j ,Bsi), j depends on d(n) & dc(si).}
ENDIF3}

ELSE

{Put the packet into forward queue, set
hop segment as Chop(Bsi) = Chop(Bsi)-
1.}

ENDIF2}

ELSE

{Discard the packet Bsi, and no node to send to. }
ENDIF1}

ENDWHILE

Algorithm 1: The algorithm flow of IFDS-I.

average degree of the topology G as dmean(G). Each of the
nodes in WSN except the collector nodes calculates its own
code degree for its buffer blocks based on Robust Soliton
distribution, which does once for all. The algorithm flow is
illustrated as follows.

(i) Input. A sensor network S = {s1, s2, . . . , sn} with N
nodes; There are K source nodes which can produce
source sensed packets {Bs1,Bs2, . . . ,Bsk}.

(ii) Output. Storage buffer blocks {M1,M2, . . . ,Mm} for
all sensors in S. Fused data are stored at each node
according to node buffer model.

(iii) Preprocessing. Step i. Choose randomly the code
degree of the encoding packets from degree distribu-
tion function, structure a set d(n) with m elements
for m buffer blocks at each node, d(n) = {dM1(n),
dM2(n), . . . ,dMm(n)}. Step ii. Choose uniformly at
random distinct source packets as degree distribu-
tion neighbors (ddn), dc(si) for each buffer blocks.
dc(si) = {(ddn for M1), . . . , (ddn for Mm)}. Step iii.
Keep alive link with neighbors and generate a set of
neighbors N(si) using flooding and then obtain node
degree dn(si). For each source node S = {s1, . . . , sn},
generate source packet = node code, data style, hop,
sensing data, flood to all of its neighbors N(si), and
set hop segment or TTL segment as Chop(Bsi) =

⌈N/dmean(G)⌉ − 1. dmean(G) can be approximated
by the node degree dn(si) of any arbitrary node si
while the network is deployed with nodes of high
density. Chop(BSi) is a very important parameter for
a desired data dissemination. The sensed data from

source nodes are desired to arrive at each node
at least one time throughout the network; thus,
the storage encoding process could be implemented
rigidly according to the designed distribution degree
function. Node code is a number that marks and
distinguishes nodes in the WSN; Data style is used
to tell the storage sensing data from other data; Hop
is a data segment like TTL in TCP/IP protocol, which
stands for the maximum hop of a packet. Compared
with Aly’s algorithms [5], the IFDS algorithms do not
need to flip a coin to accept or reject a packet every
time while a packet arrives a node, and each node
in WSN calculates its own degree in preprocessing
phase, which does once for all.

In order to show the data dissemination performance, we
give an simple example for a WSN with parameters N = 10,
k = 5. We define two matrix Gc and Gd. Gc is used to indicate
the communication connectivity status between nodes in
the WSN, it has N rows and N columns, and the matrix
element Gc(i, j) is a connectivity status with value 0 or 1;
if Gc(i, j) = 0 (i = 1, 2, . . . ,N ; j = 1, 2, . . . ,N), it means
no direct connection exists between the nodes Ni and N j ; on
the contrary, if Gc(i, j) = 1, it means there exists a direct
connection between the nodes Ni and N j ; in the diagonal,
we use 0 as default. Gd is used to record how the process
of data dissemination goes, the matrix element Gd(i, j) (i =
1, 2, . . . ,N ; j = 1, 2, 3, . . . , k) recodes the times of the sensed
data from source node SS j arriving at node Ni.

In the example, we assume that N1,N2, . . . ,N5 are
source nodes which are rewritten as the standard form
{S1, S2, . . . , S5}. At the beginning of flooding, all the source

International Journal of Distributed Sensor Networks 7

BGRA Recovery Algorithm

WHILE ∼ terminus (Set terminus = 0)

{IF1 (There exists one degree column in G)

{Record sequence number of such columns into vector

rcdc.}
ELSE

{IF2 (BP algorithm found one degree column earlier)

{Construct GgSr = Tr ; }

ELSE

{Construct a linear equations GS = T and launch

GE algorithm directly.}
ENDIF2}

ENDIF1}

{FOR1 (all the elements G(i, rcdc(j)))

{IF3 (G(i, rcdc(j)) = 1)

{Record sequences number i of rows into rcdr.}
ENDIF3}

ENDFOR1}

{FOR2 (all the elements in rcdr and rcdc)
{S(rcdr(i)) = T(rcdc(i)); }

ENDFOR2}

{FOR3 (all the elements in rcdc)
{Set G(i, rcdc(j)) = 0 (i = 1, . . . ,n);

{FOR4 (all the elements in rcdr)

{IF4 (G(rcdr(i), j) = 1;)

{T(j) = x or (Sr(rcdr(1, i)),T(j)); }

ENDIF4}

ENDFOR4}

Set G(rcdr(i), j) = 0; (i = 1, . . . ,m); }

ENDFOR3}

{IF5 (The G becomes all-0 matrix;)

{Set terminus = 1; }

ENDIF5}

{IF6 (GE is used in the algorithm)

{Combine the decoding results from BP and GE.}
ENDIF6}

ENDWHILE

Algorithm 2: The algorithm flow of BGRA.

nodes first calculate the hop segment value Chop(BS j) (j =
1, 2, . . . , 5) for their flooding data blocks. In this case, all the
source nodes obtain the same value, Chop(BS j) = (N/dn(si))−
1 = 1. Then the source nodes fill the hop segment of data
blocks with one and then flood the data to their neighbours.
According to Gc, S1 has neighbour nodes N2, N3, N5, N6, and
N10; S1 floods the sensed data to these nodes, and Gd records
the fact that the data block from S1 arrives nodes N2, N3, N5,
N6, and N10 one time. The working flow for other source
nodes is the same. After the first flooding, Gd becomes as
Figure 4(b). Next, every nodes which received the sensed data
during the first flooding will further flood the data to their
neighbours. Based on Gc, the obtained Gd is further updated
as Figure 4(c). And at the point, the hop value of data block
is decreased to 0, so the flooding terminates. We can see that
there is no 0 element in the finalGd, which indicates that each
sensed data block is guaranteed to arrive at each node at least
one time. Therefore, the data dissemination task is perfectly

completed, and the encoding process is also guaranteed for
distributed storage.

In Figure 5, the red curve indicates the TTL of data
packets or the number of transmissions required for a
successful data dissemination, in order to assure that all the
sensed data can arrive at each node at least one time. The
blue curve is the actual TTL used by IFDS-I. It is obvious
that the value on blue curve is equal or greater than the red
one; this means that IFDS-I provides the data packets with
a longer living life than enough, or say that the packets can
arrive at more nodes. And we find that the counter of packet
could actually be set as a number smaller than N/dmean(G),
while WSN is a large network with high connectivity. The
main operations of IFDS-I is shown in Algorithm 1.

4.1.2. IFDS-II. In IFDS-II, we assumed that N and K are
known in advance for each node in the network. This might
not be the case in practical disaster scenarios where the

8 International Journal of Distributed Sensor Networks

S1 S2 S3 S4 S5

N7 24221

N8 24222

N6 22222

N4 25332

N9 44333

N3 43554

N2 43554

N5 52444

N1 42445

N10 55555

Gd after 2nd flooding

S1 S2 S3 S4 S5

N1 110 1 0

N2 101 1 0

N4 100 0 0

N6 001 0 0

N7 000 0 1

N8 000 0 1

N9 010 1 1

N10 111 1 1

N3 111 0 0

N5 011 1 1

Gd after 1st flooding

N1 N2 N4 N5 N6 N7 N8 N9 N10N3

S1 N1 011 0 010 1 0 1

S2 N2 001 0 101 1 0 1

S4 N4 101 1 100 0 0 1

N6 000 1 001 0 0 1

N7 000 1 100 0 1 1

N8 110 0 100 0 1 1

N10 111 1 111 1 01

N9 100 1 010 1 1 1

S3 N3 001 0 111 0 0 1

S5 N5 000 0 011 1 1 1

Gc

(c)

(a)

(b)

Figure 4: Data dissemination implemented in IFDS-I.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
2

4

6

8

10

12

14

16

18

Network cale

T
o

ta
l

n
u

m
b

er
o

f
tr

an
sm

is
si

o
n

s

s

re
q

u
ir

ed

Simulation

N/Dmean(G)

Figure 5: The relationship between network scale and Chop.

change of connectivity status may occur between nodes
due to the event of sensor failure or new nodes joining
in. Therefore, we extend IFDS-I to IFDS-II that is totally
distributed without knowing global information with “zero
configuration”. The idea is that each source node sSi will
estimate a value for its hop counter Chop(sSi) without
knowing N and K . In IFDS-II, each source node sSi will
perform a hop-estimation phase that will calculate the value
of the counter Chop(sSi). The hop-estimation process starts
before data dissemination; however, the estimation not only
works at the network startup; instead, it is dynamic process
working throughout. The hop estimation is implemented
while source nodes receive a keep-alive hop-estimation
packet from their neighbors. A keep-alive hop-estimation
packet consists of {node code, data style, estimated hop}.

Hop estimation: let sSi be a source node in a distributed
network. Each node sSi, (i = 1, 2 . . . K) will dynamically
determine value of the counter Chop(sSi). The node sSi knows
its neighbors N(sSi) by keep-alive message. Each source
node will independently decide a value for its counter by
following several steps. Step i. Flood a keep-alive hop-
estimation packet = {node code, data style, estimated hop}
to its neighbors N(sSi). Node code segment fills its own
node code; data style is labeled by hop-estimation packet,
and estimated hop is recorded with 0. Step ii. Each node
forwards the hop-estimation packet to its neighbors with
estimated hop value plus one while recieving mutiple the
hop-estimation packets from the same source, the node
compares them and chooce the smallest to plus one. Step
iii. When a source node received its corresponding hop-
estimation packets again, it compares the values of estimated
hop segments of all the packets received and choose the
maximum as Ndia. Step iv. Set Chop(sSi) = ⌈Ndia/2⌉. Thus,
one iteration of hop estimation is finished. The estimation
algorithm flow is illustrated in Figure 6.

In the flow chart, each source node should maintain a
hop value. The hop value is used for a real-time estimation
of the network size based on the already received hop-
estimation packets. It will be updated when a packet with a
bigger estimated hop segment value is received. Every time
when the packet passes through a node, the value of the
estimated hop segment will increase one; so, a bigger hop
segment means that the packet can reach to a node in a father
location and it has come back to the source node again. Thus,
the packets with the biggest estimated hop segment are those
reaching the edge of the network. Continuous updating of
the hop value until achieving convergence can be used to
approximate the network radius or network scale. In this
process, if structure of WSN alters, such as nodes failures,
movements, or network expanding, all these changes will be
reflected in the estimated hop segment of hop-estimation
packets, and further the hop value will be also updated
adaptively. For example, if the network is expanding, the hop
value will increase and become stable after several updates.
Moreover, while new sensing nodes are assigned in WSN,
the estimation process will be triggered for these new source
nodes which start estimating and knowing the network size.
Once the hop counts Chop(sSi) is approximated at each source
node, the encoding operations of IFDS-II are similar to

International Journal of Distributed Sensor Networks 9

Hop

estimation
phase

Source
nodes
initiate

hop value

as 0;

Flood
keep-alive

Source
node

receives a
keep-alive

packet,

read the
estimated

hop

segment of

the packet

Hop

value
comparison

Let

Store as hop
value

Keep the

hop value

without
changes

S
en

se
d

d
at

a
d

is
se

m
in

at
io

n

Hop-

estimation
packet

every 15 s

Nhop >

Nhop ≤

Nhop =

Phop

2

Phop

2

Phop

2

Figure 6: The hop-estimation process flow of IFDS-II.

Encoded packet at each storage node

Source node

Relay node

Encoded packet at each storage node

Source node

Relay node

Encoded packet at each storage node

Source node

Relay node

I II

III

CollectorCollector

Collector

Figure 7: The data dissemination implemented by IFDS-II.

10 International Journal of Distributed Sensor Networks

(c)(a)

(b)
(d)

1 0 0 0 0 0 0 1 1 0

0 1 0 0 1 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0

0 1 1 1 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 1 0

0 1 0 0 1 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 1 1 1 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 0

Unknown Unkown Unkown 1 0 Unknown Unknown Unknown

1 0 1 0 0 0 1

0 1 1 0 1 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 1

0 1 0 0 1 0 1

0 0 0 1 1 0 0

0 0 0 0 0 0 0

1 0 0 0 1 0 1

1 1 0 0 0 0 0

0 0 0 0 0 0 1

1 0 1 0 0 0

0 1 1 0 1 0

1 0 00 0 0

0 0 0 0 1 1

10 00 0 0

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 1 0
1 0 0 1 1 0 0 1 0 1

Matrix G Matrix Vector Tr

Encoding output

The updated G after BP process

The updated G after BP process
Vector Sr

Matrix Gg

Gg

after triangularization

Figure 8: The original G matrix and the evolvement of G, T , and ST vector in the process of BGRA.

encoding operations of IFDS-I. In data dissemination phase,
source nodes will assemble and flood the sensed data packets
using the real-time hop value as the hop segment, and
the completion evolution of dissemination task is shown as
follows (Figure 7).

In the beginning stages (I, II), the maintained hop value
is still never fully updated since the packets that spread to the
network edge never come back; therefore, the assembled data
packets cannot reach far from the source node due to a small
TTL. Along with the dynamic estimation of the network size,
the hop value is updated and continuously increasing; then
the assembled data packet can reach farther in the process
until the hop value reaches stable, and, at the point, the
network radius or network scale can be correctly estimated;
the packets flooded from source node can arrive at any nodes
in the network. In our buffer model, one block is reserved for
traditional storage method. Here we just randomly store one
sensed packet with degree one using uniform distribution.

The storage performance of both IFDS-I and IFDS-II will
be elaborated in Section 6 combining with the recovery
algorithm proposed in Section 5.

4.2. Power Consumption of IFDS Algorithms. The overall
energy in the WSN nodes is consumed in three distinct
processes: data processing, data transmission, and sensing
tasks. The proposed IFDS algorithms will majorly affect the
first two processes; certain overhead will be brought during
implementation of the algorithms. The communication
overhead is the major overhead due to wide flooding for
data dissemination. However, on the other hand, since
the algorithms never need to maintain the routing tables,
so they would never introduce the routing overhead. The
distributed storage encoding will cause certain computation
power consumption. In order to decrease the computation
complexity, the proposed IFDS algorithms do not need to
flip a coin to accept or reject a data packet every time

International Journal of Distributed Sensor Networks 11

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Overhead

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

BP

GE

BGRA

Figure 9: The successful decoding probability as a function of
encoding overhead while k = 100 for LT code (0.01, 0.01).

while the packet arrives a node; instead, each node in WSN
calculates its own degree in preprocessing phase, which
does once for all. This is more energy efficient than the
previous algorithms that will calculate the code degree and
make selection from every arriving packet for encoding. The
typical energy management techniques with the basic idea,
to shut down sensors when not needed and wake them up
when necessary, can be easily applied and combined with
IFDS algorithms, because IFDS can estimate the network
size adaptively. Moreover, Since the deployment of the WSNs
in difficult-to-access areas makes it difficult to replace the
batteries of sensor nodes. The use of solar cells, super
capacitors, or rechargeable batteries is necessary for the long-
term sensor node operation. A long-term operation could
be achieved by adopting a combination of hardware and
software techniques along with energy efficient WSN design.

5. Recovery Algorithm

In Section 3, we refer that BP algorithm is generally used
as a basic recovery algorithm to retrieve storage data in
WSNs. However, the BP algorithm has some limitations
while used for storage applications. BP algorithm is fast
with low complexity but it must find degree-one column
in generator matrix G for each iteration to make decoding
process go ahead, which prohibits the improvement of
recovery efficiency, because it may not use all the encoding
relationship recorded in G while it cannot find degree-one
column in process, or say that the BP algorithm never takes
use of all the encoding information while encountering stop
set which will greatly reduce the successful probability of
complete recovery. Gaussian elimination (GE) is another
typical way for decoding of LT codes, and now many
improved algorithms are proposed for decoding of fountain
codes [9–13]. In order to solve the problems caused by the

0

2

4

6

8

10

12

C
o

m
p

u
ta

t
t

io
n

al
C

U
P

im
e

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Overhead

BP

GE

BGRA

Figure 10: The computational CPU time as a function of encoding
overhead while k = 100 for LT code (0.01, 0.01).

stop set of the BP algorithm, we expect to combine BP
and GE algorithms and to provide a good tradeoff between
the advantages of both algorithms for a better recovery
performance. The core idea is to first use BP algorithm
with very low complexity directly to find degree-one column
in G and then to consider adoption of GE operation to
find the potential degree-one column from the remaining
columns. It can overcome the negative influence of algorithm
termination of BP and improve the decoding efficiency for LT
codes through fully digging out encoding information from
matrix G. We name the algorithm, Belief propagation and
Gaussian elimination based Recovery Algorithm (BGRA).
The algorithm flow is shown in Algorithm 2.

We give an intuition of how the BGRA works by
considering a simple example. In the example, we set N = 10,
K = 8, that is, there are 10 storage nodes in the WSN
amongst which there are 8 sensing nodes assigned with the
monitor tasks. We use one bit with 0 or 1 to stand for one
sensed source packet produced at sensing nodes. In practice,
a package is to carry a certain bit of information, but here this
does not affect our description of this algorithm. The sensed
data from the 8 sensing nodes is So = {0, 0, 1, 1, 0, 1, 1, 0}.
After the distributed encoding process using Robust Soliton
distribution µ (c = 0.01, δ = 0.01) is {1, 0, 0, 1, 1, 1, 1, 1, 0, 1}
which is stored in the storage unit of the 10 storage nodes,
respectively, the matrix G that records encoding information
such as code degree and neighbors is shown in Figure 8(a).
BP algorithm is launched to decode firstly. It searches all the
columns with one degree in G. For matrix G in Figure 8(a),
only the tenth column is degree-one column. BP algorithm
starts decoding from the column and set s4 = t10 = 1, then
the algorithm refreshes all the corresponding columns in G
and updates the decoding input vector T as well as decoding
output vector ST according to the recovery algorithm. The
updated G and T are shown in Figure 8(b). Since the

12 International Journal of Distributed Sensor Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 100 K = 50 M = 1

N = 100 K = 50 M = 2

N = 100 K = 50 M = 4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

0

5

10

15

20

25

30

35

40

45

50

M
ea

n
n

u
m

b
er

o
f

re
co

ve
re

d
p

ac
ke

ts

N = 100 K = 50 M = 1

N = 100 K = 50 M = 2

N = 100 K = 50 M = 4

(b)

Figure 11: (a) The successful decoding performance; (b) the mean number of recovered packets as a function of querying ratio while
N = 100, K = 50, K/N = 50%, and M changes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 200 K = 100 M = 1

N = 200 K = 100 M = 2

N = 200 K = 100 M = 4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

M
ea

n
n

u
m

b
er

o
f

re
co

ve
re

d
p

ac
ke

ts

N = 200 K = 100 M = 1

N = 200 K = 100 M = 2

N = 200 K = 100 M = 4

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 12: (a) The successful decoding performance; (b) the mean number of recovered packets as a function of querying ratio while
N = 200, K = 100, K/N = 50%, and M changes.

algorithm cannot find another degree-one column, BGRA
launches GE algorithm to continue decoding based on the
rest columns of G, which is the reason why BGRA can fully
exploit encoding information from G. Before GE algorithm is
started, linear equations GgSr = Tr are constructed over the
rest columns of G after BP process. Gg is a matrix that records
code degree and neighbors of source symbols except those
decoded during previous BP process. In order to construct
Gg , the rows and columns with all-0 elements are deleted
from G and its transpose is Gg . Tr is the updated T after

deleting elements corresponding with those all-0 columns.
In our example, Gg is the transpose of G after deleting the
fourth row and the tenth column. Tr is T without the tenth
element. Gg and Tr are shown in Figure 8(c). The deleted
row and column has only 0 elements after the first iteration
of BP algorithm. The matrix Gg after triangularization is
shown in Figure 8(d) as well as the solution Sr of linear
equations GgSr = Tr . The final step of BGRA algorithm
is to combine both parts of recovery results from BP and
GE and to recover the source symbols. The solution is very

International Journal of Distributed Sensor Networks 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 100 K = 10 M = 1

N = 100 K = 20 M = 1

N = 100 K = 40 M = 1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

0

5

10

15

20

25

30

35

40

M
ea

n
n

u
m

b
er

o
f

re
co

ve
re

d
p

ac
ke

ts

N = 100 K = 10 M = 1

N = 100 K = 20 M = 1

N = 100 K = 40 M = 1

(b)

Figure 13: (a) The successful decoding performance; (b) the mean number of recovered packets as a function of querying ratio for networks
with N = 100, M = 1 while the value of K/N changes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 200 K = 20 M = 1

N = 200 K = 40 M = 1

N = 200 K = 80 M = 1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

M
ea

n
n

u
m

b
er

o
f

re
co

ve
re

d
p

ac
ke

ts

0

10

20

30

40

50

60

70

80

N = 200 K = 20 M = 1

N = 200 K = 40 M = 1

N = 200 K = 80 M = 1

(b)

Figure 14: (a) The successful decoding performance; (b) the mean number of recovered packets as a function of querying ratio for networks
with N = 200, M = 1 while the value of K/N changes.

simple; it just needs to orderly put all the elements of vector
Sr into the places labeled “Unknown” in vector ST . BGRA
ends at this point, and the retrieve data is obtained as ST =
{0, 0, 1, 1, 0, 1, 1, 0}. In addition, the On the Fly GE algorithm
proposed in [10] can be used for solution of GgSr = Tr with
a lower complexity.

BGRA algorithm, as integration of BP and GE algorithm,
provides a good tradeoff between the advantages of both the
BP algorithm and the GE algorithm. The BGRA algorithm
has reasonable decoding complexity that is in between the

low complexity of the BP algorithm and the high decoding
complexity of the GE algorithm. The BGRA algorithm has a
successful decoding probability that is comparable to that of
the GE algorithm and significantly better than that of the BP
algorithm. Additionally, the decoding CPU computational
time of BGRA algorithm does not rapidly increase with
overhead, as is the case for the GE algorithm.

In order to compare the three algorithms, we experiment
BP, GE, and BGRA algorithms with different values of
overhead for the number of sensed source data k = 100,

14 International Journal of Distributed Sensor Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 500 K = 50 M = 1

N = 500 K = 100 M = 1

N = 500 K = 200 M = 1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

0

20

40

60

80

100

120

140

160

180

200

M
ea

n
n

u
m

b
er

o
f

re
co

ve
re

d
p

ac
ke

ts

N = 500 K = 50 M = 1

N = 500 K = 100 M = 1

N = 500 K = 200 M = 1

(b)

Figure 15: (a) The successful decoding performance; (b) the mean number of recovered packets as a function of querying ratio for networks
with N = 500, M = 1 while the value of K/N changes.

using Robust soliton degree distribution (c = 0.01, δ =

0.01) for storage encoding. Assuming that the number of
retrieved encoded storage packets is n, the overhead is
defined as q = (n−k)/k. A bigger overhead means that more
storage nodes are queried for data recovery. Figure 9 shows
that BP algorithm performs poor while overhead is small,
but GE and BGRA exert a higher decoding performance;
while overhead is more than about 0.2, both will produce
a successful decoding probability over 90%. In Figure 10,
we show the computational CPU time Rt using BP, GE, and
BGRA while changing overhead. Compared with Rt of BP
which keeps stable along with overhead’s increase, Rt of GE
grows quickly while overhead increases. Rt of BGRA ranges
between BP and GE with the trend that more overhead
costs less time to decode. Based on the analysis above, BP
algorithm actually functions poor on data recovery behavior.
Taking the computational capacity of node and successful
retrieve probability into account, BGRA can provide a good
data recovery performance.

6. Results and Discussion

Figures 11 and 12 show the decoding performance with
IFDS-I for different network scale with fixed ratio of K/N =

50% while M changes. Figures 13–15 illustrate the decoding
performance with IFDS-II for different network scale while
the value of K/N changes. Querying ratio is the percentage of
the number of queried nodes q among the total number of
nodes N . Successful decoding probability P is the probability
that the K source packets are all recovered from the q queried
nodes. The successful decoding probability for different scale
networks with fixed K/N = 50% while M is 1, 2, 4 is
shown in Figures 11(a) and 12(a). It is obvious that a bigger

node buffer size can provide a better decoding performance;
especially for a WSN while each node just has a small storage
memory, to increase the storage capacity is a good way to
improve the successful retrieve probability. Figures 11(b) and
12(b) illustrate the number of recovered packets at different
querying ratio. Although a full recovery at the low querying
ratio is never achieved, it could well give partial recovery of
which performance is better than only using BP algorithm.
The number of recovered packets is generally more than the
number of queried nodes with a rapid increase along with the
increase of querying ratio. The results show that the retrieve
performance has a similar relationship with the querying
ratio for any different scale networks while K/N is fixed.

Figures 13–15 illustrate the decoding performance with
IFDS-II for different scale networks while each node has fixed
one unit buffer block and K/N changes; a higher percentage
of source node requires more queried nodes to retrieve the
sensed data, which is in line with common sense. The results
also show that 10% increase in the percentage of source node
needs to query 10–20% more nodes in order to keep the same
successful decoding probability. From Figures 13–15(a), we
can see if the number of any queried nodes is slightly more
than k; then it could achieve a full data retrieve. Based on
these findings, we can easily deploy a WSN for monitoring in
practical catastrophic environment.

Figure 16(a) compares the performance of IFDS-I with
DSA-I [5]. DSA-I algorithm utilizes flooding and the node
degree of each node to disseminate the sensed data from
sensors throughout the network, and the encoded data are
stored distributedly in each node for later data retrieve. Both
IFDS and DSA algorithms consider the storage capacity of
each node which is modeled with the number of buffer units.
In [5], the authors analyze the data retrieve performance

International Journal of Distributed Sensor Networks 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Querying ratio

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

N = 100 K = 100 M = 10 IFDS

N = 100 K = 100 M = 10 DSA

N = 200 K = 200 M = 20 IFDS

N = 200 K = 200 M = 20 DSA

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
sf

u
l

d
ec

o
d

in
g

p
ro

b
ab

il
it

y

1 1.5 2 2.5

ratioecodingD

RCDS-I N = 100 K = 10

IFDS-I N = 100 K = 10

RCDS-I N = 200 K = 20

IFDS-I N = 200 K = 20

RCDS-II N = 500 K = 50

IFDS-II N = 500 K = 50

(b)

Figure 16: (a) Comparison of decoding performance using IFDS-I
and DSA-I; (b) comparison of decoding performance using IFDS
and RCDS.

of DSA-I when the node buffer size is 10% of the network
storage size. Under the same condition, we give our results
and we find that IFDS has a better decoding performance.
Compared with 20–30% querying nodes using DSA-I, IFDS-
I only requires to query 15% nodes in network with N =

K = 100 and 10% nodes in network with N = K = 200
for nice recovery of all sensed packages from source nodes.
IFDS has a similar data-disseminating method and the same
degree distribution function with DSA; however, a better
recovery algorithm is used by IFDS-I, so IFDS-I functions
better than DSA-I. Figure 16(b) shows the performance

comparison between the IFDS and RCDS algorithms. RCDS-
I are “limited global knowledge” based algorithms, RCDS-
II works in “zero-configuration”. In order to compare IFDS
and RCDS, we use the definition of the decoding ratio in
[4]. The decoding ratio is defined as the ratio between the
number of querying nodes and the number of sources. It can
be seen that IFDS algorithms can exert a higher successful
recovery probability while querying the same number of
sensor nodes for different network scale. While the decoding
ratio is between 1.2 to 2, the successful recovery probability
of IFDS algorithm is about 10–15% greater than RCDS
algorithm. In addition, we can also observe that the IFDS
algorithms perform better for larger scale WSNs.

7. Conclusion

This paper proposes two IFDS algorithms in the “few global
knowledge” and “zero-configuration” paradigm, respec-
tively. An efficient retrieve algorithm is designed correspond-
ingly, which is generally suitable for the storage algorithms
using Robust Soliton distribution. The algorithms enhance
the successful decoding probability. The detailed results of
data retrieve performance and its relationship with three
parameters—the total number of nodes N , the number of
sensing nodes K , and the number of storage units equipped
at each node M, is studied, which shows that we can
control the successful decoding probability through setting
up desired network parameters.

Acknowledgments

The authors thank the Research Project from Communica-
tion Branch of Yunnan Power Grid Corporation, Training
Program of Yunnan Province for Middle-aged and Young
Leaders of Disciplines in Science and Technology (Grant no.
2008PY031), and the National Natural Science Foundation
of China (Grant no. 60861002) for financial support.

References

[1] D. Butler, “2020 Computing: everything, everywhere,” Nature,
vol. 440, no. 7083, pp. 402–405, 2006.

[2] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth
codes: maximizing sensor network data persistence,” in Pro-
ceedings of the ACM SIGCOMM, Pisa, Italy, September 2006.

[3] Y. Lin, B. Liang, and B. Li, “Data persistence in large-
scale sensor networks with decentralized fountain codes,”
in Proceedings of the 26th IEEE International Conference on
Computer Communications (INFOCOM ’07), pp. 1658–1666,
Anchorage, Alaska, USA, May 2007.

[4] S. A. Aly, Z. Kong, and E. Soljanin, “Raptor codes based
distributed storage algorithms for wireless sensor networks,”
in Proceedings of the IEEE International Symposium on Infor-
mation Theory (ISIT ’08), pp. 2051–2055, Toronto, Canada,
July 2008.

[5] S. A. Aly, M. Youssef, H. S. Darwish, and M. Zidan, “Dis-
tributed flooding-based storage algorithms for large-scale
wireless sensor networks,” in Proceedings of the IEEE Inter-
national Conference on Communications (ICC ’09), Dresden,
Germany, June 2009.

16 International Journal of Distributed Sensor Networks

[6] M. Luby, “LT codes,” in Proceedings of the 34rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’02),
Vancouver, BC, Canada, November 2002.

[7] D. J. C. MacKay, “Fountain codes,” IEE Proceedings Communi-
cations, vol. 152, pp. 1062–1068, 2005.

[8] S. A. Aly, Z. Kong, and E. Soljanin, “Fountain codes based
distributed storage algorithms for large-scale wireless sensor
networks,” in Proceedings of the International Conference on
Information Processing in Sensor Networks (IPSN ’08), pp. 171–
182, St. Louis, Mo, USA, April 2008.

[9] S. Kim, K. Ko, and S. Y. Chung, “Incremental Gaussian
elimination decoding of raptor codes over BEC,” IEEE Com-
munications Letters, vol. 12, no. 4, pp. 307–309, 2008.

[10] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the
fly Gaussian Elimination for LT codes,” IEEE Communications
Letters, vol. 13, no. 12, Article ID 5353274, pp. 953–955, 2009.

[11] D. Burshtein and G. Miller, “An efficient maximum-likelihood
decoding of LDPC codes over the binary erasure channel,”
IEEE Transactions on Information Theory, vol. 50, no. 11, pp.
2837–2844, 2004.

[12] W. Niu, Z. Xiao, M. Huang, J. Yu, and J. Hu, “An algorithm
with high decoding success probability based on LT codes,” in
Proceedings of the 9th International Symposium on Antennas
Propagation and EM Theory (ISAPE ’10), pp. 1047–1050,
Guangzhou, China, November 2010.

[13] H. Zhu, G. Li, and S. Feng, “BPL decoding algorithm of LT
code,” Computer Science, vol. 36, no. 10, pp. 77–81, 2009.

Impact Factor 1.730

28 Days Fast Track Peer Review

All Subject Areas of Science

Submit at http://www.tswj.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

