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ABSTRACT 
With the advances in telecommunications, and the introduction of the Internet, information 

systems achieved physical connectivity, but have yet to establish logical connectivity. Lack of 
logical connectivity is often inviting disaster as in the case of Mars Orbiter, which was lost 
because one team used metric units, the other English while exchanging a critical maneuver data. 
In this Thesis, we focus on the two intertwined sub problems of logical connectivity, namely data 
extraction and data interpretation in the domain of heterogeneous information systems. 

The first challenge, data extraction, is about making it possible to easily exchange data 
among semi-structured and structured information systems. We describe the design and 
implementation of a general purpose, regular expression based Caméléon wrapper engine with an 
integrated capabilities-aware planner/optimizer/executioner.  

The second challenge, data interpretation, deals with the existence of heterogeneous contexts, 
whereby each source of information and potential receiver of that information may operate with a 
different context, leading to large-scale semantic heterogeneity. We extend the existing 
formalization of the COIN framework with new logical formalisms and features to handle larger 
set of heterogeneities between data sources. This extension, named Extended Context Interchange 
(ECOIN), is motivated by our analysis of financial information systems that indicates that there 
are three fundamental types of heterogeneities in data sources: contextual, ontological, and 
temporal. 

While COIN framework was able to deal with the contextual heterogeneities, ECOIN 
framework expands the scope to include ontological heterogeneities as well. In particular, we are 
able to deal with equational ontological conflicts (EOC), which refer to the heterogeneity in the 
way data items are calculated from other data items in terms of definitional equations. ECOIN 
provides a context-based solution to the EOC problem based on a novel approach that integrates 
abductive reasoning and symbolic equation solving techniques in a unified framework. 

Furthermore, we address the merging of independently built ECOIN applications, which 
involves merging disparate ontologies and contextual knowledge. The relationship between 
ECOIN and the Semantic Web is also discussed. 

Finally, we demonstrate the feasibility and features of our integration approach with a 
prototype implementation that provides mediated access to heterogeneous information systems. 
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Chapter 1 

Introduction 
In the Biblical story of the Tower of Babel, mankind starts to build a city and a tower 

to stay centralized forgetting the command of God on replenishing the earth. Then, God 
prevents their endeavor and confuses their speech by introducing multiplicity of 
languages. Unable to communicate, they terminate the construction and spread all over 
the earth. Today, thanks to the advances in transportation and information systems, the 
world has turned into a global village, and we are somewhat able to communicate with 
each other despite the diversity of our languages and cultures. 

A similar story is unfolding in the genesis of computers, in which the confusion of 
languages already happened, and information systems with multiple languages and 
assumptions are spread across organizations, and countries. With the advances in 
telecommunications, and the introduction of the Internet, information systems achieved 
physical connectivity1, but have yet to establish logical connectivity2. Lack of logical 
connectivity is often inviting disaster as in the case of Mars Orbiter, which was lost 
because one team used metric units, the other English while exchanging a critical 
maneuver data3. Even the ominous events of September 11, could perhaps be prevented, 
had there been connectivity between the databases of various government agencies 
including airport security, FBI, and CIA4.  

This problem of attaining logical connectivity among computer systems is 
traditionally known as achieving semantic interoperability among autonomous and 

heterogeneous systems.  In this Thesis, we focus on the two intertwined sub problems of 
logical connectivity, namely data extraction and data interpretation, in the domain of 
heterogeneous information systems. 

                                                 
1 The ability to exchange bits and bytes  
2 The ability to exchange meaningful information 
3 Mars Climate Orbiter Team Finds Likely Cause Of Loss, by Douglas Isbell, Mary Hardin, Joan 
Underwood, http://mars.jpl.nasa.gov/msp98/news/mco990930.html, September 1999. 
4 Joint Inquiry into Intelligence Community Activities before and after the Terrorist Attacks of September 
11, 2001, by The House Permanent Select Committee On Intelligence And The Senate Select Committee 
On Intelligence, December 2002. 
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The first challenge, data extraction, is about making it possible to easily exchange 
data among semi-structured and structured information systems. Web sites, for example, 
contain huge amounts of data, yet operational systems cannot easily use them because of 
the heterogeneity in the protocols used to reach and extract data (e.g. SQL vs. http). As 
described in this Thesis wrappers can be used to overcome this problem, by providing an 
artificial (and usually third-party) interface to the data sources.  

The second challenge, data interpretation, deals with the existence of heterogeneous 
contexts, whereby each source of information and potential receiver of that information 
may operate with a different context, leading to large-scale semantic heterogeneity. A 
context is the collection of implicit assumptions about the context definition (i.e., 
meaning) and context characteristics (i.e., quality) of the information. As a simple 
example, whereas most US universities grade on a 4.0 scale, MIT uses a 5.0 scale. 
Another typical example might be the extraction of price information from the Web: but 
is the price in Dollars or Yen (if dollars, is it US dollars or Hong Kong dollars), does it 
include taxes, does it include shipping, how current is it, - and most importantly does that 
match the receiver's assumptions? With the global reach of the Internet, contexts of data 
sources are no longer obvious to their users: they have to be declared and exchanged 
together with the data, and be reconciled whenever a conflict exists. The Context 
Interchange (COIN) group at MIT has investigated the existence of and reasons behind 
various forms of context challenges and developed a strategy, and theory for representing 
context knowledge, and a context mediation engine for mitigating the problem. 

COIN strategy was inspired from earlier work reported in [Siegel and Madnick, 1991, 
Sciore et al., 1994], and later studied by Cheng Hian Goh in his Ph.D. thesis [Goh 1997], 
which introduced the formal definition of a COIN framework. COIN strategy rests on the 
notions of context that allows users to furnish a logical specification of how data are 
interpreted in sources and receivers, and conversion functions, that specifies how 
conflicts, when detected, should be resolved. This approach is fundamentally different 
from classical integration strategies, as it does not insist on users or system administrators 
to determine what conflicts exist a priori between any two systems. 

While Goh’s study was an important first step towards solving the problem of 
interoperability among heterogeneous systems, it also left out a number of important 
topics and problems. First, and foremost, there was not a clear definition of concepts such 
as context, conversion function, and ontology. Second, the COIN framework was unable 
to deal with many types of heterogeneities that surfaced after working with several 
industry information-providers in attempting to apply the COIN technology to the “real 
world” problems encountered by them. COIN framework, for example, was silent on 
equational ontological conflicts (EOC) that refer to the heterogeneity in the way data 
items are calculated from other data items in terms of definitional equations. Third, Goh’s 
study did not address merging independently developed, ontology based COIN 
applications. Finally, there have been significant developments in the recently emerging 
Semantic Web research, many of which have important implications for database 
integration. There is a need to explain the relationship between the COIN strategy and 
Semantic Web efforts and to exploit the synergies between them.  
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1.1 Summary of Contributions 

The primary objective of this Thesis is to provide approaches and theory --coupled 
with a robust and flexible software platform-- to the data extraction and interpretation 
problems, thereby contributing to the solution of the semantic interoperability among 

autonomous and heterogeneous systems problem.   
In the data extraction part of this Thesis, we introduce a technology and infrastructure 

to support the effective flow of information among sources and services on the web and 
their interconnection with legacy systems that were designed to operate with traditional 
relational databases. This technology, named Caméléon [Firat et. al 2000], is designed to 
work as a relational front-end to semi-structured data sources as well as traditional 
relational databases. It can extract data from web pages using declarative specification 
files that define extraction rules. We use regular expressions in defining extraction rules, 
that segment and iteratively extract attribute data values. The users can then issue SQL 
queries and treat web sites as if they were traditional databases. This allows software that 
can open connections to Web, (e.g. Excel, Visual Basic, etc.), as well as traditional user 
application software to directly query the Web. As a separate application, using a post-
processor, this technology has also been used to generate XML-tagged pages from 
"legacy" HTML Web sites. 

The rest of the contributions are in the data interpretation part of this Thesis. First, we 
extend the existing formalization of the COIN framework with new formalisms and 
features to handle larger set of heterogeneities between data sources. This extension, 
which will be referred to as Extended Context Interchange (ECOIN) framework from 
now on, is motivated by our analysis of financial information systems that indicates that 
there are three fundamental types of heterogeneities in data sources: contextual, 

ontological, and temporal.  
ECOIN framework transforms ontological heterogeneities (i.e. differences in the 

definitions) into contextual heterogeneities, thus builds on top of the existing COIN 
model. In particular, we are able to reason with equational ontological conflicts by 
extending the reasoning engine with symbolic equation solving capabilities. Consider for 
example, financ ial concepts such as “profits after taxes” and “profits before taxes” that 
are ontologically distinct but have interdependences that can be expressed as equations, 
such as “profits after taxes  = profits before taxes – taxes”. Such conflicts in accounting 
methods are quite widespread not only between different countries, but also within the 
same country [Firat et al. 02]. For example, The Wall Street Journal and S&P use 
different methods to calculate the P/E Ratios for the Standard & Poor's 500-stock index.  
The Wall Street Journal divides the combined market capitalization of the 500 companies 
currently in the index by their most recently reported four quarters of earnings, while 
S&P updates earnings statistics for the index just once a quarter and doesn't revise 
earnings from previously reported quarters to account for additions or deletions to the 
index. 5 Therefore, this extension by itself covers a wide range of problems. 

                                                 
5 Moving Target: What's the P/E Ratio? Well, Depends on What Is Meant by Earnings --- Terms Like 
“Operating”, “Core”, “Pro Forma” Catch Fire, Leave Investors Muddled --- “Earnings Before Bad Stuff', 
Jonathan Weil, Wall Street Journal, Aug 21, 2001. 
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ECOIN provides a context-based solution to the EOC problem  by making the context 
of the data items of each source explicit (i.e., how they are derived from other data items) 
and adjusting their values to different contexts by recalculating them when necessary 
using the contextual knowledge – including the definitional equations associated with 
each context. Equational ontological conflicts are not handled by making changes to the 
ontology, for example by introducing new types and defining equational relationships 
between their values. Making changes in ontologies is likely to be a time-consuming and 
difficult process, and is better avoided as much as possible. Furthermore, in many cases, 
such an approach would result in an explosion of new ontology types to handle all of the 
possible variations. In ECOIN framework we use modifiers, a special type of attributes 
that collectively define the context of a data source, to specify the implicit aspects of an 
ontological term. We claim that ECOIN approach is an elegant and low cost way to 
represent equational ontological conflicts. 

Second, query mediation in ECOIN, is a novel approach that integrates abductive 
reasoning and symbolic equation solving techniques in a unified framework.  We build 
on top of the abductive inference approach of COIN framework with the addition of 
symbolic equation solving capabilities by using constraint logic programming techniques. 
Our combination of symbolic equation solving with abductive reasoning constitutes an 
interesting example for the emerging work under the name abductive constraint logic 

programming (ACLP) [Kakas et. al 2000]. We think of symbolic equation solving axioms 
as constraints to be satisfied by the abducted equational answers. Similar to how integrity 
constraints behave in COIN query processing, equational constraints simplify, combine 
and transform the abducted equational answers. In addition consistency checks for 
equations can sometimes prune query branches and demonstrate what is traditionally 
known as semantic query optimization. 

Our choice of solving equations symbolically as opposed to transforming the data at 
run time is consistent with query processing in COIN framework, which constructs the 
intensional answers as opposed to extensional answers that would be obtained during run 
time. ECOIN, like COIN, accepts a naïve query (i.e. query with the assumption that no 
conflicts exist between source and receiver contexts) and rewrites it into a mediated 

query (i.e. query with all conflicts between sources and receivers reconciled) with the 
extra processing capability of equations that originate from the conversion functions used 
to transform query terms from one context to another.   

Third, we address the merging of independently built ECOIN applications, so that 
queries covering multiple applications can be answered. From the user point of view, it is 
usually more advantageous to merge already existing applications with their 
accompanying ontologies, instead of creating a new application with a broader ontology 
from scratch. The challenge of merging multiple applications lies in the existence of 
modeling differences between independently developed ontologies and the emergence of 
new contextual conflicts because of using different applications together. We adopt a 
virtual context centered approach to merging ECOIN applications. We call it virtual 
because we do not create a materialized application from the applications to be merged. 
Instead, we create an application with articulation axioms defining the relationships 
between the context definitions, and related ontology elements. We call it context 
centered, because the motivation behind the merging is to achieve the exchange of 
contexts between different applications. Since our goal is to be able to answer queries 
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that cover multiple applications, it is sufficient to relate context definitions between 
applications rather than linking all ontology elements. In order to avoid the cluttering of 
articulation axioms, we adopt a hierarchical approach based on merging two applications 
at a time. The merger application becomes an independent application by itself, and the 
user need not be aware of the fact that it is a virtual application created by merging other 
applications. This approach with its simplicity and requirement of minimal articulation 
axioms constitutes a powerful approach to merging independently developed ECOIN 
applications for query answering purposes. 

Fourth, we initiate the process of finding a mapping between the ECOIN framework 
and the Semantic Web. As pointed in [Manola 2002], much of the Semantic Web 
research activity is taking place in areas somewhat separated from the traditional database 
and information systems communities. One of the main reasons of this separation is the 
insufficient articulation of the relevance of heterogeneous database research to Semantic 
Web research. One of our aims in this Thesis is to explain how COIN strategy is relevant 
to Semantic Web. To make this relevance concrete, we discuss mappings from our 
internal representation of ECOIN framework to Semantic Web languages such as RDF, 
RDFS, and OWL. 

Finally, we remark that ECOIN framework has been realized in an actual prototype 
implementation demonstrating the feasibility and features of our approach. This 
prototype provides mediated access to traditional databases, as well as semi-structured 
web sites, and web services; creates and maintains metadata (e.g. ontologies, context 
descriptions) that are used in ECOIN through graphical interfaces, and supports merging 
multiple applications. 

1.2 Thesis Outline 
The rest of this Thesis is organized as follows. Chapter 2 is a self-contained study of 

data extraction in which we describe the Caméléon approach to the interoperability of 
Web sources and traditional relational databases. This chapter aims to provide a flavor of 
infrastructural issues that have to be dealt with before going into higher level issues 
related to data interpretation in the following chapters. The chapter starts with an analysis 
of different approaches to data extraction and compares our approach with the existing 
approaches in the literature. Then, the architecture of Caméléon and the structure of 
declarative spec files that describes schema and extraction rules are explained in detail. 
We provide an airfare aggregation example to illustrate the advanced features of 
Caméléon web wrapper engine. Finally, we discuss the architecture and features of next 
generation data extraction tools based on the latest developments (e.g. XML and Web 
Services).   

Chapter 3 delves into the data interpretation aspects of information integration by 
first categorizing the dimensions of data heterogeneity as contextual, ontological, and 

temporal based on a case study we conducted in a financial setting. Then we provide a 
literature survey on data heterogeneities and major approaches to achieving semantic 
interoperability among autonomous and heterogeneous systems. The objective of this 
chapter is to familiarize the reader with existing approaches to information integration, 
which will hopefully lead to a better understanding of the subtleties of our approach 
described in the following chapters.   
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Our aim in Chapter 4 is to explain what has already been done within the COIN 
group, and what new contributions we are offering with this Thesis. We provide a 
comprehensive summary of the COIN approach for readers who may choose to skip the 
eloquent but detailed presentation in [Goh 97]. We use illustrative examples to explain 
the features of the existing COIN approach, and to underscore the differences between 
ECOIN and COIN.  We end the chapter with a comparison of ECOIN and COIN to 
highlight our contributions that extends and complements the previous approach in our 
group. 

Chapter 5 is devoted to explaining the core concepts of ECOIN approach, and laying 
out the complete ECOIN data model. We aim to convey the philosophy behind the 
central constructs of ECOIN such as context and ontology by summarizing insightful 
works from the literature. We then position these concepts in the formal ECOIN data 
model, which culminates in the description of ECOIN framework.  ECOIN framework 
specifies a template that can be used to integrate autonomous and heterogeneous data 
sources. Our formal description of the ECOIN data model is aided by examples, and 
intuitive explanations. The reader interested in implementing the ECOIN approach will 
hopefully find formal statements precise enough, whereas the reader who is interested in 
a high level understanding may generate the big picture from intuitive explanations and 
examples.  

Chapter 6 focuses on query answering in the presence of equational ontological 

conflicts using abductive constraint logic programming (ACLP), which is the primary 
difference between ECOIN and COIN.  We first clarify what we mean by equational 
ontological conflicts and then present the theoretical foundations of abductive and 
constraint logic programming paradigms. Our aim in this chapter is to describe how 
ACLP provides an elegant way for query mediation in the ECOIN framework. In 
particular, we focus on the representation of a simultaneous symbolic equation solver in 
constraint logic programming which integrates nicely with the abductive logic 
programming framework already employed in the COIN framework. We proceed to 
explain the building blocks of symbolic equation solving using constraint handling rules 
and its interaction with abductive inference during query processing. The chapter ends 
with an example that illustrates how a sample query involving equational ontological 
conflicts is mediated. The material in this chapter is crucial for readers who are interested 
in building an inference engine that can mediate SQL queries with the help of metadata 
from the ECOIN framework.  

In Chapter 7, we consider how one could proceed to merge multiple ECOIN 
applications, which involves merging disparate ontologies and contexts. We begin with a 
review of ontology merging, and schema integration literature to provide the relevant 
background in this area. Next, we extend our airfare example from Chapter 4 with a car 
rental application and illustrate the concept of merging using these two applications. 
After algorithmically explaining how virtual context centered merging works, we 
formally describe the incremental elements of our merging framework. Our primary aim 
in this chapter is to demonstrate the extendibility of our integration approach with context 
driven merging, which is low cost and scalable. 

In Chapter 8 we present the ECOIN prototype that demonstrates the feasibility of 
ideas described in previous chapters. While the chapter describes all three processes--the 
client, mediation and server processes-- that make up the prototype, it focuses on the 
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implementation of mediation, particularly the abduction algorithm. Abduction is 
explained with a step by step evaluation of a query sub-section. The treatment of client 
and server processes is brief and refers readers to detailed works of several master 
students.  

We discuss the relationship between ECOIN and Semantic Web in Chapter 9, and 
explore mappings between the two frameworks. In particular, we consider the 
relationships between ontologies, and the representation of context on the Semantic Web. 
We end this chapter by mentioning future directions for research that relates ECOIN and 
the Semantic Web. 

Finally, we conclude in Chapter 10 by pointing out some promising research areas to 
pursue in the future.    
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Chapter 2 

Data Extraction 
With the advent of the Internet, the volume of on- line data has skyrocketed. Yet, 

much of these data are structured primarily for human consumption, and it is difficult for 
computer programs to gather, and operate on data that do not have a well-defined and 
agreed-upon structure designed for machines. Luckily, it is possible to discover some 
level of structure by analyzing the data prepared for human consumption. Data extraction 
is about artificially imposing a well-defined structure over semi-structured data 
[Abiteboul 97]), therefore enabling the exchange of data among heterogeneous types of 
information systems (e.g. SQL vs. http).  

In this part of this Thesis, we introduce a technology and infrastructure to support the 
effective flow of information among the sources and services on the Web and their 
interconnection with legacy systems that were designed to operate with traditional 
relational databases. This technology, named Caméléon, is designed to work as a 
relational front-end to semi-structured data sources. It extracts data from web pages using 
declarative specification files (spec file for short) that define extraction rules expressed in 
regular expressions. The users can then issue SQL queries to Caméléon and treat web 
sites as if they are traditional databases. This allows ODBC-compliant package software, 
such as Excel, Visual Basic, etc., as well as traditional user application software to 
directly query the Web. As a separate application, using a post-processor, this technology 
has also been used to generate XML-tagged pages from "legacy" HTML Web sites. 

We start with a review of literature related to data extraction. Our aim is to provide 
the necessary background to ensure the smooth flow of ideas in this Thesis, while aiding 
the reader to understand where and how this work differs from similar studies. Then, we 
go into the details of Caméléon wrapper engine design and implementation.  
2.1 Literature Review 

During the first boom years of the Internet, especially with the emergence of 
aggregators [Madnick and Siegel 02], there has been a proliferation of data extraction 
technologies, often-called Web wrappers (or wrappers for short)6, to absorb Web data 

                                                 
6 Also called “screen scrapers” based on similarity to technologies of the 1980’s and 1990’s 
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into the information food chain. These wrappers, developed both by industry and 
academia (see [Firat et. al 00] for a list), either support rich query languages such as SQL 
or OQL ([Roth & Schwarz 97], [Abiteboul 97]) to query the web sources, or emphasize 
conversions from HTML to XML (e.g. XWRAP [Liu et. al 99], W4F [Sahuguent & 
Azavant 99]), thus making the aggregation of Web sources easier. 

A typical web wrapper responds to some type of query by retrieving a web page, 
applying extraction rules specified in a specification file corresponding to the query, and 
presenting the extracted data in a structured format. The problem of creating a wrapper is 
defined more precisely in [Laender et. al 2002], as follows:  
“Given a Web page S containing a set of implicit objects, determine a mapping W that 

postulates a data repository R with the objects in S. The mapping W must also be capable 

of recognizing and extracting data from any other page S' similar to S.”  

Wrappers retrieve web pages by using a web client, whose capabilities have great 
practical importance. A comprehensive web client supports:  
• http methods such as get and post,  
• responses to standard HTML headers such as automatic refreshes and redirections, 
• automatic cookie handling,  
• secure socket layer (SSL),  
• authentication,  
• certificates, and 
• interpreting script languages such as JavaScript.  

Ideally, it would be best to employ http clients used in browsers such as Internet 
Explorer and Netscape. They are not, however, always exposed to the public completely, 
or their use is not convenient in every programming environment. Mozilla, .NET and 
Java libraries are some popular choices, which may be turned into comprehensive clients 
with some extra programming. 

Wrappers treat Web pages either as a document tree or as a data stream. Wrapper 
engines like W4F [Sahuguent & Azavant 99], and Lixto [Baumgartner et. al 01] parse 
Web pages using Document Object Model (DOM)7 into a tree, and the extraction rules 
are expressed primarily in terms of the DOM. Other wrapper engines such as TSIMMIS 
[Garcia-Molina et. al 95] and Caméléon [Firat et. al 2000] ignore the HTML tag-based 
hierarchy and treat Web pages as a sequence of characters. Extraction rules in this 
category are usually expressed in terms of regular expressions.  Advantages and 
disadvantages of these two approaches are shown in Table 2.1 and Table 2.2 below. 

In the Web pages as a document tree (WAD) approach, HTML pages are parsed into a 
document tree, and the hierarchical relations between different HTML elements are 
preserved. In WAD approach, it is easy to construct extraction rules by us ing the DOM. 
For example, one can refer to the contents of first row of the first table in an html 
document with “doc.table[0].tr[0].text”. The major disadvantage of this approach is that 
more than 80% of the HTML pages do not conform to the HTML standard, and extra 
tools such as HTML Tidy8 are needed [Sahuguent & Azavant 99] to mitigate the 
problem. In addition, when HTML and DOM are extended with new elements, parsers 
have to be updated, thus increasing the maintenance cost of systems built this way. 

                                                 
7 http://www.w3.org/DOM/ 
8 http://www.w3.org/People/Raggett/tidy/ 
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Finally, we should mention that parsing HTML pages is an expensive operation, which 
may affect the performance adversely. 
 
ADVANTAGES DISADVANTAGES 
Easy rule construction:   
Extraction rules are easy to construct by 
utilizing the HTML tag hierarchy. 
Concise rules:  
Allows powerful yet concise extraction 
rules by the using the DOM model. 
Preservation of Hierarchy:  
Associations among hierarchical elements 
(i.e. column name and column elements) 
are possible. 

Irregularity:  
Less than 20% of the pages are conforming 
to the HTML standards; therefore HTML 
parsers need error recovery mechanisms.  
Currency:   
Parser has to be updated with changing 
HTML versions. 
Performance:  
Parsing HTML into a tree is expensive.  

Table 2.1. Advantages and Disadvantages of Web Pages As A Document Tree Approach 

ADVANTAGES DISADVANTAGES 
Generality: Independent of HTML, thus 
not affected by the Web languages. It 
would work just fine with XML or 
anything else. 
Granularity: Matching with any level of 
granularity is possible. 
Performance: Regular Expression pattern 
matching is significantly faster than 
parsing. 
 

Complexity: Regular Expressions are harder 
to form and understand by regular users 
compared to HTML as a document tree 
approach. 
No-nesting: In order to be efficient regular-
expression pattern matching does not 
backtrack. 
Limited Association: Hard to associate 
hierarchical relations, i.e. inferring column 
elements from the column name or number.    

Table 2.2 Advantages and Disadvantages of Web Pages As A Data Stream Approach

In the Web pages as a document tree (WAD) approach, HTML pages are parsed into a 
document tree, and the hierarchical relations between different HTML elements are 
preserved. In WAD approach, it is easy to construct extraction rules by using the DOM. 
For example, one can refer to the contents of first row of the first table in an html 
document with “doc.table[0].tr[0].text”. The major disadvantage of this approach is that 
more than 80% of the HTML pages do not conform to the HTML standard, and extra 
tools such as HTML Tidy are needed [Sahuguent & Azavant 99] to mitigate the problem. 
In addition, when HTML and DOM are extended with new elements, parsers have to be 
updated, thus increasing the maintenance cost of systems built this way. Finally, we 
should mention that parsing HTML pages is an expensive operation, which may affect 
the performance adversely. 

The Web pages as a data stream (WAS) approach treat Web pages as a sequence of 
characters. Wrappers can be generated not only for HTML pages, but also for other text  
data sources including XML pages, and e-mail documents. Mostly, regular expressions 
are used in specifying extraction patterns, which increases the power of pattern 
specification. Unlike the pure DOM model approach whose granularity is limited by the 
granularity of HTML elements, regular expressions can be used to specify patterns at any 
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level of granularity. For example, while one cannot express the “first two digits in bold in 
the first row of the first table” using DOM, it is possible to express the same thing with 
regular expressions as “.*?<table>.*?<tr>.*?<b>(\d\d).*?</b>”. Regular expressions 
based pattern matching is fast, but expressions are difficult to form and understand for 
beginners. 

Wrappers can also be classified into three categories based on how their specification 
files are generated: manual, semi-automatic and automatic. A brief survey on this 
classification with additional pointers can be found in [Tatbul et. al 2000].  In the manual 
approach (e.g. Jedi [Huck et. al 98]), users create general extraction rules by analyzing a 
representative set of web pages, and they are responsible for updating the specification 
files when necessary. In automatic generation, users first have to annotate a number of 
training examples through a visual interface (e.g. SoftMealy [Hsu and Dung 98]). 
Machine learning algorithms, such as inductive learning, are then applied to generate the 
specification files (e.g. Wien [Kushmerick et. al 97], Stalker [Muslea et. al 99]). Semi-
automatic approaches do not use any machine-learning algorithms but try to make the 
spec file creation easier through mappings between the visual and text or DOM views, by 
making suggestions on patterns that need to be approved or modified by the user.  
Manual approaches are known to be tedious, time-consuming and require some level of 
expertise concerning the wrapper language. In addition, when web sites change, updating 
of specification files have to be done manually as well. Given the state of the art in 
automatic wrapper creation, however, manual and semi-automatic approaches are 
currently better suited for creating robust wrappers than the automatic approach. The 
maintenance costs of current automatic approaches are also comparable to manual and 
semi-automatic approaches, since in the automatic approach the user has to annotate new 
training samples when the wrapped web pages are modified. In fact, as noted by 
[Knoblock et al. 00], it is unrealistic to assume that a user is willing and has the skills to 
browse a large number of documents in order to identify a set of informative training 
examples. While new approaches are being suggested that require a small number of 
training samples [Knoblock et al. 00], their applicability is limited to simpler Web pages 
that do not contain various sorts of exceptions. On difficult web pages the lack of 
informative examples would lead to low accuracy. 

A third grouping can be made on whether the wrappers are declarative or not. In this 
context, declarative means that there is a clean separation of extraction rules from the 
computational behavior of the wrapping engine. Non-declarative wrapper engines mix 
extraction rules with a programming language (e.g. W4F with Java) or offer a 
programming language of their own (e.g. Compaq’s WebL). Figure 2.1 shows an 
example of a non-declarative W4F specification file created for CIA fact book.  In 
declarative wrapper engines, extraction rules are separated from the computation logic 
and do not require any compilation of the rules into executable code. In Figure 2.2, we 
show such an example, a logical description of the data to be extracted from an eBay 
page for the Lixto wrapper engine. 

In Table 2.3, we map the existing academic wrapper engines into the three meta-
categories we discussed above: whether the wrappers are declarative or not; whether they 
view Web pages as a document (WAD) or as a data stream (WAS), and whether the 
wrapper creation is manual, semi-automatic or automatic.  
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SCHEMA{ String capital;} 
EXTRACTION_RULES{ 
    capital = html.body.p[i].b[0]->pcdata[1].txt 
    where html.body.p[i].b[0].txt =~ "National capital"; 
} 
RETRIEVAL_RULES{ 
  getCountry(String ciaCode){ 
    METHOD: GET ; 
    URL: "http://www.odci.gov/cia/publications/factbook/$ciaCode$.html"; 
    } 
}                                              
JAVA_CODE{ 
  public static void main(String args[]) 
    throws Exception{ 
      CIA_Country country = CIA_Country.getCountry("fr"); 
      System.out.println(country); 
    } 
} 

Fig. 2.1. W4F Extraction Rules for CIA Fact book (attribute Capital) 

ebaydocument(S, X)  ←getDocument(S = $1, X). 
tableseq(S, X)   ←ebaydocument(_ , S), 

subsq(S, (*.body.*.center, []), (.table, []), (.table, []), X), 
before(S, X, (*.tr, [(elementtext, Current, substr)]), 0, 0,_ , _ ),  
after(S, X, (*.img, [(src, spacer.gif, substr)]), 0, 0,_ , _ ). 

record(S, X)   ←tableseq(_ ,S), subelem(S, .table, X) 
itemdes(S, X)   ← record(_ , S), subelem(S, (*.td. * .content, [(href, , substr)], X) 
price(S, X)   ← record(_ , S), subelem(S, (*.td, [(elementtext, \var[Y]._, regvar)]), X), 

isCurrency(Y). 
bids(S, X)  ← record(_ , S), subelem(S, *.td, X), before(S, X, .td, 0, 30, Y, ),  

price(_ , Y) 
date(S, X)  ← record( , S), subelem(S, *.td, X), notafter(S, X, .td, 100) 
currency(S, X) ← price(_ , S), subtext(S, nvar[Y], X), isCurrency(Y) 
pricewc(S, X) ←price(_ , S), subtext(S, [0 _ 9]+\.[0 _ 9]+, X). 

Fig. 2.2 Elog Extraction Rules for a a single eBay page 

(adopted from [Baumgartner at. al 01]) 
 
 Declarative Non-Declarative 
 WAD WAS WAD WAS 
Manual  Mobie(Tsimmis) Jedi Araneus, WebL 
Semi-automatic NoDoSe Caméléon W4F  
Automatic Lixto WIEN, Stalker XWrap  

Table 2.3. Classification of Web wrapper projects9 
Commercial wrapper engines are not as easily analyzable as the academic ones as 

they usually require purchase of the system. For that reason, we will only provide a list of 
these wrapper engines in Table 2.4. 
                                                 
9 This list primarily covers systems whose source codes were available for testing 
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Company Tool 

AT&T Whirl 
Connotate Technologies vTag 

Crystal Software TextPipe 
Data Junction Content Extractor 

Extradata Technologies Unwwwrap 
Fetch Technologies AgentBuilder 

firstRain firstRain Studio 
IBM Garlic, Intelligent Miner 

ItemField ParserStudio 
Kapow Technologies RoboSuite 

Knowmadic WebActivity Integration Suite 
Lencom Software Visual Web Task 

Lixto Lixto Visual Wrapper, 
Lixto Transformation Server 

Loton Tech WebDataKit 
Orsus Solution UnoStudio 
QL2 Software 

(Formerly: Caesius Software) 
WebQL 

(Web Query Language) 
Republica X-Fetch Wrapper 

Sagent ETL 
ShueTech Mine The Web 

Temis Group Online Miner, Insight Discoverer 
Extractor 

Thunderstone Webinator 
WebMethods Integration Platform 

XSB Xrover 
Yodlee Yodlee 

Table 2.4 Commercial Wrapper Products10 

2.2 Caméléon Wrapper Engine  
Data extraction research in the COIN group dates back to 1996 and earlier. The first 

wrapper engine, Generic Screen Scraper (GSS) was developed in Perl using regular 
expressions and finite state automata [Qu 96]. Later Jakóbisiak implemented a wrapper 
generator with minor changes and constructed a multidatabase browser to provide a 
single query interface to heterogeneous sources [Jakóbisiak 96]. Then came Grenouille 
[Bressan & Bonnet 97] with a slightly different approach.  In Grenouille regular 
expressions applied to the whole page and were defined for a tuple. Later Grenouille was 
converted from Perl to Java keeping the same design [Ambrose 98]. 

                                                 
10 Part of the table is adopted from http://www.wifo.uni-mannheim.de/~kuhlins/wrappertools/ 
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In 2000 we developed Caméléon in Java based on a new design, which will be 
explained in detail in this section. Finally, in 2003, we moved from Java to C# taking 
advantage of the tools provided in .NET library and made some minor changes to the 
Caméléon engine. From a design and implementation perspective, Caméléon, is superior 
to all previous efforts in our group, and was in fact licensed out by MIT to a technology 
start up.    

2.2.1 Caméléon Architecture  
Caméléon is a wrapper engine with a dual personality. To web servers it is like any 

other Internet browser; to its users it is like a relational database system with some 
restrictions. There are two major components that make Caméléon a virtual relational 

database: the relational query front-end, and the core data extraction engine.  Relational 
front-end consists of a planner, optimizer, and an executioner (POE), which brings major 
performance improvements with the parallel execution of multiple Web queries. We will 
leave the details of POE to [Alatovic 02], and suffice it to say here that it takes an SQL 
query, creates a plan considering the capability declarations of the sources, optimizes the 
plan based on cost characteristics, and then executes sub-queries using the core 
Caméléon. In this section, we focus on the design and implementation of the core engine. 

The core of Caméléon is composed of the query handler, extraction, and retrieval 
modules as shown in Figure 2.3. Based on input queries in SQL and interaction with a 
registry11 the query handler determines which spec file needs to be retrieved and where it 
should look for those files, which attributes need to be extracted, and how to display the 
output. The Query handler module uses a spec-parser to validate and parse a spec file. In 
the Java version of Caméléon, we implemented the spec-parser using a compiler-
compiler language (i.e. javacc and jjtree), and in C# implementation we shifted to XML-
based spec-files, thus utilized the built- in XML parser and X-Path expressions.  

The scope of the extraction module is limited to applying extraction rules to a data 
stream. As we mentioned before, some wrapper engines treat Web data as a document 
tree and utilize special-purpose parsers coupled with cleaning tools like Tidy at this stage. 
Since Caméléon treats web data as a sequence of characters, its extraction module is 
simpler and only responsible for executing regular expression patterns against web data. 
In the Java version, we utilized a third party regular expression engine (OroMatcher) to 
implement this module, whereas in the C# version we adopted the .NET library for 
regular expressions.  

The retrieval module is perhaps the most important module of a wrapper engine, as its 
capabilities constrain the range of Web pages a wrapper can fetch. In Caméléon, the 
retrieval module deals with get and post methods, authentication, redirection, cookies, 
and SSL, therefore maximizing the range of accessible Web pages. In the Java version we 
utilized a third party web client (HTTPClient) with some modifications, whereas in the 
C# version we employ the built- in .NET web client with some extensions. Retrieval 
module is also responsible for interpreting script languages such as Java Script, which 
may be essential in retrieving a Web page (e.g. when a cookie is set through a Java 
Script). The C# version capitalizes on the language independence feature of .NET and 
directly invokes the Microsoft script interpreters to emulate the essential script operations 

                                                 
11 Registry is a collection of metadata, analogous to the catalog table of traditional database systems. 
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in web pages. Furthermore, the retrieval module is able to follow a number of pre- 
requisite web pages, (e.g. to obtain a link, to store cookies, supply authentication 
information, etc.), before arriving to the desired page. 

2.2.2 Caméléon Spec File Structure  
One of the important properties of a desirable wrapper engine is the simplicity and 

expressiveness of its specification language. Logic based specification languages such as 
Elog are highly expressive but they are not easy to understand. In Caméléon spec files, 
we aimed to balance expressiveness with simplicity. Having wrapped hundreds of web 
sites in the past years, we believe that Caméléon spec file language is easy to learn, and 
its expressiveness is satisfactory for the vast majority of cases. 

Each Caméléon spec file can be thought of as a relation or table in the virtual 
database of Web. Patterns in a Caméléon spec file are based on the simple idea of first 
segmenting a Web page, then applying a pattern to extract the data values within that 
region.  Consider, for example, the following example pattern specification to extract 
“Coordinates” attribute from the cia fact book web page: 
 

<ATTRIBUTE name="Coordinates" type="String"> 

<BEGIN>Geographic \s*coordinates:</BEGIN> 

<PATTERN><td[^>]*><font[^>]*>\s*([\0-\377]*?)\s*<</PATTERN> 

<END></tr></END> 
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Figure 2.3. Caméléon Architecture 
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</ATTRIBUTE>
12

 

 
The specification above is given in terms of XML, which is used in the .NET version 

of Caméléon, and starts with the attribute tag specifying the name (Coordinates) and type 
(String) of the attribute to extract. The following begin and end tags identify a sub region 
in the page. This region is the segment between the indexes of the pattern matches after 
applying the begin and end patterns to the page sequentially--end pattern applying after 
the index of begin pattern match. The pattern specified in the pattern declaration applies 
to this region as many times as possible, and the part of the pattern match designated by 
the enclosing parentheses is saved as an attribute value. The notion of regions makes it 
easier to create patterns by limiting their scope. Complex regular expressions are applied 
only to a small portion of the page, which increases the efficiency of the extraction. 

One problem with the above approach of extracting attribute values independently is 
identifying the tuples after all data is extracted (i.e. how should the attribute values be 
merged to obtain the records). We make two assumptions in the pattern specification that 
solves this tuple identification problem. First, we assume that the pattern matches will be 
ordered, i.e. if two attributes have equal number of extracted data values then the ith value 
of attributes will be merged to obtain the ith record. This makes tuple identification trivial 
when the match numbers across attributes are equal. Second, we assume that the jth (index 
starting at 0) data value of an attribute with k data values is calculated as j modulo k. This 
provides a match-up when the extracted data value numbers for attributes are different. 

In Figure 2.4, we present a complete spec file for yahoo travel Web site. Some of the 
features shown in Figure 2.4 are explained in detail in the following subsection that 
summarizes the features of Caméléon spec files. As seen in Figure 2.4, we express spec 
files using XML to benefit from the availability of XML parsing tools. A spec file starts 
with a relation name declaration that will be used to refer to the data elements defined by 
that spec file. Then one or more source declarations with their attribute extraction rules 
are defined. In Figure 2.4 we show some of the advanced features of a spec file such as 
using the post method, parameter replacement, prefix and suffixes. These and other 
features of Caméléon are explained next. 

Spec Files 
1. Disjunction  
Sometimes it is not possible to discover a single pattern that would match the desired 

data across all similar pages. In these types of cases we allow disjunctive patterns to 
specify multiple patterns. The following is an example of such a situation in which two 
disjunctive patterns are specified for a single attribute. 
 

<ATTRIBUTE name="LastTrade " type="String"> 

<BEGIN><![CDATA[Last\s*Trade ]]></BEGIN> 

<END><![CDATA[</TR>]]></END> 

<PATTERN><![CDATA[<B>\s*(.*?)\s*<FONT\s*SIZE=1>(.*?)</FONT>]]></PATTERN> 

<PATTERN><![CDATA[<B>\s*(\d+)\s*</B>]]></PATTERN> 

</ATTRIBUTE> 
  
 

                                                 
12 The pattern specification is simplified by excluding Cdata elements. 
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<?xml version='1.0' encoding="UTF-8"?> 
<RELATION name="yahootravel"> 
<SOURCE URI="http://edit.travel.yahoo.com/config/ytravel">  

 
<POST method="POST"> 

<PARAM name="source" value="YG"/> 
<PARAM name="module" value="tripsrch"/> 
<PARAM name=".intl" value="us"/> 
<PARAM name=".src" value="trv" /> 
<PARAM name=".service" value="YHOE" /> 
<PARAM name=".tcycgi" value="airgcobrand.ctl"/> 
<PARAM name=".smls" value="Y"/> 
<PARAM name=".resform" value="YahooFlightsR"/> 
<PARAM name="trip_option" value="roundtrp"/> 
<PARAM name="num_count" value="9"/> 
<PARAM name="dep_arp_cd_1" value="#Departure#"/> 
<PARAM name="dep_dt_mn_1" value="#Month1#" /> 
<PARAM name="dep_dt_dy_1" value="#Day1#"/> 
<PARAM name="arr_arp_cd_1" value="#Destination#"/> 
<PARAM name="dep_dt_mn_2" value="#Month2#"/> 
<PARAM name="dep_dt_dy_2" value="#Day2#"/> 
<PARAM name="adult_pax_cnt" value="1"/> 
<PARAM name="num_cnx" value="1"/> 
<PARAM name=".finished" value="Search"/> 

</POST> 
<ATTRIBUTE name="Link" type="String" link="true"> 

<BEGIN><![CDATA[http-equiv="refresh"]]></BEGIN> 
<END><![CDATA['>]]></END> 
<PATTERN><![CDATA[url="([^"]*)"]]></PATTERN> 

</ATTRIBUTE>  
</SOURCE> 
 
<SOURCE URI="#Link#"> 
 

<ATTRIBUTE name="Price" type="String"> 
<BEGIN><![CDATA[View\s*Results \s*by\s*Airline]]></BEGIN> 
 
<END><![CDATA[/b></div></a></td>]]></END> 
 
<PATTERN><![CDATA[>USD\s*(\d+)\s*</b>]]></PATTERN> 

</ATTRIBUTE> 
<ATTRIBUTE name="Airline" type="String"> 

<PREFIX><![CDATA[<img 
src=http://rg.travelocity.com.edgesuite.net/logos]]></PREFIX> 
<SUFFIX><![CDATA[>]]></SUFFIX> 
 
<BEGIN><![CDATA[View\s*Results \s*by\s*Airline]]></BEGIN> 
<END><![CDATA[/b></div></a></td>]]></END> 
<PATTERN><![CDATA[<img src=http://rg.travelocity.com.edgesuite.net/logos([\0-
\377]*?)\s*border=0\s*alt="Airline Logo">]]></PATTERN> 

</ATTRIBUTE> 
</SOURCE>     
</RELATION> 

Features of S 

Relation Name 
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Post method 

Parameter 
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(input from query) 

Parameter Replacement 
(input from extraction) 
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Figure 2.4 Caméléon Spec-File for Yahoo Travel 
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We should note, however, that these disjunctive patterns are not mutually exclusive and 
occasionally special care must be taken to construct patterns whose intersections are 
empty. Otherwise the same item will be matched multiple times and repeated in the 
output.  

2. Conjunction 
In spec files it is possible to define conjunctive patterns, by simply denoting them 

with enclosing parentheses. The semantics of conjunctive patterns in Caméléon 
corresponds to the concatenation of pattern matches. The first pattern element in the 
example above that extracts stock prices has such a case with two groups of enclosing 
parentheses, the first one matching the whole part of the last trade value, the second one 
the fractional part. The matched elements are then concatenated to form a single price 
value. This feature is very useful, when data to be extracted is not atomic, and separated 
by unwanted tags.  

3. Multi-page transitions  
When wrapping web pages, we sometimes need to traverse multiple pages to locate 

the page we want to extract information from. This situation occurs when the URLs are 
created dynamically (e.g. a session ID is assigned for each access to the page), or a 
cookie needs to be established before you can go to the desired page, or there is no simple 
way of deducing the desired URL without visiting a particular page, or the data is spread 
through multiple pages. To handle these kinds of cases Caméléon has a feature that lets 
us wrap multiple pages for a relation.  

In Figure 2.4 for example the link to the second page is extracted from the first web 
page. We need to perform this step in this case because there is no simple way of 
deducing in advance what the link is supposed to be. Then the link is supplied to the next 
source element, which takes us to the page where we want to extract the values of price 
and airline.  

4. Parameter Replacement 
Parameter replacement is the use of input or extracted attribute values within the 

subsequent elements in the spec file. In the multiple page traversal case, we have seen 
one example of this. The value of attribute “Link” was used in the next source element. It 
is also possible to supply any extracted or input attribute value within the attribute 
definitions. Consider for instance the following SQL query to the Yahoo Travel Web site: 

 
Select Airline, Price from yahootravel where Departure=“BOS” and Destination=“SFO” 

and Month1=“5” and Day1= “19” and Month2= “6” and Day2= “1”   

 
When this query is executed, the input attribute values specified after the where clause 
replace the same name attributes enclosed between # signs in the post parameters as 
shown in Figure 2.4.   

5. Get, Post Methods & Authentication 
Caméléon spec files support both get and post methods when connecting to Web 

pages. A post example is shown in Figure 2.4.   Method attribute of the post tag 
determines which method is to be used.  

Most web pages perform authentication through forms. In connecting to those Web 
pages, get or post methods with parameter replacement can be used for authentication 
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purposes. In some other pages, however, the authentication is done through pop-up 
password windows. We handle these kinds of cases with the following scheme: (The 
username and password values have to be inputted within the SQL query, since they are 
coded as references in this spec file.) 
<SOURCE URI=" http://game.etrade.com/cgi-bin/cgitrade/TransHistory ">   
<AUTHENTICATION> 

<Realm>E*Trade Player (game)</Realm> 
<Username>#username#</Username> 
<Password>#password#</Password> 

</AUTHENTICATION> 

6. Custom Cookies 
In Caméléon cookie handling is automatic as long as the cookies are set through 

headers. In some cases, cookies can be set in a non-standard way for example using 
Javascript API. To handle these cases we allow custom cookie setting as shown in 
example below (custom cookies used are: jscript=1;path=/) 

<SOURCE URI="http://www.expedia.com/pub/agent.dll"> 
<COOKIE name="jscript">1</COOKIE> 
<COOKIE name="path">/</COOKIE> 

7. JavaScript Interpretation 
JavaScript is used frequently in Web pages in creating the html document on the 

client side. In most cases, JavaScript does not pose a problem in wrapping Web pages, 
because it is usually used for cosmetic reasons. In some cases, however, not being able to 
interpret JavaScript may block the wrapper engine in getting to a desired page. One real 
example is the Expedia Web site, which requires interpreting JavaScript code and 
supplying the result as a post parameter. Caméléon spec files allow the interpretation of 
JavaScripts as shown in the following example. 

<SOURCE URI="http://www.expedia.com/pub/agent.dll"> 
<JSCRIPT name="Time"> 
var d; d = new Date(); print(d.getTime()); 
</JSCRIPT> 

In this example, the output of the JavaScript snippet is assigned to the Time attribute. We 
should note that the JavaScript code to be interpreted does not have to be static, and 
parameter replacement can be used in JScript tags as well. 

8. Prefix and Suffixes 
Figure 2.4 shows an example of prefix and suffix declarations. With these constructs 

it is possible to add static text before and after the extracted data values. The extraction 
engine returns the concatenation of prefix, pattern match and the suffix. By using 
parameter replacement feature, it also becomes possible to glue multiple extractions 
together. 

9. Delays 
Finally, we should mention another useful feature in spec file creation: delays. This is 

used when the wrapper engine requests data from a Web site, but has to wait a certain 
amount of time before getting an answer. We cover this case by specifying a delay 
element in the source declarations specifying the waiting time in terms of milliseconds. 
We show an example below: 
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<SOURCE URI="http://www.qixo.com/#Link#" DELAY="65000">   
More details on writing spec files can be found in Caméléon user manual. [Firat et. al. 
03]. 

2.3 IWrap: Instant Wrapper Generator  
IWrap was our first effort in semi-automatic wrapper generation, with the objective of 

automatically creating spec files with some minimal user input. We designed a 
WYSIWYG interface as shown in Figure 2.5, allowing users to highlight sample data 
items and request auto generation of spec files. Please refer to the figure for the following 
operational description of IWrap.  

In IWrap, the users first enter the URL of the page they want to wrap. The URL in 
most cases will include input parameters such as ticker symbols, search texts, etc. Page 
name and the input attributes are automatically inserted into the input table. Input table 
also contains the relation attribute, the method used in connecting to the page (GET or 
POST), which are expected from the user. 

In the output table the user provides regional identifiers (i.e. BEGIN and END), and 
then highlights the text to be extracted with an associated identifier (i.e. the attribute 
name). It is also possible  to highlight the extraction candidate using the source code pane 
when information to be extracted is hidden in an HTML tag.  

When the user supplies all the information and clicks on the auto wrap button, the 
spec file creation begins with system messages explaining the progress in the messages 
window. If the creation is successful the user can immediately start issuing SQL queries 
to the wrapper engine.  

In IWrap we did not adopt a learning algorithm, because we decided that annotating 
training data would be more costly than manual creation. Instead, we experimented with 
creating regular expression patterns from a single example page. Our initial results were 
promising for simple Web sites, but needed better success rates for more difficult ones. 
The operational details of IWrap with the algorithms used in generating the regular 
expressions are provided in [Firat et. al 1999]. 

2.4 Sample Applications 
We wrapped numerous web sites using Caméléon and made some of them available 

online for demonstration. The samples can be reached from our demo Web site13. We 
have also developed demonstration applications that aggregate data from multiple web 
pages and present them in a unified interface.   Illustrative examples include: 
• Summarization and reorganization of seminar information by date from multiple 

separate departmental and local universities’ online calendars 
• Comparison of interest rates offered by various online Japanese banks 
• Aggregation of personal financial information from all of your online banking, 

brokerage, and credit card accounts. 
• Aggregation of air fare, hotel and car rental prices from popular online sources 
• Aggregation of entertainment sources such as TV programs, events in a town, dating 

sites, etc. 

                                                 
13 Currently at http://context2.mit.edu/ 
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• Aggregation of educational sources such as online paper repositories and university 
web sites 

Below, we give more detail on two of these applications. 

2.4.1 Personal Investor Wizard  
Personal Investor Wizard (PIW), aggregates data from ten different web sources 

including cnn, fox, yahoo, quicken, fortune and edgar. PIW continuously scrolls daily 
headlines (extracted from FoxNews and CNNfn), lets users view companies in a selected 
industry (obtained from yahoo), and display the competitors of selected companies (taken 
from quicken). A snapshot of this screen is shown in Figure 2.6. If the user wants to 
compare a set of companies, PIW displays in a second screen the profile info for each 
company (extracted from yahoo), the analyst recommendations (extracted from quicken), 
financial figures (extracted from edgar-online), and recent news (extracted from fortune). 
A snapshot of this screen is shown in Figure 2.7.  

We built PIW using Java Server Pages (jsp) and simply embedded SQL queries in the 
jsp page. It is important to note that once the spec file for a web site is set up, it can be 
used by many applications and the developer of any of these applications merely views 
the web site as a traditional relational database. Development time of PIW, therefore, was 
quite short.   

Because Caméléon accepts SQL queries and has a Java Servlet version, it is also very 
easy to call it from other applications. The Java version of PIW, an example of this 
flexibility, is also available in our web site for download 

2.4.2 Airfare Aggregation 
Airfare aggregation application displays price and airline information from nine 

different airline and aggregator sites given departure and destination locations and dates. 
We show snapshots from this application in Figure 2.8. This application was built very 
easily by embedding SQL queries in an ASP.NET application. These SQL queries were 
sent to the Caméléon wrapper engine as if it was a relational database system, which 
returned results as data sets. 

In addition, the airfare application can send complex queries against the relational 
front end, to search intervals rather than fixed dates. The ability of a wrapper engine to 
handle complex queries with its relational capabilities frees the application developer 
from having to go through the planning 

2.5 Discussion & Conclusion 
Caméléon wrapper engine is unique in combining data extraction with traditional 

database techniques, thus allowing easy interoperability between semi-structured and 
structured data sources. The core wrapper engine is able to provide a robust infrastructure 
for web automation as defined in [Allen 97].  Specifically: 
• It has full interaction with HTML forms, i.e. it supports both get and post methods;  
• It handles both HTTP Authentication and Cookies;  
• Both on-demand and scheduled extraction of targeted web data are possible as 

demonstrated by PIW Java version; 
• It facilitates aggregation of data from a number of web sources; 
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• It can extract data across multiple web sites through chaining; 
• It is very easy to integrate with traditional application development languages and 

environments as it provides a SQL interface to web pages.  
• Our declarative way of specifying extraction rules provides a clean framework for 

managing change in both the locations and structures of Web documents.  
It can, however, be improved in a number of ways with additional research. Some of the 
areas that need more work are: 

• Increasing the expressiveness of spec files (e.g. handling non-deterministic multiple 
page traversals) 

• Improving the semi-automatic wrapper creation work with learning approaches 
using minimal examples.  

• Creating monitoring tools, that would auto update spec files if possible, or at least 
detect the need to update spec files. 

 
From here on, in this Thesis, we will assume that web sources can be viewed as 

databases through the use of data extraction technologies such as Caméléon, and focus on 
the problems related to data interpretation in the coming chapters. 
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. Figure 2.5. IWrap Snapshots 
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Figure 2.6. Personal Investor Wizard - Main Screen  

Figure 2.7. Personal Investor Wizard - Comparison Screen 
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Figure 2.8 Air Fare Aggregation Screen Shots 



"England and America are two countries separated by the same language." 

George Bernard Shaw. 
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Chapter 3 

Data Interpretation 
In the previous chapter, we focused on data extraction, an effort to reconcile technical 

and interface heterogeneities [Busse et. al 99] among information systems. Many 
information systems cannot communicate meaningfully, however, even when these 
syntactical heterogeneities are eliminated. Real challenges of achieving interoperability 
among autonomous and heterogeneous systems lie in dealing with issues related with 
interpretation of data. 

Data interpretation involves combining data with contextual knowledge that 
collectively determine the frame of meaning for that data.  Consider, for example, phone 
numbers, which are often exchanged without the area code, and almost always without 
the country code. Without the contextual knowledge which determines the area codes 
from spatial information, the frame of meaning for phone numbers may be too broad to 
be useful (it may belong to hundreds of users in different area codes), and even worse, 
may be misunderstood (could be taken as a number within the interpreter’s area) if 
contextual borders are trespassed. 

When data originating from different contexts are brought together, many 
heterogeneities are observed. In this chapter, we provide a classification of semantic 
heterogeneities we observed in a financial case study in which we examined data 
collected from various sources. Our primary objective in this chapter is to familiarize the 
reader with existing approaches to dealing with these heterogeneities in information 
integration, which will hopefully lead to a better understanding of the subtleties of our 
approach described in the following chapters.  

3.1 Dimensions of Semantic Heterogeneity 
In our past information integration research projects, we were often puzzled by seemingly 
contradictory data within one database or across multiple databases. In one of these 
projects, we examined Primark’s Worldscope, DataStream and Disclosure databases and 
data definition manuals as well as Security Exchange Commission (SEC) Company 
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Filings and several other web-based financial sources14 to have a deeper understanding of 
the reasons behind semantic heterogeneities.  

We compared “Net Sales”, “Net Income”, “Total Assets”, “Number of Employees”, 

and “Five-Year Growth in Earnings per Share” accounting data items for a given 
company across these data sources and found significant variations. In Table 3.1, 
variations between Disclosure and Worldscope databases range from 4 to 92 percent for 
these five accounting data items for the same set of companies.  

 

ACCOUNTING DATA ITEMS % OF VARIATIONS 
Net Sales 20 
Net Income 20 
Total Assets 4 
Number of Employees 40 
Five-Year Earnings Growth per Share 92 

Table 3.1. Variations between Disclosure and Worldscope databases 

We reviewed our findings with Primark representatives to discover that variations 
could be attributed to different reporting standards, namely data item definitions and 
representations, used by different databases.  Different types of users prefer to view 
company financial data in different ways depending on their job functions as illustrated in 
Figure 3.1.  

 
 
 

                                                 
14 Including Hoovers, Yahoo, Market Guide, Money Central, and Corporate Information 

 

 

Analyst 
SEC Filing 

Pro-forma 

Local accounting Analyst 
Reports Company 

Figure 3.1 Different people need different forms of data 

Auditors, Regulators 
& Investors  
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As seen in the figure, a company may provide data to public through: 
• official filings (e.g. to Security Exchange Commission (SEC) using Generally 

Accepted Accounting Principles (GAAP));    
• pro-forma press releases as a management interpretation of financial results; or 
• the use of local accounting principles (e.g. using UK GAAP) 
 
Furthermore analysts may process these statements and release processed and aggregated 
data in yet other forms to allow for meaningful performance analysis.  

When we tried to integrate data sources adopting different views of data, we noticed 
several semantic heterogeneities. Below, we elaborate on three dimensions of semantic 
heterogeneity: contextual, ontological and temporal.  The relationship between these 
heterogeneity types are illustrated in Figures 3.5 and 3.6, and explained in the following 
subsections  

Before going into the details we should briefly explain what we mean by the terms we 
will frequently use in the next sub sections: primarily, the terms intensional and 
extensional. By intensional we refer to abstract descriptions which identify concepts 
without enumerating its members. Extensional is the antonym of intensional, and refers to 
enumerative descriptions of concepts with its physical members. For example, as shown 
in Figure 3.2, the physical collection of records in a database relation is known as the 
extensional relation, where as the schema of a relation is known as the intensional 
relation. We will delay the formal definition of ontology to Chapter 5, and suffice it to 
say that an ontology is a collection of intensional descriptions. 

 

3.1.1 Contextual Heterogeneity 
Often times, an intensional description is not specific enough to determine the exact 

form of its extension. Consider for instance the following intensional description of a 
concept called “price”: “the amount as of money, asked for or given exchange for 

something else without the inclusion of tax”. This definition leaves out “price” attributes 
such as currency, and scale allowing disparate adoptions of currency and scale for price 
entities in data sources and receivers. This is illustrated in Figure 3.3, with the multiple 

Figure 3.2 Intensional vs. Extensional Relations 

r1(Product, Price) 

r1(A, 20,000) 
r1(B, 10,000) 
… 
r1(Z, 15,000) 

Intensional Relation 

Extensional Relation 
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Sales(FIAT) 

93,719,340,540 
45,871.5 

Currency: Local 
Scale Factor: 1000 

WorldScope 
Market Guide 

Figure 3.4 Contextual Heterogeneity in Worldscope and Market Guide Data Sources 

Currency: USD 
Scale Factor: Millions  

mappings of the intensional relation r1(Product, Price) to extensional relations with 
different currencies and scale factors.  
  

  
These are heterogeneities that [Batini et al. 86] refers to as the two or more not identical 
representations of the same concept. In information systems, we observe this type of 
variations when entity type definitions corresponding to the same real world entity are 
flexible enough to allow data sources and/or receivers choose their own representation.  
We show an example in Figure 3.4, in which the sales numbers of FIAT, an Italian motor 
company, are represented differently in Worldscope and Market Guide data sources. 
 

  

Figure 3.3 Multiple Extensions of an Intensional Relation 

r1(Product, Price) 

r1(A, 20,000) 
r1(B, 10,000) 
… 
r1(Z, 15,000) 

currency: USD 
scale: 1 
 

r1(A, 20) 
r1(B, 10) 
… 
r1(Z, 15) 

currency: USD 
scale: 1000 
 

r1(A, 18) 
r1(B, 9) 
… 
r1(Z, 13.5) 

currency: EUR 
scale: 1000 
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3.1.2 Ontological Heterogeneity 
Ontological heterogeneity is the heterogeneity in the intensional description of 

concepts that are somewhat related. For example, if we define another price concept, 
“price (+tax)” as “the amount as of money, asked for or given in exchange for something 

else with the inclusion of tax”, this would constitute an ontological heterogeneity with the 
concept “price (nominal)” described in the previous section because there is a definitional 
conflicts concerning the inclusion or exclusion of tax in the price.  As shown in Figure 
3.5, the price amounts 21,000 USD and 17K EUR exhibit ontological heterogeneity 
because they belong to extensions of different intensional descriptions. 

 
In information systems, we observe this type of heterogeneity, when databases differ on 
entity type definitions. For example, the majority of definitional variations in financial 

Intensional Domain 

Source 3 Source 1 

Ontology B 

Ontology A  
Price (nominal) 

20,000 21,000 

Extensional Domain 

Price (+tax) 

18K 

Source 2 

Ontological 
Heterogeneity 

Contextual 
Heterogeneity 

Figure 3.5 Contextual and Ontological Heterogeneities 

currency: USD 
format: numbers 
scale: 1 
 

currency: EUR 
format: number+ abbreviation 
scale: deduced from abbreviation  
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information systems could be attributed to the inclusion or exclusion of various 
accounting items such as “Depreciation and Amortization”, “Excise Taxes”, “Earnings 

from Equity Interests”, and “Other Revenue” from the financial data items.  Similarly, 
variations in “Total number of Employees” could be attributed to inclusion or exclusion 
of “Temporary Employees”, “Employees of Subsidiaries” as well as the time of 
reporting.  In addition, some of the variations in “5-Year Earnings Growth per Share” 
numbers could be attributed to the lack of accounting for fluctuations in foreign currency.   

Equational Ontological Conflicts (EOC) 
Despite having differing definitions, entities can usually be related to each other when 

one or more entities uniquely determine the value of one or more other entities. For 
example, for certain companies, the “Pretax Income” can be derived from “Pretax 

Profit” and “Assoc. Pretax Profit” attributes in another, as shown below:  

“Worldscope. Pretax Income”= “Datastream. Pre -tax Profit”  – “Datastream. 
Assoc. Pre-tax Profit”  

 
We label the heterogeneity in the way data items are calculated from other data items in 

terms of definitional equations as equational ontological conflicts. We show more 
examples of EOC in Table 3.2 below. 
 
  

Source A Source B 
# of customers = # of end_customers + # of 

distributors 
 

# of customers = # of end_customers + # of 
prospective customers 

 

Profit = Net Sales – Cost of Goods 
 

Profit = Net Sales – Cost of Goods – 
Depreciation  

 

P/E Ratio = Price / Earnings(last 4 Qtr) 
 
 

P/E Ratio = Price/ [Earnings(last 3 Qtr) 
+Earnings(next quarter)] 

 

Price = Nominal Price + Shipping 
 

Price = Nominal Price + Shipping + Tax 
 

Table 3.2 Example Equational Ontological Conflicts 

3.1.3 Temporal Heterogeneity 
As shown in Figure 3.6, temporal heterogeneities are orthogonal to both contextual 

and ontological heterogeneities and arise because of changes in the intensional or 
extensional descriptions of concepts over time.  In Figure 3.6, Ontology B shifts from one 
intensional definition of price to another, and the extensional object represented by the 
21,000 USD shifts to a different currency, scale factor and format by becoming 17K 

EUR. The first shift is the combination of ontological and temporal heterogeneities, 
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whereas the second one is a combination of contextual and temporal heterogeneities. 
In information systems, temporal variations arise when entity values or definitions 

belong to periods that exhibit contextual or ontological heterogeneities. Definitions of 
data terms, for example, may change over time as seen in the example below. The three-
way dependency between the Worldscope, Disclosure, and SEC databases for Exxon is 
different before and after 1996.  

 
For Exxon after 1996: 

“Worldscope. Revenues” = “Disclosure. Net Sales” –“ SEC. Earnings from Equity 

Interests and Other Revenue” –“ SEC. Excise Taxes”  
 
For Exxon before 1996: 

“Worldscope. Revenues”  = “Disclosure. Net Sales” – “SEC. Excise Taxes” 

 
Temporal heterogeneity should not be mixed with contextual or ontological 

heterogeneities involving temporal concepts across information sources.  For example, 
two sources reporting financial numbers quarterly vs. annually may have contextual 
heterogeneity, but a single source shifting from quarterly to annual reporting at a certain 
year is said to have a temporal heterogeneity. Temporal heterogeneity is about temporal 
changes in the intensional or extensional descriptions of data sources.  

Time Intensional Domain 

Extensional Domain 

Price (+tax) Price (nominal) 

Ontology B Ontology B 

21,000  USD 17K  EUR 

Temporal/Ontological 
Heterogeneity 

Temporal/Contextual 
Heterogeneity 

Figure 3.6 Temporal Heterogeneity 
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3.1.4 On the Relationship between Contextual and 
Ontological Heterogeneities 

The primary distinction between ontological and contextual heterogeneities is that the 
former refers to heterogeneity in explicit knowledge (i.e. ontological definitions), whereas 
the latter refers to heterogeneity in implicit knowledge (i.e. contextual knowledge). This 
distinction between ontological and contextual heterogeneities is also a mode of 
connection between them, allowing us to transform one to another by making knowledge 
implicit or explicit. 

If we could make everything explicit in an ontology --which may be neither possible 
nor desirable-- by defining every term with uttermost detail (e.g. price in USD with a 
scale factor of 1 including tax…), there would not remain anything implicit about data 
once they are mapped to the ontological terms. In such a case, all conflicts would be 
ontological in nature and no contextual heterogeneity would exist (see Figure 3.7) 
 

 
The other extreme would be mapping all data to “thing” (i.e. the most basic term in an 
ontology) in the ontology and treating the rest as contextual knowledge. In such a case, 
we could only talk about contextual heterogeneity, since no definitional heterogeneity 
exists at the ontological level.  

When we integrate data sources with their respective ontologies (we will accept 
schemas as ontologies here) by using a shared ontology, we can decide how much to 
make explicit in the ontology. Take for example price (nominal) and price(+tax) 
ontological heterogeneity between two data sources. This heterogeneity may be treated as 
a contextual heterogeneity, by adopting a more general definition of price that subsumes 
both concepts, and by leaving their difference to be articulated as part of the contextual 
knowledge. In fact, this is the approach we take in this Thesis: we treat ontological 
heterogeneities as contextual heterogeneities by using relatively generic knowledge in the 
ontologies, and relatively particular knowledge in contexts. 

 
 

Figure 3.7 Extreme Example for Ontological Heterogeneity 

r1(Product, Price1) 
Price1=Price in 
USD scale 1 

r1(A, 20,000) 
r1(B, 10,000) 
… 
r1(Z, 15,000) 

r1(A, 20) 
r1(B, 10) 
… 
r1(Z, 15) 

r1(A, 18) 
r1(B, 9) 
… 
r1(Z, 13.5) 

r1(Product, Price2) 
Price2 = Price in 
USD scale 1000 

r1(Product, Price3) 
Price3=Price in 
EUR scale 1000 
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3.1.4 Related Work 
There have been several attempts in the literature to classify data heterogeneities 

[Kim & Seo 91, Kashyap & Sheth 96, Goh 97, Busse et. al 99]. Almost all of these 
attempts are primarily from the database perspective, as evidenced by major focus on 
schematic conflicts. Kashyap and Sheth, for example, classify everything under 
schematic conflicts (corresponding to ontological heterogeneity in our classification), and 
view conflicts such as scaling and units as schematic conflicts pertaining to domain 
definitions. Kim and Seo have the additional category of data conflicts, in which they 
draw attention to the heterogeneity in the quality of data (e.g. incorrect, obsolete data) as 
well as different representations of the same data (e.g. unit and scale differences), which 
corresponds to contextual heterogeneities in our framework.  In [Goh 97], Goh talks 
about naming, scaling & units, and confounding conflicts. Confounding conflicts, which 
is particularly interesting, refers to those arising from the confounding of concepts, which 
are in actual fact distinct (e.g. latest trade price as of now vs. latest trade price with a 20 
minute delay). We would categorize confounding conflicts under ontological conflicts in 
our framework. 

It is beyond the scope of this Thesis to come up with a synthesis of all semantic 
heterogeneities in great detail. Our classification of semantic heterogeneities in section 
3.1 is based on a practical concern that affects the design of our integration framework. 
We knew, for instance, how to handle contextual heterogeneities using the COIN 
framework [Goh 97], but did not have a way to handle ontological heterogeneities. In this 
Thesis, we transform ontological heterogeneities into contextual heterogeneities as 
described in the preceding sub section and use an extended version of the COIN 
framework, ECOIN, to reason with them. Handling temporal heterogeneities will require 
further enhancements and is left as future work.   

3.2 Major Approaches to Achieving Interoperability 
Over the last two decades there have been several studies on database integration 

under a variety of titles such as multidatabase systems, heterogeneous database systems, 
and federated information systems [Busse et. al 99]. These approaches have been grouped 
in the literature as static vs. dynamic [Kuhn et. al 91], global vs. local schema [Litwin and 
Abdellatif 87], and tightly vs. loosely coupled [Goh 97, Arens and Knoblock 96] 
approaches.  These groupings can roughly be thought of referring to the same distinction 
characterized in [Goh 97] by: 

• who is responsible for identifying what conflicts exist and how they can be 
circumvented; and  

• when the conflicts are resolved. 
  

In the following subsections, we analyze these approaches under the headings of 
tightly and loosely coupled approaches with the exception of our predecessor system 
COIN, which adopts a unique, and in some ways a hybrid approach. In Table 3.3, we 
provide a grouping of some of the existing prototype systems according to this criterion 
[partially adopted from Goh 97]. 
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 Tightly Coupled 

Systems  

Loosely-coupled 

Systems  

Logic-based 

Data Model  

Information Manifold [Levy 98] 

InfoMaster [Duschka and Genesereth 97] 

HERMES [Subrahmanian et al. 00] 

Carnot [Collet et al. 91] 

VIP-MDBMS [Kuhn and Ludwig 88] 

Object-

Oriented 

Data Model 

DISCO [Tomasic et. al 98] 

SIMS [Arens and Knoblock 96] 

Pegasus  [Ahmed et al. 91] 

TSIMMIS [Garcia-Molina et al. 95] 

O*SQL [Litwin 92] 

Functional 

Data Model 

Multibase [Landers and Rosenberg 82]  

Relational 

Data Model 

ADDS [Breitbart and Tieman 84]  

Mermaid [Templeton et al. 87] 

Garlic [Carey et. al 95] 

MRDSM [Litwin and Abdellatif 87] 

Table 3.3 A Categorization of Existing Prototypes 

3.2.1 Tightly Coupled Approaches 
In tightly coupled approaches, the objective is to insulate the users from data 

heterogeneity by providing a unified view of the data sources, and letting them formulate 
their queries using that global view.  A system administrator takes the task of creating a 
global schema before the system can be used. In bottom up approaches the global schema 
is constructed out of heterogeneous local schemas by going through the tedious process 
of schema integration [Batini et al. 86]. In top-down approaches global schema is 
constructed primarily by considering the requirements of a domain, before corresponding 
sources are sought.  

Virtually all data integration systems in this category can be viewed as a triple (G, S, 
M) [Lenzerini 03], where G is the global schema, S is the source set, and M is the 
mapping between G and S as illustrated in Figure 3.8 The primary challenge of these 
integration systems is to rewrite a user query expressed over the global schema (q(A',B') 
in the figure), in terms of queries spanning the source set (q(A) & q(B) in the figure) by 
using the mappings between them. Mappings in these systems can be expressed in two 
ways: local as view (LAV) or global as view (GAV). In LAV each source is described 
through the global schema (A ← A'), whereas in GAV, global schema is expressed using 
the sources (A' ← A). A concrete example is given in Table 3.4. In this example, the 
global schema consists of three predicates {car(C), price(C,P), model(C,M)} and there 
are two sources {s1(C,P), s2(C,M)} reporting the prices and models of cars respectively. 
The problem of rewriting queries posed on the global schema in terms of the local 
sources has been coined as answering queries using views in the literature [Halevy 00], 
and studied extensively [Pottinger and Levy 01].  Research in this area focuses more on 
the mechanics of answering queries using views problem than identifying and conquering 
challenging semantic issues. 
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Global As View Local As View 
car(C) ← s1(C). 
car(C) ← s2(C). 
price(C,P) ← s1(C,P). 
model(C,M) ← s2(C,M). 

s1(C, P) ← car(C), price(C, P). 
s2(C, M) ← car(C), model(C,M). 

Table 3.4 GAV vs. LAV 

 
In tightly coupled approaches, data heterogeneities between sources are resolved by 

mapping conflicting data items to a common view. In the Pegasus system, for example, 
supertypes and functions are used for this purpose. To circumvent a conflict between two 
data types a supertype, and a function that acts on the instances of the supertype is 
created. The function provides a mapping between the data in conflicting sources and the 
canonical form adopted by the global schema. An ontological heterogeneity example in 
which two data sources have conflicting price definitions is shown below:  

 

 

Structured Sources (S) Semi-Structured Sources (S) 

C D 

User 

System 
Admin 

A' 

B' 

C' 
D' 

q(A',B')  

q(A')  

q(B')  

Global Schema (G) 

Mapping (M) 

Mapping (M) 

Mapping (M) 
Mapping (M) 

B A 

q(A)  

q(B)  

Figure 3.8 Tightly Coupled Approaches 
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CREATE SUPERTYPE trip of trip1, trip2; 

CREATE FUNCTION price (trip x) à 

Real r AS 

IF trip1(x) THEN airfare(x) + servicecost(x) + shippingcost(x) 

ELSE if trip2(x) THEN airfare(x) + tax(x)  

ELSE ERROR; 

 
In this example, the trip supertype subsumes trip1 and trip2 types, and imposes a standard 
price definition by using a function to map conflicting data values to this standard 
definition. 

3.2.2 Loosely Coupled Approaches 
Loosely coupled approaches object to the feasibility of creating unified views on the 

grounds that building and maintaining a global schema would be too costly. Instead they 
aim to provide users with tools and extended query languages to resolve conflicts 
themselves as illustrated in Figure 3.9. The approach relies on the assumption that data 
with the same meaning usually have the same or similar names, which can be identified 
by the users easily [Kuhn et al. 91]. Furthermore, the user is assumed to understand and 
resolve conflicts with the provided tools. One of the best representatives of this approach 
is the MRDSM system that introduces the concept of dynamic attributes to deal with 
conflicts between data sources [Litwin and Abdellatif 87]. A dynamic attribute is a virtual 
column with a dynamically assigned value by using arithmetic operators, functions and/or 
queries. The example we have given in the tightly coupled case, would be expressed in 
the loosely coupled case as follows (assuming that the data sources are Orbitz and 
Travelocity and the user wants to see the final prices (including taxes, service and 
shipping charges) of tickets from both databases): 
 

USE (orbitz o) (travelocity t)  

D-COLUMN HOLD (t.price) 

t.price = t.airfare + t.shippingcost + t.servicecost 

D-COLUMN HOLD (o.price) 

o.price = o.airfare + o.tax 

SELECT airline, price FROM orbitz WHERE Destination= “BOS” and  

Arrival= “IST” and Ddate= “8/1/03” and Adate = “9/1/03” 

UNION 

SELECT airline, price FROM travelocity WHERE Destination= “BOS” and  

Arrival = “IST” and Ddate= “8/1/03” and Adate = “9/1/03” 

In the above MSQL (a variant of SQL used in MRDSM) D-COLUMN declaration 
denotes dynamic columns followed by the arithmetic expression that defines the value of 
the virtual column. Later, these virtual columns can be remembered and used in the 
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standard SQL statements. Thus, when the SQL query against Travelocity (t) is executed 
the system automatically adjusts the value of price according to the pre-specified 
formula. Note that airfare definitions between Travelocity and Orbitz are different, as the 
latter includes shipping and service costs but excludes the tax. 
As opposed to the tight coupling approach, loose coupling allows users to get the data in 
more than one view with the provision of appropriate mappings. This makes the loosely-
coupled approaches more flexible compared to tightly-coupled ones. Unlike the tightly 
coupled approaches, however, the user, not the system administrator, has the burden of 
writing mapping functions in every query constructed.  

One of the interesting aspects of MSQL is that it attempts to apply a limited form of 
symbolic and  numeric manipulation techniques to automatically invert and simplify 
equations specified in dynamic attribute declarations [Litwin and Vigier 87]. For 
example, a dynamic column could contain the following formula: 

2*balance2 + 2*balance – 24 = 0 
and the system would determine that the balance is 4 or -5 by making calls to Macsyma 
equation solver with the above equation. (A method for choosing one of the solutions is 
explained in [Litwin and Vigier 87]) In Chapter 6, we explain how this approach 
compares with the approach we adopted in solving equational ontological conflicts. 
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Figure 3.9 Loosely Coupled Approaches 

Users are supplied with a powerful data 
manipulation language with stored or built 
in functions to formulate queries over local 
data sources. 
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3.2.3 Short-comings of Existing Approaches 
While both tightly-coupled and loosely-coupled approaches offer solutions to 

semantic interoperability among autonomous and heterogeneous data sources, they also 
pose significant problems. 

The fundamental problem with tightly coupled approaches is that it lacks flexibility in 
providing multiple views of data sources. As we have discussed early in this chapter, 
different people may want to view data sources in different ways.  In tightly coupled 
approaches user views can only be constructed manually by a system administrator. In 
loosely coupled approaches, users can construct their own views, making the system 
more flexible and responsive, but they have to understand the conflicts between their 
views and those of data sources. In our ECOIN approach, we combine the best of these 
two worlds, and allow the automatic construction of multiple views with the help of 
declarative data semantics and a mediator that automatically detects and reconciles 
conflicts between data sources and receivers. Compared to loosely-coupled approaches, 
our approach lessens the burden of the user. 

In tightly-coupled systems the detection and reconciliation of data conflicts are not 
optionally visible to the user. Semantic conversions are buried inside the wrappers and 
not easily inspectable. Loosely-coupled approaches provide some level of transparency as 
the users define the semantic conversions themselves, but there is no system service that 
optionally provides a list of the detected and resolved conflicts between the data sources 
and user views. In ECOIN, conflict detection and resolution is optionally visible to the 
user with the provision of an intensional answer in addition to an extensional answer. 
This will be explained in more detail in the coming chapters. 

Finally, in adopting a tightly coupled approach, system developers face the 
complexities of building and maintaining a global schema. Tightly coupled approaches 
suffer from the scalability problem, as it becomes more and more difficult to maintain a 
schema with large number of sources.  

ECOIN combines the best aspects of both tightly and loosely coupled approaches and 
provides a hybrid approach. In the coming chapters we explain the details of our 
approach. 
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Chapter 4 

Context Interchange Strategy 
In the previous chapter we explained various approaches to achieving semantic 

interoperability among heterogeneous information systems. In this chapter, we describe 
the Context Interchange (COIN) strategy, which is the foundation of our approach to 
achieving semantic interoperability among autonomous and heterogeneous systems.  

COIN strategy, first articulated in [Siegel and Madnick 91, Sciore et al. 94], and later 
founded on a formal conceptual basis in [Goh 97] has the basic tenets that 

• the detection and reconciliation of semantic conflicts are system services which 
are provided by a Context Mediator; and should be optionally visible to the users; 
and, 

• the provision of such a mediation service requires only that the data sources and 
receivers (i.e. users) furnish a logical (declarative) specification of how data are 

interpreted in their contexts, and how conflicts, when detected, should be 

resolved, but not what conflicts exists a priori between any two systems.  
These novel ideas signify an important departure from the existing tightly and loosely 

coupled approaches to semantic interoperability. Unlike tightly coupled systems (e.g. 
Pegasus [Ahmed et al. 91]), COIN strategy does not burden system administrators with a 

priori detection and reconciliation of semantic conflicts, but only requires the creation of 
a shared ontology that enables the declaration of conflicting data semantics; and the 
provision of conversion functions that will be used when these conflicts are automatically 
detected. 

COIN strategy also differs from the loosely coupled systems (e.g. MRDSM [Litwin 
and Abdellatif 87]) in which the user is responsible for identifying and resolving conflicts 
before issuing queries. This responsibility is shifted to the context mediator in the COIN 
strategy. Instead, the receivers (i.e. users) and data sources are assigned the lesser 
responsibility of furnishing a declarative specification of how they interpret data. 

COIN strategy was materialized through the description of a data model, reasoning 
algorithm and a prototype (collectively called COIN) in [Goh 97]. Both the data model 
and the reasoning algorithm were, however, silent on several aspects of the COIN 
strategy. In particular, the case of dealing with ontological heterogeneities was not 
thoroughly examined. Our work in this Thesis provides an extended formal re-
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conceptualization of COIN strategy (ECOIN) which improves the COIN data model, 
reasoning algorithm, and system prototype.  

We start this chapter with two examples that illustrate the features of COIN strategy 
from the user perspective. We, then, continue to explain the structural elements of COIN 
from the system perspective, and also provide an overview of the reasoning algorithm. 
Finally, we compare ECOIN with COIN, and outline the new features introduced by our 
work that paves the way for a more detailed account of ECOIN in following chapters.  

4.1 COIN Strategy by Example  
4.1.1 Air Fare Scenario 

In Chapter 2, we mentioned that with the use of Caméléon wrapper engine airfare 
providers on the Web could be treated as if they were databases. Consider now the 
slightly dramatized scenario shown in Figure 4.1. A price sensitive Turkish student is 
looking for a round trip airfare from Boston to Istanbul, first leg on June 1st and second 
on August 8th 2003 from Yahoo travel site. The contexts of the data sources and the user 
(i.e. the way they interpret data) are shown in the figure.  First the user wants to know 
which airlines are available for his trip and formulates his SQL query as follows: 

Q1:  SELECT Airline FROM Yahoo 

WHERE DepDate = “01/06/03” and ArrDate=  “01/08/03”  

and  DepCity= “Boston” and ArrCity= “Istanbul”; 

Without any mediation, this query would return an empty answer, because Yahoo expects 
city codes instead of city names and dates in American format.  If this query was 
submitted to COIN, however, the query would be rewritten into the following mediated 
query: 

MQ1:   SELECT Airline 

FROM yahoo,  

(select Airport from cityAirport where city= “Boston”) depCode,  

(select Airport from cityAirport where city= “Istanbul”) arrCode, 

WHERE DepDate = “06/01/03” and ArrDate=”08/01/03” and    

DepCity= depCode.Airport and ArrCity= arrCode.Airport; 

and the system would return the following result set:  

Airline  
British Airways 
Lufthansa 
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Context of User 
 
Price means round-trip final price  
(including taxes, ticket shipment, and visa fees) 
 
Date is expressed in European style 

Departure and Destination times are expressed  
as city names 
 
Currency is US Dollar 
 
Direct air transit fee is applied if the plane has a  
connecting flight from Great Britain 
 

Round trip price is twice the one-way  
price/tax/visa fees 
 

Query 

SELECT Price FROM yahoo 

WHERE DepartureDate = “01/06/03” and ArrivalDate=  “01/08/03”  

and  DepartureCity= “Boston” and ArrivalCity= “Istanbul”; 

 

Context of Yahoo 
 
Price means one way nominal price  
 
Ticket shipping cost is $20 
 
Service fee of $5 is charged 
 
Date is expressed in American style 
 
Departure and Destination times are expressed  
as three letter airport codes 
 
Currency is US dollar 
 

yahoo 

VType VisaFee 

Visafees 

Context of VisaFees 
 
Currency is British £ 

 

 

fromCur toCur exchangeRate date 

 

crcyconvert  

 

City Airport 
Boston BOS 
Istanbul IST  
  

 

cityAirport  
 

Figure 4.1 Airfare Example Scenario 

ID Airline Price Tax DepDate ArrDate 
DepCity CxnCountry ArrCity 
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This is an example of mediation in the case of contextual heterogeneities. The date 
and city name entities were represented differently in the source and user contexts, and 
the mediation engine detected and reconciled these conflicts. In the mediated query MQ1, 
we see examples of dynamic and static conversions. Date conflicts were resolved 
statically by converting the data values into the source context before the query is issued 
(e.g. 01/06/03 in Q1 became 06/01/03 in MQ1). City name conflicts, however, were 
resolved dynamically, with the help of cityAirport table, which is used to convert 
between city names and airport codes. Dynamic conversions are performed during query 
execution.  

COIN prototype successfully deals with contextual heterogeneities as exampled here. 
It would not, however, be able to process ontological heterogeneities such as the 
conflicting definitions of price entity as shown in Figure 4.1 (price has conflicting 
definitions in yahoo and user contexts). 

Despite knowing this limitation of COIN, let us assume that the user wants to learn 
the prices in addition to airlines and formulates the new query Q2 as follows: 

Q2:  SELECT Airline, Price FROM Yahoo 

WHERE DepDate = “01/06/03” and ArrDate=  “01/08/03”  

and  DepCity= “Boston” and ArrCity= “Istanbul”; 

When this query is submitted to the COIN prototype, it returns the following result set15: 

 
Airline  Price 
British Airways 495 
Lufthansa 525 
 

This result set, however, is no t semantically correct, because it fails to address the 
ontological conflicts concerning the term price. Yahoo reports prices as one-way and 
does not include extra costs such as taxes, shipment cost of the paper ticket, service fee, 
and any possible visa fee. The user, however, is expecting to see the final price of a round 
trip ticket including all kinds of costs.  

In this case, our price sensitive friend would make a mistake by choosing British 
Airways over Lufthansa, because flying over Great Britain with British Airways would 
cost him a transit visa fee of £27, which would be more than the $30 difference.  

If query Q2 were to be submitted to ECOIN system, it would first be rewritten into 
the following mediated query: 

MQ2:   SELECT Airline, 2* (Price+Tax+ VisaFee*exchangeRate) + 25  

FROM yahoo, visafees, currencyconvert,  

(select Airport from cityAirport where city= “Boston”) depCode,  

(select Airport from cityAirport where city= “Istanbul”) arrCode, 

WHERE DepDate = “06/01/03” and ArrDate=”08/01/03” and    
                                                 
15 Since it does not have the capability to deal with equational ontological conflicts [see Chapter 6] 
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DepCity= depCode.Airport and ArrCity= arrCode.Airport  

and CxnCountry= “Great Britain”; 

UNION 

SELECT Airline, 2* (Price+Tax) +25 

FROM yahoo, visafees,  

(select Airport from cityAirport where city= “Boston”) depCode,  

(select Airport from cityAirport where city= “Istanbul”) arrCode, 

WHERE DepDate = “06/01/03” and ArrDate=”08/01/03” and    

DepCity= depCode.Airport and ArrCity= arrCode.Airport  

and CxnCountry <> “Great Britain”; 

and then would return the following answer, which is adjusted to reflect the user 
expectations: 
Airline  Price 
British Airways 1198 
Lufthansa 1176 

In the above mediated query MQ2, in addition to date and city name conflicts, the 
ontological price conflict is also resolved. The mediated query is a union of two queries 
because the price calculation depends on whether Great Britain, which imposes a transit 
visa fee for our user16, is part of the flight or not. The first sub query in MQ2 corresponds 
to the case of having a connecting flight from Great Britain, thus adds the visa fee, 
adjusted in terms of currency, to the price along with tax, shipping and service fees. The 
price is then converted into a round trip price based on the contextual information 
provided by the user as shown in Figure 4.1. Note that the system aggregated the service 
fee and shipping cost by simplifying the arithmetic expression and simply added 25 to the 
price value. 

As we will explain in more detail in the coming chapters, this capability of dealing 
with equational ontological conflicts is an important feature introduced by ECOIN 
through the use of symbolic equation solving techniques. Below we continue with 
another scenario that illustrates the issue of ontological heterogeneity in a corporate 
accounting setting.   

4.1.2 Corporate Householding Scenario 
In today’s rapidly evolving business environment, corporate group structures and the 

relationships between corporate entities are becoming more and more complex and 
difficult to understand. For legal purposes the corporate definition may include its 
branches, divisions, subsidiaries, and for tax purposes it may not. Interpretations of 
corporate structures depend on the context. In Figure 4.2, we illustrate such an example,  

                                                 
16 See user context definition in Figure 4.1 
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in which the user interprets the financials of a company as the sum of financials of itself, 
its subsidiaries, branches and divisions. The data sources, however, report financials of a 
company by excluding subsidiaries: as the sum of financials of itself, branches and 
divisions. The user in Figure 4.2, poses the following naïve query: 

Q3:  SELECT Revenue FROM Financials 

WHERE CorporateEntity = “IBM”; 

Query 

SELECT Revenue FROM Financials 

WHERE CorporateEntity = “IBM”; 

Context of FinancialsDB 
 
Financials of a corporate entity is the sum of financials 
of itself, branches, and divisions not including 
subsidiaries. 
 

Context of User 
 

Financials of a corporate entity is the sum of  
financials of itself, its subsidiaries, branches  
and divisions. 
 

r 

Figure 4.2 Corporate Householding Example Scenario 

CorporateEntity Revenue 
IBM 77,966,000 
IBM Global Services 36,360,000 
Lotus Development  970,000 
IBM Far East Holdings 550,000 
International Information Products 1,200,000 
IBM International Treasury Services 500,000 
General Motors 177,828,100 
Hughes Electronics 8,934,900 
Electronic Data Systems  21,502,000 
… … 

 

ChildEntity ParentEntity Relationship % Ownership 
Lotus Development IBM  Subsidiary  100 
IBM Far East Holdings B. V. IBM  Subsidiary  100 
International Information Products IBM Far East Holdings B. V.  Subsidiary  80 
IBM Global Services IBM  Division  100 
IBM Enterprise Investment IBM  Division  100 
IBM Software IBM  Division  100 
IBM Hardware IBM  Division  100 
IBM Global Financing IBM  Division  100 
IBM Germany IBM  Branch  100 
IBM France IBM  Branch  100 
IBM Finland IBM  Branch  100 
IBM Denmark IBM  Branch  100 
IBM Switzerland IBM  Branch  100 
IBM International Treasury Services IBM Germany  Subsidiary  33 
IBM International Treasury Services IBM France  Subsidiary  14 
IBM International Treasury Services IBM Finland  Subsidiary  10 
IBM International Treasury Services IBM Denmark  Subsidiary  18 
IBM International Treasury Services IBM Switzerland  Subsidiary  25 

 

RelationsDB 
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(B, 100) 

(S, 33) 
(S, 14) (S, 18) (S, 25) (S, 10) (S, 80) 

(S, 100) 
(S, 100) 

Lotus 

IBM 

IBM  
Far East  

IBM International 
Treasury Services 

International Information 
Products 

IBM 
Germany 

IBM 
France 

IBM 
Denmark 

IBM 
Switzerland 

IBM 
Finland 

Legend 

S: Subsidiary, B: Branch 

Numbers correspond to percentages 

 

The financials database would then return the following result set: 

Revenue 
77,966,000 

This result above, however, is brought without paying any attention to the user context. If 
the same query were posed against the ECOIN mediation engine, the following mediated 
query would be executed: 

MQ3:    

SELECT r1.Revenue + r2.Revenue + 0.8 * r3.Revenue + r4.Revenue+ r5.Revenue  

FROM (select Revenue from r where CorporateEntity= “IBM”) r1, 

(select Revenue from r where CorporateEntity= “Lotus Development”) r2, 

(select Revenue from r where CorporateEntity= “International Information Products”) r3, 

(select Revenue from r where CorporateEntity= “IBM Far East holdings”) r4, 

(select Revenue from r where CorporateEntity=“IBM International Treasury Services”) r5 

 

with the following result: 

Revenue 
116,756,000 
 

The above-mediated query sums up the revenues of IBM, its subsidiaries, and the 
subsidiaries of its branches and divisions. This sum is constructed recursively by 
adjusting the financials of each corporate entity whether it is a corporate, branch, division 
or a subsidiary. The relationship and percentage of ownership information is obtained 
from Relationsdb, and the relevant part of the relationship tree is shown in Figure 4.3. 
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In these two examples, we explained how context mediation operates from the user 

perspective. The users (i.e. data providers and receivers) simply provide a declarative 
specification of how data are interpreted in sources and receivers, and a context mediator 
performs the reconciliations of conflicts. Next we explain how context mediation works 
from the system perspective. 

4.2 Structural Elements of COIN Framework 
In Chapter 3, we referred to Lenzerini’s formalization of data integration systems as a 

triple (G, S, M) where  
• G was the global schema, domain model, or ontology  
• S was the source set, and  
• M was the mapping between G and S [Lenzerini 03],  

Using this notation, COIN framework can be roughly thought of as a quintuple (G, S, M, 
C, µ), where the additional two elements C and µ are defined as follows: 

• C is the context multi-set, and  
• µ is a mapping that assigns a context to each source.  

In Figure 4.4, we show the interaction between the elements of COIN framework. In this 
figure the domain model G, context set C, and the source set S are shown in rectangles 
with rounded edges.  

 

Figure 4.4 COIN Framework as quintuple (G, S, M, C, µ) 

As shown in figure, mapping M (called elevation axioms in COIN), maps extens ional 
relations from the source set to semantic relations  with the use of semantic types and 
attribute relations from the domain model.  Context multi-set contains labeled sets of 
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context rules based on a framework defined in the domain model. Each labeled context 
set is assigned to a source according to their data semantics by function µ.Below we 
explain each element in more detail to clarify the structural elements of COIN. 

4.2.1 Domain Model (G) 
COIN has an object centric view of the world: it models information units as objects 

with unique and immutable object- ids. The domain model identifies object types (called 
semantic types) in a generalization hierarchy using the is-a relationship; some of the 
properties of objects using attributes and modifiers; and methods using conversion 

functions. While the domain model in COIN has a less elaborate collection of constructs 
than ontology languages such as Semantic Web’s OWL classes [McGuinness and Van 
Harmelen 03], it nevertheless qualifies as an ontology language. In the rest of this Thesis, 
we will use domain model and ontology interchangeably.  

As opposed to primitive types (e.g. strings, integers, and reals), semantic types in 
COIN are more abstract, and less implementation-oriented.  Examples of semantic types 
in the form of rectangles with rounded edges can be seen in Figure 4.5, which depicts an 
ontology corresponding to the air fare example we provided in the beginning of this 
chapter. Instances of semantic types are called semantic objects (shown as circles within 
semantic relations in Figure 4.4), and their properties are represented by attributes and 
modifiers. Is-a relation defines the subtype-supertype relationship between semantic 
types. 

Attributes define the state of an object or the relationship (similar to relationships in 
entity-relationship data modeling) between objects. For example, an object of a trip type 
would have a destination and origin city by definition, and this relationship is captured by 
the appropriate attributes as shown in Figure 4.5. Note that attributes are represented by 
solid arrows and their predictable names are omitted in Figure 4.5. Modifiers are special 
type of attributes used to capture sources of variations that affect the interpretation of a 
semantic object value 17. They are shown with dashed arrows in Figure 4.4. For example, 
moneyAmount semantic type has a currency modifier, which is a source of variation for 
the values of its objects. Depending on the value of currency, moneyAmount objects may 
take different values. In COIN, modifiers are assumed to be independent of each other 
(i.e. orthogonal). This assumption simplifies the algorithm design permitting unordered 
application of conversion functions, which are defined per modifier. When there are 
dependent modifiers (i.e. conversion functions defined for those modifiers cannot be 
applied in any order), they have to be modeled as a single modifier.  

Unlike primitive objects, semantic objects have values in a specified context. These 
values may be different depending on the modifier values, but they have to be 
semantically equivalent. This equivalency is established with the use of conversion 
functions that may also be viewed as method definitions for semantic objects. Conversion 
functions of a semantic object are defined per modifier, and are used to transform object 
values from one context to another. This is briefly illustrated in Figure 4.4, with the 
depiction of conversion function fcvt. In the figure, fcvt is shown in the domain model box 
to denote the method definitions, and also in the source set box to illustrate the 
conversion of values from one context to another. For example, a currency conversion 

                                                 
17 Semantic object values are of primitive types, and correspond to values used in extensional relations. 
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function defined as a method of the semantic type moneyAmount and parameterized on 
its currency modifier values could be used to convert the values of moneyAmount objects 
from one context to another.  

 

  

Finally, we should mention that domain model language allows non-monotonic 
inheritance (i.e. inheritance with overriding) between semantic types. Conversion 
functions, attribute and modifier values can be polymorphically defined using this 
feature. For example, a conversion function defined for moneyAmount would apply to 
objects of its subtype (e.g. price). Similarly, modifier values defined for moneyAmount’s 
currency modifier would be inherited by the objects of price unless they are explicitly 
overridden with its own definition of modifier values. 

4.2.2 Source Set (S) 
In COIN the canonical representation chosen for convenience is the relational data 

model. For that reason, the source set in COIN corresponds to a set of databases with 
their relations as shown in Figure 4.4 as extensional relations. Semi-structured data 
sources can also be used, but they have to be first converted into relational sources, for 
example, with the use of Caméléon wrapper engine. Domain and integrity constraints of 

 

Is-a 

Attribute 

Modifier 

citizenship 

format 

trip 

date price flight airport traveler 

month 

dateType 

day 

year 

returnDate departureDate destination origin 

serviceFee 

provider 

paperFee 

priceType 

timeZone 

country 

Is- In 

duration airline onTimeProbability 

visaFees 

moneyAmount 

currencySymbol 

stopOver 

currency 

airport 

type 

format 

type 

currency 

airportName 

format 

durationType 

ID coverage 
coverage 

Figure 4.5 Airfare Ontology Diagram 
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these relations are also represented within the source set as shown in Figure 4.4, and used 
for semantic optimization purposes. If for example, airfare provider yahoo did not sell 
tickets when the flight date was not in the current year, this integrity constraint could be 
used to return an empty answer to the following query when posed before year 2004: 
 

Q4:  SELECT Airline, Price FROM Yahoo 

WHERE DepDate = “01/06/04” and ArrDate=  “01/08/04”  

and  DepCity= “Boston” and ArrCity= “Istanbul”; 

4.2.3 Elevation Axioms (M) 
Elevation axioms are used to relate sources and the domain model. Each primitive 

relation (i.e. ordinary database relations) in the source set is elevated to a semantic 

relation. This is accomplished by mapping each primitive object (i.e. data cells) in the 
primitive relation to a semantic object in the semantic relation. Skolem18 functions are 
used to assign unique object ids to each semantic object. The skolem function has the 
following general structure: 
  
fskolem(X )= skolem(Semantic_Type(X), X , Context(X), Column_Order(X), Primitive_Relation(X)) 

 
For example the primitive price object of type number from the primitive relation Yahoo 
shown in Figure 4.1, would be assigned the following unique object id:  
 
fskolem(Price)= skolem(price, Price, c_yahoo, 3, yahoo(I,A,Price,T,D,AD,DC,CC,AC)) 

 

where I,A, Price,T,D,AD,DC,CC, and AC are logical variables correspond to the physical 
values of the yahoo relation. 

Semantic relation Yahoo would then be constructed in COIN with the combination of 
each semantic object derived from a primitive relation as follows: 
 
yahoo?(fskolem(ID),fskolem(Airline), fskolem(Price), fskolem(Tax), fskolem(DepDate), fskolem(ArrDate), fskolem(DepCity), 

fskolem(CxnCountry), fskolem(ArrCity)) 
 

4.2.4 Context Set (C) 
As we mentioned in the domain model section modifiers are special attributes that 

affect the interpretation of a semantic object value. The domain model in COIN defines 
what types of modifiers apply to which semantic types. Context set is a multi-set, which 
contains sets of rules that determine the values of modifiers in a particular context. For 
example, the modifier values for context of Yahoo (refer to Figure 4.1) based on the 
ontology from Figure 4.4 is shown in Table 4.1.  The table shows the semantic types with 
their modifiers, and modifier values. Note that modifier values can be described via a 

                                                 
18 Skolem functions are used to transform existentially qualified logical variables into universally qualified 
ones. Refer to [Goh 97] for more details. 
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variety of ways, but they must come from a shared domain that data sources and receivers 
agree. 
 
Semantic Type  Modifier Value 

Type Nominal Price 

Coverage One Way 

Date Format American 

MoneyAmount Currency USD 

Currency Format 3 character 

Duration type hours 

Table 4.1 Extensional Context of Yahoo 

The table corresponds to the extensional context of yahoo for it is a collection of physical 
values. Intensional context of yahoo is the labeled set of rules in the context multi-set that 
describe the context with logical expressions. For example the modifier values for price 
in the yahoo context (c_yahoo is used as the identifier) would be defined as: 
 
modifier(price, Object, type, c_yahoo, Modifier) ← 
          cste(priceType, Modifier, c_yahoo, "nominal"). 
 
modifier(price, Object, coverage, c_yahoo, Modifier) ← 
          cste(coverage, Modifier, c_yahoo, "one-way").  
 
These definitions above correspond to static modifier declarations whose values are 
constant (i.e. “nominal” and “one-way”). It is also possible to define modifiers whose 
values are variables. Below is an example of a dynamic modifier declaration for the 
currency modifier of moneyAmount semantic type: 
 
modifier(moneyAmount, Object, currency, c_intl, Modifier) ← 

attr(Object, provider, Provider), 
attr(Provider, locatedin, Country), 
attr(Country, officialCurrency, Modifier). 

 

In this modifier declaration the value of currency modifier is obtained by finding the 
provider from the price object, the country from the provider object, and finally finding 
the official currency from the country object. Note that modifiers themselves are 
semantic objects, therefore may have their own modifiers. An example of this is shown in 
Figure 4.5 and Table 4.1, in which the currency type has a modifier called format. 

4.2.5 Context Assignments (µ) 
Contexts labeled in the context set are assigned to relations with the mapping µ. In the 

elevation axioms section we have shown how the sources and the ontology are linked 
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with the construction of semantic objects. Context assignments are done during the 
semantic object construction as seen in the example we repeat below: 
 
fskolem(X )= skolem(Semantic_Type(X), X

19
 , Context(X), Column_Order(X), Primitive_Relation(X)) 

 
For example, c_yahoo context identifier is assigned to the price data cell from the yahoo 
primitive relation as follows: 
 
fskolem(Price)= skolem(price, Price, c_yahoo, 3, yahoo(I,A,Price,T,D,AD,DC,CC,AC)) 

 
With this mapping structure data cells within a single relation can be assigned different 
context identifiers. 

4.3 Query Answering in the COIN Framework 
Queries in COIN are formulated in SQL in a receiver context20,21, and refer to 

individual database schemas and/or views. SQL queries input by users are translated into 
clausal form (i.e. Datalog, which is the logical equivalent of SQL) in COIN. For example 
query Q2 would be translated into CQ2 shown below in Datalog like notation22: 

 
(Naïve query) NQ2: ← answer(Airline,Price) 
 
answer(Airline,Price) ←  

yahoo(_,Airline, Price, _, “01/06/03”, “01/08/03” , “Boston”, _, “Istanbul”). 
Context: c_user 
 

This query is named as a naïve query, because the direct execution of it would ignore 
potential semantic conflicts and would most likely return inaccurate answers. Therefore, 
this query is converted into a well-formed23 query, through steps explained in [Goh 97]. 
This well- formed query refers to semantic relations instead of primitive relations, and 
therefore uses the value(X, C, Y) notation to refer to the primitive value Y of semantic 
object X in context C. The example query, NQ2, can be written as a well formed query as 
follows: 
 
(Well formed query) WQ2: ← answer(VAirline,VPrice) 
answer(VAirline,VPrice) ←  

yahoo′(_24,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′), 
value(Price′, c_user, VPrice)25, 
value(Airline′,c_user, VAirline), 
value(DDate′,c_user, “01/06/03”), 

                                                 
19 This value refers to primitive relation 
20 Can also be called user or query context  
21 Like data sources, users have their own contexts defined by modifier value assignments 
22 For easier readability we will use Datalog style instead of the style adopted in [Goh 97]. 
23 This name is adopted taken from [Goh 97].  
24 _ in logic programming corresponds to anonymous variables whose names are not needed. 
25 Read as “the value of semantic object Price′ in context c_user is Price”. 
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value(ADate′,c_user, “01/08/03”) 
value(DCity′, c_user, “Boston”) 
value(ACity′, c_user, “Istanbul”). 

 
The above well formed query incorporates the receiver context, and rewrites the naïve 

query using the semantic relations corresponding to primitive relations(yahoo′ vs. yahoo). 
Because the objects of semantic relations are semantic objects, they are mapped to their 
primitive values in the user context (c_user) through the use of value predicate. 

This well formed query then needs to be rewritten into a mediated query to obtain the 
intensional answer to the original query. Abductive reasoning is chosen here for it 
provides the desired intensional answer, as opposed to the extensional answer that would 
be obtained from deductive reasoning. Next, we explain the details of abductive 
reasoning from operational point of view. 

4.3.1 Overview of Abduction in COIN 
Like induction, and deduction, abduction is an inference technique used in logic. It is 

a form of hypothetical reasoning that offers explanatory facts from observed ones and a 
set of rules [Denecker and Kakas 02]. In the simplest case, given the rule “Y implies X”, 
and the observation X, abduction infers Y as a possible explanation of X.  

An abductive programming framework, consists of a set of rules known as the theory 
(e.g. {“Y implies X”}), possible explanations known as abducibles (e.g. Y) and integrity 
constraints (e.g. Y must be integer) Given a query Q, the abductive reasoning task is to 
find a set of explanations from the set of abducib les such that they are consistent with the 
theory and integrity constraints. 

In order to use abductive reasoning, COIN framework (G, S, M, C, µ) is first 
converted into an abductive framework by constructing the 

• theory from the union of domain model G, mappings M, context set C, and 
context mappings µ, which constitute a set of rules; 

• integrity constraints from the integrity constraints defined in the source set S; and 
• abducibles from extensional predicates (e.g. yahoo relation) and built in 

predicates that is admitted by the query language (e.g. +, >, etc.)  
Then given a well formed clausal query Q, abductive reasoning algorithm progresses 

to find a set of extensional and built in predicates as an answer. The details of how 
abductive reasoning works can be found in [Denecker and Kakas 02]. The end result of 
abduction in COIN is a mediated query expressed only using the extensional relations, 
and built- in features that are admitted by SQL. It is also considered as the intensional 
answer to the query issued by the user, for it expresses the answer in terms of predicates 
not with a set of facts. This intensional answer can then be optimized, and executed 
against the sources to retrieve extensional answers. 

4.4 ECOIN compared to COIN 
As we explained in this chapter COIN is a realization of the Context Interchange 

strategy first articulated in [Siegel and Madnick 91, Sciore et al. 94] in the form of a data 
model, reasoning algorithm, and a prototype implementation. ECOIN is another 
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realization of the same strategy, with differences in representation, reasoning and the 
prototype. Below we analyze these differences one by one. 

4.4.1 Representational Differences 
ECOIN improves COIN by providing a solution for representing and reasoning with 

equational ontological heterogeneities. We introduce a conceptual transformation of 
ontological heterogeneities into contextual heterogeneities by using loosely defined 
terminology in the shared ontology. Yet, the way ontological conflicts are represented in 
ECOIN is not unlike the way contextual heterogeneities are represented in COIN. 
Representational differences between the two can be found in the way conversion 
functions are represented in ECOIN. Unlike COIN, conversion functions in ECOIN 
constitute a bidirectional graph. Combined with the new reasoning capabilities, this new 
representation considerably cuts down the need to define new conversion functions. 

In ECOIN, we address the merging of disparate applications which is non-existent in 
COIN. We define a completely new and backward compatible representation of merging 
axioms, which allows scalable construction of ECOIN applications.  

4.4.2 Reasoning Differences 
The major novelties introduced by ECOIN are in the reasoning algorithm and 

prototype implementation. ECOIN introduces a symbolic equation solver encoded using 
a declarative custom constraint definition language called Constraint Handling Rules 
(CHR). We combine abductive and constraint logic programming to intertwine query 
mediation with symbolic equation solving, which is essential in reasoning with equational 
ontological conflicts. ECOIN also provides the functionality to operate on the conversion 
graph with the integration of Dijkstra’s scalable shortest path algorithm into the reasoning 
process. 

Furthermore, the reasoning algorithm is expanded to deal with the new demands of 
merging disparate ECOIN applications. This expanded reasoning algorithm is a first 
attempt in dealing with virtual applications that do not physically contain ECOIN axioms, 
but links other applications using the ECOIN merging framework. 

4.4.3 Prototype Differences 
ECOIN offers numerous improvements over the prototype implementation of COIN. 

First, it actually implements many of the missing features of COIN prototype such as 
inheritance between semantic types, context identifiers, and modifiers. Second, ECOIN 
prototype implementation is more modular compared to COIN, as it has a cleaner 
separation between different system components. This makes it easier to understand and 
build on top of the ECOIN prototype for future students working on the project. The 
query optimizer and execution engine of ECOIN is built on a new capability based 
optimizer, and has been more reliable compared to COIN optimizer and execution 
engine. Furthermore, ECOIN offers graphical metadata management, application 
building and merging tools for end users. 
In the coming chapters we provide a detailed account of the features of ECOIN. 
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Chapter 5 

Extended COntext INterchange 
Extended Context Interchange (ECOIN) provides a knowledge representation 

framework and a reasoning platform for integrating heterogeneous information systems. 
In this chapter, we describe the ECOIN knowledge representation framework in detail. 
Before doing that we find it useful to provide background on some of the key concepts 
behind the ECOIN representation framework, namely, context, ontology and logic 

programming. 

5.1 Context 
With the globalization of information over the internet, recognizing the role of 

context in achieving semantic interoperability among heterogeneous and autonomous 
systems has become an important endeavor. In this section we provide an overview of 
studies on context that can be found in the literature of philosophy, and artificial 
intelligence (AI), including knowledge representation, natural language processing, and 
intelligent information retrieval. 

According to Collins Cobuild English Language Dictionary the context of something 
consists of “the ideas, situations, events, or information that relate to it and make it 
possible to understand it fully” [Akman 02]. In [Sperber & Wilson 86], context is defined 
as “the set of premises used in interpreting an utterance, a psychological construct, a 
subset of the hearer’s assumptions about the world”. In [McCarthy 93], no definition of 
context is offered, for they are viewed as rich objects that cannot be completely described 
[Guha 91].  

In the field of philosophy, study of context goes back to 1898 to philosopher Charles 
Peirce, who describes making meta level assertions about nested propositions26 as well as 
the rules of inference for importing and exporting information into and out of the contexts 
[Sowa 97]. Another philosopher Mario Bunge provides a formal definition of context in 
[Bunge 74] as follows: 

                                                 
26 This is known as reification in the AI community. 
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“DEFINITION 2.10 The ordered triple C=<S,P,D> is called a (conceptual) context (or 
frame) iff S is a set of statements in which only the predicate family P occur and the 
reference class of every P in P is included in the universe or domain D ⊆ Ω.”  
This definition defines context as a set of statements constructed by using a set of 
designated predicates and a domain those predicates draw upon. Consider for instance 
the conceptualization of the price of an airfare with the predicate set P={price, currency, 
scalefactor}, and domain D ={DairfareID,  Dprice,  Dcurrency,  Dscalefactor} which corresponds to 
domains used in the predicate declarations (e.g. Dcurrency = {USD, EUR, …, JPY}. The 
context as defined by Bunge in this case would correspond to a set of equations that can 
only be constructed with a designated set of predicates and their domains. One example 
would be: 
 C = <{currency(LH421, USD), scalefactor(LH421, 1),…}, {price, currency, scalefactor}, 
{LH421,LH422, NW030,…, 0,0.01,0.02,…, USD, EUR,…ITL,1,1000}>  
where S describes the currency and scalefactor of each airfare, P is the set of predicates 
that can be used in S, and D is the domain of the predicate declarations. This definition 
constitutes the basis of context representation in [Lee 96].  

In AI, the main motivation for studying formal contexts is to resolve the ‘problem of 
generality’ [McCarthy 87]. Although computers can beat the best human player in chess, 
they lack the ability to generalize specialized knowledge. Thus, the study of context in AI 
concentrates on finding a unified formal framework for representing and reasoning with 
context. This may be quite challenging (and even arguably unproductive [Hirst 00]), 
given that context is used for different purposes in different sub fields of AI. In 
knowledge representation and reasoning, for example, context is thought of as an agent’s 
partial representation of the world, whereas in natural language processing, context is 
conceived of as a collection of features of the location in which an agent produces a 
linguistic expression, and is therefore assumed to be related to the state of the world  
[Bouquet et. al. 01]. Along the same lines, Akman, drawing from literary theory and  
social sciences, views context as a social construct and asserts that interpretation is 
possible only within shared contexts [Akman and Surav 97].  

The formalization efforts of context are categorized into two groups by [Bouquet and 
Serafini 03]: the Propositional Logic of Context (PLC) [Buvac and Mason 93] and Local 

Models Semantics (LMS) [Ghidini and Giunchiglia 01]. The comparison of these two 
approaches is analogous to that of tight vs. loose coupling approaches in database 
integration and we find it useful to explain each in more detail. 

5.1.1 Tightly Coupled Contexts 
PLC is an example of this approach, which was also called “divide and conquer” in 

[Bouquet et. al. 01]. We call this approach tightly coupled because of the existence of a 

unique global vocabulary that ties all the  contexts together. McCarthy’s efforts fall under 
this category, and so does the approach used in CYC [Lenat et al., 1990; Guha, 1991], as 
a way of partitioning a global theory of the world with two levels of nesting: micro-
theories and the default outer level.  



. 

63 

In this approach axioms and statements are true only in a context. This is expressed 
by a modality27 called ist(c,p)28. For example,  

c0: ist(context-of(“Sherlock Holmes stories”), “Holmes is a detective”). 
means that the statement “Holmes is a detective” is true in the context of Sherlock 
Holmes stories. The preceding c0 denotes that this statement is asserted in an outer 
context, thus points out to the nested composition of context dependent statements.  
Formulas between contexts can be related together with the use of lifting axioms. 

In [Buvac 98], one of the best representatives of this approach, an example of 
reasoning with Navy and General Electric (GE) databases is given. In this example, 
databases differ on the definition of engine prices, which include assortment of spare 
parts and warranty in the Navy database, in addition to GE’s reported plain engine price. 
Contexts defined in this example are cGE, cnavy corresponding to the GE and navy 
databases and cps, the problem solving context. The details of this example, (i.e. the query 
posed in the problem solving context, the existing facts expressed in their own context, 
and lifting axioms that define translations between different contexts) are shown in Table 
5.1. 
 
Query 
cps: ist(cnavy, price(FX-22-engine, $3611K))  
Facts 
ist(cGE, price(FX-22-engine, $3600K)). 
ist(cGE, price(FX-22-engine-fan-blades, $5K)). 
ist(cGE, price(FX-22-engine-two-year-warranty, $6K)). 
ist(cnavy, spares(FX-22-engine,FX-22-engine-fan-blades)). 
ist(cnavy, warranty(FX-22-engine,FX-22-engine-two-year-warranty)). 
Lifting axioms  
value29(cGE, price(x)) = GE-price(x) 
value(cnavy, price(x)) = GE-price(x) + GE-price(spares(CNavy, x)) +  

GE-price(warranty(CNavy, x)). 

Table 5.1 Navy and General Electric Integration Example 

5.1.2 Loosely Coupled Contexts 
LMS is an example of this approach, which was also called “compose and conquer” 

in [Bouquet et. al. 01]. We call this approach loosely coupled because there is no such a 

thing as a global theory of the world, but only many local theories. Unlike the tightly 
coupled approach, contexts in loosely coupled approach are autonomous theories with no 
predefined common vocabulary. Relations between contexts, are established on a peer-to 
peer basis, as a collection of constraints on what can (or canno t) be true in a context given 
that there is some relation with what holds in another context. This is depicted in Figure 
5.1, with each rectangle corresponding to local theories with different contexts and dotted 
arrows establish the links between their contexts. 
                                                 
27 The classification of propositions on the basis of whether they assert or deny the possibility, 
impossibility, contingency, or necessity of their content. 
28 Read as “p is true in context c” 
29 value(c,t) is a function which returns the value of term t in context c 
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This approach has been used in [Ghidini and Serafini 98, 00], in integrating 
information systems. They provide an example that integrates the databases of four fruit 
sellers with different contexts. Conflict resolution between contexts is done pair wise for 
each database, since they do not subscribe to a common global theory. In the example, 
one of the sellers (1) provides fruit prices without including taxes, the other denoted as 
the mediator (m) considers prices with taxes (7% percent). This conflict is resolved by 
defining a view constraint as following: 
 

1: has-price(x,y) → m:∃y′ has-price(x,y′) ∧  y′ =y +(0.07*y) 
 
This view constraint establishes the link between differing price definitions of source 1 
and mediator m. 

While loosely coupled approach to modeling contexts offers more flexibility in 
dealing with contextual disparities among data sources, it suffers from the scalability 
issues since constraints that relate context of each source should be defined on a peer to 
peer basis. This requires each source to know about all other sources, which may be quite 
costly. Tightly coupled approach to modeling contexts, on the other hand, enables one to 
relate contexts of sources (i.e. by using lifting axioms) more generally with the power of 
a shared language, but it suffers from the flexibility issues as the language evolution has 
to be coordinated between sources. 

5.2 Ontology 
In recent years, the study of ontology, with its roots in philosophy, has become 

intertwined with the development of artificial intelligence and of information systems 
science [Smith and Belty 01]. Although the term ontology assumes a different meaning in 
philosophy (i.e. the metaphysical study of the nature of being and existence), in computer 
science it corresponds roughly to an “agreement about a shared, formal, explicit and 
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Figure 5.1 Loosely coupled contexts (adopted from [Bouquet et. al. 01]) 
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partial account of a conceptualization” [Gruber 93, Guarino and Guiretta 95, Ushold and 
Gruninger 96, Spyns et. al 02]. Ontologies can range from simple glossaries or relational 
database schemata to a hierarchy of concepts related by subsumption relationships to 
formal logical theories that specify relations and constraints between terms as well as 
inference rules.  

In information integration, ontologies are increasingly being used as a unifying 
framework for translating between different models of heterogeneous data sources to 
achieve semantic interoperability. Information integration projects such as SIMS [Ariens 
et. al 96], CARNOT [Collet et. al 91], InfoSleuth [Woelk and Tomlinson 94], 
OBSERVER [Mena et. al 96], Information Manifold[Levy et. al 95], COIN[Goh 97] are 
all ontology-based approaches [Wache et. al 01]. A detailed study of ontologies in 
information systems can be found in [Smith 03] and [Guarino 98].  

Among various studies found in the literature we find Guarino’s in depth study 
insightful and most relevant to this Thesis. In [Guarino 98], an ontology is defined as 
follows and illustrated in Figure 5.2: 

 “An ontology is a logical theory accounting for the intended meaning of a formal 
vocabulary, i.e. its ontological commitment to a particular conceptualization30 of the 
world. The intended models 31 of a logical language using such a vocabulary are 

                                                 
30 a set of informal rules that constrain the structure of a piece of reality 
31 A model is an interpretation (i.e., an assignment of truth values to symbols) of a set of sentences such 
that each sentence is “true”.  
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Figure 5.2. Ontology as a coarse specification of a conceptualization 
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constrained by its ontological commitment. An ontology indirectly reflects this 
commitment (and the underlying conceptualization) by approximating these intended 
models.” 

The formal details of this description are beyond the scope of this Thesis, and can be 
found in [Guarino 98]. Intuitively, however, this definition underlines an important 
property of ontologies that they are imprecise specifications of conceptualizations; 
therefore they also admit unintended models of a language depending on how fine-
grained they are specified. In Figure 5.2, an ontology is shown to restrict the models of a 
language, yet this restriction is not precise enough to exactly correspond to the intended 
models of the conceptualization it specifies. In Figure 5.3, we give an example involving 
multiple conceptualizations and one ontology to approximate the intended models of both 
conceptualizations.  

The ontology in this example has to be less restrictive than either of the 
conceptualizations, since it has to be able to specify both. For example, even though the 
two conceptualizations may have different definitions for price (nominal vs. including 
tax) in their intended models, the ontology created to approximate these 
conceptualizations may instead adopt a more general definition of price that subsumes 
both variations as special cases. We further advance this idea, and suggest that the 
variations can be represented using contexts, as will be explained in more detail in 
coming chapters. 

Figure 5.3. Ontology as a coarse specification of a conceptualization 
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5.3 Logic Programming 
Logic programming, developed in the early 1970s, is a declarative method of 

knowledge representation and programming based on first-order logic [Kowalski 1974]. 
A general logic program can be viewed as a collection of rules (or clauses) of the form 
[Baral and Gelfond 94]: 

A0 ← A1, …, Am, not Am+1 ,…, not An 
Each Ai is a literal (or atom) in the form pi(ai1, …, ain), where pi is a predicate symbol and 
aij are terms. Not is a logical connective called negation as failure in [Clark 78], A0 is the 
head (or conclusion), the right hand side of the rule is the body (or premise). In the 
special case of body being empty, the head is also called a fact.  

Rules or literals that do not contain any variables are called ground. The set of all 
ground literals in the language of a logic program is called its Herbrand base. The set of 
all possible terms that the theory can make assertions  about  are called its Herbrand 

universe. An interpretation is an assignment of literals to truth values. A model of a logic 
program is an interpretation, which satisfies all of its rules. 

General logic programs that do not have negative literals are called definite programs, 
also known as, Datalog. Database relations can be defined in two ways in Datalog: 
extensional database (EDB) relation is the set of ground facts often stored in a database, 
whereas intensional database (IDB) relations are defined by logical rules. In the 
relational model all relations are EDBs and view definitions are analogous to IDBs.  

The semantics of a logic program depends on how they define the satisfiability of the 
rules. The meaning of a Datalog program is defined in three ways in [Ullman 91]. Proof 

theoretic interpretation is the set of facts that can be derived from the rules in a logic 
program (i.e. forward chaining). The model theoretic interpretation corresponds to 
finding an assignment of truth values to all variables that makes all rules true. The 
computational interpretation is about designing an algorithm for executing rules to 
determine whether a predicate is true or false. For definite logic programs all of these 
interpretations coincide with one another.  

The semantics of a general logic program, however, is complicated by the 
interpretation of negation [Apt and Bol 94]. Namely, how does one evaluate “not Q”? 
One of the first attempts for the interpretation of negation is Clark’s Completion 

Semantics, which, informally stating, replaces the implications by equivalences [Clark 
78, Lloyd 84]. In negation as finite failure, not Q is a consequence of a program if Q 
finitely fails [Clark 78]. Finally, using the closed world assumption, not Q is a 
consequence of a program if Q cannot be proven. The relationships between these 
interpretations are examined in detail in [Apt 90].  

Due to some inadequacies of the above stated approaches to negation, other 
approaches have been suggested. Perfect model semantics, for example, is defined for 
stratified programs (i.e. programs which can be decomposed into different layers), where 
predicates defined in a given layer cannot depend negatively on predicates defined in 
lower layers [Castro and Warren 00]. Stable model semantics and well founded semantics 
try to extend the perfect model semantics to general logic programs, the first one taking a 
possible worlds approach by assigning a set of models to a program, the latter by 
assigning a unique three-valued interpretation to each program. 
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In logic programming languages such as Prolog, definite logic programs extended 
with negation, built- in predicates (i.e. =, <, and so on), and function symbols are allowed. 
Inclusion of built- in predicates and functions require that a logic program is safe (i.e. 
derives a finite set of answers), which is easily verified using a safety criteria discussed in 
[Ullman 91]. Queries can be evaluated bottom up or top-down, by inferring new facts 
from the existing facts or recursively transforming a goal into a series of subgoals that 
terminate in a fact. Detailed analysis of query evaluation techniques can be found in 
[Dantsin et. al. 01]. 

ECOIN data model is based on Datalog with negation extended with built- in 
predicates and function symbols. We explain the details of ECOIN next. 

5.4 ECOIN Knowledge Representation 
In this section we formally introduce knowledge representation in ECOIN, which is 

built on top of COIN. For completeness, definitions which are inherited unchanged from 
COIN will be stated here as well. 

ECOIN uses first order logic (FOL) as the language of representation, departing from 
COIN’s use of F-Logic and Gulog inspired language (COINL) [Goh 97]. We choose FOL 
for a number of reasons. First, (FOL) has been around longer than both F-Logic and 
Gulog, and is better understood theoretically. Second, FOL can be used both for 
knowledge representation and programming, allowing us to easily make the transition 
from theory to implementation. Furthermore, this choice was influenced by the 
experience and familiarity of our research group members with FOL compared to the 
COINL. 

As mentioned in the previous section, it is difficult to come up with an all-
encompassing definition for context and ontology, for they may have different definitions 
depending on the purpose. The definitions in this section are given for the purpose of 
formalizing ECOIN, and do not intend to provide generalized definitions.  

Our structure of introducing knowledge representation in ECOIN will be by 
providing the syntax and semantics of its language, which will culminate in the 
construction of an ECOIN framework. Definitions will be followed by informal 
restatements when need be, and also by examples to clarify the meaning. This framework 
introduced in this chapter is further extended in the Chapter 7, with merging related 
constructs.  

5.4.1  Basic Concepts 
In this section we provide the definitions of basic constructs used in ECOIN. 
Definition (Constructs) 

• A source is a set of predicates intensionally describing database relations.  
• A context identifier is a unique constant. 
• A primitive type is a data type with a materialized domain in native sources. 

Instances of primitive types are called primitive objects. The value of a primitive 

object is equivalent to itself (i.e. object identifier and value are the same). 
• A semantic type is a conceptual data type without a materialized domain. A 

semantic object is an instance of a semantic type. The value of a semantic object 
is obtained by a function ƒ:C×SO→PO, where SO is the domain of semantic 
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objects (identifiers), C is a set of context identifiers and PO is a set of primitive 
objects.  

• An attribute specifies a property of a semantic type, and can be viewed as a 
function ƒ: S→S, where S is the set of semantic types.  

• A modifier m is a designated attribute. The decision to designate a certain 
attribute as a modifier depends on whether that attribute is implicitly specified in 
some sources as contextual knowledge and if the value of that attribute 
functionally determines the value of a  

 
Examples: 

• An example source would be the yahoo database shown in the airfare example, 
with yahoo, cityAirport, crcyconvert relations. 

• An example context identifier would be c_yahoo as in the airfare example. 
• An example of a primitive type in SQL would be varchar, real, and integer. Their 

values such as “Smith”, 2.1, 1 would be examples of primitive objects. 
• An example of a semantic type would be the concept of number independent of 

its representation. Similarly, number two without any specific representation 
would be an example of a semantic object. The object identifier of a semantic 
object will be described later. The value of the semantic object “number two” in 
context c_yahoo would be 2. 

• Example attributes would be the price property of semantic type product, and 
currency attribute of semantic type price.  (Note that price is used both as a 
property and semantic type identifier in this example, which is legitimate in 
ECOIN)  

• An example modifier would be the currency attribute of price semantic type. The 
currency modifier of price could take different values (e.g. USD, EUR) in 
different contexts, which would affect the value of semantic price objects. 

5.4.2 Declarations 
This section contains basic declaration syntax used in the ECOIN framework. In 

definitions below τ,τ' are semantic types; t, t′ are semantic objects; a is an attribute 
symbol; m is a modifier name; c is a context identifier; tp, t′p, mvs, mvt are primitive 
objects; L1, …, Ln are atoms or user defined literals. 
 
Definition (Declarations) A declaration is defined as follows 

• A sub-type relationship (τ is a sub-type of τ'): 
is_a(τ,τ') 

In this case, τ,τ' can also be context identifiers. 
• Attributes of a semantic type τ: 

attributes(τ,[a1,…an]) 
• Modifiers of a semantic type τ: 

modifiers(τ,[m1,…,mk]): 
• A source relation: 

relation(D,R,A,S) 
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where D is the database identifier, R is the relation name, A specifies if the 
relation is abducible,  S is the schema of R as a set of pairs in the form of  
[primitive object, primitive type].  

• An attribute atom: 
attribute(t,a,t′) ← L1, …, Ln. 

• A modifier atom: 
modifier(τ,t,m,c,t′) ← L1, …, Ln. 

• A value function ƒ:SO×C→PO where SO is a set of semantic objects, PO is a set of 
primitive objects and C is a set of context identifiers: 

value(t, c, tp) 
Examples: 

• is_a(product, basic): basic is a supertype of product (or product is a subtype of 
basic). 

• is_a(price, monetary_value): monetary_value is a supertype of price. 
• is_a(c_yahoo, c_usa): c_yahoo context is a subtype of c_usa context 
• attributes(product, [country, price]): semantic type product has the attributes 

country and price. 
• modifiers(price, [currency, type]): semantic type price has the modifiers currency 

and type(specifies whether the price is nominal or includes tax etc.). 
• Relation: relation(yahooDB, cityAirport, i, [[city,string],[airport, string]]). 

where yahooDB is the database name, cityAirport is a relation in this database, i 
denotes that the relation is abducible, (e would denote that the relation is not 
abducible -- e.g. a view--), city and airport of type string are the column names of 
the cityAirport relation. 

• Simple attribute declaration:  
attribute(Product, price, Price) ← r′1(Product, Price). 

where r′1 is a semantic relation, price is the attribute name, Product and Price are 
semantic objects  
This declaration defines how the price attribute of semantic object Product can be 
obtained from the semantic relation  r′1. We call it simple since it involves only 
one semantic relation.  

• Complex attribute declarations with semantic joins:  
attribute(Product, country, Country) ←  r′1(Product1, Price),  

r′2(Product2, Country), value(Product, c, Productp),  
value(Product1, c, Productp),  value(Product2, c, Productp). 

where r′1, r′2  are semantic relations, Product1, Product2, Country are semantic 
objects, Productp is a primitive object, c is a context identifier. 
This declaration means that the country attribute of a product can be obtained by 
joining two semantic relations r′1 and r′2  on the Product1 and Product2 semantic 
objects. Value functions are used to enforce that the join objects (i.e. Product1  and 
Product2) and the object under consideration (i.e. Product) have the same 
primitive values in the same context. 

 
• Static Modifier:  

modifier(price, Price, currency, c_usa, M) ←  
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cste(currencyType, M, c_usa, “USD”). 
where cste is a utility function that builds a semantic object from static values. The 
required inputs for this function are the type of the modifier object (currencyType), 
the modifier identifier (M), context in which the modifier value is being declared 
(c_usa), and the static value of the modifier in that context (“USD”). 
 
• Dynamic Modifier:  

modifier(price, Price, currency, c_world, M) ← 
 attribute(Price, product, Product),  
 attribute(Product, country, Country), 
 attribute(Country, officialCurrency, M). 

In this example, the modifier represented by the semantic object M, is being assigned 
a semantic object directly (as opposed to building one through the use of cste 
function) by using the attribute functions. Given the semantic object Price, first its 
product32 attribute is obtained  

5.4.3 Context 
This section contains context related definitions. Most of these definitions 

computationally specify how to construct the definitional elements from the declarations 
in the previous section.  
 
Definition (Context Frame of a Semantic Type) 
Let τ be a semantic type, the context frame of τ, M(τ), is defined as a set as follows: 
M(basic) = ∅. 
i=1..n, mi ∈ M(τ) ← modifiers(τ,[m1,…,mn]). 
m ∈ M(τ) ←is_a(τ,τs), m ∈ M(τs). 
 

Informally, the context frame of a semantic type is recursively defined as the union of its 
modifier set and its parent context frame. The context frame of semantic type basic 
constitutes the base case, and has empty context frame.  
Intuitively, the context frame of a semantic type corresponds to its logical33 modifier set. 

Example: 

• The context frame of semantic type price is {type, coverage, currency} (see 
Figure 5.5) 

Definition (Extensional Context of a Semantic Object) 
Let t be a semantic object of type τ, the extensional context c of object t, CE(t, c), is 
defined as a set as follows: 
CE(t,basic) = ∅. 
{m,tv} ∈ CE(t,c) ←m ∈ M(τ), modifier(τ, t, m, c, t'),value(t',c,tv). 
{m,tv} ∈ CE(t,c) ← is_a(c,cs), {m,tv} ∈ CE(t,cs), {m,t'} ∉ CE(t,c). 
 

                                                 
32 While this may seem like a counter intuitive attribute function, each data cell is uniquely represented in . 
With that in mind, it becomes reasonable to see a price data cell referring to its product. 
33 Referring not only to physical, but also to inferable items. 



. 

72 

Informally, given a context c the extensional context of a semantic object is the set of 
modifier, value tuples in that context. Modifiers are obtained from the context frame of 
its semantic type. Modifier values are derived from modifier declarations for the semantic 
object in context c, or any of its supertypes, the sub context values overriding the parent 
ones. 

Intuitively, the extensional context of a semantic type is its context frame appended 
with modifier values. 

Example: 
Extensional context for the objects of semantic type Price in yahoo context is as follows: 
{<type, “nominal” >, <coverage, “one-way”>, <currency, “USD”>} 

Definition (Intensional Context of a Semantic Object) 
Let t be a semantic object of type τ, t′ be a semantic object, the intensional context c of 
object t, CI(t, c), is defined as a set as follows: 
CI(t,basic) = ∅. 
(modifier(_34, t, m, c, t') ← L1, …, Ln) ∈ CI(t,c) ← m ∈ M(τ). 
(modifier(_, t, m, cs, t') ← L1, …, Ln) ∈ CI(t,c) ← is_a(c,cs),  

(modifier(_, t, m, cs, t') ← L1, …, Ln) ∈ CI(t,cs),  
(modifier(_, t, m, c, t') ← L1, …, Ln) ∉ CI(t,c). 

 

Informally, intensional context c of a semantic object t is recursively defined as the 
union of its modifier atoms corresponding to the context frame of its semantic type, and 
the intensional context cs of t, where cs is a supert-type of context c. Sub context modifier 
atoms override super type modifier atoms. 

Intuitively, the intensional context of a semantic object is the logical set of modifier 
atom declarations. 

Definition (Semantic Object Set of a Primitive Relation) 
Let r be a relation in source s, let ti′ be the elevation35 of ti, the semantic object set of this 
relation SO(r) is defined as follows: 
ti′ ∈ SO(r)  ← relation(s, r, _, S), [ti,τi] ∈ S. 
 
Informally, semantic object set of a relation are those obtained during elevation. See 
mapping definitions for more detail. 
Intuitively, the semantic object set of a primitive relation is the set of semantic objects 
corresponding to columns in a relation. 

Example: The semantic object set of the cityairport relation from the airfare example is 
{City′,Airport′} as shown in Figure 5.5. 

Definition (Context Identifier Set of a Primitive Relation) 
The context identifier set of a primitive relation r, CI(r), is the set of context identifiers 
used in elevating r to semantic relation r′.  

Example: The context identifiers of the cityairport relation from the airfare example is 
{c_us} as shown in Figure 5.5. 
                                                 
34 _ means “any” in logic programming. 
35 Refer to mapping definitions. 
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Definition (Context of a Relation) 
Extensional and intensional contexts of a relation r, denoted by CE(r), CI(r) are defined as 
follows: 
{t,c,m,v} ∈ CE(r) ← t ∈ SO(r), c ∈ CI(r), {m,v} ∈CE(t, c). 
CI(r)  ⊇ CI (t, c) ← t ∈ SO(r), c ∈ CI(r), CI(t, c). 
where SO(r) is the semantic object set of primitive relation r. 
 
Informally, the extensional/intensional context of a relation r is the union of its 
extensional/intensional contexts defined for the semantic objects and context identifiers 
of that relation.   
Intuitively, extensional/intensional context of a relation is the union of the 
extensional/intensional contexts of its semantic types.  

Example: The extensional context of cityAirport relation is  
{< Airport′, c_us, format, “airportname”>} 
The intensional context of cityAirport relation is  
{modifier(airport, Object, format, c_ us, Modifier) ← 
          cste(airportName, Modifier, c_ us, “airportname”).} 

Definition (Context of a Source) 
Extensional and intensional context c of a source s, denoted by CE(s), CI(s) is defined as 
follows: 
CE(s) ⊇ CE(r) ← relation(s, r, _). 
CI(s) ⊇ CI (r) ← relation(s, r, _). 
This is simply the union of contexts of relations that are included in a source. 

Definition (Context Referred by Identifier) 
Extensional and intensional context referred by an identifier c, CE(c), CI(c) is defined as 
follows: 
{τ,m,v} ∈CE(c) ←  {m,v} ∈CE(t, c). 
CI(c) ⊇ CI(t, c)  ← CI(t, c). 
where t is of semantic type τ. 
 

Informally, the extensional context referred by a context identifier c is the set of  
semantic type, modifier, and modifier value triples where  the modifier and its value are 
obtained from the extensional context definitions referring to context identifier c. 
Similarly, intensional context referred by a context identifier c subsumes all the 
intensional context elements referring to context identifier c. 

Intuitively, context referred by identifiers is the set of all context definitions with the 
same (logical) identifier. 

Example: Extensional context of c_us is as follows: 
• {< airport, format, “airportname”>, < moneyAmount, currency, “USD”>, < 

currency, format, “3char”>} 
Intensional contexts from the airfare example are shown in Figure 5.4. 

Definition (Context Frame of an Ontology) 
Context frame of an ontology O, is a set defined over the semantic types S of an ontology 
as follows: 
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{τ, C(τ)}∈C(O) ← C(τ), C(τ) ≠ ∅, τ∈ S. 
 
Intuitively, context frame of an ontology is a collection of all of non-empty context 
frames of its semantic types. 

Example: Context frame of the airfare ontology is as follows: 

{ 

{moneyAmount, {currency}},  

{currency, {format}},  

{airport, {format}},  

{price, {currency, coverage, type}},  

{date, {format}} 

} 

 

Definition (Extensional Context of an Ontology) 
Let S be the set of sources that subscribe36 to an ontology O,  the extensional context of 
an ontology is defined as follows: 
CE(O) ⊇ CE(s) ←CE(s), s ∈ S. 
 

Informally, this is equivalent to the union of extensional source contexts that 
subscribe to the ontology. 

5.4.4 Sources and Constraints 
This section contains definitions relevant to sources and their constraints. 
 
Definition (Relations of a source)  
Relation set of a source si, R(si) is defined as 

relation(si, R,_, S)  ∈ R(si) ← relation(si, R, _, S). 
 

Example:  

R(yahooDB) = {relation(yahooDB, yahoo, I, [[…,…]….]) , relation(yahooDB, 
cityAirport, i, [[city,string],[airport, string]])} 

 
Definition (Integrity Constraints of a relation)  
Integrity constraints of a relation r, SC(r), is a collection of 

• key constraints that express the keys of a primitive relation  
• foreign key constraints constraining the links between relations 

                                                 
36 Refer to mapping definitions.  
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c_us context 

modifier(moneyAmount, Object, currency, c_us, Modifier) ← 

          Modifier = skolem(currency, “USD” , c_us, 1, constant("USD")). 

modifier(currency, Object, format, c_us, Modifier) ← 

          Modifier = skolem(currencySymbol, “3char” , c_us, 1, constant("3char")). 

modifier(airport, Object, format, c_ us, Modifier) ← 

          Modifier = skolem(airportName, “airportname” , c_ us, 1, constant("airportname")). 

c_uk context 

modifier(moneyAmount, Object, currency, c_us, Modifier) ← 

          Modifier = skolem(currency, “£” , c_us, 1, constant("£")). 

modifier(currency, Object, format, c_uk, Modifier) ← 

          Modifier = skolem(currencySymbol, “1char” , c_uk, 1, constant("1char")). 

c_yahoo context 

modifier(price, Object, type, c_yahoo, Modifier) ← 

          Modifier = skolem(priceType, “nominal” , c_yahoo, 1, constant("nominal")). 

modifier(price, Object, coverage, c_yahoo, Modifier) ← 

          Modifier = skolem(priceType, “oneway” , c_yahoo, 1, constant("oneway")). 

modifier(airport, Object, format, c_yahoo, Modifier) ← 

          Modifier = skolem(airportName, “3ltrCode” , c_yahoo, 1, constant("3ltrCode")). 

modifier(date, Object, dateformat, c_yahoo, Modifier) ← 

          Modifier = skolem(dateType, “American” , c_yahoo, 1, constant("American")). 

c_user context 

modifier(pr ice, Object, type, c_user, Modifier) ← 

          Modifier = skolem(priceType, “final” , c_user, 1, constant("final")). 

modifier(price, Object, coverage, c_user, Modifier) ← 

          Modifier = skolem(priceType, “roundtrip” , c_user, 1, constant("roundtrip")). 

modifier(date, Object, dateformat, c_user, Modifier) ← 

          Modifier = skolem(dateType, “European” , c_user, 1, constant("European")). 

modifier(airport, Object, format, c_ user, Modifier) ← 

          Modifier = skolem(airportName, “cityname” , c_ user, 1, constant("cityname")). 

 

Figure 5.4 Intensional Context Declarations for the Airfare Example 
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• general constraints that may involve semantic conflicts 
These constraints are expressed as constraint rules. 
 
Example: 

• Key constraint for the crcyconvert relation 
crcyconvert(FromCur, ToCur, ExchangeRate1, Date), crcyconvert(FromCur, ToCur, ExchangeRate2, 
Date) → ExchangeRate1 = ExchangeRate2. 
• General constraint for the yahoo relation 
yahoo(ID,Airline, Price, Tax, DepDate, ArrDate, DepCity, CxnCountry, ArrCity),  

DepDate > ArrDate → invalid. 
 
Definition (Integrity Constraints of a source)  
Integrity constraints of a source s, SC(s), is defined as 
SC(s) ⊇ SC(r) ← relation(s, r, S)  ∈ R(s) 
 

Informally, this is the union of integrity constraints of each relation that belongs to 
source s. 

5.4.5 Mappings (Elevation Axioms) 
This section contains definitions related to mappings between the sources and the 

shared ontology. 
 
Definition (Mappings or Elevations)  

• Given that ti is of primitive type τi in relation r(t1,…, tn), which is in context c, is 
elevated to a semantic object t'i of type τ'i with the following skolem function: 

t'i = skolem(τ'i, ti, c, i, r(t1,…, tn)) 
 

• Given that t1,…,tn are of primitive types τ1,…,τn, and t'1, …,t'n are of semantic 
types τ'1, …,τ'n from ontology O, then the source ri(t1,…, tn) in context c is said to 
elevate to the semantic relation ri'(t'1, …,t'n), if ∀j =1..n, tj elevates to t'j.  

• Elevation of ri, E(ri), is equal to { ri'(t'1, …,t'n) ← ri(t1,…, tn), t1=…,t'j = skolem(τ'j, 
tj, c, j, ri(t1,…, tn)),…} 

• ri  is said to subscribe to ontology O. 
 
Informally, each semantic object corresponds to a cell in primitive relations. Because 

the cell is being disintegrated from its tuple, skolem37 function is used to uniquely 
identify cells with the addition of context and semantic type mapping. Skolem function 
can also be thought of as an oid. 

Intuitively, mappings specify how primitive relations are elevated to semantic 
relations.  
Example: 

• Elevation of a primitive relation to a semantic relation: 
r′1(t′1,t′2) ←  r1(t1, t2), t′1 = skolem(product, t1, c_r1, 1, r(t1, t2)),  

t′2 = skolem(price, t2, c_r1, 2, r(t1, t2)).  

                                                 
37 Skolem functions are used to convert existentially qualified variables into a universal qualified state. 
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• Elevation rules between sources and the ontology for the airfare example are 
shown below in Figure 5.5. 

Definition (Elevations of a Source)  
Elevation set of a source si, E(si),  is defined as follows: 
e ∈ E(si),  ← e ∈ E(ri), ri ∈R(si). 

 

5.4.6 Ontology 
Definition  (Attributes of a Type) 
Let τ be a semantic type, the attributes of τ, A(τ), is defined as a set as follows: 
A(basic) = ∅. 
i=1…m, ai ∈ A(τ) ← attribute(τ, [a1, …,am]). 
a ∈ A(τ) ←is_a(τ,τs), a ∈ A(τs). 
 

Informally, attributes of a type are the union of its direct attributes, and any of its 
supertypes. 
 

yahoo′(ID′,Airline′, Price′, Tax′ , DepDate′, ArrDate′, DepCity′, CxnCountry ′, ArrCity′) ← 
yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity),  
ID′ = skolem(flightID, ID, c_yahoo, 1, yahoo(ID,…, ArrCity)),  
Airline′=skolem(airline, Airline, c_yahoo, 2, yahoo(ID,Airline,…,  ArrCity)), 
Price′=skolem(price, Price, c_yahoo, 3, yahoo(ID,Airline,Price,…, ArrCity)), 

 Tax′=skolem(tax, Tax, c_yahoo, 4, yahoo(ID,…,Price,Tax,…, ArrCity)), 
DepDate′=skolem(date, DepDate, c_yahoo, 5, yahoo(ID,…,Tax, DepDate,…,  ArrCity)), 
ArrDate′=skolem(date, ArrDate, c_yahoo, 6, yahoo(ID,… ,DepDate, ArrDate,…,  ArrCity)), 
DepCity′=skolem(airport, DepCity, c_yahoo, 7, yahoo(ID,…,ArrDate, DepCity,…, ArrCity)), 
CxnCountry ′=skolem(country, CxnCountry, c_yahoo, 8, yahoo(ID,…,CxnCountry, ArrCity)), 
ArrCity′=skolem(airport, ArrCity, c_yahoo, 9, yahoo(ID,…,CxnCountry, ArrCity)). 
 

crcyconvert′(FromCur′, ToCur′, ExchangeRate′, Date′) ← 
crcyconvert(FromCur, ToCur, ExchangeRate, Date), 
FromCur′ = skolem(currency, FromCur, c_yahoo, 1, crcyconvert(FromCur, …, Date)), 
ToCur′ = skolem(currency, ToCur, c_yahoo, 2, crcyconvert(FromCur, ToCur, …, Date)), 
ExchangeRate′ = skolem(basic, ExchangeRate, c_yahoo, 3, crcyconvert(…, ExchangeRate,…)),  
Date′ = skolem(date, Date, c_yahoo, 4, crcyconvert(FromCur, ToCur, …, Date)). 

 
cityAirport ′(City′, Airport′) ← 
 cityAirport(City, Airport), 
 City′ = skolem(basic, City, c_us, 1, cityAirport(City, Airport)), 
 Airport′ = skolem(airport, Airport, c_us, 2, cityAirport(City, Airport)). 
 
visaFees′(VisaType′, VisaFee′) ← 
 visaFees(VisaType, VisaFee), 
 VisaType′ = skolem(basic, VisaType, c_uk, 1, visaFees(VisaType, VisaFee)), 
 VisaFee′ = skolem(visaFee, VisaFee, c_uk, 2, visaFees(VisaType, VisaFee)). 
  

Figure 5.5 Elevation Rules for AirFare Example 
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Definition (Ontology in ECOIN framework) 
 
The ontology O in ECOIN framework is T ∪ C ∪ H ∪ A ∪ M , where 

• T is a set of semantic types ∪ {basic}  
• C is a set of context identifiers ∪ {basic} 
• H is a set of clauses defining the sub-type relationships 

o between semantic types in T,  and 
o between context identifiers in C 

• A is the set of declarations of a ∈A(τ), τ ∈ T 
• M is the set of declarations of m ∈M(τ), τ ∈ T 

 
Example: 

• The ontology graphically depicted in Figure 5.6 is expressed in Figure 5.7. 
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Figure 5.6 Airfare Ontology Diagram (Revisited) 
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semantic_types([trip, airport, traveler, airport, date, price, flight, timeZone, 
priceType, coverage, flightID, month, day, year, airportName, provider, 
paperFee, serviceFee, country, dateType, duration, airline, onTimeProbability, 
visaFees, moneyAmount, currency, durationType, currencySymbol, tax, basic]). 
 
contexts([c_yahoo, c_user, c_uk, c_us]). 
 
is_a(price, moneyAmount). 
is_a(paperFee, moneyAmount). 
is_a(serviceFee, moneyAmount). 
is_a(visaFees, moneyAmount). 
 
is_a(c_yahoo, c_us). 
is_a(c_user, c_us). 
 
attribute(trip, destination, airport). 
attribute(trip, origin, airport). 
attribute(trip, traveler, traveler). 
attribute(trip, departuredate, date). 
attribute(trip, returndate, date). 
attribute(trip, price, price). 
attribute(trip, flight, flight). 
attribute(trip, isin, country). 
attribute(flight, stopOver, airport). 
attribute(flight, flightID, flightID). 
attribute(flight, duration, duration). 
attribute(flight, airline, airline). 
attribute(flight, onTimeP, onTimeProbability). 
attribute(country, officialCurrency, currency). 
attribute(country, visaFees, visaFees). 
attribute(traveler, citizenship, country). 
attribute(provider, isin, country). 
attribute(provider, paperFee, paperFee). 
attribute(provider, serviceFee, serviceFee). 
attribute(date, day, day). 
attribute(date, month, month). 
attribute(date, year, year). 
attribute(price, tax, tax) 
 
modifier(moneyAmount, currency, currency). 
modifier(currency, format, currencySymbol). 
modifier(duration, type, durationType). 
modifier(date, dateFormat, dateType). 
modifier(price, type, priceType). 
modifier(price, coverage, coverage). 
modifier(airport, format, airportName). 

 

Figure 5.7 ECOIN Airfare Ontology 



. 

80 

 
Conversion Functions 
Definition (Conversion function)  
A conversion function for an ontology O is a mapping ƒ: S×P×M×C×Mv(m)×Mv(m) → P 
where 

• S is a domain of semantic objects in O 
• P is a domain of primitive objects 
• M is a domain of modifier names in O 
• C is a domain of context identifiers in O 
• Mv(m) is a domain of modifier values for modifier m defined as follows: 

v ∈ Mv(m) ← <t, c, m, v> ∈CE(O) 
 
Example: The conversion function for modifier currency is as follows: 
t′p = ƒ (t, tp, currency, c, MVs, MVt) =  
  tp * value(exchange(value-1(MVs, c), value-1(MVt,c)),c)   
where exchange and value are external functions. 
This conversion function converts the value tp of semantic object t to value t′p given the 
source and target modifier values MVs and MVt   (e.g. USD and EUR). 
 
Definition (Commutative Conversion Function)  
A conversion function is called commutative if  

v = ƒ (x, y, z, p, q, r) ↔ y =ƒ (x, v, z, p, r, q) 
 

Intuitively, commutative conversion functions are those that are symmetric with 
respect to {source value, source modifier value} and {target value, target modifier value} 
pairs. 
 
Example: The conversion function for modifier currency is commutative if  
exchange(x,y) = 1 /  exchange(y,x) --which is true for currency conversion--, as derived below:  
v = y * value(exchange(value-1(q,p), value-1(r,p)),p)   
y = v * value(exchange(value-1(r,p), value-1(q,p)),p)   
value(exchange(value-1(q,p), value-1(r,p)),p) =  1/ value(exchange(value-1(r,p), value-1(q,p)),p)    
exchange(value-1(q,p), value-1(r,p)) =  1/ exchange(value-1(r,p), value-1(q,p)))    
 
Definition (Representation of a Conversion Function)  
A conversion function ƒ (x, y, z, p, q, r) is represented as  

cvt (property, x, y, z, p, q, r) ← L1, …, Ln. 
where L1, …, Ln are atoms or user defined literals, property is commutative if ƒ is. 
 
Example: The conversion function for modifier currency is represented as: 

cvt (commutative, t, tp, currency, MVs, MVt, tp′) ← 
 exchangeRate′(Currency1, Currency2, Rate), 
 value(Currency1, c, MVs), 
 value(Currency2, c, MVt), 
 value(Rate, c, Ratep), 
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 multiply(tp ,Ratep, tp′). 
In the above example, conversion function is specified using the semantic relation 
exchangeRate′, value functions, and an arithmetic operator multiply.  
 
Definition (Conversion Functions of an Ontology)  
Conversion functions of an ontology, CF,  is defined as follows: 
ƒ (x, y, m, p, q, r) ∈ CF ← <τ, C(τ)>∈C(O), <m, τ'> ∈ C(τ) 
 

Informally, this corresponds to the set of conversion functions defined for all 
modifiers in an ontology. 

5.4.7 ECOIN Framework 
Definition The ECOIN framework is S ∪ O ∪ E ∪ C ∪ CF ∪ CS  where  

• S , the source set, is R(s1) ∪ R(s2) …∪ R(sk)  where si is a source symbol. 
• O is an ontology,  
• E, the elevation set, is E(s1) ∪ E(s2) …∪ E(sk)   
• C, the context set, is CI(c1)∪ CI(c2)…∪ CI(cn)  where ci is a context symbol. 
• CS, the conversion functions,  
• IC, the set of integrity constraints, is IC(s1) ∪ IC(s2) …∪ IC(sk)   

 
Definition An ECOIN application is an instance of the ECOIN framework.  
 

This completes the formal specification of knowledge  representation in ECOIN. 
Applications using the representation framework detailed in this section, can take 
advantage of the reasoning facilities we provide to achieve semantic interoperability 
among heterogeneous and autonomous sources. In the next section, we will focus on the 
reasoning framework by considering query answering in ECOIN, with a particular 
emphasis on equational ontology constraints. 
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Chapter 6 

Query Answering in ECOIN 
We have grouped data heterogeneities into three categories in Chapter 3: contextual, 

ontological, and temporal. Query answering techniques in COIN framework, as briefly 
explained Chapter 4, successfully handle a subset of contextual heterogeneities using 
abductive reasoning. Equational ontological heterogeneities (EOC), on the other hand, 
even when they are transformed and represented as contextual heterogeneities, require a 
reasoning technique that intertwines abductive reasoning with symbolic equation solving. 

In this chapter, we describe an extended reasoning approach that encodes symbolic 
equation solving through the use of constraint handling rules (CHR) [Frühwirth 98], a 
high- level language extension of constraint logic programming (CLP) for writing custom 
constraint solvers.  This extension, coupled with abductive reasoning provides an elegant 
and powerful solution to the problem of detecting and resolving EOC. 

In this section, we, first, describe EOC in more detail by providing examples from 
financial information systems. Then, we explain ECOIN approach to resolving EOC, 
which is based on abductive constraint logic programming, a combination of abduction 
and constraint solving techniques [Kakas 00].  

6.1 Equational Ontological Conflicts 
In Chapter 3, we referred to a financial case study conducted in Primark and 

summarized our findings concerning different types of heterogeneities in financial 
information systems. In that study, we found that many data items are derived from other 
simpler data items. For example, Price Earnings Ratio is calculated by dividing price per 
share by earnings per share.  However, this definition is subject to multiple 
interpretations, as it does not specify whether the earnings are “trailing”38 or “forward”39, 
or more importantly what is included in the earnings. In fact, when we collected Price 

Earnings Ratios for a specific company, Daimler-Benz, from several financial sources on 
the same day the numbers differed significantly, because of the differences in the 
interpretation of earnings (see Table 6.1.) A closer examination reveals that these 

                                                 
38 Trailing earnings are earnings in the last 12 months. 
39 Forward earnings are based on future earning estimates. 
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variations are not caused by erroneous reporting, but attributable to definitional 
differences among data sources. 

SOURCE P/E RATIO 
ABC 11.6 
Bloomberg 5.57 
DBC 19.19 
MarketGuide 7.46 

Table 6.1 Key Financials for Daimler-Benz (from [Madnick 01]). 

Financial concepts such as “Revenues”, “Expenses” and “Profits” are ontologically 
distinct but have interdependences that can be expressed as equations, such as “Profit = 
Revenues – Expenses.”  We refer to the heterogeneity in the way data items are 
calculated from other data items in terms of definitional equations, as equational 

ontological conflicts. Such conflicts in accounting methods are quite widespread not only 
between different countries, but also within the same country. For example, The Wall 

Street Journal and S&P use different methods to calculate the P/E Ratios for the 
Standard & Poor's 500-stock index. The Wall Street Journal divides the combined 
market capitalization of the 500 companies currently in the index by their most recently 

reported four quarters of earnings, while S&P updates earnings statistics for the index 
just once a quarter and doesn't revise earnings from previously reported quarters to 
account for additions or deletions to the index40.  

As long as the context used by each source of financial data is known, there is nothing 
wrong with a multiplicity of calculation methods – i.e., of equational ontologies. Yet, 
problems occur once companies’ financial numbers, crunched by analysts, enter a vast 
information food chain, where they are repeated, often without explanation, in hundreds 
of news sources, and end up being used out of context.  This becomes even more 
challenging when there is the need to combine or compare data obtained from multiple 
sources with differing contexts. 

In ECOIN, equational ontological conflicts are not handled by introducing new types 
in the ontology and defining equational relationships at the ontological level. Introducing 
new types is likely to be a time-consuming and difficult process, and is better avoided. 
Furthermore, in many cases, such an approach would result in an explosion of new 
ontology types to handle all of the possible variations. We adopt our context-based 
solution to this problem by making the context of the data items of each source explicit 
(i.e., how they are derived from other data items) and adjusting their values to different 
contexts by recalculating them when necessary using the context information – including 
the definitional equations associated with each context.   

Consider the airfare example we described in Chapter 4. Although the ontology 
corresponding to the airfare example has a single concept called price, it assumes 
different meanings in different contexts as shown in Figure 6.1.  Definitional differences 
between different price elements are expressed by using the type modifier. Conversion 
functions are then used to define the relationships, or in this specific case equations, 

                                                 
40 Moving Target: What's the P/E Ratio? Well, Depends on What Is Meant by Earnings --- Terms Like 
`Operating,' `Core,' `Pro Forma' Catch Fire, Leave Investors Muddled --- `Earnings Before Bad Stuff', 
Jonathan Weil, Wall Street Journal, Aug 21, 2001. 
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between different modifier values. In conversion libraries, it is enough for new additions 
simply to establish a connection to the network of conversion functions, and then our 
system automatically takes care of combining, inverting and simplifying them through 
the use of Dijkstra’s shortest path algorithm and the use of Constraint Handling Rules.  
 

 
 
Below we explain the details of query answering in ECOIN framework by first providing 
background on abductive constraint logic programming. 

6.2 Abductive Logic Programming 
The notion of abduction was first introduced by philosopher Peirce [Peirce 1903] as 

another form of synthetic inference, deriving the facts from rules and results. This is 
different both from deduction, which derives the results from rules and facts; and 
induction, which derives the rules from results and facts.  Abductive derivations are 
possible explanations that are consistent with the observed facts and the rules. In that 
sense, abductive explanations are hypothetical, as those explanations may later have to be 
retracted when new facts are available.  

Abductive logic programming (ALP) is an extension of a logic programming (LP) to 
perform abduction. It is increasingly being used in many complex AI problems such as in 
problems of diagnosis, planning and scheduling, natural language understanding, 
database updates, and information integration [Goh 97]. In all of these applications the 
required goals to be solved are seen as observations to be explained by abduction (e.g. a 
mediated query in information integration is viewed as an explanation of the intended 
user query).  
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Figure 6.1. Equational Conflict Handling in ECOIN 
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An abductive logic programming framework is defined as a triple (T, A, IC) 
consisting of a logical program T, a set of abducible predicates A, and a set of classical 
logic formulas IC, called the integrity constraints [Denecker and Kakas 01]. Given a 
query Q, its abductive explanation is equivalent to finding a set of abducible predicates 
r∈A such that: 
1. T ∪ r entails Q  (i.e theory and abducibles entails the query) 
2. T ∪ r satisfies IC  
3. T ∪ r is consistent  

In general, the set of abducibles, r, are ground. If nonground abducibles such as r= 
{∃X a(X)} are allowed the corresponding framework is known as constructive abduction 
[Kakas and Manceralla 93]. The integrity checking of such abducible hypotheses can 
naturally be understood in constraint logic programming terms, which we explain next. 

6.3 Constraint Logic Programming 
Constraint logic programming (CLP) is an extension of ordinary LP, with constraint 

predicates, that are checked for satisfiability and simplified by means of a constraint 
solver. Like LP, a CLP program needs to search a database of facts, but it can use 
constraints to rule out many possible outcomes and prune away large parts of the search 
tree. In CLP the unification algorithm is augmented by a dedicated solver applying 
constraint-solving algorithms from other branches of computing such as the simplex 
method from Operations Research. As a result CLP programs, in general, are more 
concise and efficient than ordinary LP. Compare for example, the CLP and LP versions41 
of the N queens problem42 shown in Table 6.2 below: 
In CLP, a constraint is like any other logic predicate and when called is posted to the 
constraint store. Several types of constraints can be declared using CLP, including: 

• Arithmetic Constraints  
e.g. X #\= Y (X is not equal to Y) . 

• Membership Constraints  
e.g.  Board[1..N] :: 1..N (=each element of the board array must be 
an element of {1,…,N}) ,   

• Propositional Constraints  
e.g. P #/\ Q  (= True if the constraints P and Q are both true) 

• Combinatorial Constraints  
e.g. all_different(Variables) (= True if the variables do not have 
identical values) 

• User-Defined Constraints 
e.g.  prime number constraints using constraint handling rules 
primes(1) <=> true. 
primes(N) <=> N> 1 | M is N – 1, prime(N), prime(M). 
prime(I), prime(J) <=> 0 is J mod I | prime(I). 

 
 
 

                                                 
41 Both programs are in Sicstus prolog. 
42 Place N chess queens in a N×N board such that they do not attack each other 
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CLP Formulation 
(from Eclipse Manual) 

LP formulation 
(from Craft of Prolog) 

queens_arrays(N, Board) :- 
 dim(Board, [N]), 
 Board[1..N] :: 1..N, 
 
 ( for(I,1,N), param(Board,N) do 
     ( for(J,I+1,N), param(Board,I) do 
      Board[I] #\= Board[J], 
      Board[I] #\= Board[J]+J-I, 
      Board[I] #\= Board[J]+I-J 
     ) 
 ), 
 
 Board =.. [_|Vars], 
 labeling(Vars). 

 

 

 

 

 

 

 

 

 

 

 

queens(N, Queens) :- 
    length(Queens, N), 
    board(Queens, Board, 0, N, _, _), 
    queens(Board, 0, Queens). 
board([], [], N, N, _, _). 
board([_|Queens], [Col-Vars|Board], Col0, N, 
[_|VR], VC) :- 
    Col is Col0+1, 
    functor(Vars, f, N), 
    constraints(N, Vars, VR, VC), 
    board(Queens, Board, Col, N, VR, [_|VC]). 
constraints(0, _, _, _) :- !. 
constraints(N, Row, [R|Rs], [C|Cs]) :- 
    arg(N, Row, R-C), 
    M is N-1, 
    constraints(M, Row, Rs, Cs). 
queens([], _, []). 
queens([C|Cs], Row0, [Row-Col|Solution]) :- 
    Row is Row0+1, 
    select(Col-Vars, [C|Cs], Board), 
    arg(Row, Vars, Row-Row), 
    queens(Board, Row, Solution). 
select(X, [X|R], R). 
select(X, [H|T], [H|R]) :- 
    select(X, T, R). 

Table 6.2 N Queens formulation in CLP and LP 

 
Enumeration predicates check satisfiability of the constraints by instantiating 

variables through specific algorithms, such as branch and bound in the case of 
maximize(Goal,X) (i.e. find the solution of Goal that maximizes X) or the more general 
labeling(Options, Variables) in which a set of search options can be specified. In 
the N-Queens example shown in Table 6.1, the default labeling is used, which instantiates 
variables starting from the smallest element in its feasible set. 
A constraint solver supports some of the basic operations such as satisfaction, 

simplification, propagation, normalization, entailment, and optimization. While 
constraint solvers were in the beginning black box systems, languages such as constraint 

handling rules (CHR) now allow users write their own constraint solvers in a high level 
language [Frühwirth 98]. It has been used to cons truct a wide range of solvers including 
terminological and temporal reasoning.  Next we provide more details on CHR. 

6.3.1 Constraint Handling Rules 
The theory of constraint handling rules (CHR), including its implementation, was 

proposed by Frühwirth. In this section we provide a summary of the syntax and semantics 
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of CHR and some important theoretical results concerning its soundness and 
completeness by referring to [Frühwirth 98]. 
Syntax of CHR  
Definition: (CHR Program) 
A CHR program is a finite set of CHR. There are three kinds of CHR.  
A simplification CHR is of the form: 
H1,..., Hi  <=> G1,…, Gj | B1, …, Bk, 
a propagation CHR is of the form 
H1,..., Hi  ==> G1,…, Gj | B1, …, Bk, 
a simpagation CHR is of the form  
H1,..., Hl \ H1+1,..., Hi <=> G1,…, Gj | B1, …, Bk, 
with i > 0, j≥ 0; k ≥ 0, l > 0 and where the multihead H1,..., Hi  is a nonempty sequence 
of CHR constraints, the guard G1,…, Gj is a sequence of builtin constraints, and the body 
B1, …, Bk is a sequence of builtin and CHR constraints. 
Above, a simpagation rule is an abbreviation for the following simplification rule: 
H1,..., Hl, H1+1,..., Hi <=> G1,…, Gj | H1,..., Hl, B1, …, Bk. 
therefore will be dealt as simplification from now on. 
Below is an example set of CHR for simplification, propagation and the use of guards: 

reflexivity @ X =< Y <=> X=Y | true. 
antisymmetry @ X=<Y, Y=<X <=> X=Y. 
transitivity @ X=<Y, Y=<Z ==> X=<Z. 

The first rule replaces X=<Y with true (an empty sequence) provided that X=Y. Thus 
whenever the constraint solver encounters the constraint X=<X it is simplified to true. 
The second rule means that whenever we find X=<Y, as well as Y=<X in the current 
constraint we can replace it with the logically equivalent X=Y. Finally, the transitivity 
adds the new redundant constraint, X=<Z, to the store whenever it encounters both X=<Y 
and Y=<Z in the current constraint. This new constraint although redundant may activate 
other rules in the constraint store and achieve useful simplifications.  

6.3.2 Declarative Semantics of CHR 
One of the distinguishing features of CHR compared to an LP language, such as 

Prolog is the allowance of multiple heads in the clauses. While joint reductions of 
multiple atoms are analogous to production rules of expert system languages such as 
OPS5, the similarity is merely syntactical. Rules in production rules like systems involve 
non-monotonicity, e.g. state changes caused by actions or method calls, as opposed to 
declarative constraint solving.  
Declarative meaning of a CHR program is defined as follows: 
Definition (Declarative meaning) 
Declaratively, a simplification CHR is a logical equivalence if the guard is satisfied:  
∀x (∃y (G1∧…∧  Gj)) → (H1 ∧  … ∧  Hi ↔ ∃z (B1 ∧  … ∧ Bk)) 
A propagation CHR is an implication if the guard is satisfied:  
∀x (∃y (G1∧…∧  Gj)) → (H1 ∧  … ∧  Hi → ∃z (B1 ∧  … ∧  Bk)) 
where x denote the sequence of global variables occurring in the head atoms H1, … , Hi, 
y (z) are the local variables occurring in the guard G1,…, Gj (body B1, …, Bk) of a rule.  
 
For example the reflexivity constraint: 
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reflexivity @ X =< Y <=> X=Y | true. 
is equivalent to: 
 ∀X,Y (X=Y) → (X =< Y ↔ true). 

6.3.3 Operational Semantics of CHR 
Operationally CHR programs can be thought of as a state transition system with the 

state defined as: 
Definition: (State) 
A state is an annotated tuple <F, E, D>v 
where F is a conjunction of CHR and built- in constraints (e.g. =, true, false) constituting 
the goal store (a.k.a the query), E is a conjunction of CHR constraints, and D is a 
conjunction of built- in constraints called the constraint stores (both), and v is a sequence 
of variables. 

Initial state consists of a goal F and empty constraint stores. <F, true, true>v, final 

state is either of the form <F,E,false>v (called failed) or <true,E,D>v (called successful 
answer) with no computation step possible anymore.  

In the transition logic, F are the constraints that remain to be solved, and D and E are 
the constraints that have been accumulated and simplified so far. The aim of the 
computation is to arrive at a state that contains no more goals. Of the four transition 
types, one solves built- in constraints, one introduces CHR constraints into their store, and 
the remaining two apply simplification and propagation CHRs. All transitions leave the 
annotation v unchanged. 
Definition: (Transitions ) 
Let P be a CHR program for the CHR constraints and CT43 be a built- in constraint theory 
which determines the meaning of built- in constraints. The transition relation * for  CHR 
is as follows. All variables in states stand for conjunctions of constraints. x denotes the 
program variables occurring in the multi head H. 
Solve: (Updates the constraint store D with a new constraint C from the goal store.) 
<C ∧  F, E, D>v * <F, E, D′>v 

if C is a built- in constraint and CT    (C ∧  D) ↔ D′ 
Introduce: (Transports a CHR constraint H from the goal store into the CHR constraint 
store) 
<H ∧  F, E, D>v * <F, H ∧  E, D′>v 

if H is a CHR constraint 
Simplify: (A simplification rule (H <=> G | B) applying to a CHR constraint H′ removes 
H′ from the CHR constraints store, adds B to the goal store and adds the equation H=H′ 
to the built- in constraint store) 
<F, H′ ∧  E, D>v * <B ∧  F, E, H = H′ ∧   D>v 

if (H <=> G | B) in P and CT    D → ∃x(H=H′ ∧  G)  
Propagate: (A propagation rule (H ==> G | B) applying to a CHR constraint H′ adds B to 
the goal store and adds the equation H=H′ to the built- in constraint store) 
<F, H′ ∧  E, D>v * <B ∧  F, H′ ∧  E, H = H′ ∧   D>v 

if (H ==> G | B) in P and CT    D → ∃x(H=H′ ∧  G)  

                                                 
43 at least including {=, true, false} 
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An example transition simulation concerning the reflexivity, antisymmetry, and 
transitivity CHR rules with the goal A ≤ B ∧  C ≤ A ∧  B ≤ C is shown below (v=[A,B,C] 
will not be shown):  
Transition State 
Initial < A ≤ B ∧  C ≤ A ∧  B ≤ C, true, true> 
Introduce (x3) <true, A ≤ B ∧  C ≤ A ∧  B ≤ C,true> 
Propagate (Transitivity) <C ≤ B , A ≤ B ∧  C ≤ A ∧  B ≤ C,true> 
Introduce <true, A ≤ B ∧  C ≤ A ∧  B ≤ C ∧  C ≤ B ,true> 
Simplify (Antisymmetry) <B=C, A ≤ B ∧  C ≤ A,true> 
Solve <true,A ≤ B ∧  C ≤ A, B=C> 
Simplify (Antisymmetry) <A=B, true,B=C> 
Solve <true,true, A=B ∧  B=C> 

Table 6.2 Example transitions in CHR 

6.3.4 Soundness and Completeness 
The soundness and completeness of CHR programs are established for terminating 

programs, which trivially follow from the following Lemma: 
Lemma  Let P be a CHR program and G be a goal. If C is the logical reading of a state 
appearing in a computation of G, then 
P, CT    ∀ (C ↔ G) 
where ∀F denotes the universal closure of a  formula F. 
Theorem (Soundness) Let P be a CHR program and G be a goal. If G has a computation 
with answer C then P,  

P,CT    ∀ (C ↔ G) 
Theorem (Completeness) Let P be a CHR program and G be a goal with at least one 
finite computation and C be a conjunction of constraints. If P, CT   ∀ (C ↔ G), then G 
has a computation with answer C′ such that  

P, CT   ∀ (C ↔ C′) 
While the soundness results can be extended to negated goals (failed computations), 

the completeness result can only be extended under special conditions. In ECOIN, we are 
dealing with CHR rules for solving linear arithmetic equations. In [Frühwirth 99], the 
termination of constraints for solving linear polynomial equations is established, which 
implies their soundness and completeness.  

 

6.4 Abductive Constraint Logic Programming  
The integration of abductive logic programming with constraint logic programming 

has been pursued based on the view that they can be both understood within the same 
conceptual framework of hypothetical reasoning. In both frameworks, an answer to a 
query is constructed from special predicates (i.e. abducible predicates in ALP; constraint 
predicates in CLP) which are constrained either by integrity constraints in the case of 
ALP or by means of a constraint theory in CLP. For example, the reflexivity, transitivity 
and antisymmetry constraints shown before can also be seen as integrity constraints for 
the abducible inequality predicates. ACLP aims to unify the treatment of abducibles and 
constraints.  



. 

90 

While in [Kowalski 92] integrity constraints are used both for abducible and 
constraint predicates, the opposite approach is taken in [Bürchert 94] and abduction 
without integrity constraints is treated as a special case of constrained resolution. In 
[Kakas and Michael 95] the hybrid approach is pursued, in which the central notions of 
the two frameworks are combined, so that abduction and constraint handling cooperate to 
solve a common goal. Typically, the goal is reduced first by abduction to abducible 
hypotheses whose integrity checking reduces this further to a set of constraints to be 
satisfied in CLP. Finally, in [Kakas 00] an extension of this framework is given, which 
makes it possible to compute abductive solutions by interfacing constraint solving to 
abduction. In this case, constraint solver not only solves the final constraint store 
generated by the abductive reduction but also dynamically affects this abductive search 
for a solution.  

From a formal point of view, ACLP can be seen as an extension of the ALP 
framework that supports constructive abduction allowing the abducible hypotheses to 
take the o nonground form of ∃X (A(X), C(X)) where A is a conjunction of abducible 
atoms and C is a set of constraints defined over the CLP (arithmetic) domain [Kakas et al. 
98]. An ACLP framework can be defined as follows: 
Definition (ACLP Framework)  
An abductive CLP (or ACLP) theory is a triple (P, A, IC) where  

• P is a constraint logic program.   
• A is a set of abducible predicates different from the constraint predicates.  
• IC: is a set of closed first order formulae (Integrity Constraints) over the 

combined language of CLP and P. 
Next we explain how we utilize the ACLP framework in dealing with equational 

ontological conflicts. 

6.5 Query Answering with ACLP 
Queries in ECOIN are handled similar to the COIN as shown in Figure 6.3, with the 

exception that the ALP framework in COIN is replaced with ACLP framework in 
ECOIN.  Abduction is now supported by constraint solving capabilities of CLP. In 
particular CHR is used to express a set of arithmetic constraints whose computational 
meaning is equivalent to a simultaneous symbolic equation solver. The solver can 
simplify, invert, and combine  equations constructed using arithmetic operators addition, 
subtraction, division, and multiplication. Its capabilities may easily be extended to more 
complicated operators (such as integral, square root) but we will limit our discussion to 
four basic arithmetic operators that may be used to define polynomial equations. We 
should note that symbolic equation solving in ECOIN produces intensional answers as 
opposed to extensional answers as in systems like MRDSM [Litwin and Vigier 86]. This 
difference is crucial in our choice of using CHR instead of a generic symbolic equa tion 
solver such as Maple or Macsyma. We provide a comparison of ECOIN with MRDSM 
after explaining the details of our CHR based solver. Before going into the symbolic 
capabilities of ECOIN, however, we will explain how a naïve user is query is translated 
into a well defined query and how the ECOIN framework can be transformed to an 
ACLP framework. 
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6.5.1 Naïve to Well Defined Query Transformation 
As shown in Figure 6.2, users formulate their queries in SQL, which is then trivially 

converted into its naïve Datalog equivalent. This naïve query, however, does not 
correspond to the intentions of the user; and needs to be converted into a well-formed 
query. Below we show the naïve query corresponding to the airfare example: 
answer(Airline,Price) ←  

yahoo(I,Airline, Price, T, “01/06/03”, “01/08/03” , “Boston”, C, “Istanbul”). 
Context: c_user 
The transformation of a naïve query into a well defined query is accomplished with the 
following definition: 
 

 
 
Definition (Naïve to well-defined query transformation) 
Let <Q, c> be a naive query in an ECOIN framework F, where c denotes the context 
from which the query originates. The well- formed query Q' corresponding to <Q, c> is 
obtained by the following transformations:  

• replace all references to extensional relations with the corresponding semantic 
relations with different variables for data elements; and  

• value atoms that map those variables to data elements in extensional relations; 
for example,  

yahoo(I,Airline, Price,T , “01/06/03”, “01/08/03” , “Boston”, C, “Istanbul”). 
is replaced by  
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yahoo′(X1, X2, X3, X4, X5, X6, X7, X8, X9). 
value(X1, c, I),  
value(X2, c, Airline),  
value(X3, c, Price),  
value(X4, c, T),  
value(X5, c, “01/06/03”),  
value(X6, c, “01/08/03”),  
value(X7, c, “Boston”),  
value(X8, c, C),  
value(X9, c, “Istanbul”).  

• Eliminate unnecessary value atoms (i.e. those ones whose third argument is 
non-ground and not referred by any other query element except the originating 
relation.  

This way the original query  
answer(Airline,Price) ←  
yahoo(I,Airline, Price, T, “01/06/03”, “01/08/03” , “Boston”, C, “Istanbul”). 
Context: c_user 
would be transformed into: 
answer(Airline,Price) ←  
yahoo′(X1, X2, X3, X4, X5, X6, X7, X8, X9). 
value(X2, c, Airline),  
value(X3, c, Price),  
value(X5, c, “01/06/03”),  
value(X6, c, “01/08/03”),  
value(X7, c, “Boston”),  
value(X9, c, “Istanbul”).  

6.5.2 ECOIN to ACLP Transformation 
In order to apply ACLP reasoning techniques for mediating a well formed user query, 

we need to establish the relationship between an ECOIN framework and ACLP 
framework.  
Definition (Transformation) 
An ECOIN framework F E = {S  ∪ O  ∪ E ∪ C ∪CF ∪ CS}can be mapped to a 
corresponding ACLP framework F A given by <P,I,A> where  

• P is the Datalogneg translation of the set of clauses in F E except CS;  
• I consists of the integrity constraints defined in CS, augmented with Clark's 

Free Equality Axioms, and symbolic equation solving constraints in CHR; and   
• A consists of  non-ground and ground extensional predicates defined in S, the 

built- in predicates corresponding to arithmetic and relational (comparison) 
operators, and the system predicate which provides the interface for system 
calls.  

Note that this transformation is very similar to COIN to ALP transformation, with the 
exception that I includes symbolic  equation solving constraints, which is explained 
next. 
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6.5.3 Symbolic Equation Solving Constraints 
Equation solving in ECOIN is necessitated by the existence of conversion functions 

that convert values between different contexts. As we explained in Chapter 5, ECOIN 
conversion functions form a network among themselves, and functions denoted as 
commutative correspond to the bidirectional arrows in Figure 6.3. Before conversion 
functions between any two contexts are applied, we find the shortest path in the 
conversion function network by using Dijkstra’s shortest path algorithm. Shortest path 
between two context nodes is calculated by assigning costs to each arc in the network. 
Currently the costs corresponding to each arc is assumed to be equal, thus the shortest 
path in the network is the path(s) with the least number of arcs. A random tie breaker is 
used when more than one path exists.  

In order to use the symbolic equation solving capabilities, arithmetic operations in 
conversion functions are built using basic arithmetic constraint predicates. The definition 
of a basic arithmetic constraint predicate is as follows: 
 

 
Definition (Basic Arithmetic Constraint Predicate) 
A basic arithmetic constraint predicate is a predicate of arity 3 corresponding to 
arithmetic operators {+, -, *, \}. The third variable is called the result variable. 
Example:  

• sum(X1, X2, X3) is a basic arithmetic constraint predicate corresponding to:  
X3 = X1 + X2.  X3  is the result variable. 
Note that by using basic arithmetic predicates, polynomial conversion functions of 
arbitrary complexity can be constructed. For example: 

ƒ (x, y ,z) = x2y + z/2 – 10 
can be constructed by the following combination of basic arithmetic predicates: 

mul(X,X,R1), mul(R1,Y, R2), div(Z,2,R3), sum(R2, R3, R4), sub(R4,10, F). 

MV1 

MV3 

MV2 

MV4 

MV6 

MV5 

MV7 

Figure 6.3 A conversion function network for modifier m 
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While applying ACLP in ECOIN, arithmetic predicates along with other predicates is 
reduced first by constructive abduction to abducible hypotheses, which are further 
reduced by the application of integrity constraints. Final abducible hypotheses of the non-
ground form ∃X (A(X)) are then constrained by the application of integrity and symbolic 
equation solving constraints. 
Before providing a definition of symbolic equation solving constraints, we have to 
explain the notion of intensional and extensional boundness, which is defined as follows: 
Definition (Intensional and extensional boundness) 

• A variable is bound if it is intensionally or extensionally bound. 
• A variable that references a data element in an extensional relation is 

intensionally bound. 
• A variable that references a ground atom is called extensionally bound. 
• A variable X that is functionally dependent on a set of variables S (shown as 

S→X) is intensionally bound if all elements of S are bound. 
Examples:  

• In yahoo(X1, X2, X3, X4, X5, X6, X7, X8, X9) each Xi (i=1..9) is intensionally 
bound.  

• In {X3 = 500, X4=50} X3, and X4 are extensionally bound 
• In {X3 = 500, X4=50, X10 = X3 + X4} X10 is intensionally bound for {X3, X4} 

→ X10  and X3, X4 are bound. 
We can now provide a definition of ECOIN symbolic equation solving constraints as 
follows: 
Definition (Symbolic Equation Solving Constraint Rules for Arithmetic Predicates) 
Symbolic equation solving constraint theory for arithmetic predicates, SCT(A), is a CHR 
program defined for a set of arithmetic predicates A corresponding to arithmetic 
operators {+, -, *, /}. SCT(A) reduces a given goal store G, (p∈G → p∈A), to a 
constraint store G′ (p∈G′ → p∈A) such that  

∀ pi (vi1, vi2, vi3) ∈ G′; vi1, vi2, vi3 is bound if such a reduction exists. 
Example:  
• Suppose {X4,X2} are intensionally bound then SCT({sum,mul,div,sub}) would 

reduce  
G ={sum(X1, X2, X3), mul(X3, .15, X4) } to G′ ={sub(X3, X2, X1), div(X4, .15, X3) } 
where {X4, .15} → X3 ∧  {X3, X2} → X1  establishes feasibility. 
Note that the main requirement of a symbolic equation solver is to ensure that all 
arithmetic predicates are bound. This is established by a set of CHR rules as follows: 
1. If a variable is ground it is also bound  
Example: 
sum(X,Y,Z) ==> ground(X) | bound(X). 
sum(X,Y,Z) ==> ground(Y) | bound(Y). 
sum(X,Y,Z) ==> ground(Z)  | bound(Z). 
 
2. If a variable is functionally determined by ground values, it is bound and its 

value can be calculated 
Example: 
div(X,Y,Z) <=> ground(X), ground(Y), nonground(Z), Y ~=0 | Z is X / Y, bound(Z). 
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div(X,Y,Z) <=> ground(X), ground(Z), nonground(Y), Z ~=0 , X ~=0  | Y is Z * X, 
bound(Y). 
div(X,Y,Z) <=> ground(Y), ground(Z), nonground(X),Y ~=0  | X is Z * Y, bound(X). 
div(0,Y,Z) <=> nonground(Z), Y ~=0 | Z is 0, bound(Z). 
div(X,Y,0) <=> nonground(X), Y ~=0 | X is 0, bound(X). 
div(X,0,Z) <=> false. 
 
3. If a result variable is functionally determined by bound values, it is also bound  
Example: 
sum(X,Y,Z), bound(X), bound(Y) ==> bound(Z). 
 
4. Identity element constraints 
Example: 
mul(1,Y,Z) <=> nonground(Z), nonground(Y) | Z=Y.   
mul(X,1,Z) <=> nonground(Z), nonground(X) | Z=X. 
 
Note that the assignment here is by reference not by value as in the case of “is”. 
 
5. Arithmetic integrity constraints 
Example: 
sub(A,Y,Z), sub(X,Y,Z) ==> nonground(X), nonground(A) | X = A. 
sub(X,Y,Z), sub(X,A,Z) ==> nonground(Y), nonground(A) | Y = A. 
sub(X,Y,A), sub(X,Y,Z) ==> nonground(Z), nonground(A) | Z = A. 
 
6. If a result variable in a predicate is bound simplify that predicate with its inverse 
Examples: 
sum(X,Y,Z), bound(Z)  <=>   sub(Z,Y,X), bound(Z). 
sub(X,Y,Z), bound(Z)   <=>   sum(Y,Z,X), bound(Z). 
mul(X,Y,Z), bound(Z)  <=>   Y~=0 | div(Z,Y,X), bound(Z). 
div(X,Y,Z), bound(Z)   <=>   Y~=0 | mul(Y,Z,X), bound(Z). 
 
Note that because of the previous set of constraints all ground predicates are eliminated 
from the store, while the values of their variables are propagated. 
 
7. If a result variable in a predicate is bound, and there is another bound variable 

simplify that predicate with its inverse and declare the remaining variable 
bound 

Examples: 
sum(X,Y,Z), bound(X), bound(Z) <=> sub(Z,X,Y), bound(X), bound(Y), bound(Z). 
sum(X,Y,Z), bound(Y), bound(Z) <=> sub(Z,Y,X), bound(X), bound(Y), bound(Z). 
 
8. Interaction constraints 
Examples: 
mul(X,A,Y), sub(B,Y,X)  <=> A~=-1 | div(B,N,X), sum(1,A,N). 
mul(X,A,Y), sum(B,Y,X) <=> A~=-1 |div(B,N,X), sub(1,A,N). 
div(X,A,Y), sub(B,Y,X)   <=> A~=-1 | mul(A,B,N1), sum(1,A,N2), div(N1,N2,X). 



. 

96 

div(X,A,Y), sum(B,Y,X)  <=> A~=-1 | mul(A,B,N1), sub(1,A,N2), div(N1,N2,X).  
 
9. Miscellaneous Simplification Constraints 
Example: 
mul(X1,C,Z1), mul(X2,C,Z2)  <=> sum(X1, X2, X), sum(Z1, Z2, Z), mul(X,C,Z).  
 

6.5.4 Implementation Issues 
While the theory of CHR allows more than two head constraints in constraint 

declarations, the implementations of CHR limit head constraints to two constraints for 
efficiency reasons. This limitation required us to find a way to transform  rules that 
needed more than two head constraints.  
Consider the example constraint given above in the third group of constraints: 

sum(X,Y,Z), bound(X), bound(Y) ==> bound(Z). 
In our implementation, we transform this constraint into a two headed constraint in two 
stages with the introduction of a dummy constraint.   

sum(X,Y,Z), bound(X) ==> fdsum(X,Y,Z,X,0,0). 
sum(X,Y,Z), bound(Y) ==> fdsum(X,Y,Z,0,Y,0). 
fdsum(X,Y,Z,X,0,0), fdsum(X,Y,Z,0,Y,0) ==>  bound(Z). 

 
In addition, the semantics of CHR implementations do not match the theory exactly, 
therefore our implementation uses dummy constraints to avoid looping in some cases. 
The complete code of our implementation is provided in Appendix ?. 

6.5.5 A Comparison with MRDSM  
In MRDSM [Litwin and Vigier 86], the issue of symbolic equation solving arises 

when dealing with update mappings. The update mapping problem is defined as follows: 
Let d = ƒ(a1, …,an) be the retrieval dynamic value obtained from the actual source 
attributes a1,…,an. Let d′ be the update value for d. Find the values a′1,…,a′n such that d′ = 
ƒ(a′1, …,a′n).  

Litwin investigates two particular problems of inversion computing, and the choice of 
one inversion among several, (when the mapping is many to one) combining numerical 
and symbolic methods. MRDSM uses the following set of arithmetic operators {+, -, *, \, 
**}44 in the computation of its retrieval mappings. 
Their solution for inversion computing is based on calling the generic symbolic equation 
solver Macsyma  with  
solve({ƒ(a′1, …,a′n) - d′ = 0}, { a′1, …,a′n }).  
which calculates the values of a′1, …,a′n if ƒ(x1, …,xn) is bijective. When Macsyma 
cannot solve the equation by itself, Bairstow numerical calculation method is used as a 
helper to Macsyma.  

As seen from the above discussion, although symbolic equation solving is used in 
MRDSM, it is used to calculate ground values of the unknowns. Namely an extensional 

solution is sought through the combination of symbolic and numeric methods. In the case 
of ECOIN, however, symbolic equation solving is used to find an intensional solution. 

                                                 
44 ** is  the exponent 
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This is a crucial difference, which separates the two problems apart. In fact, the ECOIN 
symbolic equation solver is a superset of the MRDSM solver, for extensional answers in 
ECOIN can be computed after the mediated query is processed by the query executioner. 
Finding an intensional solution, however, cannot be accomplished in MRDSM.   

In addition, symbolic equation solving in ECOIN is performed for multiple equations. 
This is also different from MRDSM, which handles one equation at a time. 

Although generic symbolic equation solvers such as Macsyma, Matlab and Maple can 
be used to solve simultaneous equations, as in the following Maple example: 
solve({3*x + 4*y = 7, 5*x + 3*y = 11}, {x,y}); the interface to their solvers 
have to be structured: the equations and variables to solve for has to be supplied at once. 
This is not easy to accomplish in a query mediation setting, where the variables to solve 
the equation for may not be easily identified, given the interaction between different 
query constructs.  Furthermore, in ACLP abduction and constraint solving interfaces with 
each other very nicely, which is very difficult to achieve with an external symbolic 
solver. 

Finally, our approach to the choice of inversion in many-to-one mappings is through 
the declaration of two separate functions -- since a many to one mapping cannot be 
commutative-- , which clearly identifies which mapping is to be used.  

6.6 Illustrative Example 
Consider the airfare example we have given in Chapter 4. Suppose the conversion 

functions shown in Figure 6.4 are defined for the type modifier of semantic type price . 
cvt(commutative, price, O, type, Ctxt, "nominal", Vs, "nominal+taxes", 
Vt) ← 
         attr(O, tax, T), 
         value(T, Ctxt, Tv), 
         sum(Vs, Tv, Vt). 
cvt(commutative, price, O, type, Ctxt, "nominal+taxes", Vs, 
"nominal+taxes+visaFees", Vt) ← 
         attr(O, provider, Pr), 
         attr(Pr, visaFee, Vf), 
         value(Vf, Ctxt, Vfv), 
         sum(Vs, Vfv, Vt). 
cvt(commutative, price, O, type, Ctxt, 
"nominal+taxes+visaFees+serviceFees", Vs, "nominal+taxes+visaFees", Vt) 
← 
         attr(O, provider, Pr), 
         attr(Pr, serviceFee, Sf), 
         value(Sf, Ctxt, Sfv), 
         sub(Vs, Sfv, Vt). 
cvt(commutative, price, O, type, Ctxt, "final", Vs, 
"nominal+taxes+visaFees+serviceFees", Vt) ← 
         attr(O, provider, Pr), 
         attr(Pr, paperFee, Pf), 
         value(Pf, Ctxt, Pfv), 
         sub(Vs, Pfv, Vt). 
cvt(commutative, price, O, coverage, Ctxt, "roundtrip", Vs, "oneway", 
Vt) ← 
         context(O, Cs), 
    modifier(price, O, coverage, Ctxt, Ms), 
    value(Ms, Ctxt, “final”), 
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   attr(O, provider, Pr), 
         attr(Pr, paperFee, Pf), 
    attr(Pr, serviceFee, Sf), 
         value(Pf, Ctxt, Pfv), 
         value(Sf, Ctxt, Sfv), 
    sum(Sfv,Pfv,SPv), 
         sub(Vs, SPv, Vt1), 
         div(Vt1,2,Vt2), 
         sum(Vt2,SPv,Vt). 
cvt(commutative, price, O, coverage, Ctxt, "roundtrip", Vs, "oneway", 
Vt) ← 
         context(O, Cs), 
    modifier(price, O, coverage, Ctxt, Ms), 
    value(Ms, Ctxt, “nominal+taxes+visaFees+serviceFees”), 

   attr(O, provider, Pr), 
         attr(Pr, serviceFee, Sf), 
         value(Sf, Ctxt, Sfv), 
    sub(Vs, Sfv, Vt1), 
         div(Vt1,2,Vt2), 
         sum(Vt2,Sfv,Vt). 
cvt(commutative, price, O, coverage, Ctxt, "roundtrip", Vs, "oneway", 
Vt) ← 
         div(Vs,2,Vt). 
 

Figure 6.4 Conversion Functions for Modifier type 

These functions correspond a network shown in Figure 6.5. The arcs roughly show 
which arithmetic predicates are used to do the conversion from one modifier value to 
another. Note that the coverage and type modifiers of price are not completely 
orthogonal, and order dependent. Namely, the type modifier has precedence over the 
coverage modifier. ECOIN system relies on the order of specification of modifiers to deal 
with this case.  The other approach would be to combine the type and coverage modifiers 
into a single modifier, but this would almost double the number of conversion functions 
needed to do conversion. 

Consider now the following user query we have introduced in Chapter 4: 
Q2: SELECT Airline, Price FROM Yahoo 
WHERE DepDate = “01/06/03” and ArrDate=  “01/08/03”  
and  DepCity= “Boston” and ArrCity= “Istanbul”; 

This query is converted to the following well formed query again introduced in Chapter 
4: 
WFQ2: answer(VAirline,VPrice) ←  

yahoo′(_,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′), 
value(Price′, c_user, VPrice)45, 
value(Airline′,c_user, VAirline), 
value(DDate′,c_user, “01/06/03”), 
value(ADate′,c_user, “01/08/03”) 
value(DCity, c_user, “Boston”) 

                                                 
45 Read as “the value of semantic object Price′ in context c_user is Price”. 
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value(ACity, c_user, “Istanbul”). 
 

 

After this query goes through the abduction reasoning as in [Goh 97], the following 
constraint predicates are posted to the constraint store: 
{{  answer(VAirline,VPrice), 
   yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport1, “Great Britain”, Airport2), 
    visafees(“Transit, UK, Turkey”, VF), 
    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport2), 
    currencyconvert(“GBP”,”USD”, ExchangeRate, “05/01/03”), 
    sum(Price, T, PT), 
    mul(ExchangeRate,VF,VFA), 
    sum(PT,VFA,PTV), 
    sub(PTVS,5,PTV), 
    sub(Final, 20, PTVS), 
    sum(20,5,SP), 
    sub(Final, SP, FSP), 
    div(RT,2,FSP), 
    sum(RT,SP,VPrice). 
}{ answer(VAirline,VPrice), 
  yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport1, Cxn, Airport2), 
    Cxn <> “Great Britain”, 
    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport2),     
    sum(Price, T, PT), 
    sum(PT,0,PTV), 

sum(NT, V, NTV) 

sub(F, VF, NTV) 

 
 
div(RT, 2, O) 

 

sum(NT, S, NTS) 

sum(N, T, NT) 

Figure 6.5 A conversion function network for modifier type and coverage 

nominal+tax 

nominal 

nominal+tax+visaFe
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final 
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    sub(PTVS,5,PTV), 
    sub(Final, 20, PTVS), 
    sum(20,5,SP), 
    sub(Final, SP, FWOP), 
    div(RT,2,FWOP), 
    sum(RT,SP,VPrice). 
} 
} 
Note that because there are two subsets of abducibles, the mediated query will be a union 
of these.    Let’s consider the first set of abducibles and the CHR rules together: 
    sum(Price, T, PT), 
    mul(ExchangeRate,VF,VFA), 
    sum(PT,VFA,PTV), 
    sub(PTVS,5,PTV), 
    sub(Final, 20, PTVS), 
    sum(20,5,SP), 
    sub(Final, SP, FSP), 
    div(RT,2,FSP), 
    sum(RT,SP,VPrice). 
 
In processing the above set of constraints, the following CHR rules are used: 
Rule 1: If a variable is ground it is also bound  
sub(Final,20,PTVS) ==> ground(20) | bound(20). 
sub(PTVS,5,PTV) ==> ground(5) | bound(5). 
div(RT,2,FWOP) ==> ground(2) | bound(2). 
 
Rule 2: If a variable is functionally determined by ground values, it is bound and its 
value can be calculated 
sum(20,5,SP), bound(20), bound(5) <=> SP is 25. 
Rule 3 : If a result variable is functionally determined by bound values, it is also 
bound  
sum(Price, T, PT), bound(Price), bound(T) ==> bound(PT). 
T and Price are from the yahoo relation; therefore are intensionally bound.  
mul(ExchangeRate,VF,VFA),  bound(ExchangeRate), bound(VF) ==> bound(VFA). 
ExchangeRate and VF are from the currencyconvert, and visaFees relations; therefore 

are intensionally bound.  

sum(PT,VFA,PTV), bound(PT), bound(VFA) ==> bound(PTV). 
 
Rule 6: If a result variable in a predicate is bound simplify that predicate with its 
inverse 
sub(PTVS,5,PTV), bound(PTV)  <=>   sum(PTV,5,PTVS), bound(PTVS). 
sub(Final, 20, PTVS), bound(PTVS)   <=>   sum(PTVS,20,Final), bound(Final). 
 
Rule 3 : If a result variable is functionally determined by bound values, it is also 
bound 
sub(Final, 25, FSP), bound(Final), bound(25) ==> bound(FSP).  
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Rule 6: If a result variable in a predicate is bound simplify that predicate with its 
inverse 
div(RT,2,FSP), bound(FSP) <=> mul(FSP,2,RT), bound(RT). 
 
 
Rule 3: If a result variable is functionally determined by bound values, it is also 
bound 
sum(RT,25,VPrice), bound(RT), bound(25) ==> bound(VPrice). 
 
At this stage since all variables are bound we can stop. The following set of arithmetic 
predicates  
    sum(Price, T, PT), 
    mul(ExchangeRate,VF,VFA), 
    sum(PT,VFA,PTV), 
    sum(PTV,5,PTVS), 
    sub(PTVS, 20, Final), 
    sub(Final, 25, FSP), 
    mul(FSP,2,RT), 
    sum(RT,25,VPrice). 
can be used to construct: 
VPrice = (Price +Tax + ExchangeRate* VisaFee + 5 + 20 -25) * 2 + 25 
Further simplifications can be done by using more simplification constraints. For 
example we can have the following propagation 
sum(PTV,5,PTVS), sum(PTVS, 20, Final) ==> sum(PTV,25,Final). 
by using: 
Rule 9. Miscellaneous Simplification Constraints 
sum(X,Y,Z), sum(Z,A,B) ==> ground(Y), ground(A), nonground(X), nonground(B) | 
C is Y + A, sum(X, C, B). 
The choice of simplification vs. propagation is important here, because before we can use 
a simplification we have to make sure that Z is not referred by any other constraint 
predicate. This would require using another constraint such as notreferred(X) to keep 
track of variable referrals. In that case the above propagation rule could be written as a 
simplification: 
sum(X,Y,Z), sum(Z,A,B), notreferred(Z) <=> ground(Y), ground(A), nonground(X), 
nonground(B) | C is Y + A, sum(X, C, B). 
Furthermore we can have the following simplification: 
sum(PTV,25,Final), sub(Final, 25, FSP) <=> FSP=PTV, sum(PTV,25,Final). 
by using  
Rule 5: Arithmetic integrity constraints 
sum(X,A,Y), sub(Y, A, Z) <=> X=Z, sum(X,A,Y) or  
sum(X,A,Y), sub(Y, A, Z) <=> X=Z, sub(Y,A,X) 
Finally we end up with the following set of abducibles: 
{ 
{  answer(VAirline,VPrice), 
   yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport1, “Great Britain”, Airport2), 
    visafees(“Transit, UK, Turkey”, VF), 
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    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport2), 
    currencyconvert(“GBP”,”USD”, ExchangeRate, “05/01/03”), 
    sum(Price, T, PT), 
    mul(ExchangeRate,VF,VFA), 
    sum(PT,VFA,PTV), 
    mul(PTV,2,RT), 
    sum(RT,25,VPrice). 
 
} 
{ answer(VAirline,VPrice), 
  yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport1, Cxn, Airport2), 
    Cxn <> “Great Britain”, 
    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport2),     
    sum(Price, T, PT), 
    mul(PT,2,RT), 
    sum(RT,25,VPrice). 
} 
} 
which translates to the mediated query we have shown in Chapter 4: 

MQ2:   SELECT Airline, 2* (Price+Tax+ VisaFee*exchangeRate) + 25  
FROM yahoo, visafees, currencyconvert,  
(select Airport from cityAirport where city= “Boston”) depCode,  
(select Airport from cityAirport where city= “Istanbul”) arrCode, 
WHERE DepDate = “06/01/03” and ArrDate= “08/01/03” and    
DepCity= depCode.Airport and ArrCity= arrCode.Airport  
and CxnCountry= “Great Britain” and fromCur=”GBP”  
and toCur=”USD” and date= “5/01/03”; 
UNION 
SELECT Airline, 2* (Price+Tax) +25 
FROM yahoo, visafees,  
(select Airport from cityAirport where city= “Boston”) depCode,  
(select Airport from cityAirport where city= “Istanbul”) arrCode, 
WHERE DepDate = “06/01/03” and ArrDate=”08/01/03” and    
DepCity= depCode.Airport and ArrCity= arrCode.Airport  
and CxnCountry <> “Great Britain”; 
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Chapter 7 

Ontology and Context Merging in ECOIN 
With the ECOIN framework users can create applications that integrate disparate data 

sources. Many of these applications are domain specific and can offer more value if they 
can be used together. Consider for example using the ECOIN airfare application we have 
presented in Chapter 4, together with a car rental application to plan an integrated travel 
schedule. Often times, however, these applications are developed by disparate users with 
diverse backgrounds, therefore cannot be immediately integrated.   

Integrating disparate ECOIN applications is challenging because it involves 
integrating disparate ontologies as well as context frames defined by them. It requires an 
understanding of the semantics of application ontologies and their context frames. 
Furthermore, extensions to the ontologies and context frames may be necessary to 
address the semantic conflicts emerging in the merged applications. For example, while 
the currency may not be part of the ontology and/or context frame in two applications 
focusing solely on US or European sources, it has to be made explicit when the 
applications are merged. Thus the context frame of the new ontology has to have a 
currency modifier. 

We adopt a two at a time virtual merging approach to integrate disparate ECOIN 
applications. The merger application does not physically contain the applications it 
merges, but only axioms that are needed to align and extend them.  Unlike ontology 
merging approaches in the literature, our approach is context driven and primarily 
requires context frames of ontologies to be merged.  

We start this chapter by providing a brief literature review on integrating ontologies. 
Then, we explain the basics of our merging process with the example scenario of creating 
a travel application from the airfare application of Chapter 4 and newly introduced car 
rental example. Finally, we provide a formal framework for the virtual merging of 
ECOIN applications. This framework is used in [Kaleem 03] as the foundation of a 
graphical tool that facilitates integrating disparate ECOIN explanations. 

7.1 Literature Review on Integrating Ontologies 
The origins of ontology integration can be traced back to schema integration, which 

has been studied extensively since eighties [Batini and Lenzerini 86]. Schema integration 
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research produced some guidelines to be used in integrating disparate schemas and semi-
automatic tools, but the process could not be fully automated because schema semantics 
could not be made explicit without human intervention.  

Ontology integration has to deal with both syntactic and semantic heterogeneities. 
Syntactically, ontologies may be expressed using different languages (e.g. KL-ONE vs. 
KIF) that may have different level of expressiveness (e.g. one supports default values the 
other does not). Ontolingua project [Gruber 93] aims to overcome this problem by 
providing an ontology language that can be translated to a variety of other ontology 
languages through the use of special purpose translators. It also provides a centralized 
repository to encourage reuse of ontologies developed in a variety of languages.  

Semantic differences such as the ones shown in Figure 7.1 are more difficult to 
reconcile because they require human intervention to understand and reconcile the 
meaning of ontological terms and relationships.  

 
Efforts such as the Standard Upper Ontology (SUO) [Niles and Pease 01] and Cyc Upper 
Ontology [Reed and Lenat 02] aim to reduce this need and provide general ontologies 
that can be used as the foundation of more specific ontologies. In these efforts, mappings 
that translate concepts of one ontology into the standard upper ontology are defined. The 
Carnot project for instance maps domain specific schemas to the Cyc knowledge base 
through the use of articulation axioms.  

These articulation axioms may relate synonymous concepts with each other as shown 
below: 
(synonymousExternalConcept Waikohu-CountyNewZealand FIPS10-4Information1995 
"NZ86") 
 
where Waikohu-CountyNewZealand is the Cyc term synonymous with “NZ86” in source  
FIPS10-4Information1995. 
Or they may specify an overlapping relation as in the following example: 
 

• Terminological Differences 
o Different names for the same concept 
o Related but different concepts 
o More specialized or general versions of the same concept 
o Attributes vs. functions vs. predicates representation 

• Simple Structural Differences 
o Two ontologies are similar yet disjoint 
o One ontology is a subset of the other 
o One ontology is a reorganization of the other 

• Complex Structural Differences 
E.g., having action predicates vs. reified events 

• Fundamentally different representations 
E.g., Bayesian probabilistic vs. truth- logic 

Figure 7.1 List of differences between ontologies  

(Adopted from Reed and Lenat 02) 
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(overlappingExternalConcept InferiorMesentericVein MeSH-Information1997 
"Mesenteric Veins | A7.231.908.670.385") 

 
Approaches that integrate ontologies by defining mappings (e.g. articulation axioms 

in Carnot) between them are known as ontology alignment approaches. On the other hand 
approaches that aim to produce a new ontology out of a set of ontologies is known as 
ontology merging. We consider integrating ontologies in ECOIN as a hybrid of these 
approaches: like ontology alignment approaches we use articulation axioms to align 
ontologies, and like ontology merging approaches we produce a new (virtual) ontology 
out of two ontologies.  

The state of the art in ontology merging today is dominated by semi-automatic tools 
that can analyze ontologies, and guide the user during merging by making suggestions. 
Three well known such tools are Prompt [Noy and Musen 00], Ontomorph [MacGregor 
et al. 99] and Chiemera [McGuinness et al. 00].  

In all of these approaches, the first step is the syntactic match phase in which 
ontological terms referring to similar objects are identified based on a linguistic similarity 
measurement. In the simplest case synonyms from a thesaurus can be used.  In more 
sophisticated approaches, a lexical reference system like Wordnet [Miller 95] can be used 
to identify similar terms through the use of richer semantics that involves relationships 
linking different synonyms sets.    

In Ontomorph [Chalupsky 00], which is based on the PowerLoom knowledge 
representation system, the user is offered a number of transformative operators to apply 
to the initial list of matches from the syntactic match phase. A human expert has to do the 
rest of merging manually. Chimaera [McGuinness et al. 2000] is like Ontomorph but 
considers subclass-superclass relations when making suggestions. PROMPT, previously 
known as SMART, is built on top of an ontology editor tool Protégé 2000. Based on a 
linguistic similarity among concept names it suggests actions, which may be applied by 
the user. It also allows users to define new actions by using the Protégé 2000 tool.  

These tools are useful in cutting some amount work during ontology merging, but 
because the semantics of different ontologies cannot automatically be made explicit, the 
user still has the burden of understanding each ontology before doing the merging.  

7.2 Example Merging Scenario 
In Chapter 4, we described the airfare application that helps users find the cheapest 

airfare across multiple airfare providers such as Orbitz, Expedia, Yahoo, Qixo. In this 
section, we introduce a car rental application that is used to find the cheapest car rental 
prices across multiple car rental providers. Then we explain the process of merging the 
airfare and car rental applications. 

7.2.1 Car Rental Scenario 
After finding the cheapest airfare, our thrifty friend wants to rent a car from the 

airport. Luckily, there is a car rental ECOIN application developed to find the best rental 
prices from a number of online providers. The details of this scenario are illustrated in 
Figure 7.2. As seen in the figure the context of the user and the car rental data source 
conflict in several ways. For example, in the user context the price means the final price 
(including taxes and fees), whereas in the data source price is nominal.  
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Our user formulates the following query to find rental prices: 

Context of Expediacar 
 
Price means nominal price  
 
Rate period is daily, weekend, weekly, or monthly 
 
Several fees are charged 
e.g. Vehicle license fee... 2.75/DAY 
Airport concession recovery fee ... 10 percent 
GARS 5/Day 
04/01/03 - 10/18/03 peak season surcharge... 3.00/DAY 
 
Pickup and Dropoff locations are expressed as  
three letter airport codes 

 

Currency = US Dollars    Date= American 
 

Context of User 
 
Price means final price  
(including taxes, and fees) 
 
Rate period is duration of rental 

 
Pickup and Dropoff locations are expressed  
as city names 

 
Currency = US Dollars 
 
Date= American 

expediacar 

Figure 7.2 Car Rental Example Scenario 

 

ID Class Pickup Dropoff Pickdate 

 
DropDate Price Company RatePeriod 

 

Query 

SELECT Price FROM expediacar 

WHERE Class= “Economy” and PickDate = “01/08/03”  

and DropDate=  “03/08/03”  and  

Pickup=”Boston” and DropOff= “Boston”; 

 

City Airport 
Boston BOS 
Istanbul IST  
  

 

cityAirport  taxes_fees 

ID GARS LicenseFee AirportFee  PeakSeasonFee 

 
ExtraDayCharge ExtraWeekCharge Surcharge State Tax VAT  
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Rate period in expediacar can be daily, weekend, weekly, or monthly and is revealed with 
the results, but the user expects that the returned rate will be the total rate for the whole 
duration. 

Our user formulates the following query to find rental prices: 
 

Q1:  SELECT Company, Price FROM expediacar 
WHERE Class = “Economy” and PickDate = “06/02/03” and  
DropDate=  “08/01/03”  and Pickup=”Istanbul” and DropOff= “Istanbul”; 

This query requests from expediacar the price and provider company of economy cars 
that can be picked up and dropped off in Istanbul on June 2nd 2003 and August 1st 2003 
respectively. This naïve query, when submitted to ECOIN, would be rewritten into the 
following mediated query: 
MQ1:   SELECT Company, (Price * 2 + ExtraDayCharge) * (1 + VAT) 

FROM expediacar, taxes_fees 
(select Airport from cityAirport where city= “Istanbul”) cityCode, 
WHERE Class= “Economy” and PickDate = “06/01/03” and 
DropDate=”08/01/03” and   PickUp= cityCode.Airport and  
DropOff= cityCode.Airport and expediacar.ID=taxes_fees.ID; 

 
and the system would return a result set like:  
Company Price 
Hertz 2328 
National 2768 
… … 
 

As seen in MQ1, the mediation engine calculates the total price by multiplying the 
monthly price returned by the source by 2 (covering June and July) and adding an extra 
day charge (one day from August). Furthermore, the price is adjusted to include the taxes 
by dynamically obtaining the value added tax (VAT) for Istanbul. 

While car rental and airfare applications can be queried individually using ECOIN, 
the user cannot issue a query that refers to both applications without merging them. The 
following query, for example, cannot be issued unless these applications are merged: 

SELECT yahoo.Airline, expediacar.Company, yahoo.Price + expediacar.Price as 
total 

FROM yahoo, expediacar  
WHERE DepDate = “01/06/03” and ArrDate=  “01/08/03”  
and  DepCity= “Boston” and ArrCity= “Istanbul”; 
expediacar.Pickup="Istanbul" and expediacar.Dropoff="Istanbul" and  
expediacar.PickDate="01/06/03" and expediacar.DropDate="08/01/03"; 

 
 

The query above asks for the airline and rental companies with the total price of 
airfare (from Boston to Istanbul between June 1st and August 1st in 2003) and car rental 
(pick up and drop off in Istanbul between June 1st and August 1st in 2003). Next we 
explain the merging process by using the airfare and car rental applications. 
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7.2.2 Merging Airfare and Car Rental 
In order to use the airfare and car rental applications together, we need to create a 

new application that merges the two. This new application, named the Travel Application 
in Figure 7.3, defines mappings between airfare and car rental ontologies, context frames 
and conversion functions.  

The Travel Application is not only a store for defining mappings between airfare and 
car rental applications, but also a normal application that can have its own ontological 
extensions, new context frames and conversion functions.  

For the user it is just any other application, as the user is not aware of the underlying 
applications as shown in Figure 7.4. The mediation engine on the other hand uses 
underlying applications when answering a user query since the travel application does not 
physically contain either application. 

As shown in Figure 7.5, merging is done two at a time. This choice enables users to 
gradually detect and resolve conflicts as well as simplifying the reasoning algorithm used 
in merging. Arbitrary number of applications, however, can be merged since merger 
applications are no different than other applications and can participate in new mergings.  

Merging in ECOIN is driven by the need to merge context frames and the conversion 
functions that apply to modifiers. Ontology merging is needed because context frames 
and conversion functions are defined by ontologies. In the extreme case of two 
applications having no contextual conflicts, there is no need to merge ontologies to 
answer queries referring to these applications.  This can be understood better, if we note  
first that the abductive query answering in ECOIN works (in procedural terms) by 

• recursively finding the modifiers of a semantic object 
• applying conversion functions for each modifier when needed; 

and second the queries are expressed not using the shared ontology, but by referring to 
source schemas similar to those in loosely coupled approaches. 

For this reason, in the extreme case of two applications sharing identical contexts, 
there is no need to reconcile ontologies even when they exhibit differences stated in 
Figure 7.1. In practice, however, two applications are likely to have contextual conflicts, 
and affected parts of ontologies have to be aligned. The context oriented merging 
provides an important advantage over ontology oriented merging (as in tightly-coupled 
systems), for it minimizes the amount of conflict resolution between disparate ontologies. 
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Figure 7.3 Merging Airfare and Car Rental Applications 
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7.3 Knowledge Representation for Merging 

The ECOIN Merging Framework (ECOINM) extends the ECOIN framework to allow 
the merging of multiple ECOIN or ECOINM applications. To the users the resulting 
ECOINM application is indistinguishable from any other ECOIN application. From the 
system point of view, the resulting application is a virtual one that has links to the 
underlying applications, but does not physically contain them. Instead it includes axioms 
that relate the context frames of those applications’ ontologies. Below we provide the 
details of knowledge representation for merging. 
 

Figure 7.4 User and engine visibility in merging 

Travel 
Application 

Airfare 
Application 

Car Rental 
Application 

 
User 
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Travel 
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Airfare 
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Hotel 
Application 

Holiday 
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Figure 7.5 Two at a time merging 
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7.3.1 Notation and Assumptions 
The application that merges two other applications is called the merger application of 

those applications. Applications that are merged are called the merged applications. A 
merger application has physical and logical views. Physical view of the merger 
application includes declarations that are physically contained in the merger application, 
whereas the logical view includes all declarations that can be logically deduced. Notation 
for the physical view will be the same notation we used in the ECOIN framework. 
Notation for the logical view will assume the form of X@Ai  where X is a term that 
belongs to physical notation and Ai denotes the application id. For example, while T will 
denote the semantic types in the physical view of the subject application, T@Ai will 
correspond to semantic types in the logical view of application Ai. Finally, we assume 
that all names (semantic type names, attribute names, etc.) used in the applications are 
unique or made unique with the use of an appropriate scheme (e.g. URIs). 

7.3.2  Declarations 
Definition (Merger Declarations) 
Let A be the application that merges applications A1 to An

46.  
• A merging relationship that specifies the merger and the merged applications 

merges(A, [A1,A2]) 
This is read as: Application A is the merger root of applications A1 and A2. 
• An isomodifiertype relationship that specifies the semantic type mappings 

between the merger and the merged applications  
isomodifiertype(A,Ai,τ,τij) 

This is read as: Semantic type τ in application A and semantic type  τij in application 
Ai has compatible modifiers. 
• An isomodifier relationship that specifies the modifier name mappings between 

the merger and the merged applications 
isomodifier(A, Ai, m, mij) 

This is read as: Modifier m (m ∈ M(τ) ) in application A and modifier  mij in 
application Ai are equivalent modifiers) 
• An isocontext relationship that specifies the context identifier mappings between 

the merger and the merged applications 
isocontext(A,Ai,c,cij) 

This is read as: Context c in application A and context cij in application Ai  are 
equivalent contexts 
• An isoattribute relationship that specifies the attribute name mappings between 

the merger and the merged applications 
isoattribute(A,Ai,a, aij) 

This is read as:Attribute a (a ∈ A(τ))  in application A and attribute aij in application 
Ai are equivalent attributes 

Note that the above mappings are always specified between the merger and the merged 
applications, never between merged applications directly. 
 

                                                 
46 For simplicity reasons we are going to take n=2 in the rest of the discussion. 
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Definition (Default Transitions) 
isomodifiertype(A,Ai, τ′, τ') ← τ' ∈ T@Ai,  not isomodifiertype(A,Ai, τ, τ'), τ ≠ τ'.  
isocontext(A,Ai,c′,c′) ← c' ∈ C@Ai,  not isocontext(A,Ai, c, c'), c ≠ c′. 
isomodifier(A, Ai, m′, m′ ) ← m' ∈ M(τ)@Ai,not isomodifier(A, Ai, m,  m′), m ≠ m′. 

 
Informally, this means that any semantic type (or context, modifier) in the merged 
applications that is not explicitly mapped to the merger application by default exists in 
the merger application with its own name. 
 
Definition (Mappings) 
Mappings are polymorphically defined as follows: 

• Semantic type mapping 
map(A,Ai, τ, τik) ← isomodifiertype(A,Ai,τ,τij)  

• Modifier mappings 
map(A,Ai, m, mij ) ← isomodifier(A, Ai, m, mij) 

• Context mappings 
map(A,Ai, c, cik) ← isocontext(A,Ai,c,cij) 

• Attribute mappings 
map(A,Ai, c, cik) ← isoattribute(A,Ai,c,cij) 

• Object mappings 
map(A,Ai, t, tik) ← t = skolem(τ, tj, c, j, r(t1,…, tn)),  

tik = skolem(τik, tj, cil, j, r(t1,…, tn)), 
map(A,Ai, τ, τik), map(A,Ai, c, cil).  

7.3.3  Context 
This section contains context related definitions. These definitions are similar to those 

given in Chapter 5, except that these definitions are from the logical view, i.e. considers 
both the physical and virtual declarations in computationally describing context related 
concepts. 
Definition (Logical Context Frame of a Semantic Type) 
Let τ be a semantic type in application A that merges applications A1 and A2. The logical 
context frame of τ, M(τ)@A is defined as a set as follows: 
m ∈ M(τ)@A ← m ∈ M(τ).  
m ∈ M(τ) @A←  merges(A, MSet), Ai ∈ MSet, 

map(A,Ai, τ, τik), map(A, Ai, m, m′), 
m′∈ M(τik)@Ai.  

Definition (Logical Extensional Context of a Semantic Object) 
Let t be a semantic object of type τ in application A, the logical extensional context c of 
object t, CE(t,c)@A, is defined as a set as follows: 
{m, tv}∈ CE (t,c)@A ←m ∈ M(τ), {m, tv} ∈ CE(t,c). 
 
{m,tv} ∈ CE (t,c)@A ←m ∈ M(τ), merges(A, MSet), Ai ∈ MSet, 

map(A, Ai, t, ti), map(A, Ai, c, ci), map(A, Ai, m, mij), 
{mij, tv}∈ CE (ti,ci)@Ai,  {m, tv} ∉ CE(t,c). 
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Definition (Logical Intensional Context of a Semantic Object) 
Let t be a semantic object of type τ in application A, t′ be a semantic object, the logical 
intensional context c of object t, CI(t, c)@A, is defined as a set as follows: 
x ∈ CI (t,c)@A ← x ∈ CI (t,c).  
x ∈ CI (t,c)@A ←  merges(A, MSet), Ai ∈ MSet, 
   x = (modifier(τ, t, m, c, t′) ← L1, …, Ln),  
   xi = (modifier(τ′,ti, mi, ci, t′i) ← L′1, …, L′n), 

map(A, Ai, t, ti), map(A, Ai, t′, t′i), map(A, Ai, τ,τ′) 
map(A, Ai, c, ci), map(A,Ai,m,mi), 
xi ∈ CI (ti,ci)@Ai, x ∉ CI(t,c). 

 
Definition (Logical Context Referred by Identifier) 
Logical extensional and intensional context referred by an identifier c, CE(c)@A, 
CI(c)@A is defined as follows: 
{τ,m,v} ∈CE(c)@A ←  {τ,m,v} ∈ CE(c). 
{τ,m,v} ∈CE(c)@A ←  merges(A, MSet), Ai ∈ MSet, 

map(A, Ai, τ, τi), map(A, Ai, m, mi),  
{τi,mi,v} ∈ CE(c)@Ai, {τ,m,v} ∉ CE(c). 

CI(c)@A ⊇ CI(c). 
CI(c)@A ⊇ CI(c) ←  merges(A, MSet), Ai ∈ MSet, 
   x = (modifier(τ, t, m, c, t′) ← L1, …, Ln),  
   xi = (modifier(τi, ti, mi, ci, t′i) ← L′1, …, L′n), 

map(A, Ai, t, ti), map(A, Ai, t′, t′i), map(A, Ai, τ, τi), 
map(A, Ai, c, ci), map(A,Ai,m,mi), 
xi ∈ CI (ci)@Ai, x ∉ CI(c). 
 

Definition (Logical Context Frame of an Ontology) 
Logical context frame of an ontology O, is a set defined as follows: 
<τ, C(τ)@A>∈C(O)@A ← C(τ)@A ≠ ∅, τ∈ T@A. 

 

7.3.4  Ontology 
Definition (Semantic Types in ECOINM Framework) 
Let A be the application that merges applications A1 and A2. Semantic types of A, T@A 
is defined as follows: 
τ ∈ T@A ← τ ∈ T . 
τ ∈ T@A ← merges(A, MSet), Ai ∈ MSet, τij ∈ T@Ai, map(A,Ai, τ, τij). 
 
Definition (Attributes in ECOINM Framework) 
Let τ be a semantic type in T@A, the logical attributes of τ, A(τ)@A, is defined as 
follows: 
a ∈ A(τ)@A ← a ∈ A(τ). 
a ∈ A(τ)@A ← merges(A, MSet), Ai ∈ MSet, τij ∈ T@Ai,  

map(A,Ai, τ, τij), map(A,Ai, a, aik), aik ∈ A(τij)@Ai. 
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Definition (Is-a relationships in ECOINM Framework) 
Let τ be a semantic type in T@A or a context identifier in C@A, the logical is-a 
relationships of application A, H@A, is defined as follows: 
x ∈H @A ← x ∈ H. 
x ∈H @A ← merges(A, MSet), Ai ∈ MSet, x= is_a(τ,τ′), xi= is_a(τij,τ′ik), 

map(A, Ai, τ,τij), map(A, Ai, τ′,τ′ik), xi ∈  H @Ai . 
 
 
 
Definition (Logical Ontology in ECOINM framework) 
The logical ontology O@A in ECOINM framework is T @A ∪ C@A ∪ H@A ∪ A@A 
∪ M@A , where 

• A is the set of declarations of a ∈A(τ)@A, τ ∈ T@A 
• M is the set of declarations of m ∈M(τ)@A, τ ∈ T@A 

 

7.3.5  Rest of the Concepts 
Conversion Functions 
Definition (Logical Conversion Functions of an Ontology)  
Logical conversion functions of an ontology O, CF(O)@A,  is defined as follows: 
ƒ (t, tv, m, c, mvs, mvt) ∈ CF(O)@A←  ƒ (t, tv, m, c, mvs, mvt) ∈CF(O) . 
ƒ (t, tv, m, c, mvs, mvt) ∈ CF (O)@A←  merges(A, MSet), Ai ∈ MSet,  

map(A, Ai, t, tij), map(A, Ai, m, mik), map(A, Ai, c, c′il),  
ƒ (tij, tv, mik, cil, mvs, mvt) ∈CF(O)@Ai . 

 
Sources 
Definition (Logical Source Set of an Ontology)  
Logical source set of an ontology O, S(O)@A,  is defined as follows 

s ∈ S(O)@A ← s ∈ S(O). 
s ∈ S(O)@A ← merges(A, MSet), Ai ∈ MSet,  s ∈ S(O)@Ai. 

 
Elevations 
Definition (Logical Elevation Set of an Ontology)  
Logical elevation set of an ontology O, S(O)@A,  is defined as follows 

e ∈ E(O)@A ← e ∈ E(O). 
e ∈ E(O)@A ← merges(A, MSet), Ai ∈ MSet, e ∈ E(O)@Ai. 

 
Constraints 
Definition (Logical Constraint Set of an Ontology)  
Logical source set of an ontology O, S(O)@A,  is defined as follows 

ic ∈ IC(O)@A ← ic ∈ IC(O). 
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ic ∈ IC(O)@A ← merges(A, MSet), Ai ∈ MSet,  ic ∈ IC(O)@Ai. 

 
ECOINM Framework 
Definition An ECOINM framework is S@A ∪ O@A ∪ E@A ∪ C@A ∪ CF@A ∪ 
CS@A . 
 
Definition An ECOINM application is an instance of the ECOINM framework. 

7.4 Merging Procedure 
The procedure of merging applications in ECOIN, which is explained in more detail in 
[Kaleem 03] can be summarized as follows: 
• Compare the context frames of the two applications 
Example: Context frame of air ontology 

{{af47:moneyAmount, {af:currency}},  

{af:currency, {af:format}},  

{af:airport, {af:format}},  

{af:price, {af:currency, af:coverage, af:type}},  

{af:date, {af:format, af:dateType}}} 
Example: Context frame of car rental ontology (see Figure 7.6) 

{{cr48:price, {cr:type, cr:period}}, 

{cr:city, {cr:symbol}}, 

{cr:date, {cr:format}}} 

                                                 
47 af corresponds to the URI (Uniform Resource Identifier) for the airfare application 
48 cr corresponds to the URI (Uniform Resource Identifier) for the car rental application 
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• Start with the first context frame and iterate through each element: 

e.g. i) {af:moneyAmount, {af:currency}}, 

       ii) {af:airport, {af:format}}  
1. If the semantic type has a corresponding type in the second ontology which 

can semantically have the same set of modifiers choose one of them to be 
upward inherited, or create a new type that can be related to both types. 
e.g i) af:moneyAmount corresponds to cr:monetaryAmount, select 

“af:moneyAmount” 
ii) create a type district that corresponds to both airport and city 
Note that  

• Different names for the same concept  
e.g. (moneyAmount vs. monetaryAmount) 

• Related but different concepts 
e.g. (revenues vs. profits) 

• More specialized or general versions of the same concept 
e.g. (financials vs. profits) 

can all qualify to have the same set of modifiers. 

 
2. Declare an isomodifiertype(App1, App2, Term1, Term2) relationship between 

the upward inherited or newly created semantic type and the related type(s), 
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which denotes that Term1 in App1 has compatible modifiers  with Term2 in 
App2. e.g.  
i)   isomodifiertype(tr, cr, tr:moneyAmount, cr:monetaryAmount) 
ii)  isomodifiertype(tr, cr, tr:district, cr:city) 

isomodifiertype(tr, af, tr:district, cr:airport) 
Refer to Figure 7.7 for an illustration of the upward inheritance and 
isomodifiertype relationship. 
3. For each modifier of the semantic type under consideration: 

• if there is a corresponding modifier defined in the related type, choose 
one of them to upward inherit 

e.g.  considering {cr:city, {cr:symbol}} and {af:airport, {af:format}}} choose 
cr:symbol for upward inheritance. 

• declare an isomodifier(App1, App2, Term1, Term2)  relationship 
between the upward inherited modifier and the related modifier, which 
means that Term1 in App1 is a compatible modifier with Term2 in App2. 

e.g. isomodifier(tr, af, tr:district:symbol, af:airport:format) 
 

 
4. If there is a need for new modifiers because of the integration define them 

e.g.   date format modifier (e.g. European vs. American) may need a separator (e.g. “/” 
vs. “-” ) modifier. (See Figure 7.8 for an illustration)  
• Continue with the second context frame and iterate through each element that has not 

been considered yet. 
• Consider other ontology elements, which may need modifiers because of the merging. 

• If an attribute definition is used in a conversion function in any of the applications to 
be merged or the merger application, relate that attribute name to the merger ontology 

district 

airport     city 

moneyAmount 

travel application 

airfare application 

upward inheritance 

moneyAmount  monetaryAmount  

 

Figure 7.7 Upward Inheritance and Isomodifiertype Relationship 
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with isoattribute(App1, App2, Term1, Term2), which means that Term1 in App1 is a 
compatible attribute with Term2 in App2.   

• If there are compatible (define compatibility somewhere) contexts between 
applications to be merged, relate context identifiers to the merger ontology with 
isocontext(App1, App2, Term1, Term2), which means that Term1 in App1 is a 
compatible context  with Term2 in App2.   

• Define new modifier values, new conversion functions, and new ontology terms in 
the new application if needed. 
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Chapter 8 

The ECOIN Prototype 
The ECOIN prototype provides an infrastructure for the realization of the COIN 

strategy through the ECOIN framework. The prototype consists of client, mediation and 
server processes as shown in Figure 8.1. Client processes refer to programs that aid the 
user in creating ECOIN applications, such as the textual application editor [Lee 03], or 
the CLAMP merging tool [Kaleem 03]; and in rerouting user queries to the mediator 
processes and answer sets to the users. Mediator processes rewrite user queries by 
utilizing application metadata to produce a mediated query and create and execute an 
optimized query plan. Server processes are those programs that allow access to traditional 
databases, web services and web pages.  

In this chapter, we provide a high level description of the client and server processes 
and a more detailed description of the mediation processes. Software for the application 
metadata module is discussed in detail in [Lee 03] and [Kaleem 03], the latter focusing on 
merging ECOIN applications.  

8.1 Client Processes 
Client processes in ECOIN can be described under two categories: application 

creation and query formulation. 
 

8.1.1 Application Creation 
In the original COIN prototype, COIN applications were created using the COINL 

language which was then parsed and stored in an Eclipse prolog-based database.  In the 
ECOIN prototype, ECOIN applications are stored in flat files as a set of First Order Logic 
(FOL) rules. In the most basic representation rule(H, B) is used to express the head H and 
the body B of a FOL rule. When the body is empty, B is replaced with true, and when 
there are more than one body clauses B takes the form of (B1, …,Bn).  



. 
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For example, the dynamic modifier declaration from Chapter 5, shown below: 
modifier(price, Price, currency, c_world, M) ← 
 attribute(Price, product, Product),  
 attribute(Product, country, Country), 
 attribute(Country, officialCurrency, M). 

would be expressed as a rule as follows: 
rule(modifier(price, Price, currency, c_world, M),  

(attribute(Price, produc t, Product),  
 attribute(Product, country, Country), 
 attribute(Country, officialCurrency, M))). 

By using XSLT, ECOIN application files can be converted into equivalent RDF, 
RuleML, and RFML representations as described in [Lee 03]. These transformations are 
syntactical in nature, and are aimed at making parsing easier for different programs in the 
ECOIN prototype as well as increasing the readability of ECOIN metadata by external 
users and programs. 

ECOIN applications can be created either manually by directly entering ECOIN rules 
in a flat file or auto-generated through the use of an application editor tool. The primary 
application editor, shown in Figure 8.2., is a textual tool that allows users to generate 
ECOIN application rules with a simple point and click interface.  Graphical application 
editor in its current state allows users to view ECOIN application rules graphically as 
shown in Figure 8.3.  
 
 
 
 
 

Figure 8.2 ECOIN Textual Application Editor 
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CLAMP is a tool that aids users in merging disparate ECOIN applications. It guides the 
user by presenting modifiers of the applications to be merged and allows users to link 
semantic types, attributes and modifiers with a simple point and click interface.  

8.1.2 Query Formulation 
Queries to the ECOIN application are handled through the query interfaces that 

accept user queries in SQL and return answers in tables. The ECOIN Demo web interface 
shown in Figure 8.4, allows users to issue SQL queries with a receiver context and trace 
how it is processed by the mediation engine by going through SQL to Datalog translation, 
conflict detection, mediation, Datalog to SQL translation, and execution stages.  

As shown in Figure 8.4, the user first inputs an SQL query in the SQL box, then 
chooses a receiver context, which specifies how the user expects the result set in terms of 
its semantics. The stage may be one of the six stages shown in Figure 8.4. Naïve Datalog 
and context sensitive stages display the Datalog equivalent of the input SQL query and its 
context adjusted form (i.e. well- formed query from Chapter 4) respectively. Conflict 
detection displays a matrix of the detected conflicts between the source and receiver 
contexts. Mediation stage outputs the mediated query which is a rewriting of the original 
query after detecting and reconciling conflicts between sources and the receiver. The 
SQL translation stage shows the SQL equivalent of the mediated query. Finally, the 
execution stage displays the results obtained from the data sources after executing the 
mediated query.  The outputs are displayed in the Result box.    

Figure 8.3 ECOIN Graphical Application Editor 
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Demo Stages 

Input Query 

Mediated Query 
Stored 
Queries 

Receiver Context 

Figure 8.4 ECOIN Web Based Query Interface 

Other query interfaces are designed for programming purposes and let programs to 
call the mediation engine with an input query and context issued against an application 
through the HTTP and SOAP protocols. These interfaces are designed to be used in user 
application programs. 

8.2 Mediator Processes 
The mediator processes consist of the context mediation engine, which accepts an 

SQL query and produces a mediated Datalog query, and the query processor with 
optimization and execution modules. The registry that stores or points to ECOIN 
application files and SQL to Datalog, and Datalog to SQL parsers are glue programs 
between the mediator and client processes. 
The context mediation engine is implemented using Eclipse Prolog distributed by the 
ECRC Eclipse Prolog49 is distinguished from other prolog implementations such as XSB 
Prolog50 with its strong support for constraint logic programming. 

8.2.1 The Abduction Engine 
The abduction engine in ECOIN is an extended version of the COIN abduction 

engine. As in COIN, it takes the form of a meta- interpreter [Sterling and Shapiro 94] 

                                                 
49 http://www-icparc.doc.ic.ac.uk/eclipse/ 
50 http://www.cs.sunysb.edu/~sbprolog/xsb-page.html 
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extended with rules that incorporate the new features of ECOIN framework. The skeleton 
of the recursive abduction algorithm is shown in Figure 8.5.  
 

 
 The above skeleton has the following declarative reading: 
• Rule 1 corresponds to the base condition and states that the empty goal “true” is true.  
• Rule 2 states that conjunctive goals H and B are true if both of them are true.  
• Rule 3, states that if a goal is a built- in, it is true if its execution does not fail. Built-

ins are either Prolog built- ins such as ground/1 or var/1; or user defined built- ins such 
as the constant semantic object builder cste(S, skolem(S, V, C, 1, cste(V)), C, V).  

• Rule 4, states that built- in clauses are true if their body can be abductively proven. 
User defined clauses correspond to the basic definitions provided in the ECOIN 
framework. For example the context frame definition in Chapter 5: 
M(basic) = ∅. 
i=1..n, mi ∈ M(τ) ← modifiers(τ,[m1,…,mn]). 
m ∈ M(τ) ←is_a(τ,τs), m ∈ M(τs). 
becomes a user defined set of clauses in the implementation as follows: 

 
contextFrame (basic,[]). 
contextFrame (T,M) :- modifiers(T,M1), is_a(T,ST), contextFrame(ST,M2), 
union(M1,M2,M) 

1. abductively_prove(true):-!.  
 

2. abductively_prove((H,B)) :-!,  
abductively_prove(H), 
abductively_prove(B). 

 
3. abductively_prove(Lit) :-   
builtin(Lit), !, 
call(Lit). 

 
4. abductively_prove(Lit) :-   
builtin_clause(Lit, Body), !, 
abductively_prove(Body). 

 
5. abductively_prove(Lit):-   
abducible(Lit), !, 
post_constraint(Lit). 

 
6. abductively_prove(Lit) :-   
rule(Lit,Body), 
abductively_prove(Body). 

 

Figure 8.5 Skeleton of the meta- interpreter implementing the Abduction Engine 
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• Rule 5, states that if the goal is abducible then it is posted in to the constraint store. A 
goal is abducible if it is one of the constraints in [ =,<,>,=<,>=,<>, is, +, -, *, /] or one 
of the designated external relations such as yahoo relation from the airfare example. 
Abducibles limit what statements can be used in expressing the mediated query.  
The constraint store is implemented using the Eclipse CHR library and consists of the 
basic inequalities for consistency checking of abducibles as well as the symbolic 
equation solving rules (See Figure 8.6 for a sample). 

 

 
• Rule 6, states that if the goal is a rule in the application declarations then the goal is 

true if the body of the rule can be abductively proven. For example given the 
following rule in the application file: 

rule(modifier(price, Object, type, c_yahoo, Modifier), 
          (cste(priceType, Modifier, c_yahoo, "nominal"))). 
abductive proof of modifier(price, X, type, c_yahoo, M) would be reduced to the proof of  
abductively_prove(cste(priceType, M, c_yahoo, "nominal")) .  
In Figure 8.7, shown in the following two pages, we provide a trace of the example query 
provided in Chapter 4  page ?. Starting with the well formed Datalog query WQ2: 
answer(VAirline,VPrice) ←  

yahoo′(_,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′), 
value(Price′, c_user, VPrice), 
value(Airline′,c_user, VAirline), 
value(DDate′,c_user, “01/06/03”), 

Sample Inequalities 

 
built_in     @ X leq Y <=> ground(X),ground(Y) | X @=< Y. 
reflexivity  @ X leq X <=> true. 
 
antisymmetry @ X leq Y, Y leq X <=> X = Y. 
 
transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z. 
 
subsumption  @ X leq N \ X leq M <=> N@<M | true. 
subsumption  @ M leq X \ N leq X <=> N@<M | true. 
 
Sample Symbolic Equation Solving Rules 

 
sum_ground  @ sum(X,Y,Z) <=> ground(X), ground(Y) | Z is X + Y, bound(Z). 
sum_ground  @ sum(X,Y,Z) <=> ground(X), ground(Z) | Y is Z - X, bound(Y). 
sum_ground  @ sum(X,Y,Z) <=> ground(Y), ground(Z) | X is Z - Y, bound(X). 
 

Figure 8.6 Sample Inequalities and Symbolic Equation Solving Rules from the 
Constraint Store 
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→ abductively_prove(answer(VAirline,VPrice)) 
Rule 5 
abducible(answer(VAirline, VPrice)) 
post_constraint(answer(VAirline, VPrice)) 
 
→ abductively_prove(yahoo′(_,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′), value(Price′, c_user, 
VPrice),value(Airline′,c_user, VAirline), value(DDate′,c_user, “01/06/03”), value(ADate′,c_user, “01/08/03”), value(DCity, 
c_user, “Boston”), value(ACity, c_user, “Istanbul”)) 
Rule 2  
→ abductively_prove(yahoo′(_,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′)). 

→ abductively_prove(value(Price′, c_user, VPrice)) 
  →abductively_prove(value(Airline ′,c_user, VAirline)). 

→abductively_prove(value(DDate′,c_user, “01/06/03”)). 
→abductively_prove(value(ADate′,c_user, “01/08/03”))  

→ abductively_prove (value(DCity′, c_user, “Boston”)). 
→abductively_prove(value(ACity′, c_user, “Istanbul”)) 

→ abductively_prove(yahoo′(_,Airline′, Price′, _, DDate′, ADate′ , DCity′, _, ACity′)). 
Rule 6 
rule(yahoo ′(ID′,Airline′, Price′, Tax′, DepDate′, ArrDate′, DepCity′, CxnCountry′, ArrCity′) , 

(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity))). 
where 

ID′ = skolem(flightID, ID, c_yahoo, 1, yahoo(ID,…, ArrCity)),  
Airline′=skolem(airline, Airline, c_yahoo, 2, yahoo(ID,Airline,…, ArrCity)), 
Price′=skolem(price, Price, c_yahoo, 3, yahoo(ID,Airline,Price,…, ArrCity)), 

 Tax′=skolem(tax, Tax, c_yahoo, 4, yahoo(ID,…,Price,Tax,…, ArrCity)), 
DepDate′=skolem(date, DepDate, c_yahoo, 5, yahoo(ID,…,Tax, DepDate,…, ArrCity)), 
ArrDate′=skolem(date, ArrDate, c_yahoo, 6, yahoo(ID,… ,DepDate, ArrDate,…, ArrCity)), 
DepCity′=skolem(airport, DepCity, c_yahoo, 7, yahoo(ID,…,ArrDate, DepCity,…, ArrCity)), 
CxnCountry′=skolem(country, CxnCountry, c_yahoo, 8, yahoo(ID,…,CxnCountry, ArrCity)), 
ArrCity ′=skolem(airport, ArrCity, c_yahoo, 9, yahoo(ID,…,CxnCountry, ArrCity))). 
 

→ abductively_prove(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity)) 
Rule 5  
abducible(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity)) 
post_constraint(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity)). 
 
→ abductively_prove(value(Price′, c_user, VPrice)) 
Rule 4 

builtin_clause(value(Price′,c_user, VPrice), Body) 
abductively_prove(Body). 
where Body is  
isa(Price ′, S), sourceValue(Price′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, VPrice). 

 Rule 4 
 builtin_clause(isa(Price′, S), Body)  [S resolves to type price] 
 builtin_clause(sourceValue(Price′, Vsrc), Body) [Vsrc resolves to Price in yahoo(ID,Airline,Price, Tax, DepDate, 
ArrDate,DepCity,CxnCountry, ArrCity)] 
 builtin_clause(all_contextFrame(price, L), Body)  [ L resolves to [currency, type, coverage] after abductively proving: 
  contextFrame (basic,[]). 

contextFrame (T,M) :- modifiers(T,M1), is_a(T,ST), contextFrame(ST,M2), union(M1,M2,M) ] 
 builtin_clause(allcvts(price, O, Price, [currency, type, coverage], c_user, VPrice)) 
   allcvts applies conversion functions for each modifier 

 e.g. for currency the following conversion function definition goes through the abductive proof 
procedure 

cvt (commutative, t, tp, currency, MVs, MVt, t p′) ← 
 exchangeRate′(Currency1, Currency2, Rate), 
 value(Currency1, c, MVs), 
 value(Currency2, c, MVt), 
 value(Rate, c, Ratep), 
 multiply(tp ,Ratep, tp′). 

 
Finally, the following constraints are posted to the constraint store. 
 
{ visafees(“Transit, UK, Turkey”, VF), currencyconvert(“GBP”,”USD”, ExchangeRate, “05/01/03”),        sum(Price, T, PT), 
mul(ExchangeRate,VF,VFA),        sum(PT,VFA,PTV),sub(PTVS,5,PTV), sub(Final, 20, PTVS), sum(20,5,SP), sub(Final, SP, 
FSP), div(RT,2,FSP), sum(RT,SP,VPrice)} 
and CxnCountry is resolved to “Great Britain” 
…continued in the next page: 
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→ abductively_prove(value(Airline′,c_user, VAirline)) 
Rule 4 

builtin_clause(value(Airline ′,c_user, VAirline), Body) 
abductively_prove(Body). 
where Body is  
isa(Airline ′, S), sourceValue(Airline ′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, VAirline). 

…In this case no conversion is found to be necessary; therefore nothing is posted to the store. Only variable resolutions 
are reflected in the answer. 
 
→ abductively_prove(value(DDate′,c_user, “01/06/03”)). 
Rule 4 

builtin_clause(value(DDate ′,c_user, “01/06/03”), Body) 
abductively_prove(Body). 
where Body is  
isa(DDate ′, S), sourceValue(DDate ′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, “01/06/03”). 

…In this case static conversion takes place and DepDate is resolved to “06/01/03” 
 
→ abductively_prove(value(ADate′,c_user, “01/08/03”))  
Rule 4 

builtin_clause(value(ADate ′,c_user, “01/08/03”), Body) 
abductively_prove(Body). 
where Body is  
isa(ADate ′, S), sourceValue(ADate ′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, “01/08/03”). 

…In this case static conversion takes place and ArrDate is resolved to “08/01/03” 
 
→ abductively_prove (value(DCity′, c_user, “Boston”)).  
Rule 4 

builtin_clause(value(DCity ′,c_user, “Boston”), Body) 
abductively_prove(Body). 
where Body is  
isa(DCity ′, S), sourceValue(DCity ′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, “Boston”). 

…Eventually the following abducible obtained from conversion functions are posted to the constraint store: 
cityAirport(“Boston”, DepCity), 
 
→abductively_prove(value(ACity ′, c_user, “Istanbul”)) 
Rule 4 

builtin_clause(value(ACity ′,c_user, “Istanbul”), Body) 
abductively_prove(Body). 
where Body is  
isa(ACity ′, S), sourceValue(ACity ′, Vsrc), all_contextFrame(S, L), allcvts(S, O, Vsrc, L, c_user, “Istanbul”). 

…Eventually the following abducible obtained from conversion functions are posted to the constraint store: 
cityAirport(“Istanbul”, DepCity), 

 
After a second run and constraint processing the following set of abducibles are obtained as the answer: 
{{  answer(VAirline,VPrice), 
   yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport 1, “Great Britain”, Airport2), 
    visafees(“Transit, UK, Turkey”, VF), 
    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport 2), 
    currencyconvert(“GBP”,”USD”, ExchangeRate, “05/01/03”), 
    sum(Price, T, PT), 
    mul(ExchangeRate,VF,VFA), 
    sum(PT,VFA,PTV), 
    mul(PTV,2,RT), 
    sum(RT,25,VPrice).} 
{ answer(VAirline,VPrice), 
  yahoo(I,VAirline, Price, T, “06/01/03”, “08/01/03”, Airport1, Cxn, Airport2), 
    Cxn <> “Great Britain”, 
    cityAirport(“Boston”, Airport1), 
    cityAirport(“Istanbul”, Airport 2),     
    sum(Price, T, PT), 
    mul(PT,2,RT), 
    sum(RT,25,VPrice).}} 

Figure 8.7 Trace of WQ2 from Chapter 4 
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value(ADate′,c_user, “01/08/03”) 
value(DCity, c_user, “Boston”) 
value(ACity, c_user, “Istanbul”). 

we show each rule that applies during the abduction phase. The final set of abducibles 
shown at the end of Figure 8.7 can be written as a Datalog query, which is then translated 
by the Datalog to SQL translator to MQ2 shown in Chapter 4. 

8.2.2 Query Processor 
The next destination of the mediated query is the query processor which consists of a 

query planner, optimizer and executioner as shown in Figure 8.8.  
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The Planner takes a Datalog query as an input and produces a query execution plan 
(QEP), which specifies constraints that need to be satisfied in the execution of component 
subqueries (CSQs).  Optimizer uses cost estimates (transfer time of tuples across the 
network) to improve planner’s QEP by searching for an optimal execution path. The 
executioner dispatches the CSQs to the remote sources and combines the returned results.  
It also performs joins and condition filtering that could not have been done at the remote 
sources. Intermediate results are stored in the local data store, and the local RDBMS 
query processor is used to execute the final query over these intermediate results. More 
details can be found in [Alatovic 02] 

Figure 8.8 Architecture of ECOIN Query Processor (Adopted from Alatovic 02) 
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8.3 Server Processes 
Server processes are database gateways, wrappers for web pages and services, the 

local RDBMS used by the query processor and the distributed registry that stores pointers 
to metadata. Database gateways and wrappers provide a uniform way of accessing data 
sources by using a canonical query language such as SQL. Caméléon wrapper engine, 
described in Chapter 2, lets us treat web sites like limited traditional databases. Similarly, 
our web service wrapper lets us query web services using SQL with some restrictions. 

The registry for the ECOIN system stores metadata needed by various applications in 
the prototype. The application editors use the registry to store and read ECOIN 
application metadata. The mediation engine use it to get the ECOIN application rules 
needed for the mediation. The query processor needs to obtain the schema information 
and location of data sources.  

The registry has a distributed organization as shown in Figure 8.9 below: 

     
 
The root registry is simply a set of pointers to local registries. ECOIN prototype 

maintained in our group at MIT, and the one located in Malaysia has different registries 
that are pointed from the root registries. Each local registry is organized by application 
identifiers and stores pointers to application metadata, which may be in a number of 
formats ranging from RDF to Prolog as shown in Figure 8.9. More details can be found in 
[Lee 03].  

This completes the brief description of the ECOIN prototype, which is available 
online51 to assist users from application creation to query execution. It is a powerful 
demonstration of the feasibility of the ideas described in this Thesis. 

 

                                                 
51 http://context2.mit.edu/coin/ 

Figure 8.9 The Registry Organization in ECOIN (Adopted from [Lee 03]) 
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Chapter 9 

ECOIN and the Semantic Web 
In the previous chapters we laid out the ECOIN framework for achieving semantic 

interoperability among heterogeneous and autonomous data sources. In this chapter, we 
discuss the relationship between ECOIN and the Semantic Web (SWeb), the vision of 
achieving logical connectivity on the Internet [Berners-Lee 01]. The challenges of the 
SWeb will be similar to the challenges of ECOIN; therefore our research may offer many 
important lessons and approaches for the SWeb. At the same time, SWeb constitutes an 
important test bed for ECOIN, with its many heterogeneous and autonomous data 
sources. Our objective in this chapter is to provide some quick background on the SWeb, 
and point out some interesting future research directions.  

9.1 The Semantic Web 
The SWeb is the vision of achieving semantic interoperability on the Internet. The 

SWeb differs from older application environments in many ways, but particularly in its 
huge number of autonomous sources and the rapid and continuous change these sources 
are going through [Manola 02].  

The SWeb introduces a set of layered standards to make data on the web well-defined 
for machines to reason with. These layered standards are often illustrated with the SWeb 
stack diagram shown in Figure 9.1. In the lowest layer, there are Uniform Resource 
Identifiers (URI) that identify resources on the web, and Unicode that encodes every 
character with a unique number independent of the platform, program, or language. XML 
provides a surface syntax for structured documents, but imposes no semantic constraints 
on the meaning of these documents. DTD (Document Type Definition)--not shown in the 
diagram-- is the grammar of an XML document  that provides a list of the elements, 
attributes, comments, notes, and entities contained in the document as well as their 
relationship to one another within the document. XML Namespaces refer to collections 
of names, identified by URI references. XML Query language, based on XML Path 
expressions that address parts of XML documents, provides features for retrieving 
information from diverse XML sources. XML Schema is a language for restricting the 
structure of XML documents. RDF is a datamodel for objects ("resources") and relations 
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between them, and provides a simple semantics for datamodels that can be represented in 
an XML syntax. RDF Schema is a vocabulary for describing properties and classes of 
RDF resources, with a semantics for generalization-hierarchies of such properties and 
classes. In the Ontology layer, OWL is a proposed ontology language that adds more 
vocabulary to RDFS for describing properties and classes: among others, relations 
between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer typing 
of properties, characteristics of properties (e.g. symmetry), and enumerated classes. So 
far main contributions of Semantic Web have been in the offering of standard languages 
for data and ontology representation. As shown in Figure 9.2, research at the Rules, 
Logic, Proof and Trust layers, is still in early phases and many of the issues surrounding 
the upper layers are relatively less understood and currently being investigated by many 
researchers. The current status of the SWeb is depicted in Figure 9.2: XML has been a 
standard since 1998 and is widely deployed to achieve interoperability within 
applications; Rules do not currently have a standard, although RuleML is being 
considered by the World Wide Web Consortium (W3C), who develops specifications, 
guidelines, software, and tools for the SWeb, etc. 
 

Figure 9.1 Semantic Web Stack  
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Figure 9.2 Semantic Web Status (adopted from [Berners-Lee 03]) 

 

9.2 The Semantic Web and Relational Databases 
In this section, we aim to establish the relationship between the SWeb and the 

relational data model, the canonical representation of data sources in ECOIN. In the 
relational model, databases have tables, which are sets of rows. Each row is a collection 
of data cells identified with a field (column) name. Relational schemas define the names 
and domains of fields, as well as a set of integrity constraints including key constraints, 
and referential integrity constraints.   

Although XML, and its schema definition languages DTD, and XML Schema can be 
used to express relational data models, the Semantic Web data model supports the 
relational data model mainly through the use of Resource Description Framework (RDF) 
and its corresponding schema language RDFS. RDF is preferred over XML, because it 
unifies set of all possible XML representations of a fact into one statement.  RDF can be 
thought of as the XML encoding of a relational table cell as shown in Figure 9.3 below. 
In similar vein, RDF schema corresponds to the schema of a relational table.  

 



 

133 

 

 

 

RDF has a simple data model consisting of triples with the following components 
(see Figure 9.3) 

• a property that describes some relationship (also called a predicate),  
• a value that is the subject of the statement, and  
• a value that is the object of the statement.  

A property must be a URI reference, whereas the subject and object may be a blank node 
(a node without a URI), a constant or a URI reference.  Set of RDF triples constitutes an 
RDF graph, in which subjects and objects are called the nodes.  

A row in the relational model can be expressed as a set of RDF nodes, with the 
following mapping:   

• a blank RDF node corresponding to a row, with its rdf:type property 
corresponding to the table name; 

• a set of RDF properties corresponding to the column names; and,  
• a set of constant values for each property corresponding to data cells.  

A row in yahoo relation from the airfare example for instance could be pictured as a 
graph as shown in Figure 9.4. In this figure, the blank node corresponds to a row from the 
yahoo relation. The rdf:type property of the blank node is set to the relation name yahoo 
in the sense that a row is an instance of the predicate corresponding to the table name. 
The column names define the outgoing property arrows from the blank node, which 
points to constant values for each property corresponding to data cells in the yahoo 
relation. 

RDFS is the vocabulary description language for RDF. In terms of its expressive 
power it is comparable to Entity Relation models, and can be used to describe database 
schemas. The schema for the yahoo relation from the airfare example can be defined as 
shown in Figure 9.5. In the Figure, all column names are defined as instances of class 

  

Figure 9.3 RDF vs. Relational Model (adapted from [Tim Berners-Lee 03]) 

RDF 

Relational Table  
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rdf:Class, and their domains are restricted by the rdf:datatype property. Unlike, database 
schemas, however, RDFS restrictions are not automatically enforced. It is left to the 
individual programs to process these constraints. Furthermore, RDFS does not provide 
built in support to express most integrity constraints such as the key and uniqueness 

constraints. Expression of these constraints is left to higher level languages such as OWL, 
which builds on RDFS bare minimums.  

 

coin:ArrCity 
coin:CxnCountry coin:Airline 

coin:ID 

rdf:type 

http://www.yahoo.com/travel 

 

coin:airfare info 

LH42260103 Lufthansa Germany Istanbul 

yahoo 

Figure 9.4 A row from airfare relation yahoo in RDF data model 

rdf:datatype rdf:datatype rdf:datatype 

rdf:datatype 

rdf:type 
rdf:type rdf:type 

rdfs:Class 

coin:ID coin:Airline coin:CxnCountry  coin:ArrCity 

rdf:type rdf:type 

xsd:string xsd:… 

rdf:datatype 

Figure 9.5 Schema of airfare relation yahoo in RDF Schema  
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9.3 The Semantic Web and Ontologies  
Web ontology language (OWL), which is a standard candidate for the Semantic Web, 

is an outcome of web ontology work that started in mid-nineties with projects such as 
SHOE [Luke et al. 97], Ontobroker [Decker et al. 98], OIL [Horrocks et al. 00], and 
DAML+OIL [Connoly et al. 01]. OWL is built on RDF(S), and is encoded and written as 
an RDF graph. It has three species or versions: OWL Lite, OWL DL (where DL stands 
for "Description Logic"), OWL Full. OWL Lite, is the most basic version that allows the 
expression of classification hierarchy and simple constraints (e.g. cardinality constraints 
of 0 or 1). OWL DL provides maximum expressiveness while being computationally 
complete (all conclusions can be computed) and decidable (all computations can be 
performed in finite time). OWL Full is the most expressive version of the language 
without having any computational guarantees like OWL DL.   
OWL, compared to ECOIN ontology language, (with constructs semantic type, attribute, 
is-a, and modifier) has a richer set of ontology constructs. Mappings between the ECOIN 
and OWL ontologies, with the exception of modifiers, can be ordinarily established as 
shown in Table 9.1: 
ECOIN OWL 
Semantic Type  Class 
Attribute  ObjectProperty 
is-a  subClassOf 

Table 9.1 ECOIN to Semantic Web Mapping 

The semantic type concept in ECOIN corresponds to the Class concept as a class 

identifier in OWL. Syntactically, the semantic type Trip from the airfare example would 
be represented in OWL as follows: 

<owl:Class rdf:ID="Trip"/> 
 

The attribute concept in ECOIN corresponds to the concept of Property in OWL. In 
ECOIN, domain and range of a property are not enforced, and can be determined at run 
time. Similarly, OWL allows domain and range values to be determined before run time, 
and it also provides the flexibility to leave them undefined. The destination attribute 
declaration, attribute(trip, destination, airport), would be defined in OWL as follows: 

<owl:ObjectProperty rdf:ID="destination"> 
  <rdfs:domain rdf:resource="#Trip" /> 
  <rdfs:range  rdf:resource="#Airport" /> 
</owl:ObjectProperty> 

 
The is-a relationship between semantic types in ECOIN are represented by the 

subClassOf relationship in OWL. The is_a(price, moneyAmount) from ECOIN would be 
represented in OWL as: 

<owl:Class rdf:ID="price"> 
  <rdfs:subClassOf rdf:resource="#moneyAmount" /> 
</owl:Class> 

    
The concept of a modifier, however, do not have a direct counterpart in OWL. Since a 

modifier is a special type of attribute, it can be represented as a an attribute in OWL, and 
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annotated as a modifier with a property. For example, the currency modifier for 
moneyAmount semanticType could be represented in OWL as shown in Figure 9.6. 

 

In Figure 9.6, a modifier property is defined from a propery to a constant. The 
modifier property acts like a flag that designates whether a given property is a modifier 
property. 

Perhaps, a better way to incorporate modifiers would be to create a subclass of 
owl:ObjectProperty like the way owl:SymmetricProperty is derived and use tha t property 
in modifier declarations. In this case the following declarations can be used, which more 
closely corresponds to the ECOIN data model: 

<owl:Class rdf:ID="ModifierProperty"> 
  <rdfs:subClassOf rdf:resource="owl:ObjectProperty" /> 
</owl:Class> 
 
<owl:ModifierProperty rdf:ID="currency"> 
  <rdfs:domain rdf:resource="ecoin:MoneyAmount" /> 
  <rdfs:range  rdf:resource="ecoin:CurrencyType" /> 
</owl:ObjectProperty> 

If we were to redraw the airfare ontology we have shown in Chapter 4 using OWL, it 
would almost be an identical graph with the exception of exchanging modifier arrows 
with ModifierProperty arrows, and is-a arrows with the subClassOf property arrows. 

9.4 The Semantic Web and Context 
The issue of context has been discussed in the Semantic Web community after 

suggestions that the idea of contexts were missing in RDF. The issue has been considered 
under the subjects of reification, and Notation 352 (N3)’s implementation of contexts as a 
container set. But a decision to include contexts in RDF standard  has not been made yet. 

                                                 
52Simplified RDF language 

ecoin:currency 

ecoin:MoneyAmount 

ecoin:CurrencyType 

 
true 

ecoin:modifier 

Figure 9.6 Modifier Representation in OWL 
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Reification deals with the situation of making statements about statements. 
Reification relates to the idea of contexts because contextual statements can be thought of 
as statements about the truth of a statement in a context (i.e. in McCarthy’s notation ist(c, 
statement)). For example, the following statement S1 about the price of an airfare: 

(S1) trip LH425060103 has a price whose value is 550 

 

could be expressed as a triple: 

 

[ecoin:LH425060103 ecoin:price “550”] 

 

and reified as follows: 

 

[[ecoin:LH425060103 ecoin:price “550”] ecoin:ist contexts:c] 

 

In RDF, reification is implemented with the introduction of a new type rdf:Statement  
which has the properties of rdf:subject, rdf:predicate, and rdf:object. Subjects that refer to 
objects with the rdf:Statement type, different from other types, refer to the whole 
statement which is the combination of subject, predicate and property properties. 

It has also been proposed in the RDF discussion groups that RDF be turned into a 
quadruple to include a context or statement id as a tuple. With this proposition S1 could 
be represented as a quadruple: 

[S1 ecoin:LH425060103 ecoin:price “550”] 

and S1 could either be perceived as a statement or context id. 
In yet another proposal to implement the notion of context [Klyne 00] in RDF, 

inspired by the N3 language, a new container class called rdfc:StatementSet is 
introduced to represent a collection of reified RDF statements. Context is then defined as 
a sub class of this container class and several properties such as asserts, assumes are used 
to add statements to the container, and to define relationships between contexts, etc. This 
proposal, like others, also has not found its way into the RDF standard yet. 

9.5 The Semantic Web and Rules 
The concepts of ontology, context and rules are fundamental in creating a semantic 

organization of knowledge. Ontologies are important in specifying the explicit semantics  
of data in the form of concepts and their relationships; contexts facilitate meaningful 
exchange of data with implicit semantics. Rules, on the other hand, are critical in 
expressing generalizable knowledge through the use of ontologies and contexts. In the 
ECOIN framework, for example, rules are used to express mappings between sources and 
the ontology, intensional expression of modifier values (i.e. context axioms), conversion 
functions that map object values between different contexts, and integrity constraints for 
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sources. Rules in ECOIN are closely tied with ontologies and contexts since they refer to 
constructs in the ontology and context identifiers. 

Rules on the SWeb has recently gained more recognition and been included in the 
SWeb stack diagram on top of the Ontology layer. Currently, the most prominent effort in 
representing rules for the Semantic Web is the XML encoded Rule Mark up Language 
(RuleML) [Grosof 01]. RuleML aims to define a shared language that permits “both 
forward (bottom-up) and backward (top-down) rules in XML for deduction, rewriting, 
and further inferential-transformational tasks” [Boley 01].   

ECOIN knowledge, such as elevation axioms, modifier declarations, conversion 
functions and integrity functions are rules that can be expressed on the SWeb using a 
standard rule language that supports ontologies like OWL. With the emergence of such a 
rule language standard on top of ontologies, these mappings will be clearer. 

9.6 The Semantic Web and Logic Programming 
The relationship between logic programming and the Semantic Web has been 

examined by analyzing the mappings between logic programming structures and XML 
and RDF [Boley 00]. Accordingly, basic RDF can be formalized with ground binary 
Datalog Horn facts. For example, the triple  

[ecoin:LH425060103 ecoin:price “550”] 
can be encoded as the ground Datalog Horn binary fact as: 

ecoin:price (ecoin:LH425060103, “550”) 
Furthermore, RDF container structures such as bags can be transformed into lists in 

logic programming. Reification can be treated with the use of modal- logic (e.g. with the 
use of a belief operator), and the use of logic variables may enable the expression of rules 
using RDF. 

With these mappings, RDF can be considered as a special case of knowledge 
representation with logic programming. This would then bring the possibility of using 
non-monotonic reasoning techniques employed in ECOIN, specifically abduction and 
constraint logic programming, in the context of Semantic Web. We leave the details of 
such a possibility for future work. 

9.7 Future Work 
There are several interesting directions for future work on gradually extending 

ECOIN approach to the SWeb. Some of these can be listed as follows: 
• Extending Caméléon wrapper engine with OWL support and RDF output capabilities 
• Using RDF documents as data sources 
• Using OWL and (RDF/)RDFS as data schemas 
• Using RuleML encoded rules to express elevation axioms and conversion functions 
• Mediation of XML Query language based queries  
• Investigating the representation of contexts on the SWeb  
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Chapter 10 

Conclusion 
In this Thesis, we addressed the two intertwined problems of logical connectivity, 

namely data extraction and data interpretation in the domain of heterogeneous 
information systems. 

We, first, described the design and implementation of a general purpose, regular 
expression based Caméléon wrapper engine with an integrated capabilities-aware 
planner/optimizer/executioner, and IWrap semi-automatic wrapper generator. Compared 
with other existing approaches in the academia and industry, Caméléon and its 
accompanying tools provide a fine balance of expressiveness and simplicity in the data 
extraction domain. 

Then, we provided a conceptualization for the dimensions of semantic heterogeneity, 
to better explain the nature of problems related to data interpretation. After presenting a 
brief analysis of semantic conflicts in financial information systems, we introduced three 
dimensions of semantic heterogeneity: contextual, ontological, and temporal. 
Furthermore, we defined a subcategory under ontological heterogeneities that referred to 
the heterogeneity in the way data items are calculated from other data items in terms of 
definitional equations as equational ontological conflicts.  

Before describing the Extended Context Interchange (ECOIN) approach to achieving 
semantic interoperability among heterogeneous and autonomous data sources, we 
summarized the Context Interchange strategy employed in our predecessor COIN. COIN 
was built on the ideas of contexts [McCarthy 93], heterogeneous database integration, 
abductive logic programming [Kakas 00], and deductive object-oriented data models and 
provided a framework for addressing contextual heterogeneities. With ECOIN, we 
introduced a way to handle equational ontological conflicts by representing them as 
contextual heterogeneities via the existing representational framework of COIN with 
some minor changes. The reasoning framework, however, needed to be extended with 
constraint logic programming to enable reasoning with symbolic equations. This new 
intertwined reasoning framework is known as abductive constraint logic programming in 
the literature and has been successfully used in ECOIN as a meta-interpreter with 
symbolic equation solving capabilities.  

Compared with existing tightly and loosely-coupled approaches in the literature, our 
approach provides a middle ground by combining the strengths of both approaches. Like 
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tightly coupled approaches (e.g. Pegasus [Ahmed et al. 91], InfoMaster [Duschka and 
Genesereth 97], Information Manifold [Levy 98]) we automate the task of rewriting a 
user query thus freeing the users from having to know the semantic details of sources; 
and like loosely coupled approaches (e.g. MRDSM [Litwin and Abdellatif 87] , VIP-
MDBMS [Kuhn and Ludwig 88], TSIMMIS [Garcia-Molina et al. 95]) we enable users 
to dynamically choose how to receive data from sources thereby offering a level of 
flexibility unseen in tightly coupled systems.  

With ECOIN, we also ventured into merging disparate ECOIN applications, which 
involves merging disparate ontologies and contextual knowledge. Our virtual and 
context-based approach to merging of ontologies is a hybrid of classical merging and 
alignment approaches. Like classical merging we produce a new ontology from a number 
of ontologies, (albeit a virtual one ), and like ontology alignment approaches we use 
articulation axioms to relate the terms in disparate ontologies. Ease of merging disparate 
ECOIN applications demonstrate the scalability and extendibility of our approach.  

10.1 Future Work 
The completion of this Thesis also opens up many other research issues, which we 

hope to explore in the future. In this section we would like to mention a few of promising 
research areas. 

First, representation frameworks used in both COIN and ECOIN are limited to 
representing contextual heterogeneities. While we were able to represent some of the 
ontological heterogeneities as contextual heterogeneities, it should also be possible to 
deal with them at the ontological level. For example, general relationships such as “Profit 
= Revenue – Expenses” can be represented at the ontological level as well. What 
representational extensions are needed to relate ontological constructs that are clearly 
distinct (e.g. Profit vs. Expenses) but somewhat related at the ontological level? When is 
it appropriate to represent ontological heterogeneities at the contextual level? These are 
questions that need to be addressed in future research. 

We also left out issues related to temporal heterogeneities in this Thesis.  As we 
mentioned in Chapter 3, temporal heterogeneities are orthogonal to both contextual and 
ontological heterogeneities, which suggests a different way to represent and reason with 
them. The ability to represent temporal heterogeneities without destroying our current 
framework would be an important research goal in the coming years. 

In Chapter 9, we discussed the relationship between the Semantic Web and ECOIN 
and pointed out interesting synergies they exhibit. One of our research goals will be 
generalizing the ECOIN approach to the Semantic Web, which alters some of the 
fundamental assumptions of the semantic interoperability problem. 

Finally, we would like to explore bio-informatics as a fertile field to apply our results 
and test the viability of our solutions.  
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