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Abstract—The information gain of a point process model quantifies its predictability, relative to a

reference model such as the Poisson process. This is bounded above by the entropy gain, or difference

between the point process entropy rates. This provides a bound on the utility of the model as a forecasting

tool, separate from the usual ‘‘goodness of fit’’ assessment criteria. The stress release model is a point

process with an underlying state variable increasing linearly with time, and decreased by events. Assuming

the intensity to be an exponential function of this state, we derive an analytic expression for the entropy

gain. This is illustrated, using various magnitude distributions, for earthquake data from north China, and

extensions to a multivariate linked model outlined. The results measure the effectiveness of the stress

release process as a predictive tool. Comparisons are made with a scale derived from the Gamma renewal

process and using Molchan’s m� s diagram.
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1. Introduction

In attempting to forecast some phenomena using a point process (or indeed any

statistical model), evaluating the model presents two facets. The first of these is the

usual question of how well the model fits the data, which is quantified through the

likelihood, and perhaps some residual analysis (OGATA, 1988). The second aspect is

one of ‘‘assessment’’: How accurate or precise is the forecast? This can be quantified

by the information gain (VERE-JONES, 1998; DALEY and VERE-JONES, 2003, 2004). In

this case a further question begs answering: Is the model of any use? In some cases, it

may be possible to place an upper bound on the information gain, and hence the

maximum predictability for forecasting purposes, of the model. A case for study is

provided by point process models with history dependent conditional intensities for

earthquake occurrence (see, for example, OGATA, 1999, and references therein). In

view of the considerable recent interest, there is a need for assessing and comparing

the performance of these models in a forecasting role. Similar concerns arise in

weather forecasting, see for example KLEEMAN et al. (2002).
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We will next define the information gain, and the entropy gain which provides an

upper bound. In Section 2 we will outline two point processes for which we can

calculate the entropy gain. Section 3 contains our main result, explicit formulae for

the entropy gain of the stress release process, including three alternative jump

(magnitude) distributions. The calculations are illustrated in Section 4 using data

from north China. An extension to a multivariate model is briefly considered in

Section 5. The results are discussed in Section 6, and compared to other descriptive

assessment techniques.

1.1 The Information Gain

Let us consider a stationary, ergodic, point process NðtÞ � Nð0; T � with

conditional intensity kðtÞ such that

kðtÞdt ¼ EðdNðtÞ jHtÞ;

where the conditioning is taken with respect to the r-algebra Ht of events defined on

the history of the process up to time t. We wish to generate estimates of the

probability of at least one event in each of a sequence of non-overlapping intervals

ðti; ti þ diÞ, covering a realization of the process. In principle, the forecasts can be

updated between intervals (VERE-JONES, 1998; HARTE and VERE-JONES, 2005),

allowing the conditional intensity to reflect the activity in the preceding intervals.

Using the conditional intensity we can generate, through simulation if necessary,

forecast probabilities pi ¼ PðYi ¼ 1Þ, where the outcomes are denoted by

Yi ¼
1; if Nðti þ diÞ � NðtiÞ > 0;
0; otherwise:

�

The log-likelihood for the series of intervals is then the binomial score

B ¼
X

i

Yi ln pi þ ð1� YiÞ lnð1� piÞð Þ:

This rewards high forecast probabilities for intervals where an event occurs, and low

forecast probabilities where events do not occur, and penalizes false alarms andmissed

events. If the intervals cover a total period T ¼
P

i di, an estimate, over the finite period

ð0; T Þ, of the information per unit time generated by the process is B=T . We would

prefer to have the information gain relative to a reference process, and in accordance

with the maximum entropy principle, the natural reference process is the Poisson

processwith the samemean rate �k ¼ E½kðtÞ� (¼ E½kð0Þ�by stationarity). This choice also
facilitates calculations. If �pi ¼ 1� expð��kdiÞ denotes the forecast probabilities for this
reference process, the average difference between the binomial scores,

�qT ¼
B� �B

T
¼ 1

T

X
i

Yi ln
pi

�pi

� �
þ ð1� YiÞ ln

1� pi

1� �pi

� �� �
;
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is the mean information gain per unit time associated with the forecasting procedure

using kðtÞ. The ratio pi=�pi is the probability gain, and thus the information gain is the

expected value (the random element is the process history, Ht) of the log probability

gain. If the test data fYig is different to the data from which the model parameters

have been estimated, bias due to the differing numbers of parameters between models

should not arise, so that the models can be ranked according to the value of their

gains against the reference model.

As B� �B is simply the difference in the log-likelihoods of the fitted and reference

models, when the information gain is calculated using observed data, it can be

interpreted as a measure of goodness of fit. But, in the ‘‘assessment’’ role outlined

above, if data are simulated from the model and refitted by maximum likelihood, the

information gain then quantifies the predictability of the process relative to the

reference model. A larger information gain indicates a more predictable (or

powerful) model and this enables models to be compared. It is possible to go still

one step further, and determine a theoretical bound on the information gain of a

model, requiring neither fitting nor simulated forecasts.

1.2 The Entropy Gain

Recall that the entropy rate for a stationary, ergodic, point process is

H ¼ �E½kð0Þðln kð0Þ � 1Þ�:

We can then define the generalized entropy rate, relative to the corresponding

Poisson process, as

G ¼ E kð0Þ ln kð0Þ � �k ln �k
� �

¼ E kð0Þ ln kð0Þ=�k
� �� �

; ð1Þ

which we call the entropy gain per unit time. This is effectively a number

characterizing the inherent predictability of the model.

The following two results then relate the information gain to the entropy gain.

Proposition 1 (VERE-JONES, 1998). For all subdivisions of ðt; t þ T Þ, E½�qT � � G.

Furthermore, E½�qT � ! G as maxi di ! 0, and �qT ! G as T !1.

Noting that forecasts are inherently made in discrete time, this implies that the

performance of such forecasts (i) is bounded above by the entropy gain, calculated in

continuous-time, and (ii) tends to the bound as the intervals become smaller. Thus

the performance of any probability forecasting scheme based on a point process

model is bounded by an intrinsic property of the model itself.

The average information gain over a long series of trials could easily be well

below the entropy gain, particularly if there are considerable differences between the

actual data and that produced by the model. In this case the mean information gain

(or equivalently the average log-likelihood per observation) forms the basis of a
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goodness of fit test (DALEY and VERE-JONES, 2003, Section 7.6; HARTE and

VERE-JONES, 2005).

Instead of dividing B� �B by the total time T to obtain a mean score per unit time,

we can divide by the total number of events NðT Þ to obtain an average score per

event. We can then compare this, as above, to the Poisson reference process to form

an average information gain per event, in which case the corresponding upper bound

and limit is the entropy gain per event G=�k. In this case Proposition 1 has the

following corollary.

Proposition 2 (VERE-JONES, 1998).

E
1

NðT Þ
XNðT Þ
i¼1

ln
pi

�pi

� �" #
� E

T
NðT Þ �qT

� 	
� G=�k:

KAGAN and KNOPOFF (1977) suggested using the averaged log-likelihood as a

measure of the information rate for the process, which yields (VERE-JONES, 1998)

1

T
ln Lð0; T Þ � E kð0Þ ln kð0Þ � 1ð Þ½ �;

where ln Lð0; T Þ ¼
P

i ln kðtiÞ �
R T
0 kðtÞ dt is the log-likelihood when points occur at

times 0 < t1 < t2 < � � � < T . Combining this with

G ¼ E kð0Þ lnðkð0Þ=�kÞ
� �

¼ E kð0Þ ln kð0Þ � 1ð Þ½ � þ �k� �k ln �k;

we obtain

G ’ 1

T
ln Lð0; T Þ þ �k� NðT Þ

T
ln �k: ð2Þ

This implies that choosing the model that maximizes the likelihood roughly

corresponds to choosing the model with the best prediction performance. However,

in practice allowance has to be made for the number of unknown parameters

estimated from the data, which leads to criteria such as the Akaike Information

Criterion (AKAIKE, 1977).

2. Some Point Process Models for Earthquake Occurrence

Besides the Poisson process, the most common point process used in earthquake

modelling is the renewal process. For a stationary renewal process with inter-event

distribution F ð�Þ, survivor function �F ð�Þ, density f ð�Þ and mean 1=m ¼
R1
0

�F ðyÞdy,
the conditional intensity is kðtÞ ¼ f ðBtÞ= �F ðBtÞ, where Bt denotes a backward

2302 M. S. Bebbington Pure appl. geophys.,



recurrence time, the time since the last event. It can then be shown (DALEY and

VERE-JONES, 2003, Section 7.6) that

G ¼ m 1� lnmþ
Z 1
0

f ðyÞ ln f ðyÞdy
� �

: ð3Þ

The usual renewal density considered in earthquake modelling is the Lognormal

f ðyÞ ¼ 1ffiffiffiffiffiffi
2p
p

rx
exp

1

2r2
ðln y � lÞ2

� �
;

as this provides a conditional intensity

kðtÞ ¼ f ðtÞ=�Uððln t � lÞ=rÞ; ð4Þ

where �UðzÞ ¼
R1

z ð2pÞ
�1=2 expð�z2=2Þdz, that first increases, and then decreases, with

t. It also readily allows for occasional very long inter-event times. We find that

Z 1
0

f ðyÞ ln f ðyÞdy ¼ � lnð
ffiffiffiffiffiffi
2p
p

rÞ � E½ln Y � � 1

2r2
E ðln Y � lÞ2
h i

and so

G ¼ expð�l� r2=2Þ 1þ r2

2
� lnð

ffiffiffiffiffiffi
2p
p

rÞ
� �

:

Since �k ¼ m ¼ expð�l� r2=2Þ, we see that the entropy gain per event is

G=�k ¼ 1þ r2

2
� lnð

ffiffiffiffiffiffi
2p
p

rÞ;

a function of r alone. The conditional intensity and the entropy gains are shown in

Figure 1. We see that the entropy gain per event can become arbitrarily large, as the

events become increasingly infrequent. This derives from the very long tail of the

distribution, and the consequent ability to forecast an absence of events with

considerable confidence.

DALEY and VERE-JONES (2004) calculate the entropy gain for the Gamma renewal

process, while IMOTO (2004) determines the probability gains from renewal models

with Lognormal, Gamma,Weibull and Brownian distributions.

The renewal process corresponds, in earthquake modelling, to a slip predictable

model, where the size of the event depends on the interval before it, but the interval after

an event is independent of its size. However, a causal relationship between the size of an

earthquake and the following interval is desirable when modelling large earthquakes

(REID, 1910) which leads in the point process setting to the stress release process (VERE-

JONES, 1978). This models the gradual build-up of stress by tectonic movements and its

release in the form of earthquakes. The stress level X ðtÞ increases deterministically

between earthquakes and is reduced stochastically during earthquakes, as
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X ðtÞ ¼ X ð0Þ þ qt � SðtÞ

where X ð0Þ is the initial value, q is a constant loading rate from external tectonic

forces, and SðtÞ is the accumulated stress release from earthquakes within the region

over the period ð0; tÞ. That is, SðtÞ ¼
P

ti<t Si, where ti and Si are the origin time and

the stress release associated with the i-th earthquake. This release is usually inferred

from the magnitude of the event Mi using

Si ¼ 10gðMi�M0Þ; ð5Þ

where M0 is a magnitude cutoff. The two commonly used values of g are g ¼ 0:75 in

which case the ‘stress release’ corresponds to Benioff strain, and g ¼ 1:5, where the

‘stress release’ is actually the seismic moment.

The conditional intensity of an earthquake occurrence is a function wðX Þ which is

monotonically increasing. It is usually chosen as

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6
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t

λ 
(t

)
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2
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G

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

σ

G
/λ

Figure 1

Top: Conditional intensity of the log-normal renewal process with l ¼ r ¼ 1 (solid), l ¼ 2;r ¼ 1 (dashed)

and l ¼ 1;r ¼ 2 (dotted). Middle: Entropy gain per unit time with l ¼ 1 (solid) and l ¼ 2 (dashed) for

varying r. Bottom: Entropy gain per event as a function of r.
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wðX Þ ¼ ebðX�x0Þ; ð6Þ

where the constant x0 is the unknown initial value of stress,while the constant

b > 0 is an amalgam of the strength and heterogeneity of the crust in the region.

The result is a point process in time-stress space with conditional intensity

function

kðtÞ ¼ wðX ðtÞÞ ¼ exp b X ð0Þ þ qt � SðtÞ � x0ð Þð Þ: ð7Þ

The amount of stress released in an event initiated by a stress level X ðtÞ ¼ x has

distribution Jðdy j xÞ. In practice this is usually assumed to be independent of the

stress level,

Jðdy j xÞ ¼ JðdyÞ; ð8Þ

and so the stress drops are independent identically distributed random variables with

distribution J .
BOROVKOV and VERE-JONES (2000) show that, given (6) and (8), X has

characteristic function

uðsÞ ¼ E eisX
� �

¼ eisRcðsÞ
Y1
k¼1

exp
is
bk

� �
cðs� ikbÞ
cð�ikbÞ ; ð9Þ

where R ¼ x0 þ b�1ðlnðbqÞ � CÞ;C ¼ 0:5772 . . . is Euler’s constant,

cðsÞ ¼ 1� vðsÞ
isE½S� ; ð10Þ

and vðsÞ ¼
R1
0 e�isxJ ðdxÞ:

3. Entropy Gain of the Stress Release Process

If we assume (see ZHENG, 1991; BOROVKOV and VERE-JONES, 2000) the

existence of a stationary distribution f ðxÞ for the stress X ðtÞ, we have the forward

equation

qf ðxÞ ¼
Z 1

x
wðyÞf ðyÞPðS > y � xÞ dy:

where S is the random variable for the stress released in an event, which yields

(VERE-JONES, 1998)

q
E½S� ¼

Z 1
�1

wðyÞf ðyÞdy ¼ E½wðX ð0ÞÞ� ¼ �k

and

Vol. 162, 2005 Information Gains for Stress Release Models 2305



E½XwðX Þ� ¼ q
E½S� E½X � þ E½S2�

2E½S�

� �
: ð11Þ

So, from (1), the entropy gain per unit time is

G ¼ E wðX Þ lnwðX Þ � ln
q

E½S�

� �� �� 	
¼ E½wðX Þ lnwðX Þ� � q

E½S� ln
q

E½S�

� �
: ð12Þ

Theorem 1. If the stress release process has a hazard function (6), and a jump

distribution JðdxÞ such that

Z 1
0

x2JðdxÞ <1; ð13Þ

then the entropy gain per unit time is

G ¼ q
E½S� lnðbE½S�Þ � Cþ b

X1
k¼1

R1
0 xe�kbxJðdxÞ

1�
R1
0 e�kbxJðdxÞ

 !
: ð14Þ

Theproof is deferred to theAppendix.Wenote thatG is proportional toq, and thus
to the expected number of events. Hence the following corollary follows trivially.

Corollary 1. Under the conditions of Theorem 1, the entropy gain per event is

G=�k ¼ lnðbE½S�Þ � Cþ b
X1
k¼1

R1
0 xe�kbxJðdxÞ

1�
R1
0 e�kbxJðdxÞ

: ð15Þ

We observe from (15) that the entropy gain per event is essentially unaffected by

changes in q.
Theorem 1 and its corollary provide expressions for the entropy gain in terms of

the distribution of the stress drops JðdxÞ. We will now consider possibilities for the

latter.

3.1 Truncated Gutenberg-Richter Distribution

The truncated Gutenberg-Richter distribution has density

gðmÞ ¼ hehðm0�mÞ

1� ehðm0�mmaxÞ
; m 2 ðm0;mmaxÞ;

where the ‘‘b-value’’ h log10 e describes the fall-off in frequency with magnitude. Since

b-values less than one are common, the distribution must be truncated at some

maximum magnitude mmax. Using (5), we obtain

2306 M. S. Bebbington Pure appl. geophys.,



PðS � sÞ ¼ 1� sc

1� ehðm0�mmaxÞ
; s 2 ð1; smaxÞ; ð16Þ

where smax ¼ 10gðmmax�m0Þ and c ¼ �ðh=gÞ log10 e. Thus JðdxÞ ¼ c0xc�1dx, for

x 2 ð1; smaxÞ; with c0 ¼ �c=ð1� ehðm0�mmaxÞÞ. Then

E½S� ¼
Z smax

1

c0xcdx ¼ c0
cþ 1

ðscþ1
max � 1Þ

and

Z 1
0

xe�kbxJðdxÞ ¼ c0

Z smax

1

e�kbxxcdx:

The latter integral can be expressed in terms of the incomplete Gamma function

P ða; xÞ ¼
R x
0 e�tta�1dt=CðaÞ yielding
Z 1
0

xe�kbxJðdxÞ ¼ c0Cðcþ 1Þ
ðkbÞcþ1

P ðcþ 1; kbsmaxÞ � P ðcþ 1; kbÞð Þ:

Using the recurrence formula P ða; xÞ ¼ P ðaþ 1; xÞ þ xae�x=Cðaþ 1Þ (ABRAMOWITZ

and STEGUN, 1964) we eventually get

Z 1
0

xe�kbxJðdxÞ ¼ c0Cðcþ 1Þ
ðkbÞcþ1

P ðcþ 2; kbsmaxÞ � P ðcþ 2; kbÞð Þ

þ c0
cþ 1

scþ1
maxe�kbsmax � e�kb

� �
;

where cþ 2 > 0 for b-values less than 1.5, facilitating numerical calculation.

Similarly,

Z 1
0

e�kbxJðdxÞ ¼ c0CðcÞ
ðkbÞc Pðcþ 2; kbsmaxÞ � P ðcþ 2; kbÞð Þ

þ c0
c

kbsmax

cþ 1
þ 1

� �
sc
maxe�kbsmax � kb

cþ 1
þ 1

� �
e�kb

� �
:

3.2 Tapered Pareto Distribution

VERE-JONES et al. (2001) examine a distribution for the stress itself,

PðS > sÞ ¼ s
s0

� ��a

exp
s0 � s

U

� �
; s > s0; ð17Þ

where the ‘upper turning point’ U is usually specified through the equivalent

magnitude c ¼ m0 þ g�1 log10 U obtained via inverting (5). This is sometimes known

as the Modified Gutenberg-Richter distribution (see, e.g., SORNETTE and SORNETTE,
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1999). Note that in order to obtain a sensible magnitude distribution, a must roughly

be inversely proportional to g.
We find that

E½S� ¼ s0 þ
Z 1

s0

PðS > sÞ ds ¼ s0 þ d0U1�aIð1� a; s0=UÞ

where d0 ¼ sa
0es0=U and Iða; xÞ ¼

R1
x ta�1e�tdt ¼ CðaÞ 1� P ða; xÞð Þ: Similarly,

E½S2� ¼ s20 þ 2

Z 1
s0

sPðS > sÞ ds ¼ s20 þ 2d0U2�aIð2� a; s0=UÞ:

Differentiating (17) we find that JðdxÞ ¼ ða=xþ 1=UÞPðS > xÞdx; and so if

dk ¼ kbþ 1=U , for k > 0, then

Z 1
0

xe�kbxJðdxÞ ¼ d0

Z 1
s0

a
x
þ 1

U

� �
x1�ae�dkxdx

¼ d0ada�1
k Ið1� a; dks0Þ þ ðd0=UÞda�2

k Ið2� a; dks0Þ:

Similarly,

Z 1
0

e�kbxJðdxÞ ¼ d0ada
k Ið�a; dks0Þ þ ðd0=UÞda�1

k Ið1� a; dks0Þ:

3.3 Empirical Magnitude Distribution

BEBBINGTON and HARTE (2001) argue for using the observed empirical magnitude

distribution when forecasting through simulation, as this removes a level of

approximation. Suppose that we observe N earthquakes of magnitude

mi; i ¼ 1; . . . ;N . Converting these magnitudes to stresses si using (5), the entropy

gain per unit time is

G ¼ NqPN
i¼1 si

ln
b
N

XN

i¼1
si

 !
� Cþ b

X1
k¼1

PN
i¼1 sie�kbsi

N �
PN

i¼1 e�kbsi

 !
:

In the case that the stress distribution is degenerate, i.e., a characteristic earthquake,

JðdxÞ ¼ dðx� sÞ say,

G ¼ q
s

lnðbsÞ � Cþ bs
X1
k¼1

e�kbs

1� e�kbs

 !
:
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4. Illustration Using Data from North China

We will now use the results of the previous section to calculate the entropy gains

for the stress release model fitted to an historical earthquake catalogue from north

China. The maximum likelihood estimates (see, for example, DALEY and

VERE-JONES, 2003, Section 7.1) of the parameters in the conditional intensity (7)

are given in Table 1. For our analyses we will need the distribution of the

recorded magnitudes, as given in Table 2. The MLE of the b-value is

b̂ ¼ log10 e=ð �M � m0Þ ¼ 0:61; using a cut-off magnitude m0 ¼ 6:0. Figure 2 shows

the catalogue of 65 observed events, and the fitted conditional intensity in the case

g ¼ 0:75.

Examples of the entropy gain for the stress release process with the magnitude

distributions considered above are presented in Table 3. The magnitude parameters

were chosen according to two criteria. Firstly, to provide a reasonable maximum

magnitude, hence mmax ¼ 9:0, also used by VERE-JONES (1998), and c ¼ 8:5, which is

the MLE to the one decimal place in the data. The remaining parameters h and a
were then chosen to preserve the mean jump size E½S� and hence the event rate �k,
meaning that the reference process is the same in all cases, allowing for direct

comparison.

We see that, even leaving aside the degenerate distribution which appears to

provide a minimum of entropy gain, a range of quite respectable magnitude

distributions leads to order of magnitude differences in the entropy gain. The

dependence of G on the magnitude distribution arises from the fact that although the

magnitudes are independent of the history, the history and hence the conditional

intensity is dependent on the magnitudes through the stress drops. The larger entropy

gains from using g ¼ 1:5 point to the gain resulting largely from the depressive effect

of large events on the intensity (7). In other words, we are likely to successfully

forecast an absence of activity subsequent to a large event. This factor also goes far

Table 1

Fitted stress release parameters in Eq. (7) using north China data

g �̂ �̂ x̂0 lnL

0.75 0.010 1.176 246.2 )195.87
1.5 0.000134 47.3 18193 )196.68

Table 2

Tally of observed magnitudes from north China

M 6.0 6.2 6.3 6.5 6.7 7.0 7.2 7.3 7.4 7.5 7.8 8.0 8.5 8.6

No. 20 7 1 8 5 7 2 1 1 4 1 6 1 1
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towards explaining the variation between the distributions, with those more likely to

produce larger stress drops providing greater entropy gain. A secondary source of

entropy gain in the stress release model derives from the fact that small events are

likely to both result from high stress levels, and not depress these levels, and so the

likelihood of successfully forecasting an event subsequently is raised. Using g ¼ 1:5

does better here too, as the smaller events have less relative effect on the stress level

X ðtÞ. We note that the approximation (2) yields an entropy gain G ¼ 0:0078

(g ¼ 0:75) or G ¼ 0:0071 (g ¼ 1:5), of the right order, although smaller than the
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Figure 2

Magnitudes of observed events (solid lines) and fitted stress release conditional intensity (dotted line) for

North China catalog.

Table 3

Calculated entropy gains for north China using selected magnitude distributions

Stress Distribution, JðdxÞ � E½S� �� G G=��

Empirical, Table 2 0.75 8.81 0.1335 0.0120 0.0902

Degenerate, M ¼ 7:26 0.75 8.81 0.1335 0.0029 0.0220

Truncated G-R, h ¼ 1:2225, mmax ¼ 9:0 0.75 8.81 0.1335 0.0160 0.1200

Tapered Pareto, a ¼ 0:6949, c ¼ 8:5 0.75 8.81 0.1335 0.0171 0.1284

Empirical, Table 2 1.5 330.5 0.1431 0.0213 0.1486

Degenerate, M ¼ 7:68 1.5 330.5 0.1431 0.0016 0.0111

Truncated G-R, h ¼ 1:3950, mmax ¼ 9:0 1.5 330.5 0.1431 0.0480 0.3353

Tapered Pareto, a ¼ 0:3688, c ¼ 8:5 1.5 330.5 0.1431 0.0300 0.2097
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values derived from the empirical distributions in Table 3. HARTE and VERE-JONES

(2005) show that the differences are not significant, using Monte Carlo inference

based on repeated simulation of the model. In other words, the data produced by the

model is not substantially different from the observed data, according to this

measure.

Using the results for the tapered Pareto distribution, or indeed the truncated

Gutenberg-Richter distribution, we can also investigate the dependence of the

entropy gains on the magnitude distribution parameters (Fig. 3), and on the process

parameters (Fig. 4). We will illustrate this only for the tapered Pareto distribution

with g ¼ 0:75. The other cases show similar behavior. The entropy gain for the

tapered Pareto distribution indicates that for a given c, there is a value of a, within

0.65 0.7 0.75 0.8 0.85 0.9 0.95

8.5

9

α

γ
Entropy gain per unit time

0.018

0.018 0.018

0.02

0.02

0.02

0.022

0.022

0.022 0.022

0.024

0.024

0.024 0.024

0.026

0.026 0.026

0.028
0.028

0.03
0.03

a

0.65 0.7 0.75 0.8 0.85 0.9 0.95

8.5

9

α

γ

Entropy gain per event

0.1

0.1

0.15

0.15

0.15

0.1
5

0.2

0.2

0.2

0.25

0.25

0.3
0.35

b

Figure 3

Entropy gain per time unit (left) and per event (right) for the stress release model with

g ¼ 0:75;b ¼ 0:010; q ¼ 1:176, and the Pareto stress drop distribution (17) for varying a; c.
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Figure 4

Entropy gain per time unit (left) and per event (right) for the stress release model with the tapered Pareto

stress drop distribution (17) using g ¼ 0:75; a ¼ 0:6949; c ¼ 8:5 and varying b; q.
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the feasible region, that maximizes the entropy gain. Conversely, we observe that the

entropy gain increases with c, regardless of a. Figure 4 shows that, although the

entropy gain increases with q, this is solely due to having more frequent events, as we

knew from Corollary 1. On the other hand, we see that the entropy gain increases

with b, which results from the risk function growing faster with stress, and decreasing

the uncertainty about the time of the next event. This accords with the observation of

LU and VERE-JONES (2001) who, in fitting the stress release model to a variety of

synthetic catalogs with quite different properties, found that the ‘‘predictability’’

increased with b. Further investigation of the truncated Gutenberg-Richter distri-

bution and the tapered Pareto distribution shows that, although the average rate

(and hence the entropy gain per event) varys considerably with the ‘b-value’param-

eters h and a, the entropy gain is relatively insensitive. On the other hand, the entropy

gain appears to increase considerably with an increase in the ‘upper magnitude

cutoff’ parameters mmax and c.

5. Extension to the Linked Stress Release Model

An extension of the stress release model to multiple ‘‘regions’’ was proposed by

LIU et al. (1998). The evolution of stress XiðtÞ in the ith region is supposed to follow

XiðtÞ ¼ Xið0Þ þ qit �
X

j

hijSðjÞðtÞ;

where SðjÞðtÞ is the accumulated stress release in region j over the period ð0; tÞ, and
the coefficient hij measures the fixed proportion of the stress drop, as initiated in

region j, which is transferred to region i. Conventionally, hjj ¼ 1 for all j. This linked
(or coupled) stress release model has a point process conditional intensity function

kiðtÞ ¼ wðXiðtÞÞ ¼ exp bi Xið0Þ þ qit �
X

j

hijSðjÞðtÞ � x0

 ! !

for each region i. If hij ¼ dij, the Kronecker delta, then the process is a simple

aggregate of independent stress release models.

For such a multivariate process, we can define a binomial score as before, for

each region, and sum them to obtain an overall score

B ¼
X

k

X
i

Yik ln pik þ ð1� YikÞ lnð1� pikÞð Þ;

where k denotes the k-th region. The information gain is thus

�qT ¼
B� �B

T
¼ 1

T

X
k

X
i

Yik ln
pik

�pik

� �
þ ð1� YikÞ ln

1� pik

1� �pik

� �� �
;
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where �B is again the score from a reference process, and the entropy gain can be

extended similarly as
P

k Gk, where Gk is the entropy gain in the k-th region taken in

isolation.

Proposition 3. Suppose that events in a process with intensity k ¼ kðtÞ and entropy gain
G are now divided by region, with the result being a multivariate process with intensity

k ¼ kðtÞ ¼ fkkðtÞg. If k ¼
P

k kk and �k ¼
P

k
�kk then the entropy gain of the

multivariate process
P

k Gk > G.

The proof is deferred to the Appendix.

Breaking down the data from north China in the previous section into four regions

from West to East (see ZHENG and VERE-JONES, 1994) and using the individual

empirical magnitude distributions for the four regions, we obtain the results in Table 4.

Hence, taking hij ¼ dij, and assuming that the reference model is an aggregate of

Poisson processes of rate f�kkg, we have aggregate figures for the process of
X

i

�kk ¼ 0:1278;
X

k

Gk ¼ 0:0457; and

P
k GkP
k

�kk
¼ 0:3576:

We can compare (using the empirical magnitude distribution in both cases) this with

values of G ¼ 0:0120 and G=�k ¼ 0:0902 for the univariate case. We should not be

surprised at the increase in the entropy gain. Basically, there are four times asmany

spatio-temporal ‘‘cells’’, and no more earthquakes, thus we can improve our

predictions by forecasting that no event will occur. However, this increase in the

entropy gain is predicated on correct model fitting and identification, which the

demands of the additional parameters render problematical.

Moreover, if the regions are interacting by transferring stress between themselves,

a question arises as to the correct reference model. Assuming the reference model to

be a multivariate Poisson process, we still need to calculate appropriate rates �kk. One

solution is to take the rate as �kk ¼ tk=E½Sk�, where the stress ‘input’ rates ftkg are

found as the solutions to the simultaneous equations

tk ¼ qk �
X
j 6¼k

hkjtj;

Table 4

Calculated entropy gains for North China (by region)

k x̂0k E½Sk� ��k Gk Gk=��k

1 143.3 11.3 0.0430 0.0128 0.2979

2 66.6 7.6 0.0182 0.0042 0.2285

3 47.5 5.4 0.0371 0.0112 0.3023

4 98.1 11.8 0.0295 0.0175 0.5939
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for all k (BEBBINGTON and HARTE, 2003). If we consider the linked model, estimating

fE½Sk�g by means of the empirical magnitude distributions, and with parameters in

the obvious matrix notation: q ¼ 0:204� 1,

x0 ¼

265
60:2
45:8
78:8

0
BB@

1
CCA; b ¼

0:017
0:048
0:088
0:061

0
BB@

1
CCA; H ¼

1 �1:53 0 0
0:14 1 0 0
0 0 1 0
0 0 �0:63 1

0
BB@

1
CCA

we find that t ¼ ð0:426 0:144 0:204 0:333Þ0. This produces a reference model with �k ¼
(0.0377 0.0189 0.0378 0.0282)0, against which the aggregate of 4 independent stress

releasemodels, as inTable 4, has an entropy gain per event of
P

k Gk=ð
P

k
�kkÞ ¼ 0:3728.

Simulating the actual linked model and calculating the average information gain, we

obtain an information gain per event of 0:375. This somewhat small (if actually

positive) improvement on the aggregate of independent stress release models is in line

with the small log-likelihood improvement resulting from the fitted linked model

(BEBBINGTON and HARTE, 2003).

6. Discussion

We have derived an expression (14) for the entropy gain per unit time that,

while not in closed form, is readily calculated to any desired degree of accuracy in

the case of several suitable stress drop distributions. It also shows how G increases

with b, in a nonlinear fashion illustrated in Figure 4. The dependence on the stress

drop distribution J , and on its mean E½S� is more complex, although the factor

q=E½S� is effectively the rate of events, which thus disappears in the entropy gain per

event (15).

The numerical results show that the choice of magnitude distribution, and the

values of any parameters therein, are a major factor in the entropy gain of the

process. LU and VERE-JONES (2001) also noted that the selection of the magnitude

distribution is the factor in the stress release model which has the greatest effect

on simulated activity, affecting the periodicity and hence predictability of the

results. In general, it appears that the entropy gain increases with the likelihood

of larger events, which probably indicates that we are gaining in the forecasting of

quiescence after very large events, and possibly from forecasting activity following

smaller events.

For purposes of comparison, DALEY and VERE-JONES (2004) give a scale, based

on the Gamma renewal process with unit mean, for the entropy gain per event (cf.

Eq. 3) as a function of the shape parameter j. We find that the stress release process

possesses approximately the degree of predictability of a Gamma renewal process

with shape parameter between 2 (G=�k ¼ 0:12) and 3 (G=�k ¼ 0:25) or between 0.6
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(G=�k ¼ 0:11) and 0.5 (G=�k ¼ 0:22). The former corresponds to more regular event

times, and the latter to clustering, which appears the more likely from Figure 2.

Fitting the inter-event times by a Gamma distribution we find that the estimate of the

shape parameter is ĵ ¼ 0:516, for which the formula in DALEY and VERE-JONES

(2004) predicts G=�k � 0:20: This is corroborated by fitting the Lognormal renewal

intensity (4), which produces an entropy gain G ¼ 0:0225 (G=�k ¼ 0:18). Hence we see

that the inclusion of magnitudes in the conditional intensity for the stress release

model appears to lead to little information gain, unless g ¼ 1:5 (seismic moments) is

used rather than Benioff strains.

MOLCHAN (1990, 1991) considered the problem of comparing prediction

strategies for stationary point process models of earthquake sequences. The idea is

to prescribe a prediction threshold and consider the rate of false alarms and

missed events as this threshold varies. In the present setting, this is equivalent to

setting a hazard threshold k0. We can then consider the rate of missed events to

be

m ¼ Pðkðt�i Þ< k0Þ �
1

N

XN

i¼1
Ið0;k0� k t�i

� �� �

where events occur at times t1; . . . ; tN . Similarly, we can approximate a false alarm

rate as

s ¼ PðkðtÞ > k0Þ

� 1

tN � t1

XN�1
i¼1
ðtiþ1 � tiÞmin 1;max 0;

ln kðt�iþ1Þ � ln k0
ln kðt�iþ1Þ � ln kðtþi Þ

� �� �
;

where the approximation follows from the form of the intensity (7). By varying the

threshold k0, we produce Molchan’s m� s diagram. All curves have end-points

ðm; sÞ ¼ ð1; 0Þ and ðm; sÞ ¼ ð0; 1Þ. Random guessing produces a curve m ¼ 1� s.
Predictions improving on this are in the region m < 1� s, improving to perfect

prediction as the curve gets closer to ðm; sÞ ¼ ð0; 0Þ. Figure 5 shows prediction curves

for some of the models in Table 3, obtained by simulating the models forward for

10,000 events.

The diagram can be related to the entropy score by expressing the latter in

terms of dm=ds (HARTE and VERE-JONES, 2005). We see that the truncated

Gutenberg-Richter distribution provides uniformly poor predictive performance

relative to the tapered Pareto and empirical distributions, while the tapered Pareto

distribution is slightly better than the empirical. Of particular interest is that the

gamma renewal process provides predictive power roughly equivalent to the stress

release model, as was indicated by the entropy gains. In absolute terms, we find that

the stress release model with g ¼ 0:75 is likely to be ineffective as a forecasting tool,
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as even blocking into 5-yearly intervals (cf., VERE-JONES, 1998) leads to an entropy

gain of at best 0.25, or a probability gain of approximately 30% over the Poisson

process.
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Appendix

Proof of Theorem 1. From (6) and (12) we have

G ¼ bE½XwðX Þ� � bx0E½wðX Þ� �
q

E½S� ln
q

E½S�

� �
: ð18Þ

Differentiating (9) we get
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u0ðsÞ ¼ iRuðsÞ þ c0ðsÞ
cðsÞ uðsÞ þ

X1
k¼1

i
bk
þ c0ðs� ikbÞ

cðs� ikbÞ

� �
uðsÞ: ð19Þ

The condition (13) and Lebesgue’s Dominated Convergence Theorem allow us to

write

v0ðsÞ ¼ d
ds

Z 1
0

e�isxJðdxÞ ¼ �i
Z 1
0

xe�isxJðdxÞ;

and

v00ðsÞ ¼ d2

ds2

Z 1
0

e�isxJðdxÞ ¼ �
Z 1
0

x2e�isxJðdxÞ;

hence v0ð0Þ ¼ �iE½S� and v00ð0Þ ¼ �E½S2�. From (10),

c0ðsÞ ¼ �isv0ðsÞE½S� � ð1� vðsÞÞiE½S�
�s2E½S�2

¼ iðsv0ðsÞ þ 1� vðsÞÞ
s2E½S� ;

and thus

c0ðsÞ
cðsÞ ¼ �

sv0ðsÞ þ 1� vðsÞ
sð1� vðsÞÞ ¼ � v0ðsÞ

1� vðsÞ �
1

s
:

Also, vð0Þ ¼ 1 ¼ cð0Þ and so appealing to L’Hôpital’s rule we find that

c0ð0Þ ¼ lim
s!0

iðsv00ðsÞ þ v0ðsÞ � v0ðsÞÞ
2sE½S� ¼ iv00ð0Þ

2E½S� ¼
�iE½S2�
2E½S� :

Substituting into (19), and noting that uð0Þ ¼ 1, we have

E½X � ¼ �iu0ð0Þ

¼ R� i
�iE½S2�
2E½S�

� �
� i
X1
k¼1

i
bk
þ c0ð�ikbÞ

cðikbÞ

� �

¼ x0 þ b�1ðlnðbqÞ � CÞ � E½S2�
2E½S� þ

X1
k¼1

R1
0 xe�kbxJðdxÞ

1�
R1
0 e�kbxJðdxÞ

: ð20Þ

Substituting (20) into (11) yields

E½XwðX Þ� ¼ q
E½S� x0 þ b�1ðlnðbqÞ � CÞ þ

X1
k¼1

R1
0 xe�kbxJðdxÞ

1�
R1
0 e�kbxJðdxÞ

 !
:

The result follows by substituting this into (18), and observing that E½wðX Þ� ¼ q=E½S�
and lnðbqÞ � lnðq=E½S�Þ ¼ lnðbE½S�Þ. (

2318 M. S. Bebbington Pure appl. geophys.,



Proof of Proposition 3. By definition, the entropy gain of the multivariate process is

X
k

Gk ¼
X

k

E kk ln
kk

�kk

� �� 	

¼
X

k

E kk ln
kkP
j kj

 !
þ ln

X
j

kj � ln
X

j

�kj � ln
�kkP
j
�kj

 ! !" #

¼ E
X

k

kk ln
X

j

kj � ln
X

j

�kj

 !" #

þ E
X

k

kk ln
kkP
j kj

 !
� ln

�kkP
j
�kj

 ! !" #
:

The first term is the entropy gain of the univariate process, and the second term is

always positive by Jensen’s inequality. (
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