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Preface

The main motivation for this book lies in the breadth of applications in which
a statistical model is used to represent small departures from, for example, a
Poisson process. Our approach uses information geometry to provide a com-
mon context but we need only rather elementary material from differential
geometry, information theory and mathematical statistics. Introductory sec-
tions serve together to help those interested from the applications side in
making use of our methods and results. We have available Mathematica note-
books to perform many of the computations for those who wish to pursue
their own calculations or developments.

Some 44 years ago, the second author first encountered, at about the same
time, differential geometry via relativity from Weyl’s book [209] during un-
dergraduate studies and information theory from Tribus [200, 201] via spatial
statistical processes while working on research projects at Wiggins Teape Re-
search and Development Ltd—cf. the Foreword in [196] and [170, 47, 58]. Hav-
ing started work there as a student laboratory assistant in 1959, this research
environment engendered a recognition of the importance of international col-
laboration, and a lifelong research interest in randomness and near-Poisson
statistical geometric processes, persisting at various rates through a career
mainly involved with global differential geometry. From correspondence in
the 1960s with Gabriel Kron [4, 124, 125] on his Diakoptics, and with Kazuo
Kondo who influenced the post-war Japanese schools of differential geometry
and supervised Shun-ichi Amari’s doctorate [6], it was clear that both had a
much wider remit than traditionally pursued elsewhere. Indeed, on moving to
Lancaster University in 1969, receipt of the latest RAAG Memoirs Volume 4

1968 [121] provided one of Amari’s early articles on information geometry [7],
which subsequently led to his greatly influential 1985 Lecture Note volume [8]
and our 1987 Geometrization of Statistical Theory Workshop at Lancaster
University [10, 59].

Reported in this monograph is a body of results, and computer-algebraic
methods that seem to have quite general applicability to statistical models
admitting representation through parametric families of probability density
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functions. Some illustrations are given from a variety of contexts for geomet-
ric characterization of statistical states near to the three important standard
basic reference states: (Poisson) randomness, uniformity, independence. The
individual applications are somewhat heuristic models from various fields and
we incline more to terminology and notation from the applications rather than
from formal statistics. However, a common thread is a geometrical represen-
tation for statistical perturbations of the basic standard states, and hence
results gain qualitative stability. Moreover, the geometry is controlled by a
metric structure that owes its heritage through maximum likelihood to infor-
mation theory so the quantitative features—lengths of curves, geodesics, scalar
curvatures etc.—have some respectable authority. We see in the applications
simple models for galactic void distributions and galaxy clustering, amino
acid clustering along protein chains, cryptographic protection, stochastic fi-
bre networks, coupled geometric features in hydrology and quantum chaotic
behaviour. An ambition since the publication by Richard Dawkins of The Self-

ish Gene [51] has been to provide a suitable differential geometric framework
for dynamics of natural evolutionary processes, but it remains elusive. On the
other hand, in application to the statistics of amino acid spacing sequences
along protein chains, we describe in Chapter 7 a stable statistical qualitative
property that may have evolutionary significance. Namely, to widely varying
extents, all twenty amino acids exhibit greater clustering than expected from
Poisson processes. Chapter 11 considers eigenvalue spacings of infinite random
matrices and near-Poisson quantum chaotic processes.

The second author has benefited from collaboration (cf. [34]) with the
group headed by Andrew Doig of the Manchester Interdisciplinary Biocentre,
the University of Manchester, and has had long-standing collaborations with
groups headed by Bill Sampson of the School of Materials, the University of
Manchester (cf.eg. [73]) and Jacob Scharcanski of the Instituto de Informatica,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil (cf.eg. [76])
on stochastic modelling. We are pleased therefore to have co-authored with
these colleagues three chapters: titled respectively, Amino Acid Clustering,
Stochastic Fibre Networks, Stochastic Porous Media and Hydrology.

The original draft of the present monograph was prepared as notes for
short Workshops given by the second author at Centro de Investigaciones de
Matematica (CIMAT), Guanajuato, Mexico in May 2004 and also in the De-
partamento de Xeometra e Topoloxa, Facultade de Matemáticas, Universidade
de Santiago de Compostela, Spain in February 2005.

The authors have benefited at different times from discussions with many
people but we mention in particular Shun-ichi Amari, Peter Jupp, Patrick
Laycock, Hiroshi Matsuzoe, T. Subba Rao and anonymous referees. However,
any overstatements in this monograph will indicate that good advice may
have been missed or ignored, but actual errors are due to the authors alone.

Khadiga Arwini, Department of Mathematics, Al-Fateh University, Libya

Kit Dodson, School of Mathematics, the University of Manchester, England
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Mathematical Statistics

and Information Theory

There are many easily found good books on probability theory and math-
ematical statistics (eg [84, 85, 87, 117, 120, 122, 196]), stochastic processes
(eg [31, 161]) and information theory (eg [175, 176]); here we just outline
some topics to help make the sequel more self contained. For those who have
access to the computer algebra package Mathematica [215], the approach to
mathematical statistics and accompanying software in Rose and Smith [177]
will be particularly helpful.

The word stochastic comes from the Greek stochastikos, meaning skillful
in aiming and stochazesthai to aim at or guess at, and stochos means target or
aim. In our context, stochastic colloquially means involving chance variations
around some event—rather like the variation in positions of strikes aimed at
a target. In its turn, the later word statistics comes through eighteenth cen-
tury German from the Latin root status meaning state; originally it meant
the study of political facts and figures. The noun random was used in the
sixteenth century to mean a haphazard course, from the Germanic randir to
run, and as an adjective to mean without a definite aim, rule or method, the
opposite of purposive. From the middle of the last century, the concept of a
random variable has been used to describe a variable that is a function of the
result of a well-defined statistical experiment in which each possible outcome
has a definite probability of occurrence. The organization of probabilities of
outcomes is achieved by means of a probability function for discrete random
variables and by means of a probability density function for continuous ran-
dom variables. The result of throwing two fair dice and summing what they
show is a discrete random variable.

Mainly, we are concerned with continuous random variables (here measur-
able functions defined on some R

n) with smoothly differentiable probability
density measure functions, but we do need also to mention the Poisson distri-
bution for the discrete case.
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Introduction to Riemannian Geometry

This chapter is intended to help those with little previous exposure to differ-
ential geometry by providing a rather informal summary of background for
our purposes in the sequel and pointers for those who wish to pursue more
geometrical features of the spaces of probability density functions that are our
focus in the sequel. In fact, readers who are comfortable with doing calcula-
tions of curves and their arc length on surfaces in R

3 could omit this chapter
at a first reading.

A topological space is the least structure that can support arguments con-
cerning continuity and limits; our first experiences of such analytic properties
is usually with the spaces R and R

n. A manifold is the least structure that
can support arguments concerning differentiability and tangents–that is, cal-
culus. Our prototype manifold is the set of points we call Euclidean n-space
E

n which is based on the real number n-space R
n and carries the Pythagorean

distance structure. Our common experience is that a 2-dimensional Euclidean
space can be embedded in E

3, (or R
3) as can curves and surfaces. Riemannian

geometry generalizes the Euclidean geometry of surfaces to higher dimensions
by handling the intrinsic properties like distances, angles and curvature inde-
pendently of any environing simpler space.

We need rather little geometry of Riemannian manifolds in order to pro-
vide background for the concepts of information geometry. Dodson and Pos-
ton [70] give an introductory treatment with many examples, Spivak [194, 195]
provides a six-volume treatise on Riemannian geometry while Gray [99] gave
very detailed descriptions and computer algebraic procedures using Mathe-

matica [215] for calculating and graphically representing most named curves
and surfaces in Euclidean E

3 and code for numerical solution of geodesic equa-
tions.
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Information Geometry

We use the term information geometry to cover those topics concerning the use
of the Fisher information matrix to define a Riemannian metric, on smooth
spaces of parametric statistical models, that is, on smooth spaces of probabil-
ity density functions. Amari [8, 9], Amari and Nagaoka [11], Barndorff-Nielsen
and Cox [20], Kass and Vos [113] and Murray and Rice [153] provide modern
accounts of the differential geometry that arises from the Fisher information
metric and its relation to asymptotic inference. The Introduction by R.E.
Kass in [9] provided a good summary of the background and role of infor-
mation geometry in mathematical statistics. In the present monograph, we
use Riemannian geometric properties of various families of probability den-
sity functions in order to obtain representations of practical situations that
involve statistical models.

It has by many experts been argued that the information geometric ap-
proach may not add significantly to the understanding of the theory of para-
metric statistical models, and this we acknowledge. Nevertheless, we are of
the opinion that there is benefit for those involved with practical modelling if
essential qualitative features that are common across a wide range of applica-
tions can be presented in a way that allows geometrical tools to measure dis-
tances between and lengths along trajectories through perturbations of models
of relevance. Historically, the richness of operations and structure in geome-
try has had a powerful influence on physics and those applications suggested
new geometrical developments or methodologies; indeed, from molecular biol-
ogy some years ago, the behaviour of certain enzymes in DNA manipulation
led to the identification of useful geometrical operators. What we offer here
is some elementary geometry to display the features common, and of most
significance, to a wide range of typical statistical models for real processes.
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Information Geometry of Bivariate Families

From the study by Arwini [13], we provide information geometry, including
the α-geometry, of several important families of bivariate probability density
functions. They have marginal density functions that are gamma density func-
tions, exponential density functions and Gaussian density functions. These are
used for applications in the sequel, when we have two random variables that
have non-zero covariance—such as will arise for a coupled pair of random
processes.

The multivariate Gaussian is well-known and its information geometry has
been reported before [183, 189]; our recent work has contributed the bivariate
Gaussian α-geometry. Surprisingly, it is very difficult to construct a bivariate
exponential distribution, or for that matter a bivariate Poisson distribution
that has tractable information geometry. However we have calculated the case
of the Freund bivariate mixture exponential distribution [89]. The only bivari-
ate gamma distribution for which we have found the information geometry
tractable is the McKay case [146] which is restricted to positive covariance,
and we begin with this.
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Neighbourhoods of Poisson Randomness,

Independence, and Uniformity

As we have mentioned before, colloquially in applications, it is very common
to encounter the usage of ‘random’ to mean the specific case of a Poisson
process process whereas formally in statistics, the term random has a more
general meaning: probabilistic, that is dependent on random variables. When
we speak of neighbourhoods of randomness we shall mean neighbourhoods
of a Poisson process and then the neighbourhoods contain perturbations of
the Poisson process. Similarly, we consider processes that are perturbations
of a process controlled by a uniform distribution on a finite interval, yield-
ing neighbourhoods of uniformity. The third situation of interest is when we
have a bivariate process controlled by independent exponential, gamma or
Gaussian distributions; then perturbations are contained in neighbourhoods
of independence. These neighbourhoods all have well-defined metric structures
determined by information theoretic maximum likelihood methods. This al-
lows trajectories in the space of processes, commonly arising in practice by
altering input conditions, to be studied unambiguously with geometric tools
and to present a background on which to describe the output features of
interest of processes and products during changes.

The results here augment our information geometric measures for distances
in smooth spaces of probability density functions, by providing explicit geo-
metric representations with distance measures of neighbourhoods for each of
these important states of statistical processes:

• (Poisson) randomness,
• independence,
• uniformity.
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Cosmological Voids and Galactic Clustering

For a general account of large-scale structures in the universe, see, for example,
Peebles [162] and Fairall [82], the latter providing a comprehensive atlas. See
also Cappi et al [39], Coles [42], Labini et al. [128, 129], Vogeley et al. [208] and
van der Weygaert [202] for further recent discussion of large structures. The
Las Campanas Redshift Survey was a deep survey, providing some 26,000
data points in a slice out to 500h−1Mpc. Doroshkevich et al. [79] (cf. also
Fairall [82] and his Figure 5.5) revealed a rich texture of filaments, clusters and
voids and suggested that it resembled a composite of three Poisson processes,
consisting of sheets and filaments:

• Superlarge-scale sheets:
60 percent of galaxies, characteristic separation about 77h−1Mpc

• Rich filaments:
20 percent of galaxies, characteristic separation about 30h−1Mpc

• Sparse filaments:
20 percent of galaxies, characteristic separation about 13h−1Mpc.

Most recently, the data from the 2-degree field Galaxy Redshift Survey (2dF-
GRS), cf Croton et al. [49, 50] can provide improved statistics of counts in
cells and void volumes.

In this chapter we outline some methods whereby such statistical proper-
ties may be viewed in an information geometric way. First we look at Pois-
son processes of extended objects then at coupled processes that relate void
and density statistics, somewhat heuristically but intended to reveal the way
the information geometry can be used to represent such near-Poisson spa-
tial processes. The applications to cosmology here are based on the publica-
tions [63, 62, 64, 65].
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Amino Acid Clustering

With A.J. Doig

In molecular biology a fundamental problem is that of relating functional
effects to structural features of the arrangement of amino acids in protein
chains. Clearly, there are some features that have localized deterministic origin
from the geometrical organization of the helices; other features seem to be of
a more stochastic character with a degree of stability persisting over long
sequences that approximates to stationarity. These latter features were the
subject of our recent study [34], which we outline in this chapter. We make
use of gamma distributions to model the spacings between occurrences of each
amino acid; this is an approximation because the molecular process is of course
discrete. However, the long protein chains and the large amount of data lead
us to believe that the approximation is justified, particularly in light of the
clear qualitative features of our results.

7.1 Spacings of Amino Acids

We analysed for each of the 20 amino acids X the statistics of spacings
between consecutive occurrences of X within the Saccharomyces cerevisiae

genome, which has been well characterised elsewhere [95]. These occurrences
of amino acids may exhibit near Poisson random, clustered or smoothed out
behaviour, like 1-dimensional spatial statistical processes along the protein
chain. If amino acids are distributed independently and with uniform proba-
bility within a sequence then they follow a Poisson process and a histogram
of the number of observations of each gap size would asymptotically follow
a negative exponential distribution. The question that arises then is how 20
different approximately Poisson processes constrained in finite intervals be
arranged along a protein. We used differential geometric methods to quan-
tify information on sequencing structures of amino acids and groups of amino
acids, via the sequences of intervals between their occurrences.
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Cryptographic Attacks

and Signal Clustering

Typical public-key encryption methods involve variations on the RSA proce-
dure devised by Rivest, Shamir and Adleman [174]. This employs modular
arithmetic with a very large modulus in the following manner. We compute

R ≡ ye (mod m) or R ≡ yd (mod m) (8.1)

depending respectively on whether we are encoding or decoding a message y.

The (very large) modulus m and the encryption key e are made public; the
decryption key d is kept private. The modulus m is chosen to be the product
of two large prime numbers p, q which are also kept secret and we choose d, e

such that
ed ≡ 1 (mod (p − 1)(q − 1)). (8.2)

8.1 Cryptographic Attacks

It is evident that both encoding and decoding will involve repeated exponen-
tiation procedures. Then, some knowledge of the design of an implementation
and information on the timing or power consumption during the various stages
could yield clues to the decryption key d. Canvel and Dodson [38, 37] have
shown how timing analyses of the modular exponentiation algorithm quickly
reveal the private key, regardless of its length. In principle, an incorporation
of obscuring procedures could mask the timing information but that may not
be straightforward for some devices. Nevertheless, it is important to be able
to assess departures from Poisson randomness of underlying or overlying pro-
cedures that are inherent in devices used for encryption or decryption and
here we outline some information geometric methods to add to the standard
tests [179].
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Stochastic Fibre Networks

With W.W. Sampson

There is considerable interest in the materials science community in the struc-
ture of stochastic fibrous materials and the influence of structure on their
mechanical, optical and transport properties. We have common experience of
such materials in the form of paper, filters, insulating layers and supporting
matrices for composites. The reference model for such stochastic fibre net-
works is the 2-dimensional array of line segments with centres following a
Poisson process in the plane and axis orientations following a uniform pro-
cess; that structure is commonly called a random fibre network and we study
this before considering departures from it.

A classical reference structure for modelling is an isotropic planar network
of infinite random lines. So the angles of lines relative to a given fixed direction
are uniformly distributed and on each line the locations of the intersections
with other lines in the network form a Poisson point process.

The polygons generated by the intersections of lines have been studied
by many workers and several analytic results are known. There are results of
Miles [147, 148] and Tanner [198] (cf. also Stoyan et al. [196]) for random lines
in a plane, for example:

• Expected number of sides per polygon

n̄ = 4.

• Variance of the number of sides per polygon

σ2(n) =
π2 + 24

2
.
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Stochastic Porous Media and Hydrology

With J. Scharcanski and S. Felipussi

Stochastic porous media arise naturally in many situations; the common fea-
ture is a spatial statistical process of extended objects, such as voids dis-
tributed in a solid or a connected matrix of distributed solids in air. We have
modelled real examples above of cosmological voids among stochastic galactic
clusters and at the other extreme of scale are the inter-fibre voids in stochastic
fibrous networks. The main context in the present chapter is that of voids in
agricultural soils.

10.1 Hydrological Modelling

Yue et al. [216] reviewed various bivariate distributions that are constructed
from gamma marginals and concluded that such bigamma distribution mod-
els will be useful in hydrology. Here we study the application of the McKay
bivariate gamma distribution, which has positive covariance, to model the
joint probability distribution of adjacent void and capillary sizes in soils. In
this context we compare the discriminating power of an information theoretic
metric with two classical distance functions in the space of probability dis-
tributions. We believe that similar methods may be applicable elsewhere in
hydrology, to characterize stochastic structures of porous media and to model
correlated flow variables. Phien [166] considered the distribution of the stor-
age capacity of reservoirs with gamma inflows that are either independent or
first-order autoregressive and our methods may have relevance in modelling
and quantifying correlated inflow processes. Govindaraju and Kavvas [98] used
gamma or Gaussian distributions to model rill depth and width at different
spatial locations and again an information geometric approach using a bi-
variate gamma or Gaussian model may be useful in further probing the joint
behavior of these rill geometry variables.
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Quantum Chaology

This chapter, based on Dodson [66], is somewhat speculative in that it is clear
that gamma distributions do not precisely model the analytic systems dis-
cussed here, but some features may be useful in studies of qualitative generic
properties in applications to data from real systems which manifestly seem
to exhibit behaviour reminiscent of near-random processes. Quantum counter-
parts of certain simple classical systems can exhibit chaotic behaviour through
the statistics of their energy levels and the irregular spectra of chaotic sys-
tems are modelled by eigenvalues of infinite random matrices. We use known
bounds on the distribution function for eigenvalue spacings for the Gaussian
orthogonal ensemble (GOE) of infinite random real symmetric matrices and
show that gamma distributions, which have the important uniqueness prop-
erty Theorem 11.1, can yield an approximation to the GOE distribution.

Theorem 11.1 (Hwang and Hu [106]). For independent positive random

variables with a common probability density function f, having independence

of the sample mean and the sample coefficient of variation is equivalent to f

being the gamma distribution.

This has the advantage that then both chaotic and non chaotic cases fit in
the information geometric framework of the manifold of gamma distributions.
Additionally, gamma distributions give approximations, to eigenvalue spac-
ings for the Gaussian unitary ensemble (GUE) of infinite random hermitian
matrices and for the Gaussian symplectic ensemble (GSE) of infinite random
hermitian matrices with real quaternionic elements. Interestingly, the spacing
distribution between zeros of the Riemann zeta function is approximated by
the GUE distribution, and we investigate the stationarity of the coefficient
of variation of the numerical data with respect to location and sample size.
The review by Deift [52] illustrates how random matrix theory has significant
links to a wide range of mathematical problems in the theory of functions as
well as to mathematical physics.
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