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Abstracr - We propose two related iterative algorithms 
for computing the capacity of discrete memoryless channels. 
The celebrated Blahnt-Arimoto algorithm is a special case 
of our framework. The formulation of these algorithms is 
based on the natural gradient and proximal point methods. 
We also provide interpretations in terms of notions from 
information geometry. A theoretical convergence analysis 
and simulation results demonstrate that OUT new algorithms 
have the potential to significantly outperform the Blahut- 
Arimoto algorithm in terms of convergence speed. 

1. INTRODUCTION 

It is now exactly 30 years that R. Blahut and S. Arimoto both 
received the Information Theory Paper Award for their Jan. 1972 
Transactions Papes  on how to numerically compute channel ca- 
pacity and rate-distortion functions [3,4]. In [SI, an informatian 
geometric interpretation of the Blahut-Arimoto (BA) algorithm 
in terms of alternating information projections was provided. 
Since then, several extensions of BA to other types of channels 
have been proposed (e.g. [IO, 13,15-171). 

Our contributions regarding capacity computation for dis- 

Ihe relevant information geometric Facts and notions used in the 
paper can be found in [2,8]. 

After formulating the accelerated BA and NC algorithms, we 
discovered close relations to [5, 121 which consider modificn- 
tions of the EM algorithm for ML estimation in general and 
mixture estimation in particular. In fact, some of our conver- 
gence results are inspired by [5]. 

11. BACKGROUND 

Consider a DMC with input symbol X taken from the size 
Iw + 1 input alphabet {zo,. . . , z ,~ } ,  output symbol Y in the 
size N + 1 alphabet {yo,. . . , y ~ } ,  and transition probabilities 
Qilj = Pr(Y = yi(X = zj). We define the ( N + 1 )  x (hf+l) 
channel matrix Q as IQ], = Qilj. The distribution of the input 
and output symbol are characterized, respectively, by the prob- 
ability vectors p = [ P o . .  . P , ~ [ ] ~  and q = [qo . . . qhflT = Qp 
with pj  = Pr(X = zj) and q; = Pr(Y = vi) = Cj=n Qiljpj. 
The mutual information of X and Y equals [6, I I]  

1\1 

crete memoryless channels (DMCs) in this papcr are: 
Capacity computation is shown to be equivalent to an infor- 

where Q* denotes the j t h  column of Q and we used the 
~ ~ l l b ~ ~ k . ~ ~ ~ ~ ~ ~ ~  divergence (KLD) [61, defined as 

mation geometric "equidivergence" game (Section 111). - 
We propose a natural gradient (NC) algorithm [I]  and an ac- D(PllP') = CP, 1% 3. 
celerated BA algorithm for capacity computation (Section IV). 3 PI 
We demonstrate that close to the optimum, the accelerated BA 
and NC algorithms are approximately equivalent. 
We rephrase the accelerated BA and NG algorithms as prox- 
imal point methods that respectively use Kullhack-Leibler di- 

ne capacity of the channel equals c = I ( ~ )  (this is a 
maximization of a continuous concave function over a closed 
convex set). The Kuhn-Tucker conditions for an optimum (i.e., 
capacity-achieving) input distribution p' are [ I  I ]  

vergence and chi-square divergence between the iterates as 
penalty terms (Section V). 
We provide a convergence analysis of the accelerated BA al- 
gorithm which roughly also characterizes the convergence of 
the NG algorithm (Section VI). 
Numerical experiment? confirm our theoretical results and 
show that our novel algorithms converge significantly faster 
than the BA algorithm (Section VII). 
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D(QjIIQp*) = C, P; > 0,  ( 1 4  
D(Q~IIQP*) < C, P; 0. ( lb)  

We note that for any input distribution p we have [4, 1 I] 
iw 

CPJ~Q~IIQP) 5 C 5 mp.D(Q311QP). (2) 
3=0 

These inequalities become equalities in the case of a capacity- 
achieving input distribution and can be used as a termination 
criterion for all the iterative algorithms below. 
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The key for the BA algorithm [3,4] is the observation that 
C = m a p  maxp J(p; P) where 

and P is an arbitrary (M+l) x (iV+l) transition probability ma- 
trix with entries [Piji = Pjli (in fact, I(p) = maxp J(p,P)). 
Starting from an initial guess p", the BA algorithm iteratively 
computes 
P'" = argmax J(pk,P), pktl = arg max ~ ( p ,  p k + l ) .  

P P 
(3) 

In [9], these maximizations were reinterpreted as alternating 
projections based on KLD minimizations. Combining both 
maximizations into one step yields the multiplicative BA update 

. .  
. Here, 0," D(Q,Ilqk) with qk = Qp'. 

111. AN EQUIDIVERGENCE GAME 
Based on the arguments below, capacity computation is 

equivalent in information geometric terms to the following 
"equidivergence" game (for simplicity of exposition, wc restrict 
to the case p;  > 0, j = 0, .  . . ,Ad). Consider the set of length- 
iV + 1 probnhility vectors q that have the same I U D  to all 
columns of Q: 

Q =  { q :  D(Qolld = ~ ( Q i l l ~ ) = ~ ~ ~ = ~ ( Q ~ I l ~ ) } .  ( 5 )  
It can be shown that this is a log-linear (exponential) [Z, 81 ?am- 
ily of probability vectors. Hence, the reverse I-projection [2,8] 
of the j th  column of Q onto Q, defined as 

q* = argminD(Qjilq), (6) 
qE Q 

belongs to the linear (mixture) family 

which is dual to Q. Using the compensation identity 
N N 

CPjD(QjllQP) = C P j D ( Q j l l d  - D(QPl/q), 
j = O  j = O  

with q = q' E Q, it follows that Cy=opjD(QjllQp) 5 
D(Qj llq') (recall (5) )  with equality iff Qp = q'. Thus, 

q* = QP* with p* = a g m a w C p j ~ ( ~ j ~ ~ ~ p ) .  
N 

p j -0  

We conclude that the equidivergence game (6) is equivalent to 
capacity computation. 

From an algorithmic point oF view, the equidivergence game 
means that given a current guess pk, we should check the IUDs 
0," = D(Qj llQpk) and move the output distribution closer to 
those Qj  for which Df is large. This can he achieved by increas- 
ing the respective weights p,". consistent with the BA recursion 
(4) that increases (decreases) those input probabilities for which 
exp(Dt) is above (below) the average Czopj exp(D:). 

IV. TWO NEW ALGORITHMS 

A. Natural Gradient Algorithm. We next exploit the fact 
that the input probability vectom p constitute an M-dimensional 
Riemannian manifold to propose a novel algorithm for capac- 
ity computation that is based on the natural gradient (NG) 
[l]. To this end, we describe the input probability vectors in 
terms of their i\.I dual (or expectation) parameters v3 = p,, 
j = 1, . . . , hr (note that PO = 1 - E,=, 7,). In terms of these 
parameters, the score function r(q) = I(p) reads 

M 

A< with q" = E;:, Qiljqj + Qijo[l - E,=, v j ] .  To climb the 
peak of this score function, we propose a NG ascent algorithm 
with the parameter updates 

q k f '  = q' + p k e . l ( $ )  (7) 
Here, pk is a step-size parameter and or(,) is the NG of r(v) 
obtained by pre-multiplying the ordinary gradient with the in- 
verse of the Riemannian metric G ( q )  (which here equals the 
Fisher information matrix of the parameters q [2]): 

Computing G(q)  = diag{q} - qqT and using the fact that the 
j th  component of VI(?) equals D(Q,((q) - D(Qo((q), the jth 
component of the NG is obtained as 

[0I(0)I3 = P(Q3IIq) - r(v)lv3. (8) 

Note that the NG points towards the directions for which the 
KLD 0(Q3/ /q)  is large. Plugging (8) into (7), the NG recur- 
sions for the input probabilities can be shown to be 

Here, we used the short-hand notation Ik I(pk) for the 
current estimate (actually, lower bound) of capacity. Due to 
Cz,p,kD,fi = I', (9) gumntees C:E,p,"" = 1. Non- 
negativity of is ensured for pk 5 - Note 
that like the BA recursion, (9) amounts to 3 multiplicative up- 
date. However, the computational complexity of the NG update 
is less than that of the BA update since the exponentiation is 
avoided. Furthermore, (9) is consistent with the information ge- 
ometric equidivergence interpretation of capacity computation. 

We observed that the NG algorithm can outperform the BA 
algorithm significantly in terms of convergence speed. The NG 
algorithm can he shown to replace the second maximization in 
(3) with a NC ascent step. While this step misses the local max- 
imum along the p-axis, it allows to better approach the global 
maximum, i.e., the NG algorithm basically avoids traversing 
hack and forth a ridge of J(p, P). 

B. Accelerated Blahut-Arimoto Algorithm. In our simula- 
tions, we observed similar convergence properties of the BA 
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and NG algorithms for p = 1. To explain why this is the case, 
we divide numerator and denominator of the BA update (4) by 
exp(Ik)  and then use a first-order Taylor series approximation 
of the exponentials: 

exp(D: - I k )  
p;+1 == zz p," [l + (0: - I"]. 

C,ni,p?exp(Dk 3 - P )  
The right-hand sidc is the NG recursion (9) for pk = 1. The 
Taylor series approximation is accurate for D: - I k  x 0, i.e., 
when equidivergence is almost achieved which will be true in 
the vicinity of the optimum solution. The above approximate 
equivalcncc motivates the ad hoc formulation of a generalized 
BA algorithm: 

Using the same arguments as before, this algorithm can be 
shown to he asymptotically equivalent to the NG algorithm. In 
fact, using the same step-size f i k  = f i ,  both algorithms feature 
the same convergence speed which is p times faster than that 
of the ordinary BA algorithm. For thaireason, we refer to ( IO)  
as accelerated BA algorithm. The convergence behavior of the 
accelerated BA and NG algorithms and the choice of pk are dis- 
cussed further in Sections V and VI. 

C. Interpretation via e- and m-Geodesics. Next, we briefly 
discuss the information geometric significance of the acceler- 
ated BA and NG algorithms. Assume that the current guess for 
the optimum input and output probabilities are p and q = Qp. 
Let p B ~  and p N ~  be the probabilities obtained by applying 
to p the BA and NG updates (IO) and (9) with f i k  = 1 and 
f i k  = III', respectively. It is then easily verified that the accel- 
erated BA and NG updates for general f i k  can be written as 

P B A ~ I ; )  = ~ ( f i k )  P'-"~ PEA 3 

PNG(fik) =(1-fikIk)P+fikIkPNG1 
where c ( f i k )  is a normalization constant. (Note that PBA(O) = 
p ~ ~ ( 0 )  = p.) Hence, the probability vectors P B A ( ~ L I ; )  con- 
stitute an exponential (log-linear) family, parameterized by f i k ,  

that corresponds to the e-geodesic [2] connecting p and PBA. 
In contrast, the p ~ ~ ( p k )  constitute the mixture (linear) family, 
again parameterized by f i g ,  that corresponds to the m-geodesic 
[2] connecting p and PNG. For Ipk(D! - Ik)l  << 1, these two 
geodesics virtually coincide in the vicinity of p. 

V. PROXIMAL P O I N T  REFORMULATION 

We previously provided sume information geometric insights 
regarding the accelerated BA and NG algorithms and investi- 
gated their asymptotic equivalence. In this section, we demon- 
strate that in fact both algorithms can be derived within a com- 
mon framework that also provides an a posteriori justification 
for the ad hoc definition (IO) of the accelerated BA recursions. 

The key observation is ob- 
tained by a re-examination of the alternating maximizations ( 3 )  

A. Accelerated BA Algorithm. 

underlying the BA a1 writhm. By plugging the explicit solution 

the second maximization problem, we obtain 

PJli k + 1 -  - Qilj $1 b Qilj, p i j  of the first maximization into 

(recall D: = D(QjllQpk)). ( I  1 )  can be interpreted as a max- 
imization of C,"i,pj D: with a penalty term D(pllpk) that 
ensures that the update pkt' remains in the vicinity of pk. 
Algorithms of this type are known as proximal point methods 
[5 ]  since they force the update to stay in the proximity of the 
current guess. In our case this is reasonable since the first 
term in ( I  I), Cj=opj 0,". can be viewed as an approxima- 
non of the true score function I(p) obtained by replacing the 
KLDs D(QjllQp) with D: = D(Qj//Qpk). The penalty 
term D(pllpk) in (11) ensures that the maximization is re- 
stricted to a neighborhood of pk for which the approximation 
D(Qj1lQp) x D(QjIIQpk) is accurate. In fact, by adding in 
(1 I )  the quantity I(pk) - p," 0: (which is independent of 
p), we obtain 

A4 

pk+l = wmpX{fk(p)  - D(P/~P')}, (12) 

where fk(p) = I(pk) + C,",,(pj - p?) D t  can be shown to 
be a first-order Taylor series approximation of I(p) about pk 
(the j th  component of the gradient of I(p) at pk equals 0: - 
1). Hence, the BA algorithm can he viewed as proximal point 
method maximizing the first-order Taylor series approximation 
of I(p) with a proximity penalty expressed by D(pllpk). 

It is now natural to modily (12) by emphasizinglattenuating 
the penalty term via a weighting, i.e., 

pk+l  = argmpax{f'(p) - Y ~ D ( P I I P ~ ) } .  (13) 

The idea is that close to the optimal solution the gradient of I(p) 
will he small and thus the proximity constraint can be gradually 
relaxed by decreasing */k. It is straightforward to solve this prob- 
lem using Lagrange multiplier techniques and i t  tums out that 
the optimum solution is given by (IO) with pk = l/yk. We con- 
clude that the accelerated BA update can be viewed as proximal 
point algorithm with weighted proximity penalty. 

B. NG Algorithm. We next demonstrate that like the accel- 
erated BA algorithm our NG algorithm can be viewed as proxi- 
mal point method. The modification that is required pertains to 
the penalty term which in the accelerated BA algorithm is for- 
mulated in terms of the IUD. Obviously, there exist countless 
other distance functions that can be used to force the update to 
the vicinity of the current guess. Since we are iterating on the 
manifold of probability vectors, Euclidean distance is not a rea- 
sonable choice. In contrast, the general class of fdivergences 
[7] of probability distributions appears well-suited. For reasons 
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that will become clear presently, we choose the so-called xZ- 
divergence defined as x2(p,p’) = f Cj w. Like for the 

IUD, x2(p: p’) 2 0 with equality iff p = p’. It can then easily 
be shown that the NG update (9) is the solution ofthe proximal 
point problem 

p: 

pk+I = argiriax{ik(p) - ~ k x ~ ( p : p ~ ) } ,  
P 

obtained with pb = l/yk. Thus, accelerated BA and NG can 
both bc viewed as proximal point methods using the same cost 
function ik (p )  but different distance measures for the proximity 
penalty. Their asymptotic equivalence follows from the well- 
known fact that x2((p: p‘) = D(pl1p’) for p close to p’. 

C. Choice of Step-Size. A fundamental property of 
the BA algorithm is that the mutual information I(pk) = 

XtLlpt 0,” which represents the current capacity estimate is 
non-decreasing. For the accelerated BA algorithm, it can be 
shown that 

I(P’++’) 2 W) + y b ~ ( ~ k + l l l ~ k )  - D(qkf i I lqk) .  

A sufficient condition for I(pk) to be non-decreasing thus is 
71: D(p/lpk) ~ D(qb+’l[qk) 2 0, i.e., we have to ensure that 

Motivated by the similarity to thc squared maximum matrix 
with d & ( x , y )  = IIx - yl12, we ~ . ( A ~ . A ~ )  eigenvalue supxiu ‘2. ( x , y )  

define the maximum KLD-induced “eigenvalrre” of Q as 
U 

Note that 0 5 &(Q) 5 1 and further 
~ ~ , , ( ~ 1 , v + 1 1 ~ , + ~ )  = 0, x ~ ~ ( I )  = I. n u s ,  small 

XkL(Q) means that the channel is noisy. Using this definition, 
a sufficient condition for I(pk) to be non-decreasing is given 
by 

In fact, we observed in our simulations that when using a fixed 
step-size, maximum convergence speed was achieved with p = 
1/XgL(Q). Since a reasonable estimate of X&(Q) might he 
difficult to obtain, we suggest to use the adaptive step-size pk = 

in practical implementations. While this choice 
Sometimes violates (15), we observed excellent performance (in 
fact, superlinear convergence) in our numerical experiments (see 
Section VII). The step-size pk could also be chosen using line- 
search techniques along the e-geodesics discussed in Section C. 
However, our experiments indicated that the proposed adaptive 
step-size yields similar performance at much lower complexity. 

We note that the above arguments can also be used to choose 
the step-size of the NG algorithm since in the vicinity of the 
optimum solution accelerated BA and NG behave identical. 

VI. CONVERGENCE ANALYSIS 
In thc foregoing discussion we saw that step-sizes > 1 in the ac- 
celerated BA and NG algorithms have the potential for increased 
convergence speed. In this section, we summarize more explicit 
results regarding the convergence of the accelerated BA algo- 
rithm (full details are presented in [14]). While explicit results 
are difficult to obtain for the NG algorithm, Section IV and our 
simulations suggests that it inherits the convergence properties 
of the latter. We note that parts of our results in this section are 
inspired by [3,5]. 

A. Convergence Statement I .  Consider the accel- 
erated BA algorithm with I k  = C j p , ” D ;  and Lk = 

& log ( cj p,” exp(pkD,”)). Assume that pinf fi id i ,  pk > 0 
and that (15) is satisfied for all k. Then, it can be shown that 

lirn Lk = lim = C .  
L-m k-m 

Furthermore, convergence rate is at least proportional to l /k 
c - L k  < c D(P’IlP0) 

pi.rk ’ 

This clearly reflects that the accelerated BA algorithm (pb > 1) 
converges faster than ordinary BA (pg = 1). 

B. Convergence Statement 2. Let us now assume that Yk = 
y = l / p  is fixed. The fixed points p’ of accelerated BA and 
NG are defined as 

where d(pl/pk) = D(pl/pk) for accelerated BA and 
d(pllpk) = xZ(p?pk) for NG. This relation can be shown to 
be equivalent to (1) and thus p’ achieves capacity. 

C. Convergence Statement 3. We next consider the acceler- 
ated BA algorithm and assume that the optimum input distribu- 
tion p* is unique, p; > 0, and (15) is satisfied for all I C .  

For fixed step-size p = l / y  = l/yk, it then follows that the 
sequence pk satisfies 

IIP”’ - P’II < c ,  lim 
k-m /lPk-P’/I - P 

i.e., the algorithm features (at least) linear convergence and con- 
vergence speed is increased by increasing p. 

Furthermore, it can be shown that there exists a step- 
size sequence Yk = 1/pk conforming with (14) such that 
limb-, yk = 0 and 

Thus, the accelerated BA algorithm with properly chosen step- 
size has the potential for superlinear convergence’ (in fact we 
observed superlinear convergence with the adaptive step-size 

bk = ). D Q P ‘ I  QP*-’ 

‘Newton-type methods could also be applied to achieve superlinear conver- 
gence. However. they require a mauix inversion and t h u  are conipulationally 
much more complex. 
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- k  
Figure 1 ; Convergence of BA algorithm and accelerated BA and 
NG algorithms (note the nonuniform abscissa scaling). 

VII. NUMERICAL EXAMPLE 

For oumoses of illustration of our results. consider the chan- . .  
ne1 QT = (0.' "" ''l) from Fig. 4.5.1 in [ I l l .  Let us 0.1 n.2 0.7 , -  ~ 

ignore the fact that this channel can be recognized as being 
symmetric and that the optimum input distribution is thus uni- 
form. To compute the capacity of this channel, we ran the BA 
algorithm, the accelerated BA algorithm, and the natural gra- 
dient algorithm with the same (randomly picked) initial guess 
po. The step-size in  our algorithms was chosen in an adaptive 
fashion as p k  = O(Qp'~~Qp"-')/D(p'~/Ip"-') for k > 1 
and p1 = 1. As performance (and stopping criterion) we used 
E' = maw, D: - Ik since (2) implies C - Ik 5 Ek. The con- 
vergence results for a desired accuracy of 12 decimals are shown 
in Fig. 1. (all algorithms delivered C = 0.365148445440hit). 
It is seen that the convergence of the NG and accelerated BA 
algorithms (6 iterations for the desired accuracy) is significantly 
faster than that of the BA algorithm (46 iterations). After five 
iterations, BA yields only one correct decimal while accelerated 
BA and NG achieve already 6 and 9 correct decimals, respec- 
tively. Fig. I also clearly verifies that the accelerated BA and 
NG algorithm with adaptive step-size feature superlinear con- 
vergence. 

VIII. CONCLUSIONS 

We have proposed improvements on the Blahut-Arimoto 
(BA) algorithm for computing the capacity of discrete memo- 
ryless channels (DMC). An accelerated BA algorithm and a nat- 
ural gradient (NG) algorithm have been introduced that have the 
potential for significantly faster (in fact, often superlinear) con- 
vergence as compared to the conventional BA algorithm. Re- 
casting the capacity computation problem as an equidivergence 
game, intuitive interpretations of these algorithms have been 
given via information geometric arguments. We also provided a 
unifying framework for the (accelerated) BA and NG algorithms 

in terms of proximal point methods. This allows for some state- 
ments regarding the convergencc of our algorithms. 

While our prcsentation focused on DMCs, our results carry 
over to the cases of multi-access channels [16], quantum chan- 
nels [15], IS1 channels [13, 171, and channels with side infor- 
mation [ IO].  In all of thesc cases, the computational savings 
achieved using our technique will hc even more pronounced. 

Furthermore, we conjecture that our approach can be applied 
to thc computation of rate-distortion curves and to portfolio op- 
timization, both of which represent problems closely related to 
capacity computation [4,91. 
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