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Abstract

We aim to extend from AdaBoost to U -Boost in the paradigm to build
up a stronger classification machine in a set of weak learning machines. A
geometric understanding for the Bregman divergence defined by a generic
function U being convex leads to U -Boost method in the framework of in-
formation geometry for the finite measure functions over the label set. We
propose two versions of U -Boost learning algorithms by taking whether
the domain is restricted to the space of probability functions or not. In the
sequential step we observe that the two adjacent and the initial classifiers
associate with a right triangle in the scale via the Bregman divergence,
called the Pythagorean relation. This leads to a mild convergence prop-
erty of the U -Boost algorithm as seen in the EM algorithm. Statistical
discussion for consistency and robustness elucidates the properties of U -
Boost methods based on a probabilistic assumption for a training data.

1 Introduction

In the last decade, several novel developments for classification and pattern
recognition have been done mainly along statistical learning theory (see for
example, MacLachlan, 1992; Bishop, 1995; Vapnik, 1995; Hastie et al., 2001).
Several important approaches have been proposed and implemented into fea-
sible computational algorithms. One promising direction is “boosting” which
is a method of combining many learning machines trained by simple learning
algorithms. Theoretical researches on “boosting” have been started from the
question by Kearns and Valiant (1988):

“Can a weak learner which is a bit better than random guessing be
boosted into an arbitrarily accurate strong learner?”
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The first interesting answer is given by Schapire (1990), who has proved that it is
possible to construct an accurate machine by combining three machines trained
by different examples, which are sequentially sampled and filtered by previous
trained machines. Intuitively speaking, the key idea of boosting algorithm is
to assort important and unimportant examples according whether machines are
good at or weak in learning those examples. The procedures for sieving examples
are summarized as following three types:

• filtering: new examples are sampled and filtered by the previous trained
machines so that difficult examples are collected as many as easy examples
(Schapire, 1990).

• resampling: examples are sampled from given examples repeatedly so
that difficult examples are chosen with high probability (Freund, 1995;
Domingo and Watanabe, 2000).

• reweighting: given examples are weighted so that difficult examples
severely affect the error (Freund and Schapire, 1997; Friedman et al.,
2000).

In this paper, we focus on the reweighting method including AdaBoost (Fre-
und and Schapire, 1997). Lebanon and Lafferty (2001) give a geometric consider-
ation of the extended Kullback-Leibler divergence which lead to a close relation
between AdaBoost and logistic discrimination. We propose a class of boosting
algorithms, U -Boost, which is naturally derived from the Bregman divergence.
This proposal gives an extension of the geometry discussed by Lebanon and
Lafferty, and elucidates that the Bregman divergence associates with a pair of
the normalized and unnormalized U -Boost from the viewpoint of information
geometry.

This paper is organized as follows. In section 2, we briefly review the Ad-
aBoost algorithm and its geometrical understanding by Lebanon and Lafferty
(2001), In section 3, we introduce the Bregman divergence in order to give a
statistical framework of boosting algorithms, and discuss some properties in the
sense of the information geometry. Then we propose the U -Boost algorithm
based on the Bregman divergence and discuss its consistency, efficiency and ro-
bustness in section 4. We will give some illustrative examples with numerical
simulations in section 5, and the last section is devoted for concluding remarks
and future works.

2 Geometrical Structure of AdaBoost

Lebanon and Lafferty (2001) firstly pointed out the duality of the AdaBoost
algorithm in the space of distributions and discussed its geometrical structure
from the view point of linear programming. In this section, we briefly review
their result with the notion of the information geometry.

Let us consider a classification problem where for a given feature vector x,
the corresponding label y is predicted. Hereafter we assume that the feature
vector x belongs to some space X , and the corresponding label y to a finite
set Y. We note that for intuitive examples in this paper, we consider the case
where y is the binary label with values −1 and 1, however, the problem can be
extended to the multi-class case in straightforward way.
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Let us consider the space of all the positive finite measures over Y condi-
tioned by x ∈ X

M =
{

m(y|x)
∣∣∣∣

∑

y∈Y
m(y|x) < ∞ (a.e. x)

}
, (1)

and the conditional probability density as its subspace

P =
{

m(y|x)
∣∣∣∣

∑

y∈Y
m(y|x) = 1 (a.e. x)

}
. (2)

For given examples {(xi, yi); i = 1, . . . , n}, let

p̃(y|x) =

{
δ(yi, y), x = xi,
1
|Y| , otherwise (3)

be the empirical conditional probability density of y for given x. Here we assume
the consistent data assumption (Lebanon and Lafferty, 2001) where a unique
label yi is given for each input xi. If multiple labels are given for an input xi,
we can use

p̃(y|x) =





∑n
i=1 I(xi = x)δ(yi, y)∑n

i=1 I(xi = x)
,

∑n
i=1 I(xi = x) 6= 0,

1
|Y| , otherwise,

where I is the indicator function defined by

I(A) =

{
1, A is true,
0, otherwise,

and |Y| is the cardinality of Y. The discussion in this paper can be extended
straightforwardly.

For two points p, q in M, the Kullback-Leibler divergence (KL divergence)
extended over M is defined by

D(p, q) =
∫

X
µ(x)

∑

y∈Y

(
p(y|x) log

p(y|x)
q(y|x)

− p(y|x) + q(y|x)
)

dx, (4)

where µ(x) is the marginal distribution of x, and in the most cases of the
following discussion, we fix µ(x) with the empirical distribution

µ(x) =
1
n

n∑

i=1

δ(xi, x).

Note that for probability densities p, q ∈ P, the above definition is reduced to
the conventional KL divergence, because the second and third terms are summed
up to 1 and vanish by negating each other.

Next, we consider two subspaces in M depending on a certain fixed measure
q0 ∈ M, the empirical distribution p̃ and a set of functions f = {ft(x, y); t =
1, . . . , T} on X × Y.
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e-flat subspace

Q = Q(q0, p̃, f)

=
{

q ∈M
∣∣∣∣ q(y|x) = q0(y|x) exp

( T∑
t=1

αt(ft(x, y)− f̃t(x))
)}

,

where {αi ∈ R; i = 1, . . . , T} and f̃(x) is the conditional expectation of
function f with respect to the empirical distribution

f̃(x) = Ep̃(f |x) =
∑

y∈Y
p̃(y|x)f(x, y).

m-flat subspace

F = F(p̃,f)

=
{

q ∈M
∣∣∣∣
∫

X
µ(x)

∑

y∈Y
q(y|x)(ft(x, y)− f̃t(x))dx = 0; ∀t

}
.

Although the subspaces Q(q0, p̃, f) and F(p̃, f) depend on p̃, q0 and f , but
in the absence of ambiguity, we just denote Q and F .

The subspace Q is a sort of exponential family of the conditional measures,
which includes q0 and is spanned by {ft} as sufficient statistic, therefore the
dimension of the subspace Q is T in the space M. The difference from the
conventional statistical exponential family is that the normalization term is
missing.

An important property of Q is its flatness. Let q1 and q2 be in Q, then for
any positive numbers β1 and β2,

q0 exp
(

β1 log
q1

q0
+ β2 log

q2

q0

)
∈ Q,

holds, therefore its structure is called exponential flat (e-flat) in terms of the
information geometry.

On the other hand, the meaning of F is slightly complicated. Intuitively
speaking, F is a set of measures which preserve the moments of the features ft.
From the geometrical point of view, the condition is rewritten as

∫

X
µ(x)

∑

y∈Y

(
q(y|x)− p̃(y|x)

)(
fj(x, y)− f̃j(x)

)
dx = 0

and it means that among the orthogonal subsets to Q, F is the set including the
empirical distribution p̃. This geometrical interpretation is minutely discussed
in the succeeding sections.

Also F has a flat structure. For any p1 and p2 in F , and for any positive
numbers β1 and β2, we observe

β1p1 + β2p2 ∈ F ,

hence F is a convex cone in M and its structure is called mixture flat (m-
flat). Note that the codimension of the subspace F is T in the space M by its
definition.
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Let us consider two optimization problem

minimize D(p, q0)
subject to p ∈ F(p̃, f),

(5)

and

minimize D(p̃, q)
subject to q ∈ Q(q0, p̃, f).

(6)

First of all, we should note that two subspaces F and Q intersect each other at
one point q∗

{q∗} = F ∩Q,

because of the relationship between dimQ and codimF . From a fundamental
property of the KL divergence and the definitions of Q and F , we can prove the
following lemma.

Lemma 1. For any p ∈ F(p̃,f) and q ∈ Q(q0, p̃,f), the Pythagorean relation

D(p, q) = D(p, q∗) + D(q∗, q) (7)

holds.

The proof is given later in more general form for the Bregman divergence.
This lemma shows that from a fixed point q0 ∈ Q, q∗ is the closest point in F .
Since

D(p, q0) = D(p, q∗) + D(q∗, q0), for any p ∈ F
holds, therefore we observe

D(p, q0) ≥ D(q∗, q0)

and this means the point q∗ ∈ F is the closest from q0, and vice versa. As
we discuss in the later, the one-dimensional e-flat subspace from q0 to q∗ is
orthogonal to the m-flat subspace F , hence q∗ is said to be the e-projection of
q0 to F . Simultaneously q∗ is the m-projection of p̃ to Q (Amari and Nagaoka,
2000). As a natural consequence, we can conclude the following.

Theorem 1 (Lebanon and Lafferty (2001)). Two optimization problems
(5) and (6) give the same solution:

q∗ = argmin
p∈F(p̃,f)

D(p, q0) = argmin
q∈Q(q0,p̃,f)

D(p̃, q). (8)

From the above theorem, the sequential update of AdaBoost can be naturally
understood as follows. Let us define two subspaces for the sequential update.

e-flat subspace determined by qt−1, p̃ and ft:

Qt = Q(qt−1, p̃, ft)

=
{

q ∈M
∣∣∣∣ q(y|x) = qt−1(y|x) exp

(
αt

(
ft(x, y)− f̃t(x)

))}
.
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F

Q
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p.d.f.

m-projection

e-projection

Figure 1: A geometrical interpretation of the dual optimization problems in the
AdaBoost algorithm.

m-flat subspace determined by p̃ and ft:

Ft = F(p̃, ft)

=
{

p ∈M
∣∣∣∣
∫

X
µ(x)

∑

y∈Y
p(y|x)(ft(x, y)− f̃t(x))dx = 0

}
.

Note that because dimQt = 1 and codimFt = 1, Qt and Ft intersect at one
point qt.

Let us consider a learning machine h(x) which predicts labels for an input
x. The machine can either output a unique label or output a set of labels.
Obviously the latter case include the former as a special case, hence here we
describe the algorithm with the latter. The AdaBoost algorithm is written as
following way.

step 1: Initialize q0(y|x) = 1.

step 2: For t = 1, . . . , T

• Select a machine ht so that

n∑

i=1

∑

y∈Y
qt−1(y|xi)(ft(xi, y)− ft(xi, yi)) 6= 0,

where

ft(x, y) =

{
1
2 , y ∈ ht(x),

− 1
2 , otherwise.

• Construct Qt and Ft with p̃, qt−1 and ft.

• Find qt and corresponding αt which is the intersection of Qt and Ft.
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step 3: Output the final decision as the majority vote of {ht; t = 1, . . . , T} with
weights {αt; t = 1, . . . , T}

H(x) = argmax
y∈Y

T∑
t=1

αtft(x, y)

(
= argmax

y∈Y

T∑
t=1

αtI(y ∈ ht(x))

)
.

Geometrical understanding is schematically shown in Fig. 2. The best choice
of the machine ht in step 2 is realized by

ht(x) = argmax
h

n∑

i=1

[
I(yi ∈ h(xi))

∑

y 6∈h(xi)

qt−1(y|xi)

− I(yi 6∈ h(xi))
∑

y∈h(xi)

qt−1(y|xi)
]
,

however we do not necessarily use this optimal ht. Since the relation

D(p̃, qt−1) = D(p̃, qt) + D(qt, qt−1) (9)

holds, as the step t increases qt approaches to the empirical distribution p̃ as
long as D(qt, qt−1) > 0. The selection policy of ht in step 2 is to guarantee
Qt and Qt−1 to differ and D(qt, qt−1) to be positive. When Qt coincides with
Qt−1, the algorithm stops.

For the binary case, αt is given by

αt =
1
2

log
1− εt

εt
,

where εt is the weighted error defined by

εt =
n∑

i=1

I(yi 6= ht(xi))Dt(i),

Dt(i) =
qt−1(y 6= yi|xi)

Zt
,

and Zt is a normalization constant to ensure
∑n

i=1 Dt(i) = 1. In section 4, we
discuss the meaning of αt in detail for the U -Boost algorithm.

3 Bregman Divergence and U-functions

AdaBoost can be regarded as a procedure of optimizing an exponential loss with
an additive model (Friedman et al., 2000)

L(F ) =
1
n

n∑

i=1

∑

y∈Y
exp(F (xi, y)− F (xi, yi))

where F (x, y) =
T∑

t=1

αtft(x, y).
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Figure 2: A geometrical interpretation of the sequential update of AdaBoost.
Since D(p̃, qt) ≥ D(p̃, qt+1) holds, qt approaches to the empirical distribution p̃.

By adopting different loss functions, several variations of AdaBoost are pro-
posed, such as MadaBoost (Domingo and Watanabe, 2000), where the loss
function

L(F ) =
1
n

n∑

i=1

∑

y∈Y
φ(F (xi, y)− F (xi, yi))

where φ(z) =

{
z + 1

2 z ≥ 0,
1
2 exp(2z) otherwise,

is used instead of the exponential loss.
For constructing algorithms, the notion of the loss function is useful, because

the various algorithms are derived based on the gradient descent and line search
methods. Also the loss function controls the confidence of the decision, which
is characterized by the margin (Schapire et al., 1998). However, the statisti-
cal properties such as consistency and efficiency are not apparent, because the
relationship between loss functions and the distributions realized by combined
machines is unclear so far.

In this section, we consider a form of the Bregman divergence which is suited
for statistical inferences, and consider some of its properties.

3.1 Statistical Form of Bregman Divergence

The Bregman divergence is a pseudo-distance for measuring the discrepancy
between two functions. We define the Bregman divergence between two condi-
tional measures as follows.

Definition 1 (Bregman divergence). Let U be a strictly convex function
on R, then its derivative u = U ′ is a monotone function, which has the inverse
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function ξ = (u)−1. For p(y|x) and q(y|x) in M, the Bregman divergence from
p to q is defined by

DU (p, q) =
∫

X

∑

y∈Y

[{
U(ξ(q(y|x)))− U(ξ(p(y|x)))

}

− p(y|x)
{
ξ(q(y|x)) − ξ(p(y|x))

}]
µ(x)dx. (10)

In the following, if the context is clear, we omit x and y from functions for
notational simplicity, such as

DU (p, q) =
∫ ∑[{

U(ξ(q))− U(ξ(p))
}− p

{
ξ(q)− ξ(p)

}]
dµ.

As easily seen, the Bregman divergence is not symmetric with respect to p and
q in general, therefore it is not a distance.

PSfrag replacements

tangent line at ξ(p)

ξ(p) ξ(q)

U(ξ(p))

U(ξ(q))

d(ξ(p), ξ(q))

p(ξ(q)− ξ(p)) + U(ξ(p))

U : R → R, convex
ξ : u−1 = (U ′)−1

Note: u(ξ(p)) = p

Figure 3: Bregman divergence.

A popular form of the Bregman divergence is

DU (f, g) =
∫

d(f(z), g(z))dν(z)

where f, g are one dimensional real-valued functions of z, and ν(z) is a certain
measure on z, and d is the difference at g between U and tangent line at (f, U(f))

d(f, g) = U(g)− {u(f)(g − f) + U(f)}. (11)

In the definition (10), densities are mapped by ξ first, then the form (11) is
applied, and the meaning of d is easily understood from Fig. 3.

It is also closely related with the potential duality. Let us define the dual
function of U by Legendre transformation

U∗(η) = sup
θ
{ηθ − U(θ)} ,

then d is written with U and U∗ simply

d(f, g) = U∗(ηf ) + U(g)− ηfg,

where

ηf = u(f).
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The advantage of the form (10) is allowing us to plug in the empirical dis-
tribution directly. To see this, let us decompose the Bregman divergence into

DU (p, q) = LU (p, q)− LU (p, p), (12)

where

LU (p, q) =
∫ ∑

{U(ξ(q))− pξ(q)} dµ. (13)

Note that LU can be regarded as a loss function, and since the Bregman diver-
gence is non-negative, that is DU (p, q) ≥ 0, the loss is bounded below by

LU (p, q) ≥ LU (p, p).

Now we consider a problem in which q is optimized with respect to DU (p, q) for
fixed p. Picking out the terms which depend on q, the problem is simplified as

argmin
q

DU (p, q) = argmin
q

LU (p, q). (14)

In LU (p, q), the distribution p appears only for taking the expectation of ξ(q),
therefore the empirical distribution is used without any difficulty as

LU (p̃, q) =
1
n

n∑

i=1

{∑

y∈Y
U(ξ(q(y|xi)))− ξ(q(yi|xi))

}
, (15)

which we refer as the empirical U -loss, and the optimal distribution for given
examples is defined by

q̃ = argmin
q

LU (p̃, q).

This is equivalent with the well-known relationship between the maximum like-
lihood estimation and the minimization of the Kullback-Leibler divergence. Re-
lated discussions can be found in Eguchi and Kano (2001), in which the diver-
gences are derived based on the pseudo-likelihood.

The followings are examples of the convex function U .

Example 1 (U-functions).

Kullback-Leibler:

U(z) = exp(z), u(z) = exp(z), ξ(z) = log(z).

β-type:

U(z) =
1

β + 1
(βz + 1)

β+1
β , u(z) = (βz + 1)

1
β , ξ(z) =

zβ − 1
β

.

β-type (β = 1):

U(z) =
1
2
(z + 1)2, u(z) = z + 1, ξ(z) = z − 1.
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η-type:

U(z) = exp(z)− ηz, u(z) = exp(z)− η, ξ(z) = log(z + η).

MadaBoost:

U(z) =

{
z + 1

2 z ≥ 0,
1
2 exp(2z) z < 0,

u(z) =

{
1 z ≥ 0,

exp(2z) z < 0,
ξ(z) =

1
2

log(z)(z ≤ 1).

Note that the MadaBoost U function is not strictly convex, hence ξ(z) is not
well defined for z > 1. Although it is peculiar as a loss function, it performs an
important role to consider the robustness.

The divergence of β-type has been employed into for the independent com-
ponent analysis from the viewpoint of robustness, while the divergence of η-type
is shown to improve AdaBoost for the case with mislabelling (see Minami and
Eguchi, 2002; Takenouchi and Eguchi, 2002).

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

loss functions

z

U
(z

)

KL(AdaBoost)
β(0.5)
η(0.2)
MadaBoost

(a)

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

loss functions

z

u(
z)

KL(AdaBoost)
β(0.5)
η(0.2)
MadaBoost

(b)

Figure 4: Examples of U -functions. (a) Shapes of U -functions. (b) Derivatives
of U -functions.

3.2 Pythagorean Relation and Orthogonal Foliation

Let us define the inner product of functions of x ∈ X and y ∈ Y by

〈f, g〉 =
∫

X

∑

y∈Y
f(x, y)g(x, y)dµ(x)

and define that f and g are orthogonal if 〈f, g〉 = 0. Then the Pythagorean
relation for the Bregman divergence is stated as follows.

Lemma 2 (Pythagorean relation). Let p, q and r be in M. If p − q and
ξ(r)− ξ(q) are orthogonal, the relation

DU (p, r) = DU (p, q) + DU (q, r) (16)

holds.
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Proof. For any conditional measures p, q and r,

DU (p, r)−DU (p, q)−DU (q, r)

=
∫

X

∑

y∈Y
(q(y|x)− p(y|x)) (ξ(r(y|x))− ξ(q(y|x))) dµ(x)

= −〈p− q, ξ(r)− ξ(q)〉 (17)

holds by definition. From the orthogonality of p− q and ξ(r)− ξ(q), the right-
hand side of (17) vanishes, and it proves the relation.

Lemma 1 in the previous section is a special case of Lemma 2 associated
with the Kullback-Leibler divergence. Note that in the above lemma, the or-
thogonality is defined between p− q and ξ(r)− ξ(q). The form ξ(q) is rewritten
as

q = u(ξ(q))

and ξ(q) is called U -representation of q. In the following discussion, U -representation
plays a key part.

PSfrag replacements

D(p, r)

D(p, q)

D(q, r)

p q

r

p− q

ξ(r)− ξ(q)

Figure 5: Pythagorean relation for Bregman divergence.

Now we consider subspaces feasible for the nature of the Bregman divergence.
First, we start from the simplest case. Let us consider a set of conditional
measures with a fixed q0 ∈M and a set of functions f = {ft(x, y); t = 1, . . . , T},
written in the form of

QU = QU (q0, f)

=
{

q ∈M
∣∣∣∣ q = u

(
ξ(q0) +

T∑
t=1

αtft(x, y)
)}

, (18)

where α = {αt ∈ R; t = 1, . . . , T}. In other words, QU consists of functions
such that

ξ(q)− ξ(q0) =
T∑

t=1

αtft(x, y),
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which means QU is a subspace including q0 and spanned by f . In this relation
ξ plays the same role with logarithm in the e-flat subspace, and QU is called a
U -flat subspace.

Next let us consider an m-flat subspace in M which passes a point q ∈ QU

by

FU (q) = FU (q, f)

=
{

p ∈M
∣∣∣∣
∫

X

∑

y∈Y
(p(y|x)− q(y|x))ft(x, y)dµ(x) = 0, ∀t

}

=
{

p ∈M
∣∣∣∣ 〈p− q, ft〉 = 0, ∀t

}
. (19)

By these definitions, QU and FU (q) are orthogonal at q, that is,

〈p− q, ξ(r)− ξ(q)〉 = 0, ∀p ∈ FU (q), ∀r ∈ QU .

A set {FU (q); q ∈ QU} is called a foliation of M, which covers the whole space
M as

⋃

q∈Q
FU (q) = M,

FU (q) ∩ FU (q′) = φ, if q 6= q′.

To put it in other words, M is decomposed into an orthogonal foliation by
giving QU .

Second, we consider a general version. Let b(x,α) be a function of x and α.
A U -flat subspace, which we refer the U -model in the following, is defined by

QU = QU (q0, f , b)

=
{

q ∈M
∣∣∣∣ qα = u

(
ξ(q0) +

T∑
t=1

αtft(x, y)− b(x,α)
)}

, (20)

and an m-flat subspace which passes a point q = qα ∈ QU by

FU (q) = FU (q, f , b)

=
{

p ∈M
∣∣∣∣ 〈p− q, ft − b′t(α)〉 = 0, ∀t

}
, (21)

where

b′t(x,α) =
∂b(x, α)

∂αt
.

In this case, the orthogonality of QU and FU (q) is defined with the tangent of
QU at q,

〈
p− q,

∂

∂αt
ξ(q)

〉
= 〈p− q, ft − b′t(α)〉 = 0, ∀p ∈ FU (q), ∀t.

The function b must be determined by the constraint on the U -model such as
from the statistical viewpoint or computational convenience. From a statistical
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point of view, we consider following two specific cases, normalized models and
unnormalized models.

Let p(y|x) be a true distribution of y given x, and for denoting a distribution
let us use the U -representation as

qF (y|x) = u(F (x, y)), i.e. F (x, y) = ξ(qF (y|x))

For the classification task, we adopt the rule that the corresponding label for a
given input x is estimated by the maximum value of qF (y|x) which is realized
by

ŷ = argmax
y∈Y

F (x, y) = argmax
y∈Y

ξ(qF (y|x)), (22)

because ξ is monotonic. Hereafter we focus on

∆(F, F ∗) = DU (p, qF )−DU (p, qF∗)−DU (qF∗ , qF )

=
∫

X

∑

y∈Y

(
F (x, y)− F ∗(x, y)

)(
qF∗(y|x)− p(y|x)

)
dµ(x)

=
〈
F − F ∗, qF∗ − p

〉
, (23)

and consider the conditions where ∆(F, F ∗) vanishes to utilize the Pythagorean
relation.

3.2.1 Normalized U-model

First let us consider a set

F = {F |F (x, y) = F0(x, y)− b(x)},
where F0(x, y) is fixed and b(x)’s are arbitrary functions of x. We note that
the classification rule associated with any F (x, y) ∈ F is equivalent to that with
F0(x, y) because

argmax
y∈Y

F (x, y) = argmax
y∈Y

F0(x, y)− b(x) = argmax
y∈Y

F0(x, y),

and for any F = F0 − b and F ∗ = F0 − b∗,

∆(F, F ∗) =
∫

X

(
b(x)− b∗(x)

) ∑

y∈Y

(
qF∗(y|x)− p(y|x)

)
dµ(x)

holds. Suppose
∑

y∈Y qF∗(y|x) = 1 (a.e. x), then

DU (p, qF ) = DU (p, qF∗) + DU (qF∗ , qF )

holds because ∆ = 0, and this means that F ∗ is the closest from p among the
functions in F which give the same classification rule, that is to say,

F ∗ = argmin
F∈F

DU (p, qF ).

Therefore the minimization DU (p, qF ) in F is equivalent to introducing the
normalizing factor b∗(x) so that

∑

y∈Y
qF∗(y|x) =

∑

y∈Y
u(F0(x, y)− b∗(x)) = 1, (24)
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namely qF∗ is restricted on a conditional probability density.
For the U -model QU , let F ∗ be written as

F ∗(x, y) = ξ(q0(y|x)) +
T∑

t=1

αtft(x, y)− b∗(x,α),

then the empirical loss for the normalized U -model is led to

LU (p̃, q) =
1
n

n∑

i=1

[∑

y∈Y
U

(
ξ(q0(y|x)) +

T∑
t=1

αtft(xi, y)− b∗(xi, α)
)

− ξ(q0(y|x))−
T∑

t=1

αtft(xi, yi) + b∗(xi, α)
]
. (25)

3.2.2 Unnormalized U-model

Secondly, we consider the case that qF∗(y|x) = c(x)p(y|x) or equivalently
F ∗(x, y) = ξ(c(x)p(y|x)), which implies the rule associated with F ∗(x, y) is
equivalent to the Bayes rule for p

ŷ = argmax
y∈Y

F ∗(x, y) = argmax
y∈Y

ξ(c(x)p(y|x)) = argmax
y∈Y

p(y|x).

In this case,

∆(F, F ∗) =
∫

X

(
c(x)− 1

) ∑

y∈Y

(
F (x, y)− F ∗(x, y)

)
p(y|x)dµ(x)

holds for any F . Let us define γ by

γ(x) =
∑

y∈Y
F ∗(x, y)p(y|x),

and let F be

F =
{

F
∣∣∣

∑

y∈Y
F (x, y)p(y|x) = γ(x) (a.e. x)

}
.

Then ∆(F, F ∗) = 0 for any F ∈ F and

DU (p, qF ) = DU (p, qF∗) + DU (qF∗ , qF )

holds, therefore F ∗ gives the minimum of DU (p, qF ) among F ∈ F , that is,

F ∗ = argmin
F∈F

DU (p, qF ),

in other word, DU chooses the Bayes optimal rule in F . With the same discus-
sion of the normalized model, F − b gives the same classification rule for any
b(x), therefore by change F into F − γ, we can introduce a simple constraint
for F as

∑

y∈Y
F (x, y)p(y|x) =

∑

y∈Y
ξ(qF (y|x))p(y|x) = 0.
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Under this constraint, the U -loss is reduced to

LU (p, q) =
∫

X

∑

y∈Y
U(ξ(q))dµ,

and the empirical loss for the U -model QU is simply written as

LU (p̃, q) =
1
n

n∑

i=1

∑

y∈Y
U

(
ξ(q0(y|xi)) +

T∑
t=1

αt

(
ft(xi, y)− ft(xi, yi)

))
. (26)

4 U-Boost

Using the Bregman divergence instead of the Kullback-Leibler divergence, a
class of loss functions are introduced. In this section, we consider boosting
algorithms which are naturally derived from these loss functions and discuss
some properties from the statistical point of view.

4.1 Algorithm

In the following, we treat the sequential updates of the algorithms mainly. The
parallel updates are derived by replacing the subspaces Q and F in the same
way as discussed in section 2.

A generic form of the U -Boost algorithm is given as follows.

generic U-Boost

step 1: Initialize q0(y|x). (In usual case, set ξ(q0) = 0 for simplicity.)

step 2: For t = 1, . . . , T

• Select a machine ht so that

〈p̃− qt−1, ft − b′t(α = 0)〉 6= 0,

where

ft(x, y) =

{
1
2 , y ∈ ht(x),

− 1
2 , otherwise,

and bt(x, α) is an auxiliary function to satisfy an imposed constraint.

• Construct Qt,

Qt =
{

q ∈M
∣∣∣∣ q = u

(
ξ(qt−1) + αft(x, y)− bt(x, α)

)}

• Find qt and corresponding αt which minimize DU (p̃, q),

qt = argmin
q∈Qt

DU (p̃, q)

= argmin
q∈Qt

n∑

i=1

{∑

y∈Y
U(ξ(q(y|xi)))− ξ(q(yi|xi))

}
.
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step 3: Output the final decision as the majority vote,

H(x) = argmax
y∈Y

T∑
t=1

αtft(x, y).

The optimization procedure in step 2 is geometrically interpreted as shown
in Fig. 6. For a U -model Qt, we can consider an orthogonal foliation Ft(q) as

Ft(q) =
{

p ∈M
∣∣∣∣ 〈p− q, ft − b′t(α)〉 = 0

}
, q = qα ∈ Qt. (27)

Then we can find a leaf Ft(q∗) which passes the empirical distribution p̃, and
the optimal model is determined by qt = q∗.

PSfrag replacements

model Qt

p̃

q
∗

q
′

q”

Ft(q
∗)

Ft(q
′)

Ft(q”)

Figure 6: A geometrical interpretation of the U -Boost algorithm.

In general, bt(x, α) is chosen according to the discussion about constraints
of U -models as follows.

4.1.1 Normalized U-Boost

The first constraint for Qt is restricting the model on the conditional probability
densities,

∑

y∈Y
q(y|x) =

∑

y∈Y
u
(
ξ(qt−1) + αft(x, y)− bt(x, α)

)
= 1. (28)

As previously discussed, this constraint gives the solution which is the closest
to the true distribution in the U -model giving the same classification rule.
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The optimization procedure is defined by

qt = argmin
q∈Qt

LU (p̃, q),

αt = argmin
α

n∑

i=1

{∑

y∈Y
U(ξ(qt−1(y|xi)) + αft(xi, y)− bt(xi, α))) (29)

− ξ(qt−1(yi|xi))− αft(xi, yi) + bt(xi, α))
}

. (30)

For U(z) = exp(z), which introduces the KL divergence, the constraint is
∑

y∈Y
q(y|x) =

∑

y∈Y
exp

(
log(qt−1(y|x)) + αft(x, y)− bt(x, α)

)
= 1,

therefore, the normalization term bt is written as

bt(x, α) = log
(∑

y∈Y
qt−1(y|x) exp(αft(x, y))

)
.

In this case, αt is given by

αt = argmin
α

n∑

i=1

log

∑
y∈Y qt−1(y|xi) exp(αft(xi, y))
qt−1(yi|xi) exp(αft(xi, yi))

= argmin
α

n∑

i=1

log

∑
y∈Y exp(Ft−1(xi, y) + αft(xi, y))
exp(Ft−1(xi, yi) + αft(xi, yi))

,

where Ft−1 is the U -representation of qt−1

Ft−1(x, y) = ξ(q0) +
t−1∑

k=1

αkfk(x, y).

Especially, for the binary case where a machine h(x) outputs either +1 or −1,
f is written as

f(x, y) =
1
2
yh(x), (31)

and ξ(q0) = 0 is employed, then the above equation is drastically simplified

αt = argmin
α

n∑

i=1

log

∑
y∈{±1} exp(Ft−1(xi, y) + αft(xi, y))

exp(Ft−1(xi, yi) + αft(xi, yi))

= argmin
α

n∑

i=1

log
exp(Ft−1(xi, yi) + αft(xi, yi)) + exp(−Ft−1(xi, yi)− αft(xi, yi))

exp(Ft−1(xi, yi) + αft(xi, yi))

= argmin
α

n∑

i=1

log
(
1 + exp

(−2(Ft−1(xi, yi) + αft(xi, yi))
))

, (32)

where we use the fact f(x,+1)+f(x,−1) = (1−1)h(x) = 0. This representation
is equivalent to the unnormalized U -Boost which will be discussed in the next
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section, and U(z) = log(1 + exp(2z)) is used as the U -loss function. Moreover,
the above equation is written as

αt = argmin
α

n∑

i=1

log
(
1 + exp

(−yi(
∑t−1

k=1 αkhk(x) + αht(xi))
))

,

and this is equivalent to LogitBoost (Friedman et al., 2000). Namely, the nor-
malized U -Boost associated with U(z) = exp(z) conducts the same procedure
of LogitBoost.

4.1.2 Unnormalized U-Boost

Next, let us consider the constraint for Qt

∑

y∈Y
p̃(y|x)ξ(q(y|x)) = 0. (33)

As discussed in the previous section, it is guaranteed that the minimizer of the
U -loss becomes Bayes optimal in the constrained subspace of M.

The optimization procedure is reduced to

qt = argmin
q∈Qt

LU (p̃, q),

αt = argmin
α

n∑

i=1

∑

y∈Y
U

(
ξ(qt−1(y|xi)) + α(ft(xi, y)− ft(xi, yi))

)
. (34)

As in the previous section, the empirical U -loss is simplified for the binary
classification case as

LU (p̃, q) =
n∑

i=1

U
(−yi(

∑t−1
k=1 αkhk(xi) + αht(xi))

)
, (35)

where ξ(q0) = 0 is adopted, and in this case the optimal αt is given by

αt = argmin
α

LU (p̃, q).

In the case of the KL divergence, where U(z) = exp(z), this procedure is equiv-
alent to AdaBoost (cf. Lebanon and Lafferty, 2001).

We observe that for the sequence of densities {qt; t = 0, 1, . . . } defined by
the normalized or unnormalized U -Boost algorithm, the relation

LU (p̃, qt+1)− LU (p̃, qt) = DU (qt, qt+1) (36)

holds. This property is closely related with that in the EM algorithm for ob-
taining the maximum likelihood estimator. See Amari (1995) for the geometric
considerations of the EM algorithm.

4.2 Error Rate Property

One of the important characteristics of the AdaBoost algorithm is the evolution
of its weighted error rates, that is, the machine ht at step t shows the worst
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performance, that is equivalent to random guess, under the distribution at the
next step t + 1. In the case of the binary classification problem, by defining the
weighted error as

εt(h) =
n∑

i=1

I(h(xi) 6= yi)Dt(i),

where Dt(i) is updated by

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt+1
with D0(i) =

1
n

,

Zt+1 is a normalization constant to ensure
∑n

i=1 Dt+1(i) = 1, and αt is given
by

αt =
1
2

ln
(

1− εt(ht)
εt(ht)

)
,

this can be easily confirmed by

εt+1(ht)

=
n∑

i=1

I(ht(xi) 6= yi)Dt+1(i)

=
∑n

i=1 I(ht(xi) 6= yi)Dt(i)eαt

∑n
i=1 I(ht(xi) = yi)Dt(i)e−αt +

∑n
i=1 I(ht(xi) 6= yi)Dt(i)eαt

=
eαtεt

e−αt(1− εt) + eαtεt
=

1
2
.

Similar disposition can be observed in the U -Boost algorithm as follows.
First, we consider the unnormalized U -Boost algorithm. Let us focus on the
value of ft(xi, y)− ft(xi, yi). There are four different cases:

ft(xi, y)− ft(xi, yi) =





−1, if yi ∈ ht(xi) and y 6∈ ht(xi),
0, if yi ∈ ht(xi) and y ∈ ht(xi),
0, if yi 6∈ ht(xi) and y 6∈ ht(xi),
1, if yi 6∈ ht(xi) and y ∈ ht(xi).

Intuitively speaking, the first is the case where ht is correct for y and yi, the
second and third are the cases where ht is partially correct or partially wrong,
and the last is the case where ht is wrong, because the correct classification rule
for xi is to output {yi}. Now let us define the weight

Dt+1(i, y) =
qt(y|xi)
Zt+1

, (37)

where Zt+1 is a normalization constant defined by

Zt+1 =
n∑

i=1

∑

y 6=yi

qt(y|xi), (38)
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and then define the weighted error by

εt+1(h) =
n∑

i=1

∑

y 6=yi

(
f(xi, y)− f(xi, yi) + 1

2

)
Dt+1(i, y)

=
∑

1≤i≤n
yi 6∈h(xi)
y∈h(xi)

Dt+1(i, y) +
∑

1≤i≤n
yi 6∈h(xi)
y 6∈h(xi)

y 6=yi

1
2
Dt+1(i, y) +

∑

1≤i≤n
yi∈h(xi)
y∈h(xi)

y 6=yi

1
2
Dt+1(i, y).

(39)

Note that f(xi, y) − f(xi, yi) vanishes when y = yi despite whether h(xi) is
correct or not, hence we omit qt(yi|xi) from the weighted error, that is to say,
the weights are defined only on incorrect labels as in AdaBoost.M2 (Freund and
Schapire, 1996). Also note that the correct rate is written as

1−εt+1(h) =
∑

1≤i≤n
yi∈h(xi)
y 6∈h(xi)

Dt+1(i, y)+
∑

1≤i≤n
yi 6∈h(xi)
y 6∈h(xi)

y 6=yi

1
2
Dt+1(i, y)+

∑

1≤i≤n
yi∈h(xi)
y∈h(xi)

y 6=yi

1
2
Dt+1(i, y), (40)

and that the second and third terms in the right-hand side are the same in the
error rate.

Then by differentiating the U -loss for the unnormalized U -Boost, we know
that αt satisfies

n∑

i=1

∑

y∈Y
(ft(xi, y)−ft(xi, yi))u

(
ξ(qt−1(y|xi))+αt(ft(xi, y)−ft(xi, yi))

)
= 0,

(41)

namely, by using the definition

qt(y|xi) = u
(
ξ(qt−1(y|xi)) + αt(ft(xi, y)− ft(xi, yi))

)
,

the above equation is rewritten as

n∑

i=1

∑

y∈Y
(ft(xi, y)− ft(xi, yi))qt(y|xi)

=
∑

1≤i≤n
yi 6∈ht(xi)
y∈ht(xi)

qt(y|xi)−
∑

1≤i≤n
yi∈ht(xi)
y 6∈ht(xi)

qt(y|xi)

= 0,

that is
∑

1≤i≤n
yi 6∈ht(xi)
y∈ht(xi)

qt(y|xi) =
∑

1≤i≤n
yi∈ht(xi)
y 6∈ht(xi)

qt(y|xi). (42)
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By imposing the above relation into (39) and (40), we observe

εt+1(ht) = 1− εt+1(ht),

which concludes

εt+1(ht) =
1
2
. (43)

Similarly, in the case of the normalized U -Boost algorithm, the above relation
is proved as follows. We use the same definitions of the weight (37) and the error
(39). By differentiation the U -loss, αt satisfies

−
n∑

i=1

(
ft(xi, yi)− b′t(xi, αt)

)

+
n∑

i=1

∑

y∈Y

(
ft(xi, y)−b′t(xi, αt)

)
u
(
ξ(qt−1(y|xi))+αtft(xi, y)−bt(xi, αt)

)
= 0.

(44)

Using the definition of qt(y|xi) and the constraint
∑

y∈Y qt(y|xi) = 1, the above
equation is rewritten as

−
n∑

i=1

(
ft(xi, yi)− b′t(xi, αt)

)
+

n∑

i=1

∑

y∈Y

(
ft(xi, y)− b′t(xi, αt)

)
qt(y|xi)

= −
n∑

i=1

ft(xi, yi) +
n∑

i=1

b′t(xi, αt) +
n∑

i=1

∑

y∈Y
ft(xi, y)qt(y|xi)−

n∑

i=1

b′t(xi, αt)

=
n∑

i=1

∑

y∈Y

(
ft(xi, y)− ft(xi, yi)

)
qt(y|xi)

= 0

This is equivalent to (42) and it proves (39).
In this way, the U -Boost algorithm updates the distribution into the least

favorable at each step.

4.3 Consistency and Bayes Optimality

Using the basic property of the Bregman divergence, we can show the consis-
tency of the U -loss as follows.

Lemma 3. Let p(y|x) be the true conditional distribution and F (x, y) be the
minimizer of the U -loss LU (p, qF ). The classification rule given by F becomes
Bayes optimal

ŷ(x) = argmin
y∈Y

F (x, y) = argmin
y∈Y

p(y|x). (45)

Proof. From the property of the Bregman divergence,

DU (p, q) = 0 ⇔ p(y|x) = q(y|x) (a.e. x)
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and equivalence relation (14), the minimizer of the U -loss LU (p, qF ) over F (x, y)
is given by

F (x, y) = argmin
F

LU (p, qF ) = ξ(p(y|x)).

The statement comes from the monotonicity of ξ

argmin
y∈Y

p(y|x) = argmin
y∈Y

ξ(p(y|x)).

In the U -Boost algorithm, F (x, y) is chosen from a class of functions which
are linear combination of ft(x, y); t = 1, . . . , T . In the case that the true distri-
bution is not in the considered U -model, the closest point in the model is chosen
in the sense of U -loss, however, if the number of boosting is sufficiently large
and the functions ft; t = 1, . . . , T are diverse, U -model can well approximate
the true distribution. See for example Barron (1993); Murata (1996), for the
discussion about the richness of the linear combination of simple functions.

For the binary case, where the U -loss is given by

LU (p, q) =
∫

X

∑

y∈{±1}
p(y|x)U(−yF (x))dµ(x),

we can show the following theorem.

Theorem 2. The minimizer of the U -loss gives the Bayes optimal, that is,

{x|F (x) > 0} =
{

x
∣∣∣ log

p(+1|x)
p(−1|x)

> 0
}

.

Moreover, if

log
u(z)

u(−z)
= 2z (46)

holds, F coincides with the log likelihood ratio

F (x) =
1
2

log
p(+1|x)
p(−1|x)

.

Proof. By usual variational arguments, the minimizer of the U -loss satisfies∫

X

(
p(+1|x)u(−F (x))− p(−1|x)u(F (x))

)
∆(x)dµ(x) = 0

for any function ∆(x), hence

log
p(+1|x)
p(−1|x)

= log
u(F (x))

u(−F (x))
(a.e. x).

Knowing that for any convex function U ,

ρ(z) = log
u(z)

u(−z)

is monotonically increasing and satisfies ρ(0) = 0. This directly shows the first
part of the Lemma and by imposing ρ(z) = 2z, the second part is proved.

The last part of the theorem agree with the result in Eguchi and Copas
(2001, 2002). U -functions for AdaBoost, LogitBoost, and MadaBoost satisfy
the condition (46).
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4.4 Asymptotic Covariance

To see the efficiency of the U -loss, we investigate the asymptotic variance of α
in this section.

Let us consider the U -model parameterized by α = {αt; t = 1, . . . , T}

q(y|x) = u
(
ξ(q0(y|x)) +

T∑

i=1

αtft(x, y)− b(x, α)
)
,

and let p(y|x) be the true conditional distribution. The optimal point q∗ in the
U -model is given by

α∗ = argmin
α

LU (p, q) = argmin
α

∫

X

∑

y∈Y
{U(ξ(q))− pξ(q)} dµ, (47)

and for given n examples, the estimate of α is given by

α̂ = argmin
α

LU (p̃, q) = argmin
α

∫

X

∑

y∈Y
{U(ξ(q))− p̃ξ(q)} dµ, (48)

where p̃ is the empirical distribution of given examples. When n is sufficiently
large, the covariance of α̂ with respect to all the possible sample sets is given
as follows.

Lemma 4. The asymptotic covariance of α̂ is given by

Cov(α̂) =
1
n

H−1GH−1 + o

(
1
n

)
(49)

where H and G are T × T matrices defined by

H =
∂2

∂α∂ατ
LU (p, q∗)

=
∫

X

∂2

∂α∂ατ
r(x, α∗)dµ(x),

G =
∫

X

∑

y∈Y
p

∂

∂α
(U(ξ(q∗))− ξ(q∗))

∂

∂ατ
(U(ξ(q∗))− ξ(q∗))dµ

=
∫

X

∑

y∈Y
p(y|x)

( ∂

∂α
r(x,α∗)− f(x, y)

)( ∂

∂ατ
r(x, α∗)− f(x, y)

)
dµ(x),

where r is the function of x defined by

r(x, α) =
∑

y∈Y
U

(
ξ(q0(y|x)) +

T∑
t=1

αtft(x, y)− b(x,α)
)

+ b(x, α).

The proof is simply given by usual asymptotic arguments (see Murata et al.,
1994, for example).

When the true distribution is included in the U -model, that is p = q∗, the
asymptotic covariance of LogitBoost becomes

Cov(α̂) =
1
n

I−1 + o

(
1
n

)
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where I is the Fisher information matrix of the logistic model, which means
LogitBoost attains the Cramer-Rao bound asymptotically, that is, LogitBoost
is asymptotic efficient. In general, the asymptotic covariance of U -Boost algo-
rithms are inferior to the Cramer-Rao bound, hence from this point of view,
U -Boost is not efficient, however, instead of the efficiency, some of the U -Boost
algorithms show robustness as discussed in the next section.

The expected U -loss of qt estimated with given n examples is asymptotically
bounded by

E(LU (p, qt)) = LU (p, q∗) +
1
2n

tr H−1G + o

(
1
n

)
, (50)

where E is the expectation over all the possible sample sets (cf. Murata et al.,
1994).

4.5 Robustness of U-Boost

In this section, we study the robustness of the U -Boost for the binary classifi-
cation problem. First, we consider the robust condition for U -functions, then
discuss the robustness of the algorithm.

4.5.1 Most B-robust U-function

Let us consider the statistical model with one parameter α

M = M(h) =
{

pα(y|x) =
1

1 + exp{−2y(F (x) + αh(x))} ; α ∈ R

}
, (51)

where h(x) takes +1 or −1 and F (x) is the log likelihood ratio of the true
distribution p(y|x)

F (x) =
1
2

log
p(+1|x)
p(−1|x)

,

that is the true parameter is α = 0, namely p = p0.
We define the estimator of α with the U -function as

αU (qµ) = argmin
α

∫

X

∑

y∈Y
q(y|x)U

(−y(F (x) + αh(x))
)
dµ(x),

where qµ is the joint distribution of x and y. As considered in the previous
section when the U -function satisfies the condition (46), which asserts the esti-
mator to be log-likelihood consistent, the estimator by the U -function is Fisher
consistent, that is,

αU (pαµ) = α.

The robustness of the estimator is measured by the gross error sensitivity
(Hampel et al., 1986)

γ(U, p0) = sup
(x̃,ỹ)

{
lim

ε→+0

1
ε

[
αU ((1− ε) p0µ + ε δ(x̃, ỹ))− αU (p0µ)

]}2

, (52)
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where δ(x̃, ỹ) is the probability distribution with a point mass at (x̃, ỹ). The
gross error sensitivity measures the worst influence which a small amount of
contamination can have on the value of the estimator. The estimator which
minimizes the gross error sensitivity is called the most B-robust estimator. For
a choice of a robust U -function, we show the following theorem.

Theorem 3. The U -function which derives MadaBoost algorithm minimizes
the gross error sensitivity among the U -function with the property of (46).

Proof. By the brief calculation, the gross error sensitivity of the estimator is
written as

γ(U, p0) = sup
(x̃,ỹ)

u(ỹF (x̃))2
(

2
∫

X
u(F (x))p0(−1|x)dµ(x)

)−2

. (53)

From this, if u is not bounded such as u(z) = exp(z), the gross error sensitivity
diverges. Therefore we focus on the case that u is bounded. Without loss of
generality, we can suppose

sup
(x̃,ỹ)

u(ỹF (x̃))2 = 1

because the multiplication of the positive value to the U -function does not
change the estimator. To minimize the gross error sensitivity, we need to find a
U -function which maximizes

∫

X
u(F (x))p0(−1|x)dµ(x).

The pointwise maximization of u(z) under the conditions

u(−z) = u(z)e−2z and sup
(x̃,ỹ)

u(ỹF (x̃)) = 1

leads to

u(z) =

{
1, z ≥ 0,

exp(2z), z < 0,

and this coincides with the MadaBoost U -function.

4.5.2 Robustness of boosting algorithm

Next, we study the robustness of the estimator by the U -boost. Let us consider
the estimator F (x)+αh(x) updated from F (x) by the U -Boost procedure. The
robustness of this updated estimator is measured by the gross error sensitivity
with the Kullback-Leibler divergence D defined by

γboost(U, p) = sup
(x̃,ỹ)

lim
ε→+0

2
ε2

D(p0, pαU ,ε,(x̃,ỹ)), (54)

where pαU ,ε,(x̃,ỹ) means the updated estimator which is calculated on the as-
sumption that the true distribution is contaminated as (1 − ε)p(y|x)µ(x) +
εδ(x̃, ỹ).
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Let us define I(h) as the Fisher information matrix of the model M(h) at
α = 0. From the property of (yh(x))2 = 1 we find that I(h) does not depend on
h, thus it can be written as I. Then the gross error sensitivity for the boosting
algorithm is written as

γboost(U, p0) = Iγ(U, p0). (55)

Hence the U -function of MadaBoost also minimizes γboost(U, p0). As a conse-
quence, MadaBoost minimizes the influence of outliers when the estimator is
close to the true distribution.

5 Illustrative Examples

In the following numerical experiments, we study the two-dimensional binary
classification problem with “stumps” (Friedman et al., 2000). We generate la-
beled examples subject to a fixed probability and a few examples are flipped by
the contamination as shown in Fig. 7. The detailed setup is

x = (x1, x2) ∈ X = [−π, π]× [−π, π]
y ∈ Y = {+1,−1}
µ(x) : uniform on X

p(y|x) =
1 + tanh(F (x))

2
where F (x) = x2 − 3 sin(x1)

and a% contaminated data are generated according to the following procedure.
First, examples are sorted by descending order of |F (xi)| and from top 10a%
examples, a% are randomly chosen and flipped without replacement. That
means the contamination is avoided around the boundary of classification. The
plots are made by averaging 50 different runs, and in each run 300 training data
are produced and the classification error rate is calculated with 4000 test data.

The training results by three boosting methods, AdaBoost, LogitBoost and
MadaBoost, are compared from the viewpoint of the robustness.

In Fig. 8 (a),(b) and (c), we show the test error evolution in regard to the
number of boosting. All the boosting methods show overfit phenomena as the
number of boosting increases. We can see that AdaBoost is quite sensitive to
the contaminated data.

To show the robustness to the contamination, we plot the test error differ-
ences against the number of boosting. In Fig. 9 (a) and (b), the difference be-
tween 1%-contamination and non-contamination, and between 2%-contamination
and non-contamination are plotted, respectively. In this classification problem,
we observer AdaBoost is more sensitive to outliers than MadaBoost as shown
in the previous section.

6 Conclusion

In this paper, we formulated boosting algorithms as sequential updates of condi-
tional measures, and we introduced a class of boosting algorithms by considering

27



-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Figure 7: Typical examples with contamination.

the relation with the Bregman divergence. By dint of the statistical framework,
properties of consistency, efficiency and robustness are discussed.

Still detailed studies on some properties such as the rate of convergence, and
stopping criteria of boosting are needed to avoid overfitting problem and so on.

Here we only treated the classification problem, but the formulation can be
extended to the case where y is in some continuous space, such as regression
and density estimation. This is also remained as a future work.
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