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INFORMATION IN SEMIPARAMETRIC MIXTURES OF
EXPONENTIAL FAMILIES1
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University of Ottawa

ŽIn a class of semiparametric mixture models, the score function and
.consequently the effective information for a finite-dimensional parameter

can be made arbitrarily small depending upon the direction taken in the
parameter space. This result holds for a broad range of semiparametric
mixtures over exponential families and includes examples such as the
gamma semiparametric mixture, the normal mean mixture, the Weibull
semiparametric mixture and the negative binomial mixture. The near-

'zero information rules out the usual parametric n rate for the finite-
dimensional parameter, but even more surprising is that the rate contin-
ues to be unattainable even when the mixing distribution is constrained to
be countably discrete. Two key conditions which lead to a loss of informa-
tion are the smoothness of the underlying density and whether a sufficient
statistic is invertible.

1. Introduction. This paper studies the loss of information associated
with estimating a finite-dimensional parameter � due to the presence of an
infinite-dimensional nuisance mixing distribution G. The models that will be
considered here are finite semiparametric mixtures over exponential families.
One of the key results of the paper shows a loss of information for � in models
which satisfy a smoothness condition and which contain an invertible suffi-
cient statistic. Semiparametric mixture models are typically nonidentified
without some form of constraint, so a loss of information by itself is not too
surprising. However, the loss of information seen here persists even for
models which are constrained to allow for only discrete mixtures. We will see
that allowing discrete mixtures to have limit points will lead to a breakdown

'of the classical n inference for � .
Ž .The exact details of the problem are as follows. For real-valued � , y �

� � YY , let

�1 f x � , y � exp ys x , � � t x , � � b � , yŽ . Ž . Ž . Ž .Ž . Ž .
denote a density taken with respect to a �-finite measure � on a measurable

Ž . Ž . Ž .space XX , BB , where for each � � �, the maps s �, � and t �, � are Borel
Ž .measurable functions from XX , BB onto �. For fixed � , densities of the form

Ž .1 define a one-parameter exponential family indexed by y, with natural
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parameter space

YY � � y : 0 � exp ys x , � � t x , � d� x � � .Ž . Ž . Ž . Ž .Ž .H½ 5
Ž .It will be assumed that YY � � YY for each � and that YY is nonempty. By the

convexity of the natural parameter space, this guarantees that YY is either a
nonempty interval in � or all of �.

Ž � .Let G be some unspecified mixing distribution on YY and f x � , y a
Ž . Ž � . Ž .density of the form 1 , where f x � , y is assumed to be measurable in x, y .

Then

� �f x � , G � f x � , y dG yŽ . Ž .Ž .H
2Ž .

� exp ys x , � � t x , � � b � , y dG yŽ . Ž . Ž . Ž .Ž .H
is a semiparametric mixture over a density from an exponential family.

Ž .The problem for estimating � in semiparametric mixtures of the form 2
Ž . Ž .has been studied by Lindsay 1983 and Van der Vaart 1988 . Both authors

have considered examples in which the measure of information for � remains
Ž .positive in the presence of the mixing distribution G. Van der Vaart 1988

constructed estimators for � which are efficient under the assumption that a
least-favorable submodel exists. The existence of such submodels are shown

Ž .to hold in models like 2 for discrete G with limit points. The proof relies on
the completeness of exponential families.

The completeness property of the exponential family will also create a loss
of information for � . By modifying some of the arguments given in Van der

Ž .Vaart 1988 , we will be able to characterize models in which such a loss of
information occurs. In particular, we will present conditions on G and the

Ž .underlying densities 1 which cause the information for � to be arbitrarily
Ž . Ž .small. As in Begun, Hall, Huang and Wellner 1983 , and Lindsay 1983 , we

measure the information for � by ‘‘the effective score for � ,’’ which reflects the
reduction in the Fisher information for � due to the presence of the nuisance

Ž .parameter G. In particular, we will study mixtures of the form 2 where the
effective information for � approaches zero even when G is constrained to be
discrete.

The problem can be further motivated by the following example.

Ž .EXAMPLE Normal mean mixture . If Z is a standard normal variable
'independent of Y � G, then X � � Z � Y is a normal mean mixture with

Ž .unknown variance � � 0. This class of models is of the form 2 because the
Ž � . Ž . Ž .density for X � , y � N y, � can be written as in 1 ,

2 2x x 1 y
�f x � , y � exp y � � � log 2�� � ,Ž .Ž . ž /� 2� 2 2�

where � � YY � ��� �.
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It is well known that the normal mean mixture is identified only when G
� Ž .�contains no normal components Kiefer and Wolfowitz 1956 . Without this

constraint, the nonidentifiability of the model is easily demonstrated by
noting that

DD 'X � Z � X � 1 � � Z � Y ,Ž . Ž .

Ž .where Y � N 0, � is independent of Z.
Clearly then, there is no information for � in the unconstrained model or

at least not for inferential problems that are one-sided such as in testing a
null hypothesis like � � � . Thus, without constraints we cannot estimate �0
at any rate, but what if we apply constraints to the model? Will there still be

'a loss of information, and will the n rate remain unattainable even with a
strongly identified model? The answer to this question is ‘‘yes,’’ because we
will find that even when G is constrained to be discrete there is still a loss of

'information for � that precludes a n rate of estimation. Furthermore, this
phenomenon persists even when � 	 � , which shows that the loss of infor-0
mation in the discrete case is more than just an approximation to what occurs
in the continuous problem.

'One might conjecture that the n rate for � is always unachievable in
Ž .finite semiparametric mixtures like 2 . Such a conjecture seems reasonable

'given the parallel result, which is that the n rate fails to hold when
� Ž .�estimating G in finite mixtures Chen 1995 . However, the classical break-

Ž .down does not always occur for � . Consider semiparametric mixtures N � , Y ,
where Y � 0 is a scale random variable and � � � is the unknown mean.
Then

1 12�f x � , y � exp � x � � � log 2� y ,Ž . Ž .Ž . ž /2 y 2

Ž . �1which can be rewritten as 1 by reparameterizing y as y . However, the
classical rate fails to break down in this example because � can always be

'estimated at a n rate using the median of the data.
What sets this example apart from the normal mean mixture model is the

Ž .form for the sufficient statistic s �, � for y. As we will see, a critical
Ž .assumption leading to a loss of information will depend upon s �, � being

Ž .invertible. In the normal mean mixture model s x, � � x
� is 1:1, while in
Ž . Ž .2the previous example s x, � � � x � � 
2, which is not uniquely invert-

ible over �.

1.1. Further examples. Our problem can be further motivated by some
additional examples. The next example is interesting because the loss of
information for � appears to exist in only one direction. This one-sidedness is

Ž .also the reason why our regularity conditions condition C1 in Section 2 are
unidirectional.
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Ž .EXAMPLE Weibull semiparametric mixture . Let W denote a standard
exponential variable, independent of a positive variable Y � G. Then the
Weibull semiparametric mixture is the distribution for the variable X �
Ž .1
�W
Y . Here � � 0 acts as a shape parameter and Y � 0 as an unobserved
scale mixing variable. If � and Y � y were known, X would have the

Ž .Weibull � , y distribution with density

� �f x � , y � exp y �x � � � 1 log x � log � y , x � 0.Ž . Ž . Ž .Ž . Ž .
Ž . � �This has the same structure as 1 with � � YY � � � � .

Ž . Ž .Jewell 1982 observed that a Weibull � 	, 1 can always be reexpressed as a
Ž .mixture of Weibull � , y variables, if � � � 	. That is, there exists a Y inde-

pendent of W such that

Weibull � 	, 1 � Weibull � , Y , � � � 	.Ž . Ž .DD

Ž .An explicit construction for Y is given in Ishwaran 1994 , who shows how
'moment constraints for G translate into slower than n rates for � . Although

the moment constraints on G are enough to ensure that the models are
'identified, they still do not guarantee the n rate. Here we will show that the

problem persists even for discrete G.

Another example in which there seems to be a one-sided lack of informa-
Ž .tion at least for the continuous case is the gamma semiparametric mixture.

Ž .EXAMPLE Gamma semiparametric mixture . With shape parameter � � 0
Ž .and scale parameter y � 0, the Gamma � , y has density

�1 � ��1�f x � , y � 
 � y x exp �yxŽ . Ž .Ž .
� exp y �x � � � 1 log x � � log y � log 
 � , x � 0,Ž . Ž . Ž .Ž .

Ž .where 
 is the gamma function. Clearly, the density is of the form 1 . Here
� � YY � ��� ��.

Unconstrained, the model is unidentified and hence contains no informa-
tion for � . The lack of identification follows from an exercise in Lindsay
�Ž . �1995 , page 55 ,

� �f x � 	, y	 � f x � , y dG y for � � � 	,Ž .Ž . Ž .H
Ž . Ž .��� 	�1 ��	 4where dG y � y � y	 y y 	 y	 .

'As we will see, the n rate will fail to hold in the normal, Weibull and
gamma mixtures described above. Because many other mixtures can be
described in terms of these models, the parametric rate must fail to hold in a
wider range of models than has been commonly recognized or appreciated.
For example, the same failure in the gamma mixture must also exist in the
inverse-gamma mixture and the scaled inverse-chi-square mixture. Another

'important example in which the n rate fails is the negative binomial
mixture. Its distribution arises through mixing with the gamma distribution.
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Ž .EXAMPLE Negative binomial mixture . The negative binomial, Neg-
Ž .Bin � , � , is the distribution for a Poisson variable whose rate parameter has

Ž .the Gamma � , � distribution. The additional parameter makes it a robust
alternative to the Poisson distribution. When � � 0 and � � 0 are known, the

Ž .Neg-Bin � , � has density
x�


 x � � � 1Ž .
�f x � , � � for x � 0, 1, . . . .Ž . ž / ž /
 x � 1 
 � 1 � � 1 � �Ž . Ž .

Ž .Under the 1:1 transformation y � �log 1 � � , the density can be reex-
Ž . Ž .pressed as 1 with s x, � � x and


 x � �Ž .
t x , � � log ,Ž . ž /
 x � 1 
 �Ž . Ž .
b � , y � � y � log exp �y � 1 .Ž . Ž .Ž .

� Ž .Note that under the alternate parameterization, y � �
 � � 1 , the distri-
bution represents the number of failures before the � th success, where the

�probability of success is y.
Ž .We will use the parameterization y � �log 1 � � in studying mixtures of

Ž . � �the Neg-Bin � , y . In this case, � � YY � � � � and � is counting measure
	 4 XXon XX � 0, 1, . . . over the �-algebra 2 , the set of all subsets of XX .

The loss of information that we will study will be intimately tied to the
discreteness assumed for G. To make this more precise we need to introduce
some notation. For each integer j � 1, 2, . . . , let GG denote the class ofj
discrete distributions that assign positive mass to exactly j atoms on YY. Set

� Ž .GG � � GG to be the class of all finitely discrete mixtures, and defineF j�1 j
Ž . Ž .PP �, GG to be the class of mixtures of the form 2 over � � � and G � GG .F F'This paper will show that the n rate for � fails to hold if the class of finite

mixing distributions GG is slightly expanded to include all discrete distribu-F
tions. Let GG be the class of discrete distributions that have a countable�

Žsupport on YY the support for a distribution is the smallest set with measure
.one . Let GG � GG � GG . Our main result, Theorem 3, describes conditions onD F �

Ž .the underlying densities 1 which ensure that the � parameter in the class of
'Ž .models PP �, GG is not estimable at a n rate. Indeed, we will find that theD

rate remains unattainable even if the G are constrained to share the same
support, as long as it is a countable set containing a limit point. These results

Žwill hold for the motivating examples presented here Section 3 verifies the
.conditions of Theorem 3 for the four examples .

Although we find a loss of information in each of our examples, the models
under study are all strongly identified, at least for the case when G � GG .F
This result is given in Section 4, which presents conditions sufficient for

Ž .identification in finite semiparametric mixtures of the form 2 . The theorem
is applied to five different models, including the four described above.

Ž .2. Zero information. Let PP �, GG be the class of mixtures with densi-D
Ž .ties of the form 2 , where GG is the class of discrete distributions on YY. WeD
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will exhibit fairly simple conditions which lead to a loss of information and
'which preclude a n rate of estimation for the � parameter. The conditions

Ž .will depend upon the smoothness of the underlying densities 1 and whether
Ž .the sufficient statistic s �, � for y is invertible.

Ž .Suppose P � PP �, GG is a mixture with structural parameter � � � and0 D 0
mixing distribution G � GG . Write f for its density taken with respect to �.0 D 0

'The failure of the n rate will be based upon a construction which will
depend upon the structure of G . Suppose that the support for G is0 0
countably discrete with a limit point residing in the interior of YY. Then we
will show that for each � � 0, there exists a G � GG , for small  , such that D

2f 23 P � 1 � � ,Ž . 0 ž /f0

where

�4 f x � f x � �  , y dG y .Ž . Ž . Ž .Ž .H 0 

ŽIn particular, the construction describes a one-dimensional approach � �0
. Ž . , G to � , G through the parameter space � � GG which causes the score 0 0 D

Ž .function and hence the information for � to become arbitrarily small. The
Ž .relationship 3 will then establish the rate assertion by a standard Hellinger

distance argument.
The G used in the construction is defined by

� � � �5 dG � dG 1 �  h where G h � h y dG y � o 1
 .Ž . Ž . Ž . Ž . Ž .H 0  0   0

That is, 1 �  h is the Radon�Nikodym derivative of G with respect to G .  0
The construction will yield a fairly strong result, because it relies on a G

which is absolutely continuous with respect to G , and which converges to G0 0
in the total variation distance. Slightly rephrased, because G and G share 0
the same support, this means that even if we knew exactly what the support

'was, we still would not be able to estimate � at the usual parametric n rate.
2 Ž .The heuristic for the construction is as follows. Write L G for the0 0

equivalence class of G -square integrable functions with zero G expectation.0 0
2 Ž .Take some h � L G , truncate the function and then center it by its G0 0 0

Ž .expectation. This gives an h that can be used in constructing a G as in 5 . 

Now assuming that our densities are smooth enough to be differentiated, we
Ž .can expand 4 so that

�f x � f x � �  , y 1 �  h y dG yŽ . Ž . Ž .Ž .H 0  0

�
� �� f x � , y �  f x � , y � ��� 1 �  h y dG yŽ . Ž .Ž . Ž .H 0 0 0��

�
� �� f x �  h y f x � , y � f x � , y dG y .Ž . Ž . Ž .Ž . Ž .H0 0 0 0��
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Then, dividing throughout by f ,0

f xŽ .
6 � 1 �  A G , h x � � x ,Ž . Ž . Ž . Ž .0f xŽ .0

where

1
�7 A G , h x � h y f x � , y dG yŽ . Ž . Ž . Ž . Ž .Ž .H0 0 0f xŽ .0

and
1 �

�8 � x � f x � , y dG y .Ž . Ž . Ž .Ž .H 0 0f x ��Ž .0

'To establish the slower than n rate, the aim will be to find a G � GG and0 D
2 Ž .an h � L G such that0 0

A G , h x � �� x .Ž . Ž . Ž .0

Ž .This will then show by 6 that f � f , which will complete the argument 0
Ž .using 3 .

Here are the regularity conditions that formalize the heuristic.

CONDITION C1. For small  , either positive or negative, but not necessar-
ily both:

Ž .i The derivative

�
�� x , y , � �  � f x � �  , yŽ . Ž .0 0��

Ž .� �exists for a.a. x, y � � G .0
Ž . Ž .ii � x, y, � �  is continuous in  .0
Ž .iii There exists a dominating function M such that

2
� x , y , � � Ž .0 19 � M x , y where M � L � � G .Ž . Ž . Ž .0�f x � , yŽ .0

With condition C1, we can formalize the steps in the heuristic in proving
the following.

Ž .LEMMA 1. Assume that condition C1 holds for P � PP �, GG , where P0 D 0
Ž . 2 Ž .has parameter � , G . Then for each h � L G , there exists a G � GG of0 0 0 0  D

Ž .the form 5 such that
2f 22 210 P � 1 �  P A G , h � � � o  ,Ž . Ž . Ž .Ž .0 0 0ž /f0

2 Ž . Ž . Ž . 2 Ž .where � � L P is defined by 8 and A G , � is the linear map from L G0 0 0 0 0
2 Ž . Ž .into L P defined by 7 .0 0
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The next lemma describes the condition needed for G in order to make0
Ž .the first term on the right-hand side of 10 arbitrarily small. The proof of the

Ž .lemma relies on the completeness of exponential families and requires s �, �
to be invertible.

LEMMA 2. Suppose the support for G � GG contains a limit point which0 D
Ž . Žlies in the interior of YY. If s �, � is bimeasurable 1:1 on XX with a measur-0

. 	 Ž . 2 Ž .4 2 Ž .able inverse , then A G , h : h � L G is dense in L P .0 0 0 0 0

' ŽLemmas 1 and 2 yield the slower than n rate their proofs can be found
.in the Appendix .

Ž .THEOREM 3. Assume that condition C1 holds for P � PP �, GG with0 D
Ž . Ž .parameter � , G , where G and s �, � satisfy the conditions of Lemma 2.0 0 0 0

Let GG  GG be the class of discrete distributions with the same support as G .0 D 0
If X , X , . . . is an independent sequence from P , then an estimator1 2 0
ˆ �1
2Ž . Ž .� X , X , . . . , X for � must have rate of convergence slower than O nn 1 2 n 0 p

Ž .in the class of mixtures PP �, GG .0

Ž .PROOF. The operator A G , � is dense by Lemma 2. Therefore, for each0
2 Ž . Ž Ž . .2� � 0 there exists a function h � L G satisfying P A G , h � � � � .0 0 0 0

Hence, by Lemma 1 there exists a G � GG so that 0
2f � fŽ . 0 2 2� � � o  eventually.Ž .H f0

2 2' 'Ž . Ž .This bounds the Hellinger distance because a � b � a � b 
b for any
a, b 	 0. Therefore, we have exhibited mixtures whose � values are sepa-
rated by  , but whose Hellinger distance is bounded by � 2 for arbitrarily

Ž .small � � 0. Furthermore, these mixtures lie in PP �, GG . The theorem now0
follows from standard results concerning the Hellinger distance and its role

� Ž .�in determining rates of estimation see Le Cam 1973 . �

'3. Examples of slower than n estimation. Here we establish the
'non- n rate of estimation for � in each of our four motivating examples. We

show this by checking the conditions in Theorem 3, which, as we will see, are
Ž .quite straightforward, excepting condition 9 . Interestingly, in at least one of

Ž . Ž .our examples the Weibull the dominating condition 9 appears to hold only
for values of � in a particular direction: that is, for  values that are either
strictly positive or strictly negative. Because the Weibull model is known to

Ž .have a one-sided loss of information, it would appear that condition 9 can
act like a diagnostic for identifying such models.

Ž .EXAMPLE Normal mean mixture . The continuity of the derivative is
Ž .straightforward. Furthermore, because s x, � � x
� is 1:1 with a Borel

Ž .measurable inverse, we need only check condition 9 in order to establish the
'non- n rate.
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Simple differentiation shows that

1 1 2 �� x , y , � � � � x � y f x � , y .Ž . Ž . Ž .22� 2�

With � � � 	 � 	 � , we obtain the bound0 0

2 22
� x , y , � 1 1 1 � � � x � yŽ . Ž . Ž .02� � x � y exp � .Ž .2� ž /f x � , y 2� 2 � � � �2� Ž .2��Ž . '0 0 0 00 0

Ž .If M x, y is the function on the right-hand side of the bound, then it easily
� �follows that G � � M � � for a small enough � � 0. This verifies the0

conditions of the theorem.
It is interesting to note here that the conditions could have also been

verified for  � 0. However, by verifying them for  � 0 we have shown that
there is a loss of information associated with � � � . This is interesting0
because the loss of information in the unconstrained model occurs for � � �0
when Y has a distribution with a normal component. The loss of information
in the other direction signifies a loss of efficiency in the discrete mixture
problem, which is unrelated to having G approximating a normal distribu-

tion.

Ž . Ž .EXAMPLE Negative binomial mixture . Verifying condition 9 is the only
� Ž .tricky thing here notice that s x, � � x is invertible with a bimeasurable

Ž XX . Ž XX .�inverse from XX , 2 onto XX , 2 .
Differentiating,

� x , y , �Ž .
� 
 x � �Ž .

�� log � y � log exp �y � 1 f x � , y .Ž . Ž .Ž .ž /�� 
 �Ž .
11Ž .

Observe that the derivative exists and is properly defined due to the continu-
Ž . �ity of 
 and from the fact that exp �y � 1 � 0 over YY � � . Furthermore,

the gamma function is analytic, and can be expressed as the infinite product
� Ž . �expansion Ahlfors 1979 , Chapter 5.2.4

�11 z z

 z � exp �� z exp 1 � for RR z � 0,Ž . Ž . Ž .Ł ž / ž /z j jj	1

where � is Euler’s constant with approximate value 0.57722. The product
Ž .expansion provides a convenient method for bounding 11 . Taking the log,

and differentiating term by term, we get the following useful expression:

�1�� 1 z z
log 
 z � �� � � 1 � for RR z � 0.Ž . Ž .Ý 2 ž /� z z jjj�1
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Therefore, for x � XX and � � 0,

� 
 x � �Ž .
log ž /�� 
 �Ž .

�1 �1�x x x � � �
� � 1 � 1 � ,Ý 2 ž / ž /� x � � j jjŽ . j�1

12Ž .

Ž . Ž . � 2which is bounded by 1
� � x� 2 , where � 2 � Ý 1
j is the Riemann zetaj�1
function evaluated at 2. With � 	 � 	 � � � , this gives the following upper0 0

Ž .bound to the square bracketed term in 11 :

1
� �R x , y � � x� 2 � y � log exp �y � 1 .Ž . Ž . Ž .Ž .

� � �0

Ž Ž . .Because y � log exp �y � 1 � 0 over YY , we get with � 	 � � � ,0

2�f x � , yŽ .
� exp yx � � � 2� y � log exp �y � 1Ž . Ž .Ž .Ž 0�f x � , yŽ .0

�2 t x , � � t x , � .Ž . Ž . .0

Ž . Ž .We can use 12 to expand t x, � around � . The mean value theorem gives0

� 
 x � � *Ž .
t x , � � t x , � � � � � log where � � � * � � .Ž . Ž . Ž .0 0 0ž /�� 
 � *Ž .

When � � � , the second term on the right is negative by the positivity of0
Ž .12 . Therefore, with � 	 � 	 � � � ,0 0

2
� x , y , �Ž .

�f x � , yŽ .13Ž . 0

2 �� R x , y exp �2� y � log exp �y � 1 f x � , y .Ž . Ž .Ž . Ž .Ž . 0

There are several things to notice in showing that the right-hand side of
Ž . Ž .13 is � � G integrable. First, the second moment of a Neg-Bin � , y equals0

� exp �y � �Ž .Ž .
,2exp �y � 1Ž .Ž .

Ž �2 .which remains bounded for large y � 0, but is O y for small y � 0.
Ž Ž . . Ž Ž ..Secondly, y � log exp �y � 1 is bounded for large y � 0 and O log �y for

�2 Ž .small y � 0. Therefore, if G Y � �, then 13 is � � G integrable. Hence,0 0
Ž .the right-hand side of 13 gives the required M for a G with a finite0

inverse-second moment.
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Ž .EXAMPLE Gamma semiparametric mixture . All the conditions of the
Ž .theorem are straightforward except 9 . Simple differentiation yields

2
� x , y , �Ž .

�f x � , yŽ .0
14Ž . 2
 � �Ž .0 2��� �10� log x � log y � log 
 � yx x exp �yx .Ž . Ž . Ž .2 ��
 �Ž .

By considering whether yx � 1 or yx � 1, we have for � � �
2 	 � 	 � ,0 0

2��� � � ��0 0 0yx � yx � yx .Ž . Ž . Ž .
Ž .The terms involving the gamma function in 14 can be bounded so that they

do not depend upon � . This and the previous bound gives us our candidate M
function. Its G � � integrability follows by noting that0

� �2 �1log x � log y � C yx x exp �yx dxŽ . Ž . Ž .H
0

� 2 ��1� log x � C x exp �x dx ,Ž . Ž .H
0

which is finite for � � 0.

Ž .EXAMPLE Weibull semiparametric mixture . For the Weibull mixture,
Ž . � �note that s x, � � �x is 1:1 with a Borel measurable inverse from � onto

� Ž .� . To verify condition 9 , differentiate to obtain

1
� �� x , y , � � 1 � yx log x � f x � , y .Ž . Ž .Ž .

�

With � � � 	 � 	 � ,0 0

2
� x , y , �Ž .

2��� �1 � �0 0� R x , y , � yx exp �y 2 x � x ,Ž . Ž .Ž .
�f x � , yŽ .0

Ž . �1Ž .2�Ž � . � � �2where R x, y, � � � � � � 1 � yx log x � 1
� . The ratio can be0 0 0
further bounded:

2
� x , y , �Ž .

�f x � , yŽ .0
15Ž .

R x , y , 0 yx�0�1 exp y , if 0 � x � 1,Ž . Ž .
�

� ���1 �0 0½ R x , y , � � � yx exp �yx , if x � 1.Ž . Ž .0

Some simple calculus shows that both inequalities are integrable under
ŽŽ . .the constraint that G exp 1 � r Y � �, for some r � 0. Therefore, by piec-0

Ž . Ž .ing together the inequalities in 15 we can construct an M satisfying 9
when G satisfies the necessary moment constraint.0
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Ž .The calculations given above indicate that condition 9 only holds when
� � � . This seems to be a signal that in the Weibull model there is loss of0

Ž .information only when � � � and not necessarily when � � � . Jewell 19820 0
Ž .and Ishwaran 1994 observed the same one-sided lack of identification.

4. Identification. The identification for the class of finite mixtures
Ž .PP �, GG will depend upon how well we can distinguish between densitiesF
Ž � . Ž � . Ž .f � � , y and f � � 	, y	 of the form given in 1 . Because of the special

Ž .structures of 1 , the identification will depend upon the behavior of

D x , � , � 	, y , y	 � ys x , � � t x , � � y	s x , � 	 � t x , � 	Ž . Ž . Ž . Ž . Ž .Ž .
over x � XX , � , � 	 � � and y, y	 � YY.

Ž .Theorem 4 given below presents conditions based on the behavior of
Ž .D x,� , � 	, y, y	 which ensure identification in each of our four motivating

examples, as well as an additional example, the inverse Gaussian mixture. It
Ž .should be noted that Teicher 1963 proved the identification for the normal

� Ž .and gamma finite mixtures Kiefer and Wolfowitz 1956 also discussed the
� Ž .identification for the normal mean mixture , while Elbers and Ridder 1982 ,

Ž .as well as Heckman and Singer 1984 , proved identification for the Weibull
semiparametric mixture. Although the identification in each of these three
models has been addressed, there still does not seem to be a theorem which

Žaddresses the identification for all of the five models presented here to my
knowledge this is the first identification proof for the inverse Gaussian and

.negative binomial mixture . Theorem 4 presents a unified approach for
studying all these models. Furthermore, the conditions for the theorem
depend only upon the form of the density and are much easier to work with

�than conditions formulated in terms of the characteristic function as in
Ž .�Teicher 1963 . This is especially helpful when the characteristic function is

complicated, as in the Weibull and inverse Gaussian case.

Ž .THEOREM 4. For the class of densities of the form 1 , suppose there exists
�values x , x � XX such that:0 0

Ž .a For one of the cases y � y	 or y � y	,

	 � 4��, if � � � 	 as x � x , x ,0 016 D x , � , � 	, y , y	 �Ž . Ž . ½ ��, if � � � 	 as x � x .0

Ž .b For y � y	 and one of the cases � � � 	 or � � � 	,

17 D x , � , � 	, y , y	 � �� as x � x� .Ž . Ž . 0

Ž .Then PP �, GG is identified.F

Ž .PROOF. Suppose there exist two mixtures in PP �, GG so thatF
k k	

� �� � � �18 p f x � , y � p f x � 	, y a.a. x � ,Ž . Ž . Ž .Ý Ýi i j j
i�1 j�1

where 0 � p , p� � 1 and Ý p � Ý p� � 1.i j i i j j
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Ž .First consider the case where a holds for y � y	. Then it is convenient to
Ž . �assume with no loss of generality that the atoms y and y are ordered soi j

that y � y � ��� � y and y� � y� � ��� � y� . Furthermore, we can also1 2 k 1 2 k
assume that y � y� . First consider the case if y were strictly smaller than1 1 1

� Ž Ž .. Ž Ž � ..y . The values of exp b � , y and exp b � 	, y remain finite and strictly1 i j
	 �4bounded away from zero over the finite collection of atoms y , y . Therefore,i j

Ž . Ž � .if we divide 18 on both sides by f x � , y and let x � x , then the left-hand1 0
Ž .side equals p , while the right-hand side is either 0 or �� due to 16 .1

Ž . � Ž .Therefore, we must suppose that 18 holds with y � y . Divide 18 by1 1
Ž � . � Ž .f x � , y and let x � x . If � � � 	 or � � � 	, we get p � �� by 16 and1 0 1
Ž . � Ž .17 , otherwise if � � � 	 we get p � p by 16 . Therefore, it must be that1 1
p � p� , � � � 	 and y � y� .1 1 1 1

Ž .Now cancel the first term on the left and right-side sums of 18 . Apply a
similar argument as before on the first term of the new sums. Do this

Ž . Ž � �.recursively k � 1 times, obtaining � � � 	 and p , y � p , y for i �i i i i
1, . . . , k. It follows that k � k	.

Ž . �When a holds with y � y	, order the y and y atoms in decreasing orderj j
Ž . �with no loss of generality . Assume that y 	 y and argue as before that1 1
y � y� leads to a contradiction. The rest of the proof is the same. �1 1

Theorem 4 can be used to establish the identification in our four motivat-
ing examples, as well as the inverse Gaussian mixture.

Ž .EXAMPLE Normal identification . The conditions for Theorem 4 hold with
x � x� � ��. For � , � 	 � 0 and y, y	 � �,0 0

x 2 1 1 y y	
19 D x , � , � 	, y , y	 � � � � x � .Ž . Ž . ž / ž /2 � � 	 � � 	

Ž . Ž .If � � � 	 and y � y	, then 19 becomes x y � y	 
� , which converges to ��
Ž . 2Ž . Ž .as x � ��. If � � � 	, then 19 equals �x 1
� � 1
� 	 
2 � O x , which

converges to �� as x � �� if � � � 	 or �� if � � � 	.

Ž .EXAMPLE Negative binomial identification . Use Theorem 4 with x �0
x� � �� and0

D x , � , � 	, y , y	Ž .

 x � � 
 x � � 	Ž . Ž .

� x y � y	 � log � log ,Ž . ž / ž /
 � 
 � 	Ž . Ž .
20Ž .

for � , � 	 � 0 and y, y	 � 0. By the mean value theorem, the difference in the
Ž .second and third term in 20 can be expressed as

� 
 x � � *Ž .
� � � 	 log ,Ž . ž /�� 
 � *Ž .

for � * between � and � 	.
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Ž .By expansion 12 , the derivative equals
�1 �1�x x x � � * � *

21 � 1 � 1 � .Ž . Ý 2 ž / ž /� * x � � * j jjŽ . j�1

Ž .Use the monotone convergence theorem to deduce that 21 converges uni-
Ž .formly over � * to �� at a o x rate when x � ��. Therefore, 20 equals

Ž . Ž . Ž .x y � y	 � o x , which converges to �� as x � �� for y � y	. Because 21
Ž .is positive, it follows that when y � y	 and � � � 	, 20 converges to �� as

x � ��. �

Ž .EXAMPLE Gamma identification . For the gamma mixture, use Theorem 4
with x � x� � �� and0 0

D x , � , � 	, y , y	Ž .
22Ž .

� �x y � y	 � � � � 	 log x for � , � 	 � 0 and y , y	 � 0.Ž . Ž .
Ž . Ž .When y � y	, this equals �x y � y	 � O log x , which converges to �� as

Ž .x � ��. When y � y	, 22 converges to �� as x � ��, depending upon
whether � � � 	 or not.

Ž . �EXAMPLE Weibull identification . Use Theorem 4 with x � x � ��.0 0
For � , � 	 � 0 and y, y	 � 0,

23 D x , � , � 	, y , y	 � � yx� � y	x� 	 � � � � 	 log x .Ž . Ž . Ž .Ž .
� Ž .When � � � 	, this becomes �x y � y	 which converges to �� as x � ��
Ž . � 	Ž ��� 	 . Ž .for y � y	. When � � � 	, write 23 as �x yx � y	 � O log x . As x �

�� this converges to �� for � � � 	 and �� for � � � 	.

Ž .EXAMPLE Inverse Gaussian identification . The inverse Gaussian distri-
Ž .bution sometimes called the Wald distribution , has the density

21
2 �3
2y x y x � �Ž .
�f x � , y � exp �Ž . 2ž /' 2� x2�

2x � � 3 1 yŽ .
� exp �y � log x � log , x � 0,2 ž /2 2 2�2� xž /

where � � 0 acts as a location parameter and y � 0 as a dispersion parame-
Ž . � �ter. This is of the form 1 with � � YY � � � � .

With some work it can be shown that the inverse Gaussian satisfies
'regularity Condition C1 of Theorem 3. However, the non- n rate does not

Ž .necessarily hold here because of the noninvertibility of s �, � . Nevertheless,
it is still instructive to study the identification for the model, because unlike
the previous examples, its identification follows from Theorem 4 by using

� Ž � .different values for x and x in this case, x � 0 and x � �� . To verify0 0 0 0
the conditions of the theorem, note that for � , � 	 � 0 and y, y	 � 0,

1 y y	2 224 D x , � , � 	, y , y	 � � x � � � x � � 	 .Ž . Ž . Ž . Ž .2 22 x � �
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Ž . Ž . Ž . Ž .For small x, 24 can be written as y	 � y 
 2 x � O 1 which converges to
Ž . Ž Ž .2�� as x � x � 0 for y � y	. For large x, express 24 as x y	
 � 	 �0

2 . Ž . Ž . Ž 2 . Ž .y
� 
2 � O 1 . If � � � 	, this becomes x y	 � y 
 2� � O 1 , which con-
� Ž .verges to �� as x � x � �� for y � y	. If � � � 	 but y � y	, 24 becomes0

Ž Ž .2 2 . Ž . �xy 1
 � 	 � 1
� 
2 � O 1 , which converges to �� as x � x � ��.0

APPENDIX

2 Ž .PROOF OF LEMMA 1. Use the h � L G to define h as0 0 

� � � ��1
2 � � � ��1
2h � h h �  � G h h �  .	 4 	 4 0

� � � �1
2The centering ensures that G h � 0 and the truncation forces  h � 2 0  

Ž . Ž .� o 1 . Thus, for a small enough  , the G defined by h through 5 describes 

Ža proper distribution because it integrates to one and is positive. Note: there
is nothing special about the �1
2 truncation level; it is chosen simply for

.convenience although other levels work equally well.
Ž .By i of Condition C1, we can use the mean value theorem to expand the

perturbed density

� � � �f x � �  , y � f x � , y � � x , y , � �  * for a.a. x , y � � G ,Ž . Ž .Ž . Ž .0 0 0 0

Ž . � � � �where  * �  * x, y,  and  * �  . Divide throughout by f on the set0
Ž .where it is nonzero which has P measure 1 , and take expectations with0

respect to G to write

f x 1Ž .
�� f x � , y � � x , y , � �  * 1 �  h y dG y .Ž . Ž . Ž .Ž . Ž .Ž .H 0 0  0f x f xŽ . Ž .0 0

Expanding, the right-hand side can be written as


�1 � h y f x � , y dG y � � x , y , � dG yŽ . Ž . Ž . Ž .Ž .H H0 0 0 0f xŽ .0


�� h y � h y f x � , y dG yŽ . Ž . Ž .Ž .Ž .H  0 0f xŽ .0

 2

� h y � x , y , � �  * dG yŽ . Ž . Ž .H  0 0f xŽ .0

25Ž .


� � x , y , � �  * � � x , y , � dG y .Ž . Ž . Ž .Ž .H 0 0 0f xŽ .0

Ž .Recognize that the coefficient of  in the second term equals A G , h � �.0
Collecting remainder terms,

f xŽ .
26 � 1 �  A G , h x � � x � R x , h , Ž . Ž . Ž . Ž . Ž .Ž .0f xŽ .0

� �for a.a. x P .0
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Ž . 2 Ž .To prove the lemma, we need to show that A G , h and � are L P0 0 0
Ž . 2Ž . Ž 2 .functions, and that R �, h,  has a squared L P norm o  . A convenient0

bound for this task is as follows. For � � G -measurable � ,0

22G � 1 � x , yŽ .0 1
2�P � f x � , y dG y d� xŽ . Ž .Ž .H H0 0 01
2ž /f x f xŽ . Ž . �f x � , y0 0 Ž .027Ž .
2

� x , yŽ .
� dG y d� x ,Ž . Ž .HH 0�f x � , yŽ .0

where the last inequality is a result of the Cauchy�Schwarz inequality.
Ž . Ž . 2Ž .Start with the third term in 25 . Use 27 to bound its squared L P0

norm by

2 22 2� h y � h y f x � , y dG y d� x �  G h � h .Ž . Ž . Ž . Ž . Ž .Ž .Ž .HH  0 0 0 

Ž 2 .Because h � h, this term must be o  by the dominated convergence

Ž � � � � � �.theorem h can be bounded by h � G h . 0
� ��1
2 Ž .Bound h by 2  and use 27 to bound the squared P expectation of 0
Ž .the fourth term in 25 by

2
� x , y , � �  *Ž .02� �4  dG y d� x .Ž . Ž .HH 0�f x � , yŽ .0

Ž . Ž 3.Use iii of Condition C1 to deduce that this term is O  .
Ž . Ž .Now consider the last term in 25 . Using 27 , its squared P expectation0

is bounded by
1 22 � x , y , � �  * � � x , y , � dG y d� x .Ž . Ž . Ž . Ž .HH 0 0 0�f x � , yŽ .0

Use the dominated convergence theorem with dominating function 4M and
ŽŽ . . Ž 2 .the continuity of � in  ii of condition C1 to deduce that this term is o  .

Ž . Ž . 2Ž .Similar arguments using 27 show that both A G , h and � are in L P0 0
� Ž . � Ž .you need iii of condition C1 for the � part . Therefore, if we square 26 and

Ž .take its P expectation we arrive at 10 . To complete the proof we need to0
Ž . Ž .show that � and A G , h have zero P expectation. The proof for A G , h is0 0 0

Ž . Ž .straightforward. For �, take the P expectation of 26 . From P A G , h � 00 0 0
Ž . Ž .and P R �, h,  � o  , deduce that P � � 0. �0 0

2 Ž . Ž .PROOF OF LEMMA 2. Suppose � � L P such that P � A G , h � 0 for0 0 0 0
2 Ž . Ž . 2 Ž .each h � L G . To prove that the range of A G , � is dense in L P , we0 0 0 0 0

� �will show that � � 0 a.e. P .0
� Ž .Interchanging the order of integration both � and A G , h are elements0

2 Ž .�of L P , we see that � must satisfy0 0

�f x � , yŽ .0 2h y � x dP x dG y � 0 for each h � L G .Ž . Ž . Ž . Ž . Ž .HH 0 0 0 0f xŽ .0
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2 Ž .That is, G hT � 0 for each h � L G , where0 0 0

�T y � � x f x � , y d� x .Ž . Ž . Ž .Ž .H 0

Using the Cauchy�Schwarz inequality,

22 2�G T � G � x f x � , y d� x � P � � �.Ž . Ž .Ž .H0 0 0 0

2 Ž .Furthermore, G T � P � � 0, so that T � L G . Therefore, if we choose0 0 0 0
h � T, we have that G hT � G T 2 � 0. In particular, this implies that T � 00 0
over the support for G .0

Our assumption of a limit point for G ensures that we can find a sequence0
Ž .y � YY converging to an interior point y � YY such that T y � 0. Dividingj 0 j

Ž . Ž . Ž .by positive b � , y , the equality T y � 0 implies that g y � 0, where0 j j j

g y � � x exp ys x , � d�* xŽ . Ž . Ž . Ž .Ž .H 0

Ž . Ž Ž .. Ž .and d�* x � exp t x, � d� x .0
Use the Cauchy�Schwarz inequality to deduce that

2

� �� x exp ys x , � � t x , � d� xŽ . Ž . Ž . Ž .Ž .H 0 0ž /
exp 2 ys x , � � 2 t x , �Ž . Ž .Ž .0 02� � x f x d� x d� xŽ . Ž . Ž . Ž .H H0 f xŽ .0

28Ž .

�12� P � 	 G exp Y � 2 y s x , � � b � , Y d�* x .Ž . Ž . Ž . Ž .Ž .H0 0 0 0

By showing that the right-hand side is finite over some interval containing
y , we will be able to utilize a Fourier argument which shows that � � 0 a.e.0
� � 2 Ž .P . By definition, � � L P . Thus, to show finiteness, bound the second0 0 0

Ž . �integral by restricting the range of integration of G to the set YY � � y �0 0
� Ž .� , y � � , where � � 0 is chosen small enough so that YY �  YY. For all0
Ž .y, y	 � YY � ,

exp 2 y	 � y s x , � � exp y � 3� s x , � � y � 3� s x , �Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .0 0 0 0 0

� exp y � 3� s x , � � exp y � 3� s x , � .Ž . Ž . Ž . Ž .Ž . Ž .0 0 0 0

Ž .Use this to bound the second integral on the right of 28 by

�1
G Y � YY � exp b � , Y	 4Ž . Ž .Ž .0 0

	 exp �b � , y � 3� � exp �b � , y � 3� .Ž . Ž .Ž . Ž .0 0 0 0
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Ž Ž .. Ž .By continuity, exp �b � , y achieves a finite maxima over YY 3� , where we0
Ž .can assume � is small enough so that YY 3�  YY. Therefore, the expression
	 Ž .4 Ž .above is finite from the fact that G Y � YY � � 0. Consequently, 280

implies that for a small enough � � 0,

� �29 � x exp ys x , � d�* x � � for y � YY � .Ž . Ž . Ž . Ž . Ž .Ž .H 0

To establish that � � 0, use a standard result concerning exponential
Ž .families to deduce that the finiteness of 29 implies that g is analytic over

	 Ž . Ž .4 Ž .z: � z � YY � . Because g y � 0 over the sequence y � y , we find byj j 0
analytic continuation that g must be identically zero over its region of

Ž . Ž �1Ž .. �1analyticity. Define � u � � s u, � , where s is the inverse of s. Then,s 0
Ž �1 .� is measurable by the measurability of s over the �-algebra SS induceds

Ž . Ž .by s �, � . Make the change of variables s � s x, � in the integrand of g.0 0
Ž .Then for each y	 � YY � ,

� s exp its d�� s � 0 for t � �,Ž . Ž . Ž .H s s

� Ž .where � is the finite image measure defined bys

�� B � x : s x , � � B exp y	s x , � � t x , � d� x ,	 4Ž . Ž . Ž . Ž . Ž .Ž .Hs 0 0 0

for each set B � SS .
Use a standard Fourier transform argument by breaking � into itss

� � �positive and negative components to deduce that � � 0 a.e. � . It followss s
Ž . � �from the bimeasurability of s �, � that � � 0 a.e. � and therefore that0

� �� � 0 a.e. P . �0
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