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Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information.
Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information
quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in
regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-	re
model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate
of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons
are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per
neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations
where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized.
In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time
decreases and, for speci	c con	gurations of the grid, it is largely enhanced in a resonance e
ect.

1. Introduction

Networks of nerve cells are complex systems in which a
large number of components combine to yield collective
phenomena with improved abilities in contrast to simple
components of that system [1–6]. �e human brain itself
is a grid or a network of bewildering complexity where

1012 neurons cluster in three-dimensional architectures. �e
unprecedented functions of human brain, including self-
consciousness, language, and the development of memory,
may depend less on the specialization of individual neurons
and more on the fact that a large number of them interact
in a complex network [2, 3, 5, 6]. �e human brain and
mechanisms of information propagation through neural nets
are being heavily investigated in the last years. Emerging
nanotechnologies, whereby surfaces with a controlled nan-
otopography can regulate and guide the organization of

neuronal cells into complex networks [7–13], advancements
in traditional disciplines, that is, computer science and
information theory [6, 14–19], and the combination of the
two [5], may provide scientists with new tools to elucidate the
mechanisms through which the brainmarshals its millions of
individual nerve cells to produce behavior and how these cells
are in�uenced by the environment.

�e exchange of information between individual neurons
is mediated by a cascade of chemical to electrical signals
which travel across the gap (synaptic cle�, approximately
20 nmwide) between those neurons [20]. At similar synapses,
an action potential generated near the cell body propa-

gates down the axon where it opens voltage-operated Ca2+

channels. Ca2+ ions entering nerve terminals trigger the
rapid release of vesicles containing neurotransmitter, which is
ultimately detected by receptors on the postsynaptic cell [20].
�edescribed process continues repeatedly until the response
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at the postsynaptic sites reaches and surpasses a limiting
value (i.e., a threshold); then, the target neuron produces
an impulse (an action potential) that propagates in turn to
another neuron. Noticeably, information is encoded by the
frequency of the action potentials generated by the neurons
rather than by their intensity [21]. Individual neurons and
electrical activity thereof are correctly described by the cele-
brated leaky integrate-and-	remodel inwhich themembrane
potential of a neuron � obeys a function of the sole time [21–
25]:

�� �� (�)�� = −�� (� (�) − �) + 
stim (�) , (1)

where �� is the capacitance of �, the membrane, �� is its
conductance, and � is the resting potential of the neuron. In
(1), the current 
stim(�) represents the stimulus that excites the
neuron until the membrane potential reaches a threshold �;
then, an action potential AP is generated and the system is
maintained for a refractory time at rest, in which (1) does not
hold anymore, and this accounts for the short-term synaptic
depression of the neuron [22]. Notice that one can multiply
both terms of (1) by the reciprocal of the conductance  =1/��, which yields a di
erent form of (1):

��� (�)�� = −�� (� (�) − �) + 
stim (�) (2)

in which � = �� is the time constant in a circuit theory
interpretation of the neuron [21]. Equation (2) is used to
predict the time evolution of individual neurons. Similarly,
neurons in a grid are described by a set of coupled di
erential
equations that generalize the model above to an ensemble
of a large number of simple units connecting to each other.
In contrast, in neural mass models, the activity of the entire
neural population is lumped in a limited and generally low
number of variables or parameters, in a statistical approach
[21, 26]. �ese parameters are related to the moments of the
distributions that are used to describe the neural population
and may be sometimes coincident with the sole center of
mass.While advantageous formathematical convenience and
computational tractability, neural mass models and their
more sophisticated evolutions that have been developed over
time (including mean 	eld models and neural 	eld models)
are however based on an approximation and may therefore
fail to resolve the dynamics of a system of neurons over each
of its scales.

Here, we revise the integrate-and-	re model in the ver-
sion proposed by De La Rocha and Parga [22] to extend
the analysis to a bidimensional set of neurons in a grid.
We use information theory variables, including the Shannon
information entropy, described, for example, in [14, 16, 27, 28]
and recapitulated in the following part of the paper, to deter-
mine the response of the network associated with an external
stimulus. �e intensity and distribution of information over
the network are determined as a function of the total number
N of neurons in the grid (thus, cell density) and time of
synapse recovery a�er the stimulus (thus, short-term depres-
sion). In what follows, neurons are connected through not-
intersecting edges; in doing so, the degree of the graph would

not depend on the number of nodes in the graph. Moreover,
the maximum intermodal distance is upper bounded and
maintained below a cut-o
 distance which represents an
ideal synaptic length, whereby all connections greater than
the prescribed cut-o
 are disrupted. In simulations where
the number of nodes is varied over a signi	cant range, we
observe two di
erent regimens of information dynamics in
the grid: in the low cell density range, the information quality
and density in a grid increase with N; in the high cell
density range, the information content in the grid increases
less rapidly than the total number of cells, meaning that
the information quality and density decrease with N. For
intermediate cell densities (i.e., when all connections in the
graph are realized) the information density and quality in
the grid reach a maximum. In simulations in which the
posttransmission latency time is varied, we observe that
information increases as the latency time decreases. More
important than this, we observe that when the average 	ring
rate of individual neurons (i.e., a property of single neurons
in isolation) is an integer number of times greater than
the characteristic signalling frequency in the grid (i.e., a
property of a set of neurons in cooperation), the transport of
information is largely enhanced, similarly in concept to the
resonance of a mechanical system. �ese data reinforce the
view that the organization of neural cells in a network and the
topology of the network itself play a major role in the spread
of information in a complex of those cells.

2. Methods

2.1. Generating Networks of Neurons in the Plane. We con-
siderN neural cells uniformly distributed in a square domain
with edge � (Figure 1). Individual nodes are indicated with
the symbol P�: � = 1, . . . ,N. In what follows, we may use
interchangeably the terms neural cells, neurons, and nodes.
Nodes are connected through not-intersecting lines or edges,
which are the vertices of the Delaunay triangulation of those
nodes in the plane (Figure 1).�e number of edges � resulting
from a similar triangulation varies linearly withN, with � =3N − 3 − �, where � is the number of points on the convex
hull of the original data setP. �us, the degree of the graph
D would not depend on the absolute number of cells and for
su�ciently large N, D ∼ 6. �e Delaunay triangulation is
the dual graph of the Voronoi diagram. From this, certain
properties arise, including the following: (i) the Delaunay
triangulation of P maximizes the minimum angle over all
triangulations of P; (ii) the circumcircle of any triangle in
the Delaunay triangulation is empty (contains no sites of
P); (iii) the closest pair of sites in P are neighbors in the
Delaunay triangulation; (iv) the minimum spanning tree of
P is a subgraph of theDelaunay triangulation ofP. Recalling
that the Euclidean minimum spanning tree is the graph with
minimum summed edge length that connects all points
in P, the Delaunay triangulation of a set of neurons has
therefore some biological sense. A system of neural cells on
a substrate is likely to develop synapses following the shortest
path between those cells, thus maintaining the energy of the
ensemble at aminimum,which is equivalent to the conditions
from (i) to (iv) above and especially to property (iv). For each
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Figure 1: A random distribution of nodes in a plane (a); nodes are connected through a Delaunay triangulation, that guarantees that the
number of edges varies linearly with the number of nodes (b); the resulting graph upon a�er removal of the internodal distances smaller than
a cut-o
 distance, which is here 0.2 times the length of the lattice.

element (node) � inP, we de	ne a bundle ofP� and indicate
with B� the subset of nodes in P that are connected to P�.
�e information about the connections amid the nodes in a
graph is contained in the adjacency matrix � = ���, where
the indices � and � run through the number of nodes N

in the graph. ��� = ��� (where ��� is the Euclidian distance
function) if there exists a connection between � and �; ��� =∞ otherwise. In the analysis, reciprocity between nodes is
assumed, and thus if information can �ow from � to �; it can
reversely �ow from � to �. In the framework of graph theory,
we call a similar network an undirected graph. Notice that
this property translates into symmetry of � with ��� = ���.
Moreover, ��� = ∞.

2.2. Neural Signalling. Each node in the network sends and
receives information and this process is mediated through
the integrate-and-	re model and (2). In the Equation, 
stim(�)
is the stimulus associated with a speci	c neuron, which
is the target. Assuming linearity, 
stim(�) is given by the
superposition of current pulses � generated by all the neurons
in a bundle that 	re on target neuron, which we shall herein
designate as �, (Figure 2(a)) and thus


stim (�) =
B∑
�
� (���) ��

rel∑
�
� (� − ��� ) , (3)

where rel is the number of neurotransmitter release events
(i.e., the total number of spikes in a train), � is the Dirac

delta function, and ��� is the timing of individual pulses. In
(3), � is a damping term which accounts for the internodal
distance ��� and the arrival time delay from � to �. �e pulses
that repeatedly excite a target neuron amplify the membrane
potential in that neuron until it exceeds a threshold � and

an action potential is generated (Figure 2(b)). A closed form
solution of (2) along with condition (3) exists with

� (�) = � + B∑
�
� (���) ���−(�−��� )/�

rel∑
�
�(� − ��� ) , (4)

where � is the Heaviside function and (4) applies in the
subthreshold regime, that is, for � < �. When � = �, the
target is activated (in what resembles a binary event) and the
resulting action potential is converted into an impulse � that
propagates in turn from the target neuron (now, the 	ring) to
all those nodes that are connected to it in cascade. Upon the
discharge of the action potential, the neuron is maintained at
rest for a refractory or resting time �	, which reproduces the
short-term depression and in which any activity is inhibited.
�e sequence of this 3-step 	re/receive/	re process, in which
each neuron alternates from being a 	ring to a target neuron,
reiterates until either all nodes are covered and the passage of
the signal over the network is completed, or the intensity of
the signal becomes vanishingly small.�e balance/unbalance
between the time constant of each neuron and the refractory
time and the number of neurons in the grid is re�ected by the
timing of spikes that may be recorded on the individual sites
and on the entire grid.

2.3. Encoding Information in the Network. �e temporal
sequence of pulses or spikes which propagates along the grid
encodes the information transmitted over that grid, which
can be represented through the sole Shannon information
entropy [17]. �e goal of this section is to give a model
independent estimate of entropy and information in neural
spike trains as they encode dynamic signals.�e spike train of
individual neurons in response to a (su�ciently) long sample
of stimuli may vary. A similar variability is described by the
total entropy of the spike train, that is, �
(Δ�), where Δ� is
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Figure 2: Nodes are divided into 	ring, delivering a signal, and target, receiving a signal: a target neuron can receive current pulses from
multiple sources; in turn a 	ring neuron can deliver current pulses tomultiple targets (a); the sum ofmultiple stimuli in a neuronmodi	es the
potential across its membrane until it surpasses a limiting or threshold value: in this circumstance, the neuron generates an action potential
(b).
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Figure 3: �e entire grid is stimulated with a signal that can be random (a) or periodic (b). From a random long sample of stimuli, one may
derive the total entropy of the spike train. Similarly, the noise entropy is the variability of the spike train in response to the sample of repeated
stimuli. Information is as the di
erence between the total and the noise entropy.

the time bin in which one chooses to discretize the spike
train (Figure 3(a)). Similarly, the conditional or noise entropy

��(Δ�) is the variability of the spike train in response to a
sample of repeated stimuli, in which the entire sequence of
the input signal is given by the repetition of the same pattern
(Figure 3(b)). �e information that the spike train provides
about the input is the di
erence between these entropies,
 = �
 − ��. Δ�/� is a measure of the number of times that
a neuron generates a burst in Δ� (i.e., the number of spikes);

in these aspects, Δ� is the resolution with which a signal is
transmitted or received. If the time binΔ� is su�ciently small
(comparable to the time constant of a neuron, Δ� ∼ �),
then it may take discrete 0/1 values. In this limit, Δ� is a
binary variable and the entropy and information thereof may
be expressed in units of bits. Consider a temporal window! in which the signal is transmitted. �is segment is a word
which contains !/Δ� symbols or letters. �e transmission of
the entire signal is completed in a number of " repetitions of



BioMed Research International 5

0000101010101010100101010

1010101010101010100101010

1010101010101010101010101

1010101010101010101001010

1010101010101010101010101

1011101000010100101010101

1010101010101010101110000

characteristic output at a node

�is is a word

One event → one bit

(a)

10 15 205

Word

0.0

0.2

0.4

0.6

0.8

F
re

q
u

en
cy

(b)

Figure 4: Entropy is a measure of the variability of a signal. In each neural site, the signal is registered like a sequence of 0/1 binary events:
signals are encoded in bits (a).�e number of occurrences of a bit in a sequence is the probability that a bit is generated, from the probability;
entropy may be derived (b).

!. �e total entropy is derived all over the words # in which
the signal is segmented, and thus

�
 (Δ�) = −∑
�
$ (#) log2$ (#) , (5)

where$(#) represents the frequency of occurrences of# over
all the runs ! (Figure 4). In contrast, the noise entropy is
averaged over !, and thus

�
 (Δ�) = ⟨−∑
�
$ (#) log2$ (#)⟩


. (6)

�us, the information carried by the stimulus is a di
erence
between entropies. To operate a similar estimate in practice,
we (i) generate a random sample of impulses (as in Fig-
ure 3(a)) that stimulates a neuron in the grid and in cascade all
neurons in the grid and this is described by the integrate-and-
	re model and Section 2.2 (the length of the stimulus is "!).
We (ii) derive the response to the stimulus in all the active
sites of the network using (1) to (4); then, we (iii) determine
the entropy of the response �
 in those sites using (5) and
(6) (to do so, we determine the frequency, i.e., the probability$(#) of a word calculated over all the words in the response
as in Figure 4). We (iv) repeat the same procedure where the
signal is now a time-locked, periodic repetition of the same
random set which varies over ! (as in Figure 3(b)), repeated

over " cycles, to obtain ��. Direct calculation (v) yields the
information 
 transported over all the nodes of the grid (as
in Figure 5, i.e., further described in Section 3 below and
comments thereof).

3. Results

3.1. �e Information Transported over the Grid: �e Spatial
Dependency. We consider a grid composed by N neurons

Boundary

l

Information

0.2 bits

0.5 bits

1.0 bit

Figure 5: Information is derived in each node of the network. Here,
we present information as circles or spheres in which the diameter of
the sphere is proportional to the total information conveyed through
a node over time.

where N is varied in the 25–200 range and the topology
of the grid is described in Section 2. Initially, the entire
system is placed in the initial condition, where the signal and
information are zero everywhere in the grid.�ese conditions
are then perturbed with a random uncorrelated stimulus
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Figure 6: Information delivered through individual nodes can be
integrated over a circumference of radius ', where the radius is the
distance from the initial point of transmission.�e integral is amea-
sure of information transported at a speci	c length from the center
of the network. In the diagram, you may observe three di
erent
regimens of information transmission. In the intermediate regimen,
the total information conveyed through the grid is constant.

that is applied to a node * randomly chosen among those
comprised in a small neighborhood of the center of network.
In all cases, the initial disturbance propagates outward from
the initial position to the boundaries of the system. �is
stimulus serves to derive the total entropy of the signal
transmitted over the grid.�en, the system is perturbed with
a periodic correlated stimulus, from which the noise entropy
is derived. �e di
erence between the total entropy and the
noise yields an estimate of the information transmitted all
over the nodes of the network. In the simulations, we posit
with [22] that the neural time constant is � = 3ms, the
membrane capacitance�� = 300 pF, the amplitude of a pulse�/�� = 0.25mV, and the resting and threshold potentials,� = 6mV and � = 9mV, respectively; moreover, the time binΔ� = 3ms, the length of a word !/Δ� = 12, the number
of trials " = 400, and the length of the grid � = 200 -m.
For the present case, the refractory time is maintained 	xed
as �	 = 10�. �e de	nition and signi	cance of the symbols
above are provided throughout the paper and in a separate
list of symbols.

Figure 5 reproduces the information transmitted over the
network for a speci	c con	guration (here, N = 100), where
the circles at any node have a diameter that is proportional to
the information transferred through that node in bits. Notice
that the modulus of information is high in close proximity to
the source of stimulation; then, it smoothly decays moving
from the center to the periphery of the grid. �e total
information 
	 transmitted at a speci	c distance ' from the
center is displayed in Figure 6 for a number of nodes in the
grid N = 100, considered as an example. In the diagram,
the error bars are determined over at least 20 simulations per
data point. We observe three regimens of transmission in the
grid: (i) for small ', the information varies linearly with the
distance; (ii) for intermediate ', 
	 displays a constant value,
meaning that the information carried by the stimulus would
not depend on the distance from the stimulus; (iii) for large
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Figure 7: �e information transported at a distance ' from the
center of the grid is represented as a function of the number N of
nodes in the grid. For small N, information increases with N. For
largeN, saturation in the grid hampers information growth.

', 
	 decreases with 1/'. �e described regimens result from
the competition between the degradation of information and
the number of nodes encountered at a speci	c ' over which 
	
is determined. In the linear regime (i), the number of nodes
increases more rapidly than the degradation of information
at a speci	c ', and thus we can register an overall growth of 
	
with '. �e remaining regimens may be explained similarly.
�e information 
	 against the radius ' is shown for di
erent
numbers N of neurons in the network in Figure 7. From
this, we can make two observations. �e 	rst is that the
leading edge of the distribution moves to increasing values
of ' for increasing N. �e second is that the integral of
the distribution is higher for large values of N. And thus
the center of mass of information moves from the center
to the periphery of the domain with N, but this e
ect is
progressively reducedwith the number of neurons in the grid.
�e e
ect of N on 
 is even more visible on reporting the
information integrated over the entire grid against N, and
this is described in the following section.

3.2. �e Information Transported over the Grid: E�ect of
the Number of Neurons N. �e overall information 
tot
transported through the grid is reported in Figure 8(a) as
a function of N. You may notice that 
tot increases linearly
with N for small N; di
erently, for su�ciently large N, the
propagation of information is retarded and 
tot grows less
rapidly than N. On dividing 
tot per the number of nodes,
one obtains the information density 7� in the grid; that is an
indication of how e�ciently a message travels through the
network and this is reported in Figure 8(b). From Figure 8(b)
we observe that that information per node increases to reach
a maximum at N = 100; then, it decreases meaning that
even if the information content as a whole continues to rise,
the information density and quality progressively diminish.
�is is easily explained considering the number of active
connections that exist among the nodes of the grid. If we
have N neurons uniformly distributed over a surface, the
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Figure 8: �e information integrated over the entire grid as a function of number of neuronsN in the grid. Information increases linearly
with N for small N; di
erently, information growth is hindered for large N: for the present con	guration N = 100 marks the transition
from small to large (a).�e total information can be divided per the number of neurons and this yields the information density in the grid; on
reporting the information density as a function ofN, onemay observe that an optimal number of nodes exists at which it reaches amaximum,
here,N = 100 (b).

maximum internodal distance in a Delaunay cell of those
neurons shall be on average

�� = √2 �
√N − 1 . (7)

For N < 100, nodes in the grid are sparse and they are
separated by a distance �� that is on average larger than
the cut-o
 distance, �� > �co, and thus fewer neurons
will develop connecting synapses. �e number of internodal
connections is a monotonic, nondecreasing function of N
(7) and this would explain the behavior of 7� for N <100. Di
erently, for N = 100, neurons in the grid are
su�ciently dense and the majority of internodal connections
are preserved (�� < �co). For any N larger than 100, the
number of connections per neuron increases slowly with N

and approaches the theoretical value D = 6. In this range,
we observe a degradation of information quality withN. �e
results here presented indicate that the information quality
in the grid is conditional to the number of connections per
neuron D and that, for a 	xed D, increasing the absolute
number of neurons in a graph is detrimental to information
quality in that graph.We introduce now another variable that
is herein de	ned as

'cm = ∑N

�=1 
�'�
∑N

�=1 
� , (8)

where 
� is the information transmitted at a generic node� at a distance '� from the center. �us, 'cm indicates the
position of the center of mass of information in a network.
�e larger the 'cm, the further a message travels through the
network. Figure 9 reports 'cm as a function of N. In line
with the presented results for 7�, 'cm increases for increasing
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Figure 9: �e position of the center of mass of information in
the network as a function of number of neurons. It represent the
distance at which information is transmitted. Depending on the
e
ective links among neurons in a grid, there exists an optimal value
of N for which information in the domain travels the maximum
distance.

N in the low number of nodes range; it reaches an absolute
maximum at N = 150, and then it decreases. Similarly to 7�
and depending on the e
ective links among neurons in a grid,
there exists an optimal value of N for which information in
the domain travels the maximum distance.

3.3. �e Information Transported over the Grid: E�ect of
the Latency Time �	 and Resonance in the Grid. Here, we
present results of simulations in which the refractory time
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Figure 10: Density of information in a grid of neurons as a function of the number of neurons in the grid, for di
erent refractory times:
the smaller the timing of spiking neurons, the larger the information neurons can convey in a grid (a). Position of the center of mass of
information in a grid as a function of the number of neurons in the grid, for di
erent refractory times: a combination of network topology
and physical characteristics of individual neurons may exist, for which the e�ciency of transport is giantly enhanced in a resonance e
ect
(b).

�	 is varied from 10� down to 3�. �e remaining parameters
are maintained from the precedent simulations. Figure 10(a)
reports the information density 7� as a function of the
number of neurons in the grid N for di
erent �	. One may
observe that 7� increases for decreasing �	 and this is easily
explained considering that a smaller refractory or latency
time would translate in a faster 	ring rate in an individual
neuron. In the high �	 range, that is, moving from �	 = 10� to�	 = 5�, a variation in �	 has the e
ect to amplify the signal,
and the ampli	cation is proportional to the information
density at the initial state. For N = 100, this scale e
ect is
maximum, with 7���=10� ∼ 0.02 bits/neuron and 7���=5� ∼0.03 bits/neuron, and thus the ampli	cation factor is ;100 =7���=5�/7���=10� ∼ 3/2. Di
erently, for N = 25 and N =200 we register limited and vanishingly small ampli	cation
factors ;25= ;200 ∼ 0. In the low �	 range, that is, moving
from �	 = 5� to �	 = 3�, decreasing �	 would not further
enhance the maximum information density, and this may be
ascribed to a saturation e
ect in the grid. Instead, information
is globally augmented; that is, information increment is more
uniform in the spectrum ofN, with smaller variations along
N. Similarly to 7�, the position of the center of mass of
information 'cm is displayed in Figure 10(b) as a function
of N for di
erent �	 = (3, 5, 10)�. �e diagram of 'cm may
convey even more information on the behavior of the system
than 7�. Notice that while the increment in 'cm moving from�	 = 10� to �	 = 5� is moderate, when the depression time in
the neuron is adjusted as �	 = 3�, we observe an anomalous
enhancement of the radius 'cm at a speci	c N = 150. �is
giant increment may depend on the topology of the network,
similarly in concept to the resonance in a mechanical system,
and a tentative explanation of a similar e
ect is provided
below. Consider the scheme in Figure 11, individual neurons
will emit signals where the time distance between a couple of

those signals is the latency or resting time �	. �us, the 	ring
rate of individual neurons will be

?neuron = 1
�	 =

1
@� , (9)

where @ ∈ {3, 5, 10} is an integer. In contrast, the 	ring
frequency of the entire grid will be the reciprocal of the time

�network that the signal takes to travel over the entire network.
If we call B the number of steps in the discrete sequence that
yields a signal from the center of the grid to the periphery, we
have

�network = B�,
?network = 1

B�
(10)

and B is a characteristic of the grid. Compare now (9) and

(10), you shall 	nd that ?neuron = (B/@)?network; that is, the
frequency of the neuron is B/@ times the frequency of the
network. Consider now the inset in Figure 11(c), where the
diagram reports the number of steps in a grid B as a function
of N for the considered case �	 = 3�. You can notice that B
varies withN to a large extent; however, forN = 150 it takes
the integer value B = 9; thus, the frequency of the neuron
is an integer multiple B/@ = 3 of the frequency of the grid.
�is may generate a cumulative ampli	cation of the signal
transmitted over the grid in what resembles a domino e
ect
or chain reaction andmay explain the huge distance at which
information is transmitted for a similar con	guration.

4. Discussion and Conclusions

�e presented results indicate that in a network of nerve cells
the information transmitted over the network depends on
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Figure 11: �e information that travels through the grid occupies successive sites of the grid in a discrete sequence of steps (a). �e timing
between successive steps yields the frequency of the grid in contrast to the spiking frequency of individual neurons (b). If the number of steps
in a grid assumes an integer value, it implies that the frequency of the neuron is an integer multiple of the frequency of the grid.�is generates
cumulative ampli	cation of the signal transmitted over the grid.

the absolute number of cells in the grid and, for interme-
diate values of neural density, it reaches a maximum. �e
information is herein represented as the total information
(information quantity), that is, the information integrated
over all the nodes in the grid, and the density of information,
that is, the total information divided per the number of
nodes in a network. Moreover, we provide an estimate of the
position of the center of mass of information in the net, that
is, the distance over which it is transported and the larger
the distance the larger the e�ciency of the grid (quality of
information).

Usingmathematicalmodelling and computer simulations
(in which an integrate-and-	re model is coupled to a discrete
Shannon’s entropy based description of information in bits),
we found that the quantity, density, and quality of information

depend on the cooperation of neurons in a grid and on the
topology of the network. While the information quantity
increases as a monotonic function of the number of cells
N in the domain, the information density and quality have
a nonlinear behavior and an optimal value of N exists for
which they exhibit a maximum. Simple addition of nodes
in a network of nerve cells does not enhance the quality
of information in that network. Moreover, we found that
increasing the 	ring rate of individual neurons (i.e., reducing
the postsynaptic depression time �	) has the consequent
e
ect of increasing the indexes of information globally in a
network. Perhaps more importantly, we found that certain
con	gurations of neurons in a grid may exist for which
information in the grid is giantly increased. �is is similar
in concept to a resonance e
ect in a physical system in
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which, when the physical characteristics of the system and
the frequency of a 	eld are in speci	c ratios, the amplitude of
the 	eld is ampli	ed.

�ese 	ndings are in qualitative agreement with other
described experiments. Writing on Plos One, Bi� and
colleagues [29] demonstrated planar cultures from dissoci-
ated primary central neurons using multielectrodes arrays
(MEAs). In experiments in which the neural cell density
in the culture was varied, they observed a moderate spon-

taneous cell activity for sparse (900 cells/mm2) and dense

(3600 cells/mm2) cell cultures, di
erently frommediumpop-

ulated cultures (1800 cells/mm2) in which they registered
elevated electrophysiological activity in terms of number of
active channels, mean frequency, and bursting rate in a net-
work. Commenting on these results, the authors recognized
a discrepancy with other reported experiments (to cite a few,
the works of Wagenaar et al. [30] and Cohen et al. [31]), in
which the spiking frequency decreases moving from low to
high cell densities; and vice versa the synchronization among
spikes increases, and ascribed a similar discrepancy to coin-
cidental e
ects, including deviations between nominal and
actual seeding densities across di
erent experiments, di
er-
ent culture feeding timings, and di
erent experimental tech-
niques and procedures. However, in an information theory
interpretation of these data, we propose a diverse explanation
of this apparent divergence. Considering that information
depends on both the 	ring rate of signals and the synchronal
combination of these signals in a network (and thus network
topology cannot be disregarded), the 	ndings of Wagenaar,
Cohen, and Bi� and colleagues, rather than contradictory,
may in reality support the same notion that, for su�ciently
large cell densities, any further increment of neural cells in
a network would hamper the transmission of information in
that network.Ourmodel is predictive in nature andmay reca-
pitulate and explain this sequence of diverse observations.

Our results deserve to be discussed even further. In
the simulations, neurons in a plane are connected through
a Delaunay triangulation of not-intersecting edges, which
guarantees that the number of neurites per neuron is approx-
imately constant and lower than 6 for all the considered
con	gurations (this is described in Section 2 and throughout
the paper). Consider now the work of Cullen and colleagues.
In [32], they demonstrate that at the early time of synapse
formation in planar neural cultures (i.e., for a number of days
in vitro DIV from incubation smaller or equal to 7) the mean
number of synapses per neuron does not vary and is 5 ± 1
regardless of the cell density in the culture. �us, our scheme
(and noticeably a Delaunay triangulation)may reproduce the
transient behavior of nonmature nerve cells at the initial time
of network development. AssumingwithGentile [5] that neu-
ral cells fate is driven by an information criterion (that would
accompany and perhaps conform to an energy and biology
criterion), whereby cells on a substrate form patterns that
maximize information through those patterns, the presented
model and results would explicate the mechanisms of cell
adhesion and migration in the early neural cells network.

Consider a certain number of nerve cells seeded on a
planar �at surface. �ose cells shall be uniformly distributed

and thus cell-cell distance would depend on the number of
cells and cell density in the culture. If cell density is su�ciently
large, internodal distance is small and neurons will develop
connecting synapses. Under these conditions, our model
indicates that any increase in cell density would adverse
information. �us, any increase in cell density would be
prevented and cells would not proliferate nor migrate on the
surface. �is prediction con	rms a number of experiments
[5, 33–35] in which it is observed that nerve cells adhesion
over planar �at surfaces would not progress or would min-
imally progress with time a�er an initial assessment. A�er
synapses formation and neuron-neuron engagement is com-
plete, information transmission in the system is augmented
on multiplying the number of synapses among neurons, as
observed, for example, in [32]. �e presented model and its
more sophisticated evolution that will be developed over time
may represent a new tool for engineers andneuroscientists for
the rational design of sca
olds for applications in regenerative
medicine, tissue engineering, and personalized lab-on-a-
chips.

Symbols

�: Membrane potential��: Capacitance of the membrane��: Conductance of the membrane = 1/��: Resistance of the membrane� = ��: Time constant�: Resting potential�: �reshold potential
stim(�): Stimulating current, which is a function of
time

AP: Action potential
N: Maximum number of neurons in the grid�: Length of the grid
P: Set of neurons in the gridE�: �th element inPF�: Subset ofP connected to E��: Number of edges of the Delaunay

triangulation ofP
D: Degree of the graph�: Adjacency matrix���: Distance between E� and E��co: Cut-o
 distance��: Intermodal distance�: Current pulse

��� : Timing of individual pulses
rel: Number of neurotransmitter release

events�: Dirac delta function�: Heaviside function�: Attenuation�	: Refractory or resting timeΔ�: Time bin�
: Total entropy��: Noise entropy!: Temporal window in which the signal is
transmitted
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#: Word, sequence of binary events in !$(#): Probability of a word
: Information': Radial distance from the central node in a
network
	: Information transmitted at a generic
distance '
tot: Total information integrated over the
entire grid7�: Information density'cm: Center of mass of information;: Ampli	cation factor?: FrequencyB: Number of steps in a grid.
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