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ABSTRACT

In this work, we propose information laundering, a novel framework for enhanc-
ing model privacy. Unlike data privacy that concerns the protection of raw data
information, model privacy aims to protect an already-learned model that is to be
deployed for public use. The private model can be obtained from general learning
methods, and its deployment means that it will return a deterministic or random
response for a given input query. An information-laundered model consists of
probabilistic components that deliberately maneuver the intended input and out-
put for queries of the model, so the model’s adversarial acquisition is less likely.
Under the proposed framework, we develop an information-theoretic principle to
quantify the fundamental tradeoffs between model utility and privacy leakage, and
derive the optimal design.

1 INTRODUCTION

An emerging number of applications involve the following user-scenario. Alice developed a model
that takes a specific query as input and calculates a response as output. The model is a stochastic
black-box that may represent a novel type of ensemble models, a known deep neural network ar-
chitecture with sophisticated parameter tuning, or a physical law described by stochastic differential
equations. Bob is a user that sends a query to Alice and obtains the corresponding response for his
specific purposes, whether benign or adversarial. Examples of the above scenario include many re-
cent Machine-Learning-as-a-Service (MLaaS) services (Alabbadi, 2011; Ribeiro et al., 2015; Xian
et al., 2020) and artificial intelligence chips, where Alice represents a learning service provider, and
Bob represents users.

Suppose that Bob obtains sufficient paired input-output data as generated from Alice’s black-box
model, it is conceivable that Bob could treat it as supervised data and reconstruct Alice’s model to
some extent. From the view of Alice, her model may be treated as valuable and private. As Bob
who queries the model may be benign or adversarial, Alice may intend to offer limited utility for the
return of enhanced privacy. The above concern naturally motivates the following problem.

(Q1) How to enhance the privacy for an already-learned model? Note that the above problem is
not about data privacy, where the typical goal is to prevent adversarial inference of the data infor-
mation during data transmission or model training. In contrast, model privacy concerns an already-
established model. We propose to study a general approach to jointly maneuver the original query’s
input and output so that Bob finds it challenging to guess Alice’s core model. As illustrated in
Figure 1a, Alice’s model is treated as a transition kernel (or communication channel) that produces
Ỹ conditional on any given X̃ . Compared with an honest service Alice would have provided (Fig-
ure 1b), the input X̃ is a maneuvered version of Bob’s original inputX; Moreover, Alice may choose
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Figure 1: Illustration of (a) Alice’s effective system for public use, and (b) Alice’s idealistic system
not for public use. In the figure, K∗ denotes the already-learned model/API, K1 denotes the kernel
that perturbs the input data query by potential adversaries, and K2 denotes the kernel that perturbs
the output response from K∗ to publish the final response Y .

to return a perturbed outcome Y instead of Ỹ to Bob. Consequently, the apparent kernel from Bob’s
input queryX to the output response Y is a cascade of three kernels, denoted byK in Figure 1a. The
above perspective provides a natural and general framework to study model privacy. Admittedly, if
Alice produces a (nearly) random response, adversaries will find it difficult to steal the model, while
benign users will find it useless. Consequently, we raise another problem.

(Q2) How to formulate the model privacy-utility tradeoff, and what is the optimal way of imposing
privacy? To address this question, we formulate a model privacy framework from an information-
theoretic perspective, named information laundering. We briefly describe the idea below. The gen-
eral goal is to jointly design the input and output kernels (K1 and K2 in Figure 1a) that deliberately
maneuver the intended input and output for queries of the model so that 1) the effective kernel (K
in Figure 1a) for Bob is not too far away from the original kernel (K∗ in Figure 1a), and 2) adver-
sarial acquisition of the model becomes difficult. Alternatively, Alice ‘launders’ the input-output
information maximally given a fixed utility loss. To find the optimal way of information launder-
ing, we propose an objective function that involves two components: the first being the information
shared between X, X̃ and between Ỹ , Y , and the second being the average Kullback-Leibler (KL)
divergence between the conditional distribution describing K and K∗. Intuitively, the first compo-
nent controls the difficulty of guessing K∗ sandwiched between two artificial kernels K1 and K2,
while the second component ensures that overall utility is maximized under the same privacy con-
straints. By optimizing the objective for varying weights between the components, we can quantify
the fundamental tradeoffs between model utility and privacy.

1.1 RELATED WORK

We introduce some closely related literature below. Section 3.3 will incorporate more technical
discussions on some related but different frameworks, including information bottleneck, local data
privacy, information privacy, and adversarial model attack.

A closely related subject of study is data privacy, which has received extensive attention in re-
cent years due to societal concerns (Voigt & Von dem Bussche, 2017; Evans et al., 2015; Cross
& Cavallaro, 2020; Google, 2019; Facebook, 2020). Data privacy concerns the protection of (usu-
ally personal) data information from different perspectives, including lossless cryptography (Yao,
1982; Chaum et al., 1988), randomized data collection (Evfimievski et al., 2003; Kasiviswanathan
et al., 2011; Ding & Ding, 2020), statistical database query (Dwork & Nissim, 2004; Dwork, 2011),
membership inference (Shokri et al., 2017), and Federated learning (Shokri & Shmatikov, 2015;
Konevcny et al., 2016; McMahan et al., 2017; Yang et al., 2019; Diao et al., 2020). A common
goal in data privacy is to obfuscate individual-level data values while still enabling population-wide
learning. In contrast, the subject of model privacy focuses on protecting a single learned model
ready to deploy. For example, we want to privatize a classifier to deploy on the cloud for public use,
whether the model is previously trained from raw image data or a data-private procedure.

Another closely related subject is the model extraction in (Tramèr et al., 2016; Papernot et al.,
2016b), where Bob’s goal is to reconstruct Alice’s model from several queries’ inputs and outputs,
knowing what specific model Alice uses. For example, suppose that Alice’s model is a generalized
linear regression with p features. In that case, it is likely to be reconstructed using p queries of the ex-
pected mean (a known function ofXβ) by solving equations (Tramèr et al., 2016). In the supervised
classification scenario, when only labels are returned to any given input, model extraction could be
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cast as an active learning problem where the goal is to query most efficiently (Chandrasekaran et al.,
2018). Model extraction was also studied in contexts beyond the prediction API, e.g., when an ad-
versary utilizes the gradient information (Milli et al., 2019). From Alice’s perspective, there exist
several solutions to safeguard against model leakage. A warning-based method was developed in
(Kesarwani et al., 2018), where Alice continuously monitors the information gain and raise alarms
when they become unusual. Another warning method was developed in (Juuti et al., 2019), where
the detection of an adversary is based on testing whether the pairwise distances among queried data
approximately follow the Gaussian distribution. The work in (Lee et al., 2018) developed a defense
strategy for the setting where the target is a classifier, and the adversary queries each class’s prob-
ability. The probabilities are maximally perturbed under the constraint that the most-likely class
label) remains the same. The work in (Orekondy et al., 2019) studied a similar setting but from a
different perspective. The main idea is to perturb the probabilities within an `2-distance constraint
to poison the adversary’s gradient signals.

1.2 CONTRIBUTIONS AND OUTLINE

The main contributions of this work are three folds. First, we develop a novel concept, theory,
and method, generally referred to as information laundering, to study model privacy. Unlike data
privacy that concerns the protection of raw data information, model privacy aims to privatize an
already-learned model for public use. To the best of the authors’ knowledge, this work is the first
framework to study model privacy in a principled manner. Second, under the developed information-
theoretic framework, we cast the tradeoffs between model privacy and utility as a general optimiza-
tion problem. We derive the optimal solution using the calculus of variations and provide extensive
discussions on the solution’s insights from different angles. Third, we develop a concrete algorithm,
prove its convergence, and elaborate on some specific cases. We also provide some experimental
studies to illustrate the concepts, and discuss several future problems at the end.

The paper is organized as follows. In Section 2, we describe the problem formulation and a gen-
eral approach to protect the model. In Section 3, we propose the information laundering method that
casts the model privacy-utility tradeoff as an optimization problem and derives a general solution. In
Section 3.3, we provide some additional discussions of the related frameworks, including informa-
tion bottleneck, local data privacy, information privacy, and adversarial model attack. In Section 5,
we conclude the paper with some potential future work. In the Appendix, we provide the proofs of
the main results and experimental studies.

2 FORMULATION

2.1 BACKGROUND

The private model can be obtained from general learning methods, and its deployment means that
it will return a response for a given input query. Suppose that X and Y are the input and output
alphabets (data space), respectively.

Definition 1 (Learned model) A learned model is a kernel p : X × Y → [0, 1], which induces a
class of conditional distributions {p(· | x) : x ∈ X}.

A model in the above definition is also referred to as a communication channel in information theory.
A model can be regarded as the input-output (or Alice’s application programming interface, API)
offered to Bob. Examples include a regression/classification model that outputs predicted labels,
a clustering model that outputs the probabilities of belonging to specific groups, and a stochastic
differential equation system that outputs the likely paths for various inputs variables. It does not
matter where the model comes from since we are only concerned about the privacy of a fixed given
model. The (authentic) model of Alice is denoted by pK∗ .

An adversary Bob is a user that can access the above model’s API, providing an arbitrary input, X ,
and obtaining an output, Y . Bob aims to use as few queries as possible to construct a model that
closely matches Alice’s model pK∗ . We will formalize the ‘closeness’ using the KL divergence.

What is model privacy? Our perspective is that privacy is not an intrinsic quantity associated with
a model; instead, it is a measure of information that arises from interactions between the model and
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its queries. In our context, the interactions are throughX (offered by Bob) and Y (offered by Alice).
The key idea of enhancing Alice’s model privacy is to let Alice output noisy predictions Ỹ for any
input X so that Bob cannot easily infer Alice’s original model. Similarly, Alice may choose to
manipulate X as well before passing it through K∗. Alternatively, Alice intends to 1) impose some
ambiguity between X, X̃ , and between Y, Ỹ , which conceivably will produce response deviating
from the original one, and 2) seek theK closest toK∗ under the same amount of ambiguity imposed.
Motivated by the above concepts, we introduce the following notion.

Definition 2 (Information-laundered model) A information-laundered model with respect to a
given model K∗ is a model K that consists of three internal kernels K = K1 ◦ K∗ ◦ K2 (illus-
trated in Figure 1).

Naturally, the information-laundered model of Alice is denoted by pK .

2.2 NOTATION

We let pK∗(· | ·), pK1(· | ·), pK2(· | ·), pK(· | ·) denote the kernels that represent the authentic
model, input kernel, output kernel, and the information-laundered model, respectively. We let pX(·)
denote the marginal distribution of X . Similar notation is for pX̃(·), pỸ (·), and pY (·). Note that the
pY implicitly depends on the above conditional distributions. We use pK1◦K∗(· | ·) and pK∗◦K2(· | ·)
to denote cascade conditional distributions of Ỹ | X and Y | X̃ , respectively.

Throughout the paper, random variables are denoted by capital letters. Suppose thatX ∈ X , X̃ ∈ X̃ ,
Ỹ ∈ Ỹ , and Y ∈ Y . For technical convenience, we will assume that X , X̃ , Ỹ,Y are finite alphabets
unless otherwise stated. We will discuss some special cases when some of them are the same. Our
theoretical results apply to continuous alphabets as well under suitable conditions. For notational
convenience, we write the sum

∑
x∈X u(x) as

∑
x u(x) for any function u.

With a slight abuse of notation, we will use p to denote a distribution, density function, or transition
kernel, depending on the context.

3 INFORMATION LAUNDERING

3.1 THE INFORMATION LAUNDERING PRINCIPLE

The information laundering method is an optimization problem formulated from the concept of
KL-divergence between the (designed) effective kernel and the original kernel, with constraints of
the privacy leakage during the model-data interaction. In particular, we propose to minimize the
following objective function over (pK1

, pK2
),

L(pK1 , pK2)
∆
= EX∼pXDKL(pK∗(· | X), pK(· | X)) + β1I(X; X̃) + β2I(Y ; Ỹ ). (1)

In the above, K1 and K2 are implicitly involved in each additive term of L, and β1 ≥ 0, β2 ≥ 0
are constants that determine the utility-privacy tradeoffs. Small values of β1 and β2 (e.g., zeros)
pushes the K to be the same as K∗, while large values of β1 pushes X̃ to be nearly-independent
with X (similarly for β2). It is worth mentioning that the principle presumes a given alphabet (or
representation) for X̃ and Ỹ . The variables to optimize over is the transition laws X → X̃ and
Ỹ → Y .

The objective in (1) may be interpreted in the following way. On the one hand, Alice aims to develop
an effective system of K that resembles the authentic one K∗ for the utility of benign users. This
goal is realized through the first term in (1), which is the average divergence between two system
dynamics. On the other hand, Alice’s model privacy leakage is through interactions with Bob, which
in turn is through the input X (publicly offered by Bob) and output Y (publicly offered by Alice).
Thus, we control the information propagated through both the input-interfaces and out-interfaces,
leading to the second and third terms in (1).

We note that the above objective function may also be formulated in alternative ways from different
perspectives. For example, we may change the third term to be β2I(Y ; Ỹ | X, X̃), interpreted

4



Published as a conference paper at ICLR 2021

in the way that Alice will design K1 first, and then design K2 conditional on K1. Likewise, we
may change the second term to be β1I(X; X̃ | Ỹ , Y ), meaning that K2 is designed first. From
Bob’s perspective, we may also change the third term to β2I(Y ; Ỹ | X), interpreted for the scenario
where Bob conditions on the input information X during model extraction. Additionally, from
the perspective of adaptive interactions between Alice and Bob, we may consider pX as part of
the optimization and solve the max-min problem maxpX minpK1

,pK2
L(pK1

, pK2
). We leave these

alternative views for future work.

3.2 THE OPTIMAL SOLUTION

We derive the solution that corresponds to the optimal tradeoffs and point out some nice interpre-
tations of the results. The derivation is nontrivial as the functional involves several nonlinear terms
of the variables to optimize over. Note that for the notation defined in Subsection 2.2, only pX and
pK∗ are known and others are (implicitly) determined by pK1 , pK2 .

Theorem 1 The optimal solution of (1) satisfies the following equations.

pK1
(x̃ | x) = κxpX̃(x̃) exp

{
1

β1
EY |X=x∼pK∗

pK∗◦K2(Y | x̃)
pK(Y | x)

− β2

β1
EỸ ,Y |X̃=x̃ log

pK2(Y | Ỹ )

pY (Y )

}
,

(2)

pK2
(y | ỹ) = τỹpY (y) exp

{
1

β2pỸ (ỹ)
EX∼pX

pK∗(y | X) · pK1◦K∗(ỹ | X)

pK(y | X)

}
, (3)

where κx and τỹ are normalizing constants implicitly defined so that the conditional density function
integrates to one.

Note that the distributions of X̃ , Ỹ , Y , and Ỹ , Y | X̃ , implicitly depend on pK1 and pK2 . The above
theorem naturally leads to an iterative algorithm to estimate the unknown conditional distributions
pK1

and pK2
. In particular, we may alternate Equations (2) and (3) to obtain p(`)

K1
(x̃ | x), p(`)

K2
(y | ỹ)

from p
(`−1)
K1

(x̃ | x), p(`−1)
K2

(y | ỹ) at step ` = 1, 2, . . . with random initial values at ` = 0. The
pseudocode is summarized in Algorithm 1.

In the next theorem, we show that the convergence of the algorithm. The sketch of the proof is
described below. First, we treat the original objective L as another functional J of four independent
variables, pK1

, pK2
, h1, h2, evaluated at h1 = pX̃ and h2 = pY . Using a technique historically used

to prove the convergence of the Blahut-Arimoto algorithm for calculating rate-distortion functions
in information theory, we show that J ≥ L. We also show that L is convex in each variable so that
the objective function is non-increasing in each alternation between four equations. Since L ≥ 0,
the convergence is implied by the monotone convergence theorem.

Theorem 2 Algorithm 1 converges to a minimum that satisfies equations (2) and (3).

Note that the minimum is possibly a local minimum. We will later show the convergence to a global
minimum in a particular case. Next, we provide interpretations of the parameters and how they
affect the final solution.

A large β1 in the optimization of (1) indicates a higher weight on the term I(X; X̃). In the extreme
case when β1 =∞, minimizing I(X; X̃) is attained when X̃ is independent with X . Consequently,
the effective model of Alice produces a fixed distribution of responses for whatever Bob queries.
The above observation is in line with the derived equation (2), which will become pK1

(x̃ | x) ≈
κxpX̃(x̃) (and thus κx ≈ 1) for a large β1 > 0.

Similar to the effect of β1, a larger β2 imposes more independence between Ỹ and Y . In the case
β2 =∞, Alice may pass the input to her internal model K∗ but output random results. This can be
seen from either the Formulation (1) or Equation (3).

For the first expectation in equation (2), the term may be interpreted as the average likelihood ratio
of y conditional on x̃ against x. From Equation (2), it is more likely to transit from x to x̃ in the
presence of a larger likelihood ratio. This result is intuitively appealing because a large likelihood
ratio indicates that x may be replaced with x̃ without harming the overall likelihood of observing Y .
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Algorithm 1 Optimized Information Laundering (OIL)
input Input distribution pX , private model pK∗ , alphabets X , X̃ , Ỹ,Y for X, X̃, Ỹ , Y , respectively.
output Transition kernels pK1 and pK2

1: Let p(0)
X̃

and p(0)Y denote the uniform distribution on X̃ and Y , respectively.
2: for t = 0→ T − 1 do
3: Calculate

p
(t+1)
K1

(x̃ | x) = κxp
(t)

X̃
(x̃) exp

{
1

β1
EY |x∼pK∗

p
(t)
K∗◦K2

(Y | x̃)

p
(t)
K (Y | x)

− β2
β1

E
Ỹ ,Y |x̃∼p

(t)
K∗◦K2

log
p
(t)
K2

(Y | Ỹ )

p
(t)
Y (Y )

}
,

p
(t+1)
K2

(y | ỹ) = τỹp
(t)
Y (y) exp

{
1

β2p
(t)

Ỹ
(ỹ)

EX∼pX

pK∗(y | X) · p(t+1)
K1◦K∗(ỹ | X)

p
(t+1,t)
K (y | X)

}
,

p
(t+1)

X̃
(x̃) =

∑
x

p
(t+1)
K1

(x̃ | x)pX(x),

p
(t+1)
Y (y) =

∑
ỹ

p
(t+1)
K2

(y | ỹ)p(t+1)

Ỹ
(ỹ),

where p(t+1)
K1◦K∗ , p(t)K∗◦K2

, and p(t+1,t)
K denote the kernels cascaded from (p

(t+1)
K1

, pK∗), (pK∗ , p
(t)
K2

), and

(p
(t+1)
K1

, pK∗ , p
(t)
K2

), respectively, and p(t+1)

Ỹ
is the marginal from (p

(t+1)

X̃
, pK∗ , p

(t+1)
K2

).
4: end for
5: Return pK1 = p

(T )
K1

, pK2 = p
(T )
K2

.

3.3 FURTHER DISCUSSIONS ON RELATED WORK

Information Bottleneck: extracting instead of privatizing information. The information bottle-
neck method (Tishby et al., 2000) is an information-theoretic approach that aims to find a parsi-
monious representation of raw data X , denoted by X̃ , that contains the maximal information of a
variable Y of interest. The method has been applied to various learning problems such as clustering,
dimension reduction, and theoretical interpretations for deep neural networks (Tishby & Zaslavsky,
2015). Formally, the information bottleneck method assumes the Markov chain

X̃ → X → Y, (4)

and seeks the the optimal transition law from X to X̃ by minimizing the functional

L(pX̃|X) = I(X; X̃)− βI(X̃;Y ),

with β being is a tuning parameter that controls the tradeoffs between compression rate (the first
term) and amount of meaningful information (second term). The alphabet of the above X̃ needs to
be pre-selected and often much smaller in size compared to the alphabet of X to meet the purpose
of compression. In other words, the information that X provides about Y is passed through a
‘bottleneck’ formed by the parsimonious alphabet of X̃ .

A similarity between the information bottleneck method and the particular case of information laun-
dering in Subsection A.2 is that they both optimize a functional of the transition law of X → X̃ .
Nevertheless, their objective and formulation are fundamentally different. First, the objective of
information bottleneck is to compress the representation while preserving meaningful information,
under the assumption of (4); Our goal is to distortX while minimizing the gap between the (random)
functionality of X → Y , under a different Markov chain X → X̃ → Y .

Data Privacy and Information Privacy: protecting data instead of a model. The tradeoffs be-
tween individual-level data privacy and population-level learning utility have motivated active re-
search on what is generally referred to as ‘local data privacy’ across multiple fields such as data
mining (Evfimievski et al., 2003), security (Kasiviswanathan et al., 2011), statistics (Duchi et al.,
2018), and information theory (du Pin Calmon & Fawaz, 2012; Sun et al., 2016). For example, a
popular framework is the local differential privacy (Evfimievski et al., 2003; Dwork et al., 2006;
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Kasiviswanathan et al., 2011), where raw data X is suitably randomized (often by adding Laplace
noises) into Y so that the ratio of conditional densities

e−α ≤
pY |X(y | x1)

pY |X(y | x2)
≤ eα (5)

for any y, x1, x2 ∈ X , where α > 0 is a pre-determined value that quantities the level of privacy.
In the above, X and Y represent the private data and the processed data to be collected or publicly
distributed. The requirement (5) guarantees that the KL-divergence between pY |x1

and pY |x2
is

universally upper-bounded by a known function of α (see, e.g., Duchi et al., 2018), meaning that
x1 and x2 are barely distinguishable from the observed y. Note that the above comparison is made
between two conditional distributions, while the comparison in information laundering (recall the
first term in (1)) is made between two transition kernels.

The local differential privacy framework does not need to specify a probability space for X , since
the notion of data privacy is only built on conditional distributions. Another related framework is
the information privacy (du Pin Calmon & Fawaz, 2012), which assumes a probabilistic structure
on X and a Markov chain X → Ỹ → Y . In the above chain, X is the private raw data, Ỹ is
a set of measurement points to transmit or publicize, and Y is a distortion of Ỹ that is eventually
collected or publicized. We deliberately chose the above notation of X, Ỹ , Y , so that the Markov
chain appears similar to the special case of information laundering in Subsection 4. Nevertheless,
the objective of information privacy is to minimize I(X;Y ) over pY |Ỹ subject to utility constraints,
assuming that the joint distribution of X, Ỹ is known. In other words, the goal is to maximally hide
the information of X . In the context of information laundering, the system input X is provided by
users and is known.

Adversarial Model Attack: rendering harm instead of utility to a model. The adversarial model
attack literature concerns the adversarial use of specially crafted input data to cause a machine
learning model, often a deep neural network, to malfunction (Papernot et al., 2016a; Narodytska
& Kasiviswanathan, 2017; Papernot et al., 2017). For example, an adversarial may inject noise
into an image so that a well-trained classifier produces an unexpected output, even if the noise is
perceptually close to the original one. A standard attack is the so-called (Adaptive) Black-Box
Attack against classifiers hosted by a model owner, e.g., Amazon and Google (Rosenberg et al.,
2017; Chakraborty et al., 2018). For a target model K∗, a black-box adversary has no information
about the training process of K∗ but can access the target model through query-response interfaces.
The adversary issues (adaptive) queries and record the returned labels to train a local surrogate
model. The surrogate model is then used to craft adversarial samples to maximize the target model’s
prediction error.

If we let X, X̃, Y denote the model input, adversarially perturbed input, and output, respectively,
then we may draw a similarity between adversarial model attack and the particular case of informa-
tion laundering in Subsection A.2 since they both look for the law X → X̃ . The main difference
is in the objective. While the model attack aims to find an input domain that maximally distorts the
model, information laundering aims to maintain a small model discrepancy. Under our notation, a
possible formulation for the model attack is to seek maxpX̃|X EX∼pXDKL(pK∗(· | X), pK∗(· | X̃))

under a constraint on pX̃|X .

4 SPECIAL CASE: INFORMATION LAUNDERING OF THE OUTPUT (Y ) ONLY

Two special cases of an information-laundered system are illustrated in Figure 2. Here, we elaborate
on one case and include the other special case in the Appendix. Suppose that K1 is an identity map
and let β1 = 0. In other words, we alter the output data only (Figure 2b). Furthermore, suppose that
for each given x̃, the conditional distribution pK(· | x̃) assigns all the mass at ỹ. In other words,
K∗ reduces to a deterministic function mapping from each x̃ ∈ X to a unique ỹ ∈ Y , which is
denoted by ỹ = f(x̃). For example, Alice’s model is a classifier that takes input features and returns
hard-thresholded classification labels. Then the optimization problem (1) reduces to minimizing

L(pK2
)

∆
= EX∼pXDKL(pK∗(· | X), pK(· | X)) + β2I(Y ; Ỹ ). (6)
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Figure 2: Illustration of Alice’s information-laundered system for public use, by (a) alternating input
only, and (b) alternating output only. The notations are similar to those in Figure 1.

Corollary 1 The solution to the optimization problem (6) satisfies

pK2(y | ỹ) = τỹpY (y) exp

{
1

β2pỸ (ỹ)
EX∼pX

pK∗(y | X) · pK∗(ỹ | X)

pK(y | X)

}
, (7)

where τỹ is a normalizing constant. In particular, if K∗ is deterministic, equation (7) becomes

pK2(y | ỹ) = τỹpY (y) exp

{
1

β2pỸ (ỹ)

∑
x:f(x)=y

pX(x)
1y=ỹ

pK(y | x)

}

= τỹpY (y) exp

{
1y=ỹ

β2 pK2(y | y)

}
(8)

To exemplify the proposed methodology, we study a specific case with the following conditions.
1) X may be large or continuously-valued, Ỹ = Y is a moderately-large alphabet,
2) Ỹ = Y so that Ỹ and Y are in the same space,
3) K∗ is deterministic.

Under the above scenario, we can apply Algorithm 1 and Corollary 1 to obtain a simplified procedure
below (denoted by OIL-Y). At each time step t = 1, 2, . . . ,, for each ỹ, y ∈ Y , we calculate

p
(t+1)
K2

(y | ỹ) = τỹp
(t)
Y (y) exp

{
1y=ỹ

β2 p
(t)
K2

(y | y)

}
, where τ−1

ỹ =
∑
y

p
(t)
Y (y) exp

{
1y=ỹ

β2 p
(t)
K2

(y | y)

}
,

p
(t+1)
Y (y) = rỹp

(t+1)
K2

(y | ỹ), where rỹ =
∑

x:f(x)=ỹ

pX(x). (9)

Note that the above rỹ is the probability that Alice observes ỹ as an output of K∗∗ if Bob inputs
X ∈ pX . Therefore, rỹ can be easily estimated to be the empirical frequency of observing ỹ at the
end of Alice.

Note that since Y is a finite alphabet, we can use a matrix representation for easy implementation.
In particular, we represent the elements of Y by 1, . . . , a, where a = card(Y). We then represent
pK2 by P ∈ Ra×a, and pY by q ∈ Ra, where Py,ỹ = pK2(y | ỹ). Such a representation will lead to
a matrix form of the above procedure, summarized in Algorithm 2.

Algorithm 2 OIL-Y (a special case of Algorithm 1, in the matrix form)
input Input distribution pX , private model pK∗
output Transition kernels pK2 : Y × Y → [0, 1] represented by P ∈ Ra×a, where a = card(Y)
1: Estimate r = [r1, . . . , ra] from pX and pK∗ as in equation (9)
2: Initialize the entries of P (0) and q(0) (respectively representing pK2 , pY ) to be 1/a
3: for t = 0→ T − 1 do
4: Calculate P (t+1) = q(t) × 1T , diag(P ), where 1 = [1, . . . , 1] denote the a× 1 vector.
5: Update diag(P (t+1))← diag(P (t+1))·exp{1/(β2 diag(P (t))}, where the operations are element-wise
6: Scale each column (conditional distribution) of P (t+1) so that it sums to one
7: Calculate q(t+1) = P (t+1) × r
8: end for
9: Return p(T )

K2
that is represented by P (T ).

Moreover, we proved the convergence to the global minimum for the alternating equations in the
above scenario. The same technique can be emulated to show a similar result when we employ K1

(instead of K2) only. The result is summarized in Theorem 3.

8
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Theorem 3 Suppose that K∗ is deterministic. The alternating equation (9), or its matrix form in
Algorithm 1, converges to a global minimum of the problem (6).

5 CONCLUSION AND FURTHER REMARKS

Despite extensive studies on data privacy, little has been studied for enhancing model privacy. Mo-
tivated by the emerging concern of model privacy from the perspective of machine learning service
providers, we develop a plug-and-play methodology “information laundering” to enhance the pri-
vacy of any given model of interest. The information laundering is model-agnostic as it applies to
general API models, including classification and regression models that output labels/probabilities,
and black-box models generating probabilistic outputs. We believe that the developed principles,
theories, and insights can lead to new resilient machine learning algorithms and services.

An interesting problem is to integrate information laundering with various application scenarios on
a case-by-case basis. Another problem is to adapt the developed principle to specific API models
to incorporate side information (also mentioned in Section 3.1). Taking into account the potential
side information available to an adversary can be essential in some pathetic situations. Consider
an example where the adversary knows that the output associated with extremely large input is a
fixed constant. Then, the adversary may strategically send the same input with extreme values to
accurately identify that constant. An information-laundered model may be vulnerable in the above
scenario since the current information laundering concerns the average over data distributions.

Theoretically, there are three open problems left from the work that deserves further research. First,
how does the imposed constraint of mutual information affect the rate of convergence from the
adversary perspective for specific models (e.g., generalized linear models, decision trees, neural
networks)? Second, we focused on finite alphabets for technical convenience. How to emulate the
current methods for continuously-valued alphabets (especially with large dimensions)? Third, what
would be the relative importance of launderingX versus Y , and will this depend on specific learning
problems?

Appendix. In Appendices A.1 and A.2, we first include two particular cases of information laun-
dering that were not included in the main part of the paper. We then include the proofs of the
theorems in Appendix A.3. Experimental results are included in Appendices A.4, A.5, A.6, and A.7
to demonstrate the algorithm convergence, model privacy-utility tradeoffs, how tradeoff parameters
and unbalanced samples may influence the optimized information laundering, and how the informa-
tion laundering effectively mitigates adversarial attacks.
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A APPENDIX

A.1 SPECIAL CASES: DETERMINISTIC MODEL K∗

In this case, Theorem 1 implies the following corollary. We will use this result in later sections.

Corollary 2 The optimal solution of (1) satisfies the following equations.

pK1
(x̃ | x) = κxpX̃(x̃) exp

{
1

β1

pK2(f(x) | f(x̃))∑
x̃′ pK2

(f(x) | f(x̃′))pK1
(x̃′ | x)

− β2

β1
EY |Ỹ=f(x̃) log

pK2
(Y | f(x̃))
pY (Y )

}
,

pK2(y | ỹ) = τỹpY (y) exp

{
1

β2pỸ (ỹ)

∑
x:f(x)=y

pX(x)
pK1◦K∗(ỹ | x)
pK(y | x)

}
,

where κx and τỹ are normalizing constants implicitly defined so that the conditional density function
integrates to one.

A.2 INFORMATION LAUNDERING OF THE INPUT (X ) ONLY

Suppose that K2 is an identity map and let β2 = 0 so that we only maneuver the input data (Fig-
ure 2a). Then the optimization problem (1) reduces to minimizing

L(pK1)
∆
= EX∼pXDKL(pK∗(· | X), pK(· | X)) + β1I(X; X̃). (10)

Corollary 3 The optimal solution of (10) satisfies the following equations.

pK1(x̃ | x) = κxpX̃(x̃) exp

{
1

β1
EY |X=x∼pK∗

pK∗(Y | X̃ = x̃)

pK(Y | X = x)

}
, (11)

where κx is an implicitly defined normalizing constant. In particular, ifK∗ is deterministic, equation
(11) becomes

pK1
(x̃ | x) = κxpX̃(x̃) exp

{
1f(x)=f(x̃)

β1

∑
x̃′:f(x)=f(x̃′) pK1

(x̃′ | x)

}
. (12)

As we can see from Corollaries 1 and 3, for a deterministic K∗ (represented by f ), the simplified
equation of (8) is similar to that of (12). The subtle difference that one has a sum while the other
does not is because f may not be a one-to-one mapping.

A.3 PROOFS

Proof 1 (Proof of Theorem 1) Introducing Lagrange multipliers, λ1(x) for the normalization of
the conditional distributions pK1

(· | x) at each x, λ2(ỹ) for the normalization of the conditional
distributions pK2(· | ỹ) at each ỹ. The Lagrangian of (1) can be written as

L = −
∑
x,y

pX(x)pK∗(y | x) log pK(y | x) + β1

∑
x,x̃

pX(x)pK1
(x̃ | x) log pK1

(x̃ | x)
pX̃(x̃)

+ β2

∑
ỹ,y

pỸ (ỹ)pK2
(y | ỹ) log pK2

(y | ỹ)
pY (y)

+
∑
x

λ1(x)pK1
(x̃ | x) +

∑
ỹ

λ2(ỹ)pK2
(y | ỹ) + c

= A1 +A2 +A3 +A4 +A5 + c (13)

up to an additive constant c that is determined by the known pX and pK∗ .
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It can be verified that

∂pK(y | x)
pK1

(x̃ | x)
= pK∗◦K2

(y | x̃) (14)

∂pX̃(x̃)

pK1
(x̃ | x)

= pX(x) (15)

∂pỸ (ỹ)

pK1
(x̃ | x)

= pX(x)pK∗(ỹ | x̃) (16)

∂pY (y)

pK1(x̃ | x)
= pX(x)pK∗◦K2

(y | x̃). (17)

Using (14)-(17), for a given x and x̃, we calculate the derivatives of each term in (13) with respect
to pK1

(x̃ | x) to be

∂A1

pK1(x̃ | x)
= −pX(x)

∑
y

pK∗(y | x)
pK∗◦K2

(y | x̃)
pK(y | x)

(18)

∂A2

pK1
(x̃ | x)

= β1pX(x) log
pK1

(x̃ | x)
pX̃(x̃)

(19)

∂A3

pK1(x̃ | x)
= β2pX(x)

∑
ỹ,y

pK∗◦K2(ỹ, y | X̃ = x̃) log
pK2

(y | ỹ)
pY (y)

− β2pX(x)
∑
ỹ,y

pỸ (ỹ)pK2(y | ỹ)
pK∗◦K2(y | x̃)

pY (y)

= β2pX(x)
∑
ỹ,y

pK∗◦K2
(ỹ, y | X̃ = x̃) log

pK2(y | ỹ)
pY (y)

− β2pX(x) (20)

∂A4

pK1(x̃ | x)
= λ1(x) (21)

∂A5

pK1(x̃ | x)
= 0 (22)

Taking equations (18)-(22) into (13), we obtain the first-order equation

∂L

∂pK1
(x̃ | x)

= pX(x)

{
−EY |X=x∼pK∗

pK∗◦K2
(Y | X̃ = x̃)

pK(Y | X = x)
+ β1 log

pK1
(x̃ | x)

pX̃(x̃)

+ β2EỸ ,Y |X̃=x̃ log
pK2

(Y | Ỹ )

pY (Y )
+ λ̃1(x)

}
= 0, (23)

where λ̃(x) = λ1(x)/pX(x)− β2. Rearranging the terms in Equation (23), we obtain

log
pK1

(x̃ | x)
pX̃(x̃)

=
1

β1

{
−λ̃1(x) + EY |X=x∼pK∗

pK∗◦K2
(Y | X̃ = x̃)

pK(Y | X = x)
− β2EỸ ,Y |X̃=x̃ log

pK2
(Y | Ỹ )

pY (Y )

}
which implies Equation (2).

Similarly, taking derivatives with respect to pK2(y | ỹ) for given ỹ and y, it can be verified that

∂pK(y | x)
∂pK2

(y | ỹ)
= pK1◦K∗(ỹ | x)

∂L

∂pK2
(y | ỹ)

= −
∑
x

pX(x)pK∗(y | x)
pK1◦K∗(ỹ | x)
pK(y | x)

+ β2pỸ (ỹ) log
pK2(y | ỹ)
pY (y)

+ λ2(ỹ)

= −EX∼pX
pK∗(y | X) · pK1◦K∗(ỹ | X)

pK(y | X)
+ β2pỸ (ỹ) log

pK2
(y | ỹ)

pY (y)
+ λ2(ỹ). (24)

Letting Equation (24) be zero and rearranging it, we obtain Equation (3).
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Proof 2 (Proof of Theorem 2) We define the following functional of four variables:
pK1

, pK2
, h1, h2,

J(pK1
, pK2

, h1, h2) = −
∑
x,y

pX(x)pK∗(y | x) log pK(y | x) (25)

+ β1

∑
x,x̃

pX(x)pK1
(x̃ | x) log pK1

(x̃ | x)
h1(x̃)

+ β2

∑
ỹ,y

pỸ (ỹ)pK2
(y | ỹ) log pK2

(y | ỹ)
h2(y)

. (26)

We will use the following known result (Cover, 1999, Lemma 10.8.1). Suppose that X and Y have a
joint distribution with density pXY , and the marginal densities are pX , pY , respectively. Then a den-
sity function rY of y that minimizes the KL-divergence D(pXY , pXrY ) is the marginal distribution
pY . This result implies that minimizing the objective function in (1) can be written as a quadruple
minimization

min
pK1

,pK2
,h1,h2

J(pK1 , pK2 , h1, h2). (27)

It can be verified from (23) and its preceding identities that
∂2J

∂pK1
(x̃ | x)2

= pX(x)EY |X=x∼pK∗
pK∗◦K2

(Y | x̃)
pK(Y | x)2

∂pK(Y | x)
∂pK1

(x̃ | x)
+ β1

pX(x)

pK1
(x̃ | x)

= pX(x)EY |X=x∼pK∗
pK∗◦K2

(Y | x̃)2

pK(Y | x)2
+ β1

pX(x)

pK1
(x̃ | x)

(28)

∂2J

∂pK2
(y | ỹ)2

= EX∼pX
pK∗(y | X) · pK1◦K∗(ỹ | X)

pK(y | X)2
∂pK(y | X)

∂pK2
(y | ỹ)

+ β2
pỸ (ỹ)

pK2
(y | ỹ)

(29)

= EX∼pX
pK∗(y | X) · pK1◦K∗(ỹ | X)2

pK(y | X)2
+ β2

pỸ (ỹ)

pK2
(y | ỹ)

(30)

∂2J

∂h1(x̃)2
= β1

∑
x

pX(x)pK1
(x̃ | x)

h1(x̃)2
(31)

∂2J

∂h2(y)2
= β2

∑
ỹ

pỸ (ỹ)pK2(y | ỹ)
h2(y)2

(32)

Thus, J(pK1
, pK2

, h1, h2) is convex in each of the variables.

We begin with a choice of initial pK2 , h1, h2, and calculate the pK1 that minimizes the objective.
Using the method of Lagrange multipliers for this minimization (in a way similar to (13)), we obtain
the solution of pK1 shown in the first equation of Line 3, Algorithm 1. Similarly, we obtain the
second equation in Algorithm 1. For the conditional distributions pK1 and pK2 , we then calculate
the marginal distributions h1 (of x̃) that minimizes (26). Note that the terms of (26) involving h1

may be rewritten as

β1

∑
x,x̃

p(x, x̃) log
p(x, x̃)

p(x)h1(x̃)

which, by the aforementioned lemma, is minimized by the third equation of Line 3, Algorithm 1.
Similar arguments apply for h2. Consequently, each iteration step in Algorithm 1 reduces J . By
the non-negativeness of KL-divergence, J + c ≥ L ≥ 0, where L is in (1) and c is introduced
in (13). Therefore, J has a lower bound, and the algorithm will converge to a minimum. Note
that J(pK1 , pK2 , h1, h2) is convex in each of the variables independently but not in the variables’
product space. The current proof does not imply the convergence to a global minimum.

Proof 3 (Proof of Theorem 3) Similar to the technique used in the above proof of Theorem 2, we
cast the optimization problem in (6) as a double minimization with respect to (pK2

, h2),

J(pK2
, h2)

∆
= −

∑
x,y

pX(x)pK∗(y | x) log pK(y | x) + β2

∑
ỹ,y

pỸ (ỹ)pK2
(y | ỹ) log pK2

(y | ỹ)
h2(y)

.
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We only need to check that J is strongly convex in its arguments. Direct calculations show that

∂2J

∂pK2(y | ỹ)2
=
∑
x

pX(x)pK∗(y | x)
p2
K∗

(ỹ | x)
p2
K(y | x)

+ β2
pỸ (ỹ)

pK2(y | ỹ)

=
∑

x:f(x)=y,y=ỹ

pX(x)
1

p2
K(y | x)

+ β2
pỸ (ỹ)

pK2(y | ỹ)

=
pỸ (ỹ)

p2
K2

(y | ỹ)
1y=ỹ + β2

pỸ (ỹ)

pK2
(y | ỹ)

∂2J

∂h2(y)2
= β2

pY (y)

h2(y)2

∂2L

∂pK2(y | ỹ)∂h2(y)
= −β2

pỸ (ỹ)

h2(y)
.

The above equations indicate that the determinant of the Hessian satisfies

∂2J

∂pK2(y | ỹ)2
· ∂2J

∂h2(y)2
−
{

∂2L

∂pK2(y | ỹ)∂h2(y)

}2

= β2
pỸ (ỹ)pY (y)

pK2(y | ỹ)h2(y)2
1y=ỹ + β2

2

pỸ (ỹ)pY (y)

pK2(y | ỹ)h2(y)2

{
1−

pỸ ,Y (ỹ, y)

pY (y)

}
,

which further implies the convexity of J in the product space of pK2
and h2.

A.4 VISUALIZATION OF ALGORITHM 2

We provide a toy example to visualize Algorithm 2. In the simulation, we choose an alphabet of
size 100, and pỸ as described by r ∈ [0, 1]a is uniform-randomly generated from the probability
simplex. We independently replicate the experiment 50 times, each time running Algorithm 2 for 30
iterations, and calculate the average of the following results. First, we record ‖P (t+1) − P (t)‖1/a
at each iteration t, which traces the convergence of the estimated transition probabilities. Second,
we record the final transition probability matrix into a heat-map where Py,ỹ means the estimated
pK2

(y | ỹ). The experiments are performed for β = 100, 10, 1, corresponding to columns 1-3. The
plots indicate the convergence of the algorithm, though the rate of convergence depends on β. They
also imply the expected result that a small β induces an identity transition while a large β induces
Ỹ that is nearly independent with Y .

A.5 DATA STUDY: NEWS TEXT CLASSIFICATION

In this experimental study, we use the ‘20-newsgroups’ dataset provided by scikit-learn open-
source library (Scikit-learn, 2020d), which comprises news texts on various topics. The ex-
periment is intended to illustrate the utility-privacy tradeoff and the optimality of our proposed
solution compared with other methods. For better visualization we pick up the first four top-
ics (in alphabetic order), which are ‘alt.atheism’, ‘comp.graphics’, ‘comp.os.ms-windows.misc’,
‘comp.sys.ibm.pc.hardware’. Suppose that the service Alice provides is to perform text-based clus-
tering, which takes text data as input and returns one of the four categories (denoted by 0, 1, 2, 3)
as output. The texts are transformed into vectors of numerical values using the technique of term
frequency-inverse document frequency (TF-IDF) (Rajaraman & Ullman, 2011). In the transforma-
tion, metadata such as headers, signature blocks, and quotation blocks are removed. To evaluate the
out-sample utility, we split the data into two parts using the default option provided in (Scikit-learn,
2020d), which results in a training part (2245 samples, 49914 features) and a testing part (1494
samples, 49914 features). The above split between the training and testing is based upon messages
posted before and after a specific date.

Alice trains a classifier using the Naive Bayes method and records the frequency of observing each
category [0.220.270.210.30] (r in Algorithm 2). Then, Alice runs the OIL-Y Algorithm (under a
given β2) to obtain the transition probability matrix P ∈ [0, 1]4×4. In other words, the effective
system provided by Alice is the cascade of the learned classifier, and P determines the Markov
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Figure 3: Visualization of Algorithm 2 in terms of the convergence (row 1) and the final transition
probabilities (row 2), for β = 100, 10, 1 (corresponding to three columns).

transition. Alice’s resulting out-sample performance from the testing data is recorded in Figure 4a,
where we considered different β’s summarized in Table 1. As we expected, a larger value of β2 cuts
off more information propagated from Ỹ to Y , resulting in a degraded out-sample performance of
Alice’s effective system.

We also visualize the model privacy-utility tradeoff by the following procedure. First, we approxi-
mate the utility that quantifies the useful information conveyed by Alice. With Alice’s trained model
and the optimally laundered Y (from training data), we retrain another Naive Bayes classifier and
generate predictions on the testing data, denoted by ypred

K . Meanwhile, we apply Alice’s authentic
model to generate predictions on the testing data, denoted by ypred

K∗
. We approximate the model util-

ity as the accuracy measure between ypred
K and ypred

K∗
. The model utility can be approximated by other

measures. We also considered retraining methods such as tree-based classifiers and average F1-
score in computing the model utility, and the results are consistent in the data experiments. Second,
we approximate the privacy leakage as Alice’s prediction accuracy on the testing data. Intuitively
speaking, for a given utility, larger out-sample prediction accuracy indicates less information laun-
dered, indicating a higher privacy leakage of Alice’s internal model. We plot the model leakage
against utility obtained from our proposed solution in Figure 4b.

For comparison, we considered a benchmark method described below. The conditional probability
mass function pK2

(· | ỹ) given each ỹ is independently drawn from a Dirichlet distribution with
parameters [b, . . . , b, a, b, . . . , b], where a is the ỹth entry. An interpretation of the parameter is that
a larger a/b favors a larger probability mass at y = ỹ (and thus less noise). We consider different
pairs of (a, b) so that the tradeoff curve matches the counterpart curve from our proposed method.
The curve is averaged over 50 independent replications. As shown in Figure 4b, the results indicate
that our proposed solution produces less leakage (and thus better privacy) for a given utility.

We also plot heatmaps illustrating the transition laws pK2
(y | ỹ) obtained from the proposed infor-

mation laundering in Figure 5. We considered two cases, where there are 20% class-0 labels, and
where there are 1% class-0 labels (by removing related samples from the original dataset). Intu-
itively, once we reduce the size of class-0 data in (b), the transition probabilities pK2(0 | ỹ) for each
ỹ should be smaller compared with those in (a) as class-0 is no longer ‘important’. Our expectation
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Table 1: Summary of the tradeoff parameters used for the OIL-Y algorithm and random bench-
mark from Dirichlet distributions (averaged over 50 independent replications), and the correspond-
ing model utility (as evaluated by the closeness of Alice’s authentic and effective systems), as well
as the model privacy leakage (as evaluated by Alice’s out-sample accuracy).

Proposed
β 0 1 2 5 20 50

Utility 1.00 0.86 0.78 0.68 0.46 0.30

Leakage 0.79 0.64 0.53 0.45 0.35 0.30

Random
Benchmark

a, b 100, 1 20, 1 10, 1 5, 2 5, 3 10, 10

Utility 0.96 0.88 0.79 0.49 0.39 0.23

Leakage 0.77 0.70 0.62 0.40 0.34 0.27
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Figure 4: Visualization of (a) Alice’s out-sample performance against the tradeoff parameter β2

in Information Laundering, and (b) Alice’s model utility-privacy tradeoffs under the information
laundering technique and the random benchmark using Dirichlet-generated transition laws. Detailed
parameters are summarized in Table 1.

is aligned with Figure 5, where the first row in (b) are indicated by darker colors compared with that
in (a), meaning that the class-0 is less likely to be observed.

A.6 DATA STUDY: LIFE EXPECTANCY REGRESSION

In this experimental study, we use the ‘life expectancy’ dataset provided by kaggle open-source
data (Kaggle, 2020), originally collected from the World Health Organization (WHO). The data
was collected from 193 countries from 2000 to 2015, and Alice’s model is a linear regression that
predicts life expectancy using potential factors such as demographic variables, immunization factors,
and mortality rates. This experiment is intended to illustrate the utility-privacy tradeoff and our
proposed solution in regression contexts.

In the regression model, we quantize the output alphabet Y by 30 points equally-spaced in between
µ ± 3σ, where µ, σ represent the mean and the standard deviation of Y in the training data. We
then applied a similar procedure as in Subsection A.6, except that we use the empirical R2 score
as the underlying measure of utility and leakage. The empirical R2 score has been commonly
used for evaluating regression performance, and it can be negative, meaning that the predictive
performance is worse than sample mean-based prediction (Scikit-learn, 2020a). In particular, we
obtain tradeoff curves in Figure 6, where we compared the information laundering results based
on the proposed technique and Dirichlet-based technique (similar to that in Subsection A.6). The
different β’s and Dirichlet parameters are summarized in Table 2. The detailed performance values
are also summarized in Table 2.
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Figure 5: Heatmap showing the transition law pK2
(y | ỹ) for information laundering, under (a) 20%

of class-0 labels, and (b) 1% of class-0 labels. In contrast with the case (a), the class-0 is negligible
in (b) and thus the transition probabilities pK2

(0 | ỹ) for each ỹ becomes smaller (as indicated by
darker colors).

Table 2: Summary of the tradeoff parameters used for the OIL-Y algorithm and random bench-
mark from Dirichlet distributions (averaged over 50 independent replications), and the correspond-
ing model utility (as evaluated by the closeness of Alice’s authentic and effective systems), as well
as the model privacy leakage (as evaluated by Alice’s out-sample accuracy). The underlying metric
used is the empirical R2, which can be less than zero.

Proposed
β 0 1 2 5 8 20

Utility 0.99 0.92 0.84 0.62 0.48 0.35

Leakage 0.79 0.42 0.09 −0.26 −0.45 −0.51

Random
Benchmark

(a, b) 10000, 1 200, 5 100, 5 100, 8 100, 10 100, 20

Utility 0.99 0.77 0.58 0.42 0.36 0.15

Leakage 0.78 0.10 −0.07 −0.15 −0.17 −0.22

To illustrate the impact of tradeoffs, we considered two cases corresponding to β2 = 1 and β2 = 20.
We compute the transition laws pK2

(y | ỹ) obtained from Algorithm 2 and illustrate them in the
first row of Figure 5. We also take the snapshot at the year Ỹ = 69 and plot the conditional density
function pK2

(· | Ỹ = 69) (as approximated by the quantizers) in the second row of Figure 5. The
visualized results are aligned with our expectation that a larger penalty of model leakage will cause
a more dispersed transition law.

A.7 DATA STUDY: MITIGATION OF ADVERSARIAL ATTACKS

In this experimental study, we demonstrate the use of information laundering in mitigating two
model extraction attacks studied in (Tramèr et al., 2016). We consider settings where the target
model is a classifier. The first attack is the Retraining attack. The adversary Bob sends random
queries and receives class labels to train a local model. Bob does not need to know Alice’s model
architecture. The second attack is the equation-solving attack. Alice’s model is assumed to be a
Logistic classifier, and Bob knows about it. Bob sends random queries in this attack and receives
class probabilities (a vector on a simplex). Bob then solves a linear equation to obtain the coefficients
of Alice’s Logistic model. We note that there exist more types of attacks suitable for various specific
settings (see., e.g., Tramèr et al., 2016; Juuti et al., 2019).

The experiments in this section indicate the following two points. First, an adversary needs more
samples to achieve the same utility under the information laundering (Figure 8). Second, the ef-
fects of attack and laundering depend on the particular models specified by the adversary and target
(Figure 9).
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Figure 6: Visualization of (a) Alice’s out-sample performance against the tradeoff parameter β2

in Information Laundering, and (b) Alice’s model utility-privacy tradeoffs under the information
laundering technique and the random benchmark using Dirichlet-generated transition laws. Detailed
parameters are summarized in Table 2.
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Figure 7: Heatmap (row 1) showing the transition laws optimized from information laundering,
under (a) β2 = 1, and (b) β2 = 20. The snapshots of probability mass functions of Y conditional
on Ỹ = 69 are also visualized (row 2).

The experimental details are given below. In Figure 8(a), Alice uses half of the Breast Cancer
dataset (Scikit-learn, 2020b) (standardized) to train a Logistic classification model. Bob queries
the class labels with standard Gaussian random input and locally trains another Logistic classifier.
In responding to Bob, Alice employs different levels of laundering. The utility is defined as the
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Figure 8: An adversary’s utility against the laundering parameter β2 in the contexts of (a) Retraining
attack with random queries, and (b) Equation-Solving attack. In each plot, the three curves represent
query sizes n = 100, 300, 1000, respectively.
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Figure 9: An adversary’s utility against the laundering parameter β2 in the contexts of Retraining
attacks, where (a) both the adversary and the target use the Random Forest model, and (b) the
adversary uses the Logistic model while the target uses the Random Forest. In each plot, the three
curves represent query sizes n = 100, 300, 1000, respectively.

percentage of agreement of Alice’s and Bob’s models tested on the other half of the dataset. In
Figure 8(b), Bob sends the same random queries and solves a linear equation to estimate Alice’s
Logistic coefficients. From the results, we can see that Bob’s performance is better than that in
Figure 8(a). It is mainly due to the substantial side information and the least-squares estimate of
Bob.

In Figure 9, Alice used half of the simulated Moons dataset (Scikit-learn, 2020c) (with 1000 sam-
ples, 0.1 standard deviation for the noise) to train a Random Forest model. The other half of the
data are reserved to evaluate Bob’s utility. Suppose that Bob uses the above Retraining attack, but
with two different models. In Figure 9(a), Bob uses the Random Forest classifier, which has the
expressive power to extract Alice’s model. In Figure 9(b), Bob uses the Logistic classifier, which
has a linear decision boundary. Bob’s model in (b) is inadequate because the Moons data is not
linearly separable. Figure 9 shows that the influence of information laundering on the adversarial
query size needed to maintain the same utility largely depends on Bob’s model choices. Also, Bob’s
inadequate model may show more robustness against laundered information even though it does not
perform satisfactorily on cleaned data.
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