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Abstract — We propose two related iterative algorithms
for computing the capacity of discrete memoryless channels.
The celebrated Blahot-Arimoto algerithm is a special case
of our framework. The formulation of these algorithms is
based on the natural gradient and proximal point methods.
We also provide interpretations in terms of notions from
information geometry. A theoretical convergence analysis
and simulation results demonstrate that our new algorithms
have the potential to significantly outperform the Blahut-
Arimoto algorithm in terms of convergence speed.

I. INTRODUCTION

It is now exactly 30 years that R. Blahut and 8. Arimoto both
received the Information Theory Paper Award for their Jan. 1972
Transactions Papers on how to numerically compute channel ca-
pacity and rate-distoriion functions {3, 4]. In [9], an information
geometric interpretation of the Blahut-Arimoto (BA) algorithm
in terms of alternating information projections was provided.
Since then, several extensions of BA to other types of channels
have been proposed (e.g. [10,13,15-17]).

QOur contributions regarding capacity computation for dis-
crete memoryless channels (DMCs) in this paper are:

e Capacity computation is shown to be equivalent to an infor-
mation geometric “equidivergence” game (Section III).

e We propose a natural gradient (NG) algorithm [1] and an ac-
celerated BA algorithm for capacity computation (Section V).
We demonstrate that close to the optimum, the accelerated BA
and NG algorithms are approximately equivalent.

e We rephrase the accelerated BA and NG algorithms as prox-
imal point methods that respectively use Kullback-Leibler di-
vergence and chi-square divergence between the iterates as
penalty terms (Section V).

e We provide a convergence analysis of the accelerated BA al-
gorithm which roughly also characterizes the convergence of
the NG algorithm (Section VI).

e Numerical experiments confirm our theoretical results and
show that our nove! algorithms converge significantly faster
than the BA algorithm (Section VII).
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The relevant information geometric facts and notions used in the
paper can be found in [2, 8].

After formulating the accelerated BA and NG algorithms, we
discovered close relations to [5, 12) which consider modifica-
tions of the EM algorithm for ML estimation in general and
mixture estimation in particular. In fact, some of our conver-
gence results are inspired by [5].

I1. BACKGROUND

Consider a DMC with input symbol X taken from the size
M +1 input alphabet {zg,..., 2}, output symbol ¥ in the
size N +1 alphabet {yy,...,yn}. and transition probabilities
iy = Pr(Y = ;| X = ;). We define the (N +1) x (M +1)
channel matrix Q as [{Q];; = Q;);. The distribution of the input
and output symbol are characterized, respectively, by the prob-
ability vectors p = [py...pm]T and q = [go...qu]T = Qp
withp; = Pr(X =z;) and ¢; = Pr(¥Y =) = Z;‘ig Qi 75
The mutual information of X and Y equals [6, 11]

Qi
iy

M N

I(p) =3 piQujlog

J=014=0

M
=3 piD(Qla)
=0

where Q; denotes the jth column of Q and we used the
Kullback-Leibler divergence (KLD) [6], defined as

P,
D(p|p’) =) pjlog .

, p;

i
The capacity of the channel equals C = max, I(p) (this is a
maximization of a continuous concave function over a closed
convex set). The Kuhn-Tucker conditions for an optimum (i.e.,
capacity-achieving) input distribution p™* are [11]

D(Q;llQp*) =C, P} >0, (1a)
D(Q;llQp*) < C, pj=0 (1b)
We note that for any input distribution p we have [4, 11]
M
>_pD(Q;Qp) £ € < maxD(QslQp). @
i=0

These inequalities become equalities in the case of a capacity-
achieving input distribution and can be used as a termination
criterion for all the iterative algorithms below.
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The key for the BA algorithm [3,4] is the observation that
C = max, maxp J(p, P) where

Z Z piQuy

Jj=0i=0
and P is an arbitrary (M +1) X {N+1) transition probabi]ity ma-
trix with entries [P);; = P;); (in fact, I(p) = maxp J(p,P)).
Starting from an initial guess pY, the BA algorithm iteratively
computes
Pk+l

'](.pu

= arg max J(pt PY),  p*! = argmax J(p, PFY.
P

€))
In [9], these maximizations were re-interpreted as alternating
projections based on KLD minimizations. Combining both
maximizations into one step yields the multiplicative BA update

pk+1 _ ok e‘CP(D’?) _ @)
’ T YL, Pk exp(DF)
" Here, D¥ 2 D(Q;|q*) with g* = Qp*.

IT1. AN EQUIDIVERGENCE GAME
Based on the arguments below, capacity computation is
equivalent in information geometric terms to the following
“equidivergence” game (for simplicity of exposition, we restrict
to the case p; > 0, j = 0,..., M). Consider the set of length-
N +1 probability vectors q that have the same KIL.D to all
columns of Q:

Q2= {a: D(Qolla) = D(Qifla) =---=D(Qn[a@)}. )
It can be shown that this is a log-linear (exponential) [2, 8] fam-
ily of probability vectors. Hence, the reverse [-projection [2, §]
of the jth column of € onto Q, defined as

" = argmig D(Qjlla), (6)

belongs to the linear (mixture) family

N N
E={q:q=Qp=Zijj, ij=1},
§=0 7=0
which is dual to Q. Using the compensation identity

N N
ZPJD(Q;'HQP) = ijD{Qj”q) - D(Qplla),
s ‘
with q = q* € Q, it follows that Z AR pd,,D(QJ [1Qp) <
D(Q;llq*) (recall {5)) with equality Hf Qp q*. Thus,

Q" =Qp" with p*= drﬂmaprJD(lelQp)
i=0
We conclude that the equidivergence game (6) is equivalent to
capacity computation.

From an algorithmic point of view, the equidivergence game
means that given a current guess p*, we shoutd check the KLDs
D¥ = D(Q;1/Qp*) and move the output distribution closer to
those Q; for which Df is ]arge. This can be achieved by increas-
ing the respective weights p consistent with the BA recursion
(4) that increases (decre.lses) those input probablhtles for which
exp(D¥) is above (below) the average M =0 s exp(DF).
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[V. TwOo NEW ALGORITHMS

A. Nuatural Gradient Algorithm.  We next exploit the fact
that the input probability vectors p constitute an M -dimensional
Riemannian manifold to propose a navel algorithm for capac-
ity computation that is based on the narural gradient (NG)
[1]. To this end, we describe the input probability vectors in
terms of their M dual (or expectation) parameters 7; = pj,

j=1,...,M(notethat po = 1 — 377 ;). In terms of these
parameters, the score tunction [{n) = I{p) reads

M N

=22 mQusleg —+[ Z%} > Qemiog

F=1 i=0 i=0

with ¢; = ijl Qum; + Quo [l — Zj=1 n;]. To climb the
peak of this score function, we propose a NG ascent algotithm
with the parameter updates

7" =0+ V(). )

Here, ju, is a step-size parameter and VI (7) is the NG of I{n)
obtained by pre-multiplying the ordinary gradient with the in-
verse of the Riemannian metric G{n) (which here equals the

Fisher information matrix of the parameters 77 [2]):
S i = 18Iy AImT
VIm) =G ) vim).  Vim) =[5 5 T

Computing G (1} = diag{n} — nm" and using the fact that the
jth component of VI{n) equals D{Q;|lq} — D(Qsllq), the jth
component of the NG is obtained as

[VI(m)], = [D(Q;ha) - T(m)] n; . (8)

Note that the NG points towards the directions for which the
KLD D(Q;l|q) is large. Plugging (8) into (7), the NG recur-
sions for the input probabilities can be shown to be

pht = ph (14 p(DF — 1%)]. ©)

Here, we used the short-hand notation 7% £ I(p*) for the
current estimate (actually, lower bound) of capacity. Due ©

Zfﬁopk DY = I*, (9) guarantecs ¥ _Opf“ = 1. Non-
negativity of pk"'l is ensured for p < m Note

that like the BA recursion, (3) amounts to a mu]tlpllcatlve up-
date. However, the computational complexity of the NG update
is less than that of the BA update since the exponentiation is
avoided. Furthermore, (9) is consistent with the information ge-
ometric equidivergence interpretation of capacity computation,

We observed that the NG algorithm can outperform the BA
algorithm significantly in terms of convergence speed. The NG
algorithm can be shown to replace the second maximization in
(3) with a NG ascent step. While this step misses the local max-
imum along the p-axis, it allows to better approach the global
maximum, i.e., the NG algorithm basically avoids traversing
back and forth a ridge of .7 (p, P).

B. Accelerated Blahut-Arimoto Algorithm. In our simula-
tions, we observed similar convergence propetties of the BA



and NG algorithms for 4 = 1. To explain why this is the case,
we divide numerator and denominator of the BA update (4) by
exp(Z*) and then use a first-order Taylor series approximation
of the exponentials:

. exp(D¥ — I¥)

: k k_ 1k
BT rep(DE 1% D= T]
The right-hand sidc is the NG recursion (9) for 4, = 1. The
Taylor series approximation is accurate for D;‘ —I* =0, ie.,

when equidivergence is almost achieved which will be true in
the vicinity of the optimum solution. The above approximate
equivalence motivates the ad hoc formulation of a generalized
BA algorithm:
v exp(uDf)
(VY P

2= P exp(pe DY)
Using the same arguments as before, this algorithm can be
shown to be asymptotically equivalent to the NG algorithm. In
fact, using the same step-size ptp = p, both algorithms feature
the same convergence speed which is g times faster than that
of the ordinary BA algorithm. For that reason, we refer to (10)
as accelerated BA algorithm. The convergence behavior of the

accelerated BA and NG algorithms and the choice of py, are dis-
cussed further in Sections V and V1.

E+1
by =

(10

C. Interpretation via e- and m-Geodesics. Next, we briefly
discuss the information geometric significance of the acceler-
ated BA and NG algorithms. Assume that the current guess for
the optimum input and output probabilities are p and q = Qp.
Let ppa and png be the probabilities obtained by applying
to p the BA and NG uvpdates (10) and (9) with g = 1 and
py = 1/I%, respectively. It is then easily verified that the accel-
erated BA and NG updates for general ux can be written as

pealpe) = c{us) p' 7 phh
prc(tie) = (1 — e I} p + px I Pre

where ¢} is a normalization constant. (Note that pga (0) =
prnc{0) = p.) Hence, the probability vectors ppa{px) con-
stitute an exponential (log-linear) family, parameterized by p,
that corresponds to the e-geodesic [2] connecting p and pga.
In contrast, the pre{u« ) constitute the mixture (linear) family,
again parameterized by py, that corresponds to the m-geodesic
[2] connecting p and pyg. For [,u,k(D;-“ — I")| <« 1, these two
geodesics virtually coincide in the vicinity of p.

V. PROXIMAL POINT REFORMULATION

We previously provided some information geometric insights
regarding the accelerated BA and NG algorithms and investi-
gated their asymptotic equivalence. In this section, we demon-
strate that in fact both algorithms can be derived within a com-
mon framework that also provides an a posteriori justification
for the ad hoc definition (10) of the accelerated BA recursions.

A. Accelerated BA Algorithm.  The key observation is ob-
tained by a re-examination of the alternating maximizations (3}
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underlying the BA alﬁorithm. By plugging the explicit solution
P;l;"l = Qy; p]"‘/ Z;":o Qi p;ﬁ of the first maximization into

the second maxirmization problem, we obtain

M N P{cﬁ-l
P =argmax | D Qi log 2
P iZoi=0 P;
M
=argmgX{ijDf—D(pHp’“)} (n

3=0

(recall D;? = D(Q;|Qp®)). (11) can be interpreted as a max-
imization of Z;.vio Bj D;-" with a penalty term D{pl|/p*) that
ensures that the update p*+! remains in the vicinity of p*.
Algorithms of this type are known as proximal point methods
{5] since they force the update to stay in the proximity of the
current guess. In our case this is reasonable since the first
term in (11), Zﬁopj DJ" can be viewed as an approxima-
tion of the true score function [{p) obtained by replacing the
KLDs D(Q;|Qp) with D¥ = D(Q;|Qp*). The penalty
term D{p|lp*) in (11) ensures that the maximization is re-
stricted to a neighborhood of pF for which the approximation
D(Q;]|Qp) = D(Q;||Qp*) is accurate. In fact, by adding in
(11) the quantity I(p*) — Z;\io p;-c D;“ (which is independent of
p), we obtain

k+1
p+

= argmax {I*(p) - D(pllp")}, (12)
where 75(p) = I(p*) + Zjﬂio(pj — p§) D¥ can be shown to
be a first-order Taylor series approximation of I(p) about p*
(the jth component of the gradient of T(p) at p* equals D;-“ -
1). Hence, the BA algorithm can be viewed as proximal point
method maximizing the first-order Taylor series approximation
of I{p) with a proximity penalty expressed by D(p/jp*).

It is now natural to modify (12) by emphasizing/attenuating
the penalty term via a weighting, i.e.,

Pt = argmax {I*(p) - » D(plip*}}.  (13)

The idea is that close to the optimal solution the gradient of I{p)
will be small and thus the proximity constraint can be gradually
relaxed by decreasing ;. It is straightforward to solve this prob-
lem using Lagrange multiplier techniques and it turns out that
the optimum solution is given by (10) with g = 1/v.. We con-
clude that the accelerated BA update can be viewed as proximal
point algorithm with weighted proximity penalty.

B. NG Algorithm. We next demonstrate that like the accel-
erated BA algorithm our NG algorithm can be viewed as proxi-
mal point method. The modification that is required pertains to
the penalty term which in the accelerated BA algorithm is for-
mulated in terms of the KLD. Obviously, there exist countless
other distance functicns that can be used te force the update to
the vicinity of the current guess. Since we are iterating on the
manifold of probability vectors, Euclidean distance is not a rea-
sonable choice. In contrast, the general class of {-divergences
[7] of probability distributions appears well-suited. For reasons



that will become clear presently, we choose the so-called x?-
PRS- -
divergence defined as x*(p,p’) = % 3 ; (p’—pfi)—. Like for the
4
KLD, x2(p,p’) > 0 with equality iff p = p’. It can then easily
be shown that the NG update (9) is the solution of the proximal
point problem

pht

! = arg max {I*(p) — m x*(p. ")},

obtained with gy, == 1/7;. Thus, accelerated BA and NG can
both be viewed as proximal point methods using the same cost
function 7*(p) but different distance measures for the proximity
penalty. Their asympiotic equivalence follows from the well-
known fact that x*(p, p') = D(p|/p’) for p close to p'.

C. Choice of Step-Size. A fundamental property of
the BA algorithm is that the mutual information I(p*) =
Z;vi 1 p;-“ D;-‘ which represents the current capacity estimate is
non-decreasing. For the accelerated BA algorithm, it can be
shown that

I(p**"y = 1(p*) + i DP*|p*) - D(a* o).

A sufficient condition for I(p*) to be non-decreasing thus is
7 D(p{p*) — D(q*|/¢*) > 0, i.e., we have to ensure that

e < 2EIRY  DERY
~ D(gFtaF)  D(Qp*TQp*)
Motivated by the similarity to the squared maximum matrix
2

eigenvalue supy_., Eﬁﬁ—i—%—!} with d5(x,¥) = ||lx — ¥l[%, we

define the maxinum KLD-induced “cigenvalue” of QQ as

D(Qp|Qp')
AL Q)& sup
(D2 0 el

Note that 0 < A}, (Q) < 1 and further
Mo (wrivnlfa) = 0 Mo (D = L Thus, smal

A (Q) means that the channel is noisy. Using this definition,
a sufficient condition for 7(p*) to be non-decreasing is given

b
Y 1

Hy < —A%L(Q) .

In fact, we observed in our simulations that when using a fixed
step-size, maximum convergence speed was achieved with i =
1/A%:.(Q). Since a reasonable estimate of A% (Q) might be
difficult to obtain, we suggest to use the adaptive step-size g =

% in practical implementations. While this choice
sometimes violates (15), we observed excellent performance (in
fact, superlinear convergence) in our numerical experiments (see
Section VII). The step-size 4 could also be chosen using line-
search techniques along the e-geodesics discussed in Section C,
However, our experiments indicated that the proposed adaptive
step-size yields similar performance at much lower complexity.
We note that the above arguments can alsc be used o choose
the step-size of the NG algorithm since in the vicinity of the
optimurn solution accelerated BA and NG behave identical.

(15)
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V1. CONVERGENCE ANALYSIS

In the foregoing discussion we saw that step-sizes > 1 in the ac-
celerated BA and NG algorithms have the potential for increased
convergence speed. In this section, we summarize more explicit
results regarding the convergence of the accelerated BA algo-
rithm (full details are presented in [14}), While explicit results
are difficult to obtain for the NG algorithm, Section IV and our
simulations suggests that it inherits the convergence properties
of the latter. We note that parts of our results in this section are
inspired by 3, 5].

A. Convergence Statement 1. Consider the accel-
erated BA algorithm with 7* = Y p#DF and L* =
;1; log (ZJ P} exp(us DF)). Assume that geine £ infe i > 0
and that (13) is satisfied for all k. Then, it can be shown that

lim LF = lim I*=C.
k—oo —00
Furthermore, convergence rate is at least proportional to 1/,
D{p*|lp°)
Wing K

This clearly reflects that the acceleraied BA algorithm (g > 1)
converges faster than ordinary BA (u), = 1).

C-6IF <e

B. Convergence Statement 2. Let us now assume that v, =
7 = 1/p is fixed. The fixed points p* of accelerated BA and
NG are defined as

p* = arg max { ZWD(QJ«QD*} - Wd(pllp*)}w
J

where d{p|p*) = D(p|ip*) for accelerated BA and
d(p||p*) = x*(p, p*) for NG. This relation can be shown to
be equivalent to (1) and thus p* achieves capacity.

C. Convergence Statement 3. We next consider the acceler-
ated BA algorithm and assume that the optimum input distribu-
tion p* is unique, v; >0, and (15) is satisfied for all &.

For fixed step-size y == 1/ = 1/7z, it then follows that the
sequence p* satisfies

E4-1 *
im Ip=" = ") <L
k—oo [lP¥—pti T
i.e., the algorithm features (at least) linear convergence and con-
vergence speed is increased by increasing y.

Furthermore, it can be shown that there exists a step-
size sequence v, = 1/ux conforming with (14) such that
limy oo yx = 0 and

s i
lim SR T
k= [Ip* —p*
Thus, the accelerated BA algorithm with properly chosen step-
size has the potential for superlinear convergence! (in fact we

observed superlinear convergence with the adaptive step-size
— D@erlQp" 1)
HE = ThpFp=Ty

! Newton-iype methods could also be applied to achieve superlinear conver-
gence. However, they require a matrix inversion and thus are computationally
much mere complex.

1
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Figure 1: Convergence of BA algorithm and accelerated BA and

NG algorithms (note the nonuniform abscissa scaling).

VII. NUMERICAL EXAMPLE
For purposes of illustration of our results, consider the chan-

0.7 02 01 - .
T
nel Q4 = 01 0.2 0.7) from Fig. 4.5.1 in [11]. Let us

ignore the fact that this channel can be recognized as being
symmetric and that the optimum input distribution is thus uni-
form. To compute the capacity of this channel, we ran the BA
algorithm, the accelerated BA algorithm, and the natural gra-
dient algorithm with the same (randomly picked) initial guess
p°. The step-size in our algorithms was chosen in an adaptive
fashion as p, = D(Qp*||Qp*~1)/D(p*[p*~!) for k > 1
and p; = 1. As performance (and stopping criterion) we used
EF = max; Dj*' — I* since (2) implies C' — 1% < E*. The con-
vergence results for a desired accuracy of 12 decimals are shown
in Fig. 1. (all algorithms delivered C' = 0.365148445440 bit).
It is seen that the convergence of the NG and accelerated BA
algorithms (6 iterations for the desired accuracy) is significantly
faster than that of the BA algorithm (46 iterations). After five
iterations, BA yields only one correct decimal while accelerated
BA and NG achieve already 6 and 9 correct decimals, respec-
tively. Fig. | also clearly verifies that the accelerated BA and
NG algorithm with adaptive step-size feature superlinear con-
vergence.
VII. CONCLUSIONS

We have proposed improvements cn the Blahut-Arimoto
(BA) algorithm for computing the capacity of discrete memo-
ryless channels (DMC). An accelerated BA algorithm and a nat-
ural gradient (NG) algorithm have been introduced that have the
potential for significantly faster (in fact, often superlinear) con-
vergence as compared to the conventional BA algorithm. Re-
casting the capacity computation problem as an equidivergence
game, intuitive interpretations of these algorithms have been
given via information geometric arguments. We also provided a
unifying framework for the (accelerated) BA and NG algorithms
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in terms of proximal point methods. This allows for some state-
ments regarding the convergence of our algorithms,

While our presentation focused on DMCs, our results carry
over to the cases of multi-access channels {16], quantum chan-
nels [15], IST channels [13, 17], and channels with side infor-
mation [10]. In all of these cases, the computational savings
achieved using our technique will be even more pronounced.

Furthermore, we conjecture that our approach can be applied
to the computation of rate-distortion curves and to portfolio op-
timization, both of which represent preblems closely related to
capacity computation [4,G].
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