
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Information learning approach
Zheng, Yun
2007
Zheng, Y. (2007). Information learning approach. Doctoral thesis, Nanyang Technological
University, Singapore.
https://hdl.handle.net/10356/2480
https://doi.org/10.32657/10356/2480

Nanyang Technological University
Downloaded on 24 Aug 2022 21:26:12 SGT

 IN
F

O
R

M
A

T
IO

N
 L

E
A

R
N

IN
G

A

P
P

R
O

A
C

H

INFORMATION LEARNING APPROACH

 Z
H

E
N

G
 Y

U
N

ZHENG YUN

SCHOOL OF COMPUTER ENGINEERING 2
0

0
7

 2007

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

INFORMATION LEARNING APPROACH

ZHENG YUN

School of Computer Engineering

A thesis submitted to the Nanyang Technological University

in fulfillment of the requirement for the degree of

Doctor of Philosophy

2007

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Acknowledgments

F
IRST AND FOREMOST, I would like to thank my supervisor, Kwoh Chee Keong,

for his guidance and support throughout my candidature at Nanyang Technological

University. Dr Kwoh was very helpful and influential to my research and development,

with his solid knowledge in both statistics and mathematics.

I would like to thank Wong Limsoon from Institute of Infocomm Research in Singa-

pore, now with National University of Singapore. Limsoon had helped me magnanimously

despite of his busy schedule and never hesitated to give me his valuable guidance. With his

comprehensive knowledge in both computer science and computational biology, Limsoon

gave me valuable inter-discipline advice which is not available from others.

I would like to express my appreciation to George C. Tseng from University of Pitts-

burgh in the United States, who is prominent in Biostatistics. George shared with me many

of his expertise for the formalization of the method proposed in this thesis.

I am also grateful to Li Jinyan from Institute of Infocomm Research in Singapore.

Jinyan is an expert in classification and has given me many useful suggestions when I was

preparing some papers in classification problems.

I owe a lot to Ng See-Kiong from Institute of Infocomm Research in Singapore for the

applications used in this thesis. It was See-Kiong who helped me to find more applications

for our method in the early stage of my research. Without this suggestion, the applications

of classification and feature selection will never be included in this thesis.

i

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

I also thank Prasanna R Kolatkar from Genome Institute of Singapore. Prasanna is

a structure biologist. In the early years of my candidature, Prasanna kindly shared his

knowledge in molecular biology and genetics with me.

I also would like to thank Liu Huiqing from University of Georgia in the United States.

Huiqing is a specialist in cancer classification based on biological data sets. When I was

anxiously looking for data sets, Huiqing generously shared a biomedical data repository

maintained by her. I also benefited a lot from Huiqing’s expertise in feature selection.

I am grateful to the three reviewers of my thesis. They gave me many valuable sugges-

tions and comments for the improvement of this thesis.

I also thank my friends, Zhao Ying, Chen Jinmiao, Du Zhihua, Zhou Juan, Yang Xiao

and Zhu Zexuan at Bioinformatics Research Center of Nanyang Technological University,

Zhang Guang Lan from Institute of Infocomm Research in Singapore, Li Ye from Bioin-

formatics Institute in Singapore. In my candidate, their friendships, collaboration, and

encouragement were my source of inspiration for higher achievements. The time shared

with them gave me many joyful memory and many happy experiences.

I am grateful to all other friends for their encouragements and friendship. The experi-

ences as a Ph.D candidate let me understand the valuable friendship with them.

Finally and persistently, I appreciate my parents and my brother for everything they

taught me. It is my parents who gave me all necessary foundations for my life and devel-

opment. It is also my parents who taught me their priceless value principles: integrity and

diligence. They also gave me constant support at any time, in any place. I cannot imagine

that I can finish this thesis without them.

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Abstract

C
OMPUTATIAL LEARNING THEORY is a mathematical field related to the analysis

of machine learning algorithms. Based on different principles of inference and

different definitions of probability, there have been several approaches to computational

learning theory, like the Probably Approximately Correct (PAC) learning theory proposed

by Leslie Valiant; the VC theory proposed by Vladimir Vapnik; the Bayesian inference

arising from the work first done by Thomas Bayes; and the algorithmic learning theory

from the work of E. Mark Gold.

Different approaches of computational learning theory have led to different learning

algorithms. For example, boosting has been proposed with the PAC theory, support vec-

tor machines have been invented with the VC theory, and Bayesian networks have been

proposed with the Bayesian inference.

In this thesis, we propose a new approach to computational learning theory, called

Information Learning Approach (ILA). The ILA is based on information theory, incorpo-

rating ideas from graphical models. In our approach, learning is interpreted and regarded

as a procedure to acquire information of the concept, like the class attribute in classifica-

tion problems. Particularly, the ILA is based on a theorem, which says that if the mutual

information between a vector X and a variable Y equals to the entropy of the variable

Y , then Y is a function of X. We propose a learning algorithm, called Discrete Function

Learning (DFL) algorithm, to fulfill the learning task as a process of obtaining information

iii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

of the concept. We prove that the learning process of the DFL algorithm can be done in

polynomial time, if there are limited number of attributes which essentially describe the

concept.

We demonstrate three distinct application areas of the information learning approach:

1. To find qualitative models of Gene Regulatory Networks (GRNs) from time-series

microarray gene expression data sets. GRNs are the underlying mechanism which

controls different expression patterns of the genes within a cell and the developmental

processes of a species. We prove that the DFL algorithm can learn qualitative models

of GRNs more efficiently than existing methods without loss of accuracy.

2. To solve classification problems with tissue-specific microarray gene expression data

sets for cancer classification and other benchmark data sets. The DFL algorithm ob-

tains comparable or more competitive prediction accuracies than existing classifica-

tion methods with lower-complexity models in our experiments.

3. To find informative and discriminatory subset of features which can be used by other

classification algorithms. The experimental results show that the DFL algorithm can

find more informative and discriminatory feature subsets than current methods in

shorter time.

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Contents

Acknowledgments . i

Abstract . iii

List of Figures . xii

List of Tables . xv

1 Introduction 1

1.1 Related Work . 2

1.1.1 The Probably Approximately Correct Learning Theory 2

1.1.2 The Vapnik Chervonenkis Theory 4

1.1.3 The Bayesian Inference . 5

1.1.4 The Algorithmic Learning Theory 7

1.1.5 Limitations of Current Approaches 8

1.2 Information Learning Approach . 8

1.2.1 Our Approach . 9

1.2.2 Other Learning Methods Based On Information Theory 12

1.2.3 Comparisons of Different Learning Approaches 13

1.3 Contributions . 13

1.4 Outline . 15

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

vi CONTENTS

2 Information Learning Approach 18

2.1 Background Knowledge . 18

2.1.1 Fundamental Knowledge of Information Theory 19

2.1.2 Background knowledge of Graphical Models 23

2.2 Information Learning Approach . 24

2.2.1 Problem Definition . 24

2.2.2 The Information Learning Approach 26

2.3 Relation to Markov Blanket . 28

2.3.1 Markov Blanket . 29

2.3.2 The Relation of Information Learning Approach and Markov Blanket 30

2.4 The Discrete Function Learning Algorithm 30

2.4.1 Theoretical Motivation . 30

2.4.2 The Discrete Function Learning Algorithm 35

2.4.3 Complexity Analysis . 41

2.4.4 Correctness Analysis . 42

2.5 The ǫ Value Method for Noisy Data Sets 43

2.5.1 The ǫ Value Method . 44

2.5.2 The Relation with The Over-fitting Problem 45

2.5.3 The Relation with The Time Complexity 47

2.6 Selection of Parameters . 47

2.6.1 Selection of The Expected Cardinality K 47

2.6.2 Selection of ǫ value . 48

2.6.3 Balance between K and ǫ . 51

2.7 Prediction Methods . 51

2.8 Implementation Issues . 53

2.8.1 The Computation of Mutual Information I(U; Y) 53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CONTENTS vii

2.8.2 Redundancy Matrix . 54

2.9 Conclusions . 55

3 Learning Qualitative Models of Gene Regulatory Networks 57

3.1 A Brief Introduction to Gene Regulatory Networks 58

3.1.1 Introduction to Microarray Technology 58

3.1.2 Analyzing Gene Expression Profiles with The DFL Algorithm . . . 60

3.1.3 What Are Gene Regulatory Networks 62

3.1.4 Why We Research on Gene Regulatory Networks 66

3.1.5 How to Obtain Gene Regulatory Networks 68

3.1.6 What Are the Challenges for Reconstructing Gene Regulatory Net-

works? . 68

3.2 Methods . 71

3.2.1 Qualitative Models of Gene Regulatory Networks 71

3.2.2 The DFL Algorithm for Learning Gene Regulatory Network Models 73

3.2.3 Data Quantity for Learning Qualitative Gene Regulatory Network

Models . 75

3.3 Learning Models of Generalized Logical Formalism 76

3.4 Learning Gene Regulatory Networks Related to Yeast Cell Cycle 77

3.4.1 Learning Gene Regulatory Networks with The DFL Algorithm . . . 78

3.4.2 Applying The ǫ Value Method to Yeast Cell Cycle Data 82

3.5 Conclusions . 83

4 Learning Boolean Networks 85

4.1 Current Methods For Learning Boolean Networks 86

4.2 Learning Boolean Networks With The DFL Algorithm 88

4.2.1 Problem Definition . 88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

viii CONTENTS

4.2.2 Obtaining Correct Truth Table From Noisy Data Sets 89

4.3 Evaluation Criterion for Learning Boolean Networks 90

4.4 The Analysis Of Some Special Boolean Networks 92

4.4.1 The Mutual Information in OR Boolean Networks 92

4.4.2 The Complexity Analysis for Bounded OR Boolean Networks . . . 95

4.4.3 The Complexity Analysis for Unbounded OR Boolean Networks . . 98

4.5 The Analysis of General Boolean Functions 98

4.5.1 The Cases Which Require More Computation Time 99

4.5.2 The Constant Functions . 100

4.6 Results . 100

4.6.1 Synthetic Data Sets of Boolean Networks 100

4.6.2 Experiments for Time Complexity 101

4.6.3 Experiments for Sensitivity . 106

4.6.4 Comparisons of Time Complexity with Existing Methods 111

4.6.5 Comparisons of Robustness to Noisy Data Sets with Existing Meth-

ods . 113

4.7 Related Models . 114

4.7.1 Probabilistic Boolean Networks 114

4.7.2 Dynamic Bayesian Networks . 115

4.8 Conclusions . 116

5 Solving Classification Problems 119

5.1 Cancer Classification with Biological Data 120

5.1.1 A Brief Introduction to SELDI Technology 120

5.1.2 Cancer Classification with Biological Data 121

5.2 A Supervised Discretization Method . 122

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CONTENTS ix

5.3 Results . 124

5.3.1 Data Sets . 124

5.3.2 Comparison with Other Classification Methods 125

5.3.3 Comparison of Model Complexity 129

5.3.4 Comparison of Efficiency . 130

5.4 Biological Evaluation . 131

5.5 Discussions and Conclusions . 133

6 Performing Feature Selection 136

6.1 Introduction . 137

6.2 Related Work . 139

6.2.1 Categorization of Feature Selection Methods 139

6.2.2 Feature Selection Methods Based on Information Theory 140

6.2.3 Limitations of Current Feature Subset Selection Methods 143

6.3 Choosing Essential Attributes with The Information Learning Approach . . 144

6.4 Results . 145

6.4.1 The DFL Algorithm as A Filter Feature Selection Method 145

6.4.2 Comparison with Other Feature Selection Methods 147

6.4.3 Comparison of Model Complexity 151

6.4.4 Comparison of Efficiency . 153

6.5 Discussions . 154

6.6 Conclusions . 159

7 Conclusions 161

7.1 Discussions . 161

7.1.1 Comparison of The ILA and PAC Theory 161

7.1.2 Comparison of The ILA and VC Theory 162

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

x CONTENTS

7.1.3 Comparison of ILA and Bayesian Inference 164

7.1.4 Comparison of ILA and Algorithmic Learning Theory 165

7.2 Contributions . 166

7.3 Limitations and Future Work . 168

7.4 Perspective . 169

Appendix A

The Proofs of the Theorems in Chapter 2 . 171

A.1 Jensen’s Inequality . 171

A.2 Proofs of the Theorems in Section 2.1 . 172

A.3 Proofs of the Theorems in Section 2.2 . 173

A.4 Proofs of the Theorems in Section 2.4 . 177

Appendix B

The Proofs of the Theorems in Chapter 3 . 179

Appendix C

The Proofs of the Theorems in Chapter 4 . 180

Appendix D

The Detailed Settings . 188

Appendix E

The Extended Main Steps of The DFL Algorithm 191

Appendix F

Notation . 194

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CONTENTS xi

Appendix G

Abbreviations . 196

Bibliography 198

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

2.1 The relationship of entropy and mutual information. 20

2.2 The Asia Bayesian network. 25

2.3 The mutual information between Xi and the class attribute Y for the LED+17

data sets. 32

2.4 The advantage of using mutual information to choose the most discrimina-

tory feature vectors. 33

2.5 The rules of the noiseless LED+17 data set learned by the DFL algorithm. . 34

2.6 Search procedures of the DFL algorithm when learning Y = (A·C)+(A·D). 38

2.7 The ∆Tree when searching the EAs for Y = (A · C) + (A · D). 39

2.8 The exhaustive searching procedures of the DFL algorithm when learning

Y = (A · C) + (A · D). 40

2.9 The Venn diagram of H(X),H(Y) and I(X, Y), when Y = f(X). 44

2.10 The performance of the DFL algorithm for different ǫ values. 46

2.11 The manual binary search of minimum ǫ value. 49

2.12 The noisy rules in the one-dimensional space. 52

3.1 Overview of cDNA microarray technology. 59

3.2 A schematic view of using the Discrete Function Learning algorithm to

analyze microarray gene expression profiles. 61

3.3 Three states of the lac genes. 64

xii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

LIST OF FIGURES xiii

3.4 Gross anatomy of a minimal gene regulatory network (GRN) embedded in

a regulatory network. 66

3.5 A simple GLF model of GRN. 76

3.6 The learned GRN model related to yeast cell cycle. 78

3.7 The learned GRN model for yeast cell cycle with the ǫ function method. . . 82

3.8 The combined GRN models related to yeast cell cycle. 83

4.1 The I(Xj; X
′

i) for OR BLNs with 10 variables, where X
′

i = X1 + X2 + X3. 91

4.2 Mutual information in OR function X
′

i = Xi1 + . . . + Xik. 94

4.3 The run time, t (vertical axes, shown in seconds), of the DFL algorithm for

inferring the bounded BLNs. 102

4.4 The efficiency of the DFL algorithm for the unbounded OR data sets. 103

4.5 The histograms of the number of subsets checked for learning one Boolean

function, m, and run time of the DFL algorithm for RANDOM data sets,

when n = 100, k = 3 and N = 200. 105

4.6 The sensitivity of the DFL algorithm vs sample size N 107

4.7 The run time, t (vertical axis, shown in seconds), of the DFL algorithm for

small OR data sets, where n = 100 and k = 3. 108

4.8 The setting and performance of the DFL algorithm for noisy data sets,

whose k = 3, n = 100 and N = 1000. 109

4.9 Comparison of the run times of the DFL algorithm and the REVEAL algo-

rithm. 112

5.1 Overview of Surface-Enhanced Laser Desorption/Ionization (SELDI) type

mass spectrometry technology. 120

5.2 The comparison of training time of different classification algorithms. . . . 131

5.3 The comparisons of the expression values of the genes chosen by the DFL

algorithm. 132

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

xiv LIST OF FIGURES

5.4 The philosophy of the DFL algorithm and other classification algorithms. . 134

6.1 The comparison of training times of different classification algorithms on

all features and on the features chosen by the DFL algorithm. 148

6.2 The comparison of accuracies for different feature subset selection methods. 150

6.3 The number of features chosen by different feature selection methods. . . . 152

6.4 The run times of different feature selection methods. 154

6.5 The I(Xi; Y) in the data sets generated with Y = ¬(X21

⊕
X29

⊕
X60). . 157

7.1 A schematic view of the unstableness of the classifiers obtained by the

support vector machine algorithm. 163

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Tables

1.1 The comparison of different approaches to computational learning theory. . 13

2.1 The DFL algorithm. 35

2.2 The subroutine of the DFL algorithm. 36

2.3 The training data set T of the example to learn Y = (A · C) + (A · D). . . 37

2.4 The learned classifier f of the example to learn Y = (A · C) + (A · D). . . 39

3.1 The DFL algorithm for learning qualitative models of GRNs. 74

3.2 The correlation coefficient matrix of the GLF example in Figure 3.5. 77

3.3 The literature evidences for the GRN model in Figure 3.6 and Figure 3.7. . 79

3.4 The prediction measures. 80

3.5 The accuracy, sensitivity and precision of the DFL algorithm and the K2

algorithm. 81

4.1 The summary of complexities of different algorithms for learning BLNs. . . 87

4.2 The truth table of B
′

= A +C. 93

4.3 The obtained Boolean rules from one noisy RANDOM-h data set with 1000

samples and 10% noise. In the original BLN, X
′

i = ¬X1 ·X2 +X1 ·¬X2 ·X3.111

4.4 The success ratio (%) of the GREEDY1 algorithm [9] for noisy data sets of

general BLNs, where the indegree k = 3 and n = 1000. 113

5.1 The benchmark data sets used in the experiments for comparison. 125

xv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

xvi LIST OF TABLES

5.2 The comparison of accuracies for the DFL algorithm and other well-known

classification methods. 126

5.3 The summary of prediction performances of different algorithms in Table

5.2. 127

5.4 The comparison of the DFL algorithm and other methods in literature. . . . 128

5.5 The classifier for the ALL data set learned with the DFL algorithm. 132

6.1 The accuracies of the well-known classification methods on the data sets

filtered with the features chosen by the DFL algorithm. 147

6.2 The improvement of performances of different learning algorithms when

applied to the features chosen by the DFL algorithm. 148

6.3 The comparison summary of accuracies obtained by different feature se-

lection methods. 151

6.4 The comparison summary of the number of features chosen by different

feature selection methods. 153

C.1 The truth table of X
′

i = X1 +X2 +X3. 182

C.2 The tuple (Xij, X
′

i) and (X∗
ij, X

′

i), where k is two. 186

D.1 The settings of the DFL algorithm. 189

D.2 The features chosen by the DFL algorithm. 190

E.1 The extended version of the DFL algorithm. 192

E.2 The extended version of the subroutine of the DFL algorithm. 193

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

W
ITH more and more data has been accumulated in databases, it becomes a more

and more urgent challenge to extract useful knowledge from these large amount

of data.

Machine learning is such a field to find meaningful and useful knowledge from databases

by developing computer programs which can obtain knowledge from data sets. Machine

learning algorithms take a training data set, formulate hypotheses or models, and make

predictions about the future with the hypotheses or models. In statistics, the analysis of

machine learning algorithms is categorized as computational learning theory. There have

been several approaches to computational learning theory: the Probably Approximately

Correct (PAC) learning theory proposed by Leslie Valiant [166]; the VC theory proposed

by Vladimir Vapnik [168]; the Bayesian inference [131] arising from the work first done

by Thomas Bayes and the algorithmic learning theory from the work of E. M. Gold [80].

In this thesis, we propose a new approach, called Information Learning Approach

(ILA), to computational learning theory to find useful and meaningful knowledge from

databases. The ILA is based on information theory, with some ideas from graphical models.

In our approach, learning is explained and regarded as a procedure to acquire information

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2 Chapter 1 : Introduction

of the concept, such as the class attribute in classification problems.

We also propose the Discrete Function Learning (DFL) algorithm to efficiently imple-

ment the ILA. The DFL algorithm learns a concept by finding a small subset of informative

features from all variables that describe the concept. Then, it constructs models with these

critical features, and uses these models to predict the future events.

The ILA has several advantages. First, there is solid theoretical motivation and founda-

tion for the ILA. Second, the DFL algorithm is efficient and easily understandable. Third,

the ILA is robust to noise in the data sets.

1.1 Related Work

In this section, we will briefly review the existing approaches to computational learning

theory and analyze their limitations.

1.1.1 The Probably Approximately Correct Learning Theory

The Probably Approximately Correct (PAC) learning theory is first proposed by Leslie

Valiant [166]. Here, we will briefly describe the PAC learning by following the definition

in [91]. The intention of the PAC approach is that successful learning should obtain a

hypothesis, with high probability, which approximate the concept well [91]. In the basic

model of the PAC learning, the samples are assumed to be obtained from n-dimensional

Boolean space V = {X1, X2, . . . , Xn}. The instance space of V is V = {{0, 1}n : n ∈

N}. The concept C and the hypothesis H are described by subsets of V. The notion of

approximation is defined by a probability distribution D defined on V, ∀v ∈ V, p(v) > 0.

The error of a hypothesis h with respect to a fix target concept c, denoted with e(h), is

defined by

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.1 : Related Work 3

e(h) =
∑

x∈hΨc

D(x),

where Ψ is the symmetric difference. Thus, e(h) is the probability that h and c will disagree

on an instance drawn randomly according to D. The hypothesis h is a good approximation

of the target concept c if e(h) is small.

For each n ≥ 1, let Cn be a set of target concepts over the instance space V, and let

C = {Cn : n ∈ N}. Let Hn for n ≥ 1, and H = {Hn : n ∈ N}. The PAC theory is

defined as follows.

Definition 1.1.1 (PAC Learnability) The concept class C is PAC learnable by the hypoth-

esis space H if there exists a polynomial time learning algorithm A and a polynomial

p(·, ·, ·) such that ∀n ≥ 1, all target concepts c ∈ Cn, all probability distributions D on

the instance space V, and all ǫ and δ, where 0 < ǫ, δ < 1, if the algorithm A is given

at least p(n, 1/ǫ, 1/δ) independent random samples of c drawn according to D, then with

probability at least 1 − δ, A will return a hypothesis h ∈ Hn with error e(h) ≤ ǫ. The

smallest such polynomial p is the sample complexity of the learning algorithm A.

The sample complexity of the PAC theory is at most 1
ǫ
(ln|Hn| + ln1

δ
) [168]. One

important characteristic of this definition is that the learning algorithm A must process the

samples in polynomial time, and must produce a good approximation to the target concept

with high probability using only a reasonable number of training samples randomly drawn

according to D [91].

Valiant [166] proved that k-CNF is PAC learnable, where k-CNF denotes the conjunc-

tive normal form where each clause is the sum of at most k literals. Later, k-DNF (disjunc-

tive normal form) and k-decision lists were also proved to be PAC learnable [142, 165].

The PAC theory inspired the boosting algorithm. Boosting occurs in stages, by incre-

mentally adding to the current learned function. At every stage, a weak learner (i.e., one

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4 Chapter 1 : Introduction

that can have an accuracy as bad as slightly greater than chance) is trained with the data.

The output of the weak learner is then added to the learned function, with some strength

(proportional to how accurate the weak learner is). Then, the data is reweighted: examples

that the current learned function gets wrong are “boosted” in importance, so that future

weak learners will attempt to fix the errors.

There are two major criticisms levelled at the PAC learning. First, the worse case

emphasis in the model makes it unusable in practice [36]. Second, the notions of target

concepts and noise-free training data are too restrictive in practice [26].

1.1.2 The Vapnik Chervonenkis Theory

Vapnik Chervonenkis theory (also known as VC theory) was developed during 1960-1990

by Vladimir Vapnik and Alexey Chervonenkis, and formalized in [168]. The VC theory

explicitly takes into account the sample size and provides quantitative description of the

trade-off between the model complexity and the available information (i.e., finite training

data) [41]. This theory consists of four parts [168]:

1. The general qualitative theory that includes the necessary and sufficient conditions

for consistency of learning process;

2. The general quantitative theory that includes bounds on the rate of convergence (the

rate of generalization) of these learning process;

3. Principles for estimating functions from a small collection of data that are based on

the developed theory;

4. Methods of function estimation and their application to solving real-life problems

that are based on these principles.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.1 : Related Work 5

The last part of the VC theory introduced a well-known algorithm, the Support Vector

Machines (SVMs). The SVMs choose some samples as support vectors, and approximate

the classification function with these support vectors, such that the distance from the clos-

est examples (the margin) to the classification boundary is maximized. The classification

boundary can be approximated with various type of functions, i.e., kernels. Different ker-

nels produce different boundaries, e.g., the basic linear kernels will produce boundaries as

hyperplanes.

The use of the maximum-margin boundary is motivated by Vapnik Chervonenkis the-

ory, which provides a probabilistic test error bound which is minimized when the margin

is maximized.

There are some limitations in the Support Vector Machines. Perhaps, the biggest lim-

itation of the support vector approach lies in the choice of the kernel function. Once the

kernel is fixed, SVM classifiers have only one user-chosen parameter (the error penalty),

but the kernel is a very big rug under which to sweep parameters. Some work has been

done on limiting kernels using prior knowledge [37, 149], but the best choice of kernel for

a give problem is still a research issue [51, 117]. The second limitation is speed and size,

both in training and testing. Training for very large data sets (millions of support vectors)

is an unsolved problem. The third problem is discrete data, although with suitable rescal-

ing excellent results have nevertheless been obtained [99]. Finally although some work

has been done on training multi-class SVMs in one step, the optimal design for multi-class

SVMs classifiers is a further area for research.

1.1.3 The Bayesian Inference

The Bayesian inference is a kind of statistical inference in which the probabilities are not

interpreted as frequencies but rather as degrees of belief. The name is coming from the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6 Chapter 1 : Introduction

Bayes theorem, proposed by Thomas Bayes, in the following.

Theorem 1.1.1 (Bayes Theorem)

P (H|E) =
P (E|H)P (H)

P (E)
, (1.1)

where H stands for the hypothesis, E stands for the evidence, or the training samples,

P (H|E) is called the posterior probability of H given E, P (E|H) is called the likelihood

of E given H , P (H) is called the prior probability of H , P (E) is called the marginal

probability of E.

The Bayesian inference of a concept C is to estimate the probability of P (C = c|V =

v). However, the conditional probability p(c|v) is very hard to estimate, since it is in the

multi-dimensional space defined by V.

Pearl [131] proposed the Bayesian networks, which will be introduced in Section 2.1.2.

There have been some inference algorithms for Bayesian networks [101, 132]. The infer-

ence of Bayesian networks has been proved to be NP-hard [47, 52]. Before the inference

can be performed, Bayesian networks are first needed to be learned from data, which is

also NP-hard [42, 43].

There are some criticisms levelled at the Bayesian inference. One major criticism is the

prior probability P (H). In some situations, the P (H) is very hard to estimate with prior

knowledge, since the prior knowledge may be very limited in these cases. Another criticism

is that different people may give different prior probabilities, since different people hold

different degrees of belief for the hypothesis.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.1 : Related Work 7

1.1.4 The Algorithmic Learning Theory

The algorithmic learning theory, or inductive inference [17], is introduced by E. M. Gold

[80], in which Gold analyzed the learnability of language. The objective is to develop a pro-

gram which can produce another program by which any given sentences can be determined

to be “grammatical” or “ungrammatical”.

In the framework of algorithmic learning theory, the tester gives the learner an example

sentence at each step, and the learner responds with a hypothesis, which is the program

capable of telling the grammatical correctness. The algorithmic learning theory requires

the ergodicity of the sentences, i.e., that every possible sentence will be called by the tester,

without specific requirement of the order of these sentences. It is also required that at each

step the hypothesis is consistent with the sentences provided so far.

A particular learner is said to be able to “learn a language in the limit” if there is a

certain number of steps beyond which the hypothesis given by the learner does not improve

any more. At this point, the language has been learned by the learner, since all possible

sentences have been called by the tester, and the hypothesis is consistent with all sentences.

Gold showed that any language defined by a Turing-machine can be learned in the limit

by another Turing-complete machine using enumeration. The learner reaches this goal by

testing all possible Turing machines in turn until it has found one consistent with all the

provided sentences so far, which is the hypothesis for the current step. Eventually, the

learner can produce the correct hypothesis, which will not change again.

The major shortcoming of the algorithmic learning theory lies in the unrestricted time

and space complexity, which may be limited in practice. Another shortcoming is that the

input data has to be noiseless, since the enumeration method may fail when the input sen-

tences are incorrect or noisy.

The Gold paradigm has significantly been developed to allow change of minds [118,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

8 Chapter 1 : Introduction

152] and noise [16, 39, 147], as also demonstrated by many works from Sanjay Jain [97],

Stephan Frank and many other researchers.

Some people also put the PAC theory to the same category of algorithmic learning

theory.

1.1.5 Limitations of Current Approaches

In this section, we summarize the limitations of existing approaches to computational learn-

ing theory. The PAC learning theory only makes approximations to the original models, as

indicated by its name. The VC theory tries to maximize the margins between the classes,

but essentially it is still trying to approximate the original models. Bayesian inference is

more robust to noise, and can find a better explanation for the concept. However, Bayesian

inference is much computationally expensive, i.e., NP-hard, and still does not explicitly

provide the original models but implicitly provides the probability of a hypothesis. The

algorithmic learning theory searches the hypotheses by enumeration, which is computa-

tionally intractable. The algorithmic learning theory does not consider the time and space,

i.e., computer memory, limit, which can occur in practice.

1.2 Information Learning Approach

In this section, we first talk about our approach and then discuss existing learning methods

that based on information theory. Finally, we compare different approaches to computa-

tional learning theory.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.2 : Information Learning Approach 9

1.2.1 Our Approach

In comparison with other approaches to the computational learning theory, our approach

interprets and regards learning as a procedure to acquire information about the concept.

Thus, we name our approach as Information Learning Approach (ILA). The underlying

philosophy of this interpretation lies in that people learn a new concept and always try to

understand it by gradually refining the acquired knowledge with more information about it.

In ILA, the learner obtains information of the considering concept from variables, which

describe the concept. After the knowledge is accumulated bit by bit, the uncertainty of the

concept becomes less and less. The learning of this concept will continue until the acquired

knowledge is sufficient to fully determine the concept.

First, we restate a theorem about the relationship between the mutual information

I(X; Y) and the number of attributes in X.

Theorem 1.2.1 ([122], p. 26) I({X,Z}; Y) ≥ I(X; Y), with equality if and only if p(y|x) =

p(y|x, z) for all (x, y, z) with p(x, y, z) > 0.

Proof of Theorem 1.2.1 can be found in [122]. In Theorem 1.2.1, it can be seen that {X,Z}

will contain more or equal information about Y as X does. To put it another way, the more

variables, the more information is provided about another variable.

Theorem 1.2.1 reflects the learning process to a certain extent. Let us discuss the prob-

lem with an example. A computer in a laboratory is lost one day. Then, a policeman is sent

to investigate the issue. He first needs to collect information about the computer. George

may tell the policeman that the computer is an IBM PC. Alice may tell the policeman that

the computer is black, and so on so forth. When more descriptions about the computer

are obtained, the concept, i.e., the computer, becomes more and more distinct and specific,

until finally the computer can fully be determined with the descriptions. Such a process is

actually a procedure to obtain information about the concept. In the ILA, the descriptions

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

10 Chapter 1 : Introduction

provided by the people become descriptive variables in the data sets, the lost computer be-

comes the concept under consideration, and the knowledge contained in the descriptions

of the people becomes the mutual information between the descriptive variables in the data

sets and the concept. Information, or knowledge, is used to eliminate uncertainty, i.e., the

entropy of the concept. The more information, the more specific and deterministic the

concept is, i.e., the less the uncertainty of the concept becomes.

Then, to measure which subset of variables is complete and optimal, we restate the

following theorem, which is the theoretical foundation of our approach.

Theorem 1.2.2 ([50], p. 43) If the mutual information between X and Y is equal to the

entropy of Y , i.e., I(X; Y) = H(Y), then Y is a function of X.

The entropy H(Y) represents the diversity of the variable Y . The mutual information

I(X; Y) represents the dependence or relation between vector X and Y . From this point

of view, Theorem 1.2.2 actually says that the dependence between vector X and Y is very

strong, such that there is no more diversity for Y if X has been known. In other words, the

value of X can fully and completely determine the value of Y . If the concept is represented

with the variable Y , then the learning process is becoming a process to find a subset of the

descriptive features X, which satisfies the criterion of Theorem 1.2.2. The features in X

are called Essential Attributes, or EAs for short. For the above example, there must exist

some essential attributes which will be of primary importance and can fully determine the

lost computer, like the brand and the series number. If two persons have told the policeman

these two properties of the lost computer, it will be unnecessary to talk to other people.

Since the policeman can correctly identify the lost computer with the brand and the series

number of it, other people who do not talk to the policeman will not provide any additional

necessary information for the lost computer. For another example, humankind may have

many properties or characters, like straight walking and having large brains, which are

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.2 : Information Learning Approach 11

different from other species. But the most fundamental difference between the human

being, Homo sapiens, and other species is the DNA content within our cells.

For a domain with n variables, V = {X1, X2, . . . , Xn}, there are 2n subsets of V.

Obviously, the task to find the X which satisfies the criterion of Theorem 1.2.2 is NP-

hard. Thus, we propose the Discrete Function Learning (DFL) algorithm to efficiently

find the target subset X. The DFL algorithm uses one adjustable parameter K, called

expected cardinality of the EAs, to control the number of attributes in the target subset

X. The complexity of the DFL algorithm becomes polynomial after the introduction of

K. Unlike other approaches to computational learning theory, what the DFL algorithm

does is to directly learn the original functions based on Theorem 1.2.2, and not to perform

approximations. After the learning process, the DFL algorithm determines the models

which are given by the truth tables of the original functions.

When data sets are noisy, the equality between I(X; Y) and H(Y) is not fulfilled. In

these cases, we have to relax the requirement of Theorem 1.2.2 to obtain a best estimated

result. Therefore, we introduce a method called ǫ value to deal with noisy training data sets

in practice. In the ǫ value method, we attribute the missing part of the H(Y), which is not

captured by X, to the noise in the data sets. Specifically, we let the missing part of H(Y)

be smaller than or equal to ǫ × H(Y).

Next, we consider the prediction task. People make predictions based on their knowl-

edge, or the information obtained in living process and stored as memories in their brains.

Consider the example about the lost computer. After the properties of the lost computer are

obtained, the policeman will use these properties to predict whether they have found the

lost computer. Definitely, there would be many ways to use these properties. But the most

accurate and convenient way is to check the essential properties which distinctly specify the

lost computer, like the brand and the series number. If other properties, like the brand and

the color, are used to perform the prediction, it is possible to find incorrect targets, since

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

12 Chapter 1 : Introduction

there likely are many computers with the same brand and color as the lost one. However,

the brand and the series number is unique for every computer. For the example of human, it

is the DNA of humankind, that completely and accurately differentiates us, Homo sapiens,

from other species.

Formally, the prediction task is performed with the weighted 1-Nearest-Neighbor (1NN)

[5] algorithm based on the Hamming distance [88].

1.2.2 Other Learning Methods Based On Information Theory

There have been many learning methods based on information theory. The C4.5 algorithm

uses a variant of mutual information, called information gain, to build decision trees [140].

Some feature selection methods use the ranking of information gain [87, 115, 174], as to

be discussed in Section 6.2.1. There are also some feature selection methods based on

mutual information, such as the work by Dumais et al. [65], Yang and Pedersen [176],

Vidal-Naquet and Ullman [169], Fleuret [68], Chow and Huang [45] and Peng et al. [133].

Generally, because these existing methods perform learning with mutual information or

variants of it, thus both these methods and our approach belong to the category of Informa-

tion Learning Approach. However, as shown in Section 1.2.1, our approach explicitly uses

Theorem 1.2.1 and 1.2.2 as its theoretical foundation, which is different from other learning

methods based on information theory. A detailed comparison between our approach and

existing feature selection methods based on information theory is given in Section 6.5. In

this thesis, we will use ILA to stand for our approach.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.3 : Contributions 13

Table 1.1: The comparison of different approaches to computational learning theory. The

columns Learning Power, Complexity, Approximate and Noisy represent the

learning ability for the target functions, the time complexity of the learning al-

gorithms, whether this approach approximates the target functions and whether

this approach can deal with noisy data sets.

Approach Learning Power Complexity Approximate Noisy

PAC Theory Restricted Polynomial Yes No

VC Theory Unrestricted Polynomial Yes Yes

Bayesian inference Unrestricted NP-hard Yes Yes

Algorithmic Learning Unrestricted NP-hard No/Yes Yes

Information Learning Restricted/ Polynomial/ No/Yes Yes

Unrestricted NP-hard

1.2.3 Comparisons of Different Learning Approaches

Finally, we compare different approaches to computational learning theory in Table 1.1.

From Table 1.1, it can be seen that the PAC theory, the VC theory and the Bayesian infer-

ence are all approximation methods. In comparison, the ILA performs exact learning when

ǫ = 0 and estimates the original model when ǫ > 0. Furthermore, the PAC cannot deal with

noisy data sets, which restricts its applications in practice. The complexity of the Bayesian

inference and algorithmic learning theory is NP-hard, which makes it very difficult to apply

them to high-dimensional data sets. In comparison, the ILA can be both polynomial and

NP-hard, when the target functions are restricted and unrestricted respectively.

1.3 Contributions

In this thesis, we made the following major contributions.

1. We propose a new approach, named as Information Learning Approach, to the com-

putational learning theory. In our approach, learning is interpreted as a procedure to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

14 Chapter 1 : Introduction

obtain information of the concept. There have been some existing learning methods

based on information theory, as discussed in Section 1.2.2. Our method, as well as

the existing methods, can be categorized into Information Learning Approach in gen-

eral. However, our approach is different from these existing methods in theoretical

foundation.

2. We propose a new learning algorithm, the DFL algorithm, based on the ILA. We

show that the DFL algorithm can be used to learn functions; to find qualitative mod-

els of gene regulatory networks; to solve classification problems; and to find discrim-

inatory feature subsets for other classification algorithms. The searching schema of

the DFL algorithm extends the classical greedy searching method [49] and has been

demonstrated to be indispensable for solving some problems.

3. An open problem is partially solved with our approach. We prove that some Boolean

functions can be learned with the DFL algorithm in O(k ·(N +logn)·n) time. Before

this work, it is still an open problem to learn Boolean functions with fewer than or

equal to k inputs in o(N · nk) 1 time.

4. We discuss the completeness of features in machine learning. We prove that complete

feature subsets for classification problems can be obtained with the DFL algorithm.

In many benchmark data sets, the DFL algorithm finds informative and discrimina-

tory feature subsets for other classification methods.

5. We discuss the curse of dimensionality with the ILA. We show that the DFL algo-

rithm can obtain optimal and complete feature subsets, when training data sets are

large enough. This is helpful for overcoming the curse of dimensionality, since the

1The o-notation is used to denote an upper bound that is not asymptotically tight [49]. o(g(n)) is formally

defined as the set, o(g(n)) = {f(n): for any positive constant c > 0, there exists a constant n0 > 0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.4 : Outline 15

reduction of dimension achieved by the DFL algorithm does not deteriorate the pre-

diction performances, but actually improves them in most data sets used in this thesis.

6. We propose to use a new measure, the structure sensitivity, as the criterion to evaluate

the performances of inference algorithms for learning qualitative models of Gene

Regulatory Networks (GRNs).

7. We have developed a new machine learning software, the Discrete Function Learner

(DFLearner) [193]. The DFLearner implements the DFL algorithm for performing

classification, choosing discriminatory feature subsets and learning qualitative mod-

els of GRNs.

Other contributions include performing cancer classification based on microRNA [14,

15, 22, 181] gene expression profiles [190, 192], exploring essential attributes for detecting

microRNA precursors [183], classification of RNA splicing sites [185, 193], classification

of DNA sequences as promoter or non-promoter sequences of genes [185, 193], improved

MDL (minimum description length) score for learning Bayesian networks [186], learning

Boolean networks from noisy data sets with Karnaugh-maps [187], leukemia subtype iden-

tification with pair-wise classification [188] and finding important peptides for the binding

of Human Leukocyte Antigen (HLA) alleles belonging to HLA-B7 supertype [182].

1.4 Outline

The outline of this thesis is as follows. In Chapter 2, we formally present the ILA and the

DFL algorithm. The ILA is based on information theory [151], incorporating some ideas

from graphical models [131]. This chapter aims at providing a framework of the ILA and

the DFL algorithm, while minor modifications for different application are introduced in

the following chapters. This chapter is based on our work [184, 189, 191].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

16 Chapter 1 : Introduction

In Chapter 3, we will apply the DFL algorithm to learning qualitative models of GRNs.

GRNs is the underlying mechanism which control different expression patterns of the genes

within a cell and the developmental processes of a species. The reasons why genes are

expressed when and where they are in the spatial domains of the developing organism

are revealed in network “architecture,” that is, in the total aggregate pattern of regulatory

linkages [54]. Thus, it is of primary importance to decipher the architecture of GRNs.

We use the DFL algorithm to learn qualitative models of GRNs from gene expression data

sets, which are assumed to be the products of the GRNs. This chapter is based on our

work [184, 191, 193].

In Chapter 4, we will consider two open problems about learning Boolean functions

under the context of learning Boolean networks as models of GRNs. We prove that the

bounded OR/AND Boolean functions can be learned with the DFL algorithm in O(k ·(N +

logn)·n) time. The experiment results soundly support our analysis about the complexity of

the DFL algorithm for learning Boolean functions. We also show that the DFL algorithm

can correctly find the original Boolean functions from noisy data sets. We also propose

to use structure sensitivity as a criterion to evaluate the performance of the algorithm for

inferring Boolean networks. This chapter is based on our work [184, 191].

In Chapter 5, we apply the DFL algorithm to solving classification problems. To solve

classification problems, the weighted 1-Nearest-Neighbor algorithm is used to perform pre-

dictions. Twenty four benchmark data sets are used to validate our approach. Twenty data

sets are classic machine learning data sets, and the remaining four are high-dimensional

biological data sets. Our approach obtains comparable or more competitive prediction

performances than those from well-known methods, while with lower-complexity models.

This chapter is based on our work [183, 185, 188, 189, 192].

In Chapter 6, we apply the DFL algorithm to performing feature subset selection. In

supervised learning, there are always irrelevant and redundant features in the data sets,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.4 : Outline 17

which will deteriorate the performances of inference algorithms, in terms of both accuracies

and efficiencies. When the data sets are high-dimensional, the problems introduced by

irrelevant and redundant features become more serious, and sometimes, incur the curse

of dimensionality. Thus, feature selection is critical for improving the performances of

the inference algorithms, and for further alleviating the curse of dimensionality. The DFL

algorithm can automatically eliminate the irrelevant and redundant features by choosing

the feature subsets which provide all or most information about the class attribute. This

chapter is based on our work [183, 189, 192].

Finally in Chapter 7, we discuss the relationships of the ILA and the DFL algorithm

to the existing learning theories. We summarize the contributions of this thesis. Then,

we discuss the limitations of our approach and some future directions. We also propose

a conjecture about the complexity of the DFL algorithm for learning multi-value discrete

functions. Lastly, we give a perspective about the applications of the ILA in the future and

suggest the role of the ILA in helping us to understand learning.

This thesis has seven appendixes. The proofs for theorems in Chapter 2, 3 and 4 are

given in Appendix A, B and C respectively. The references of the theorems that have been

proposed are given in the names of them. The new theorems proposed in this thesis have

no reference in their names. The detailed settings of the DFL algorithm for the data sets

used in Chapter 5 and Chapter 6 are shown in Appendix D. An extended version of the

DFL algorithm is given in Appendix E. The common notation of this thesis is listed in

Appendix F. The abbreviations of this thesis are listed in Appendix G. The softwares, data

sets, and supplementary results of this thesis are provides at the supplementary website2 of

this thesis.

2The supplements of this thesis are available at http://www.ntu.edu.sg/home5/pg04325488/thesis.htm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Information Learning Approach

I
N this chapter, we will present the Information Learning Approach (ILA) and the

Discrete Function Learning (DFL) algorithm. The ILA is based on information the-

ory [151], incorporating some ideas from graphical models [131].

This chapter is organized as follows. Section 2.1 will first describe necessary back-

ground knowledge of information theory and graphical models. Second, The ILA is pro-

posed in Section 2.2. Third, The relation between ILA and Markov Blanket is discussed

in Section 2.3. Fourth, the DFL algorithm is proposed in Section 2.4. Fifth, in Section

2.5, we introduce the ǫ value method for noisy data sets. Sixth, Section 2.6 discusses the

selection of the parameters of the DFL algorithm. Section 2.7 introduces the weighted 1-

Nearest-Neighbor algorithm for prediction. Next, two implementation issues are discussed

in Section 2.8. Finally, we will summarize this chapter in the last section.

2.1 Background Knowledge

In this section, we introduce the background knowledge of information theory and some

concepts in graphical models [131].

18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.1 : Background Knowledge 19

2.1.1 Fundamental Knowledge of Information Theory

We will first introduce some notation. We use capital letters to represent discrete random

variables, such as X and Y ; lower case letters to represent an instance of the random

variables, such as x and y; bold capital letters, like X, to represent a vector; and lower case

bold letters, like x, to represent an instance of X. The cardinality of X is represented with

|X|. In the remainder parts of this paper, we denote the attributes except the class attribute

as a set of discrete random variables V = {X1, . . . , Xn}, the class attribute as variable Y .

The entropy of X is represented with H(X), and the mutual information between X and

Y is represented with I(X; Y). The entropy and mutual information estimated from data

sets are empirical values Ĥ(·) and Î(·; ·).

The entropy of a random variable X is defined in terms of probability of observing a

particular value x of X as

H(X) = −
∑

x

P (X = x) log P (X = x).

Later, we will use P (X) to denote the distribution of X and p(x) to denote P (X = x).

For two variables, the joint entropy is defined in terms of the probabilities of all possible

instances of the tuple (X,Y) as

H(X,Y) = −
∑

x

∑

y

p(x, y) log p(x, y).

Once we observed X = x, the uncertainty in Y is the entropy of the posterior distribution,

H(Y |X = x) = −
∑

y

p(y|x) log p(y|x). (2.1)

The average value of Equation 2.1 over all possible values of X is the conditional entropy

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

20 Chapter 2 : Information Learning Approach

H(Y)H()X

I(;Y)XH(|Y)X H(Y|)X

H(,Y)X

H(Y)

H()X

I(;Y)X

(a) (b)

Figure 2.1: The relationship of entropy and mutual information. The circles represents the

entropy of variables. The intersection between the circles stands for the mutual

information between the variables. (a) The normal case. (b) When Y = f(X).

of Y given X ,

H(Y |X) =
∑

x

p(x)H(Y |X = x).

If X becomes a set of variables X = {X(1), X(2), . . . , X(k)} ⊆ V, the conditional entropy

of Y given X is defined as

H(Y |X) = −
∑

x

∑

y

p(x, y) log p(y|x). (2.2)

Obviously, there are two conditional entropies which capture the relationships between

H(X) and H(Y), H(X|Y) and H(Y |X). As illustrated in Figure 2.1 (a), these are related

with Equation 2.3 [151]:

H(X,Y) = H(Y |X) + H(X) = H(X|Y) + H(Y). (2.3)

In other words, the uncertainty of X and the remaining uncertainty of Y given knowledge

of X , i.e., the information contained in Y that is not shared with X , sum to the entropy

of the combination of X and Y . We can now find an expression for the shared or “mutual

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.1 : Background Knowledge 21

information”, I(X; Y), also referred to as “rate of transmission” between an input-output

pair [151]:

I(X; Y) = H(Y) − H(Y |X) = H(X) − H(X|Y). (2.4)

The shared information between X and Y corresponds to the remaining information of X if

we remove the information of X that is not shared with Y . In other words, mutual informa-

tion is the measure of the amount of information that one random variable contains about

another random variable. From Equation 2.3 and Equation 2.4, the mutual information can

also be represented as

I(X; Y) = H(X) + H(Y) − H(X,Y). (2.5)

Similar to Equation 2.2, the mutual information between a vector X and Y is defined

as

I(X; Y) = H(Y) − H(Y |X) = H(X) − H(X|Y) (2.6)

= H(X) + H(Y) − H(X, Y) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
.

From Figure 2.1 and Equation 2.6, it is clear that I(X; Y) = I(Y ;X).

The conditional entropy and entropy are related with Theorem 2.1.1, for which the

proof is available in [50].

Theorem 2.1.1 ([50], p. 27) H(X|Y) ≤ H(X) with equality if and only if X and Y are

independent.

The conditional mutual information of random variable Y and Z given X is defined by

I(Y ; Z|X) = H(Y |X) − H(Y |X, Z) =
∑

x

∑

y

∑

z

p(x, y, z) log
p(y, z|x)

p(y|x)p(z|x)
. (2.7)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

22 Chapter 2 : Information Learning Approach

From Equation 2.7, it is obvious that I(Y ; Z|X) = I(Z; Y |X).

The chain rule for mutual information is give by Theorem 2.1.2, for which the proof is

available in [50].

Theorem 2.1.2 ([50], p. 22) I(X1, X2, . . . , Xn; Y) =
∑n

i=1 I(Xi; Y |Xi−1, Xi−2, . . . , X1).

Theorem 2.1.3 ([50], p. 27) For any discrete random vectors Y and Z, I(Y ;Z) ≥ 0.

Moreover, I(Y ;Z) = 0 if and only if Y and Z are independent.

Proof of Theorem 2.1.3 can also be found in [50]. Immediately from Theorem 2.1.3, the

following corollary is also correct.

Corollary 2.1.1 ([50], p. 27) I(Y ;Z|X) ≥ 0, with equality if and only if Y and Z are

conditional independent given X.

We will review conditional independence, introduced by Pearl [131], in Section 2.1.2.

Let us recall the law of large numbers 1 which states that if an event of probability p is

observed repeatedly during independent repetitions, the ratio of the observed frequency of

that event to the total number of repetitions converges towards p as the number of repetitions

becomes arbitrarily large [1–3]. Formally, the law of large numbers is given in Theorem

2.1.4.

1The law of large numbers was first proved by the Swiss mathematician Jakob Bernoulli in 1713 [1].

There is also a more general version of the law of large numbers for averages, proved more than a century

later by the Russian mathematician Pafnuty Chebyshev [2]. There are two versions of the Law of Large

Numbers, one called the “weak” law and the other the “strong” law. In essence the two laws do not describe

different actual laws but instead refer to different ways of describing the convergence of the sample mean with

the population mean [1]. The weak law of large numbers states that if x1, x2, . . . , xn, is an infinite sequence

of random variables, where all the random variables have the same expected value µ and variance σ2; and are

uncorrelated (i.e., the correlation between any two of them is zero), then the sample average xn = 1

n

∑n

i=1
xi,

for any positive number ǫ, no matter how small, we have limn→∞ p(|xn − µ| < ǫ) = 1 [1, 70]. On the same

condition, the strong law of large numbers states that p(limn→∞ xn = µ) = 1 [1].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.1 : Background Knowledge 23

Theorem 2.1.4 (Law of Larger Numbers) Let x1,x2, . . . ,xN be a infinite sequence of

random vector X, xis are independently drawn from the same distribution P (X), then

lim
N→∞

p̂(x) =
Nx

N
= p(x),

where Nx is the number of instances in which X = x.

Note the Theorem 2.1.4 is correct regardless of sample distribution. From Theorem 2.1.4,

it is known that if there are enough samples, p(x) can be correctly estimated. Then, if the

variables in X and in V\X are independent (see supplementary Figure S1), from Corollary

2.1.1, we can have Theorem 2.1.5.

Theorem 2.1.5 Let V = {X1, . . . , Xn}, ∀Z ∈ V \ X, X and Z are independent. Given

enough samples of V. If Y and Z are conditional independent given X, then the empirical

mutual information Î(Y ;Z) = 0.

In a function, we have the following theorem. The relation between I(X; Y) and H(Y)

is shown in Figure 2.1 (b).

Theorem 2.1.6 ([83], p. 37) If Y = f(X), then I(X; Y) = H(Y).

2.1.2 Background knowledge of Graphical Models

Conditional Independence (see [131], p. 83) is a concept used in graphical models, espe-

cially Bayesian networks [131].

Definition 2.1.1 (Conditional Independence) Let V = {X1, . . . , Xn} and P (·) be a joint

probability function over the variables in V. ∀X,Y, and Z ⊆ V, the sets Y and Z are

said to be conditional independent given X if

P (Y|X,Z) = P (Y|X). (2.8)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

24 Chapter 2 : Information Learning Approach

In other words, learning the value of Z does not provide additional information about Y,

once we know X.

A Bayesian network for V is the tuple B(G, Θ). G is a Directed Acyclic Graph (DAG)

whose nodes are in one-to-one correspondence to variables in V, whose edges encode

the conditional dependence between variables [131]. In particular, Xi is independent of

its non-descendants given its parents Pai in G [131]. The second component Θ is a set

of parameters which quantify the network. In particular, Θ =
⋃

i Θi, where Θi is the

Conditional Probability Table (CPT) of node Xi. The Bayesian network B encodes the

joint probability over V by the following equation

PB(X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Pai, Θi) (2.9)

where Pai is the set of parents of node Xi in G. From Equation 2.9, it can be seen that

the joint probability of V is decomposed into the product of marginal distributions. An

example of Bayesian networks is given in Figure 2.2.

2.2 Information Learning Approach

In this section, we will first define the learning problem. Then, we will introduce the ILA.

2.2.1 Problem Definition

Let V = {X1, X2, . . . , Xn} be a domain with n discrete variables and let Y be a function

of X ⊆ V. We denote the cardinality of X with k, i.e., |X| = k and k ≤ n. Let the

training samples be generated in such a way that variables in V are assigned according

to a distribution P (V) and y is generated with x. We will consider the learning problem

defined as follows.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 : Information Learning Approach 25

Figure 2.2: The Asia Bayesian network, a fictitious expert system representing the diag-

nosis of a patient, having just come back from a trip to Asia and showing

dyspnoea [107]. The Markov Blanket of node Tuberculosis or Cancer is the

set {Tuberculosis, Has Lung Cancer, Has Bronchitis, Positive X-ray?, Dysp-

noea?}(the gray nodes in the figure).

Definition 2.2.1 (The Learning Problem) Given a training data sets T = {(vi, yi) : i =

1, . . . , N}, find a function Y = f(U) where U ⊆ V, such that f can produce the same

output value as those in T as frequently as possible. Formally,

f = arg max
g

Accuracy(g) =
NC(g)

N

where NC(g) is the number of samples whose g(ui) = yi.

Note that U may be different from the input X of the original function, which indicates

the failure or partial failure of the learning process (we will discuss this issue in detail in

Chapter 4). It is often the case that there are some irrelevant and redundant features in the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

26 Chapter 2 : Information Learning Approach

domain V, since X ⊆ V. The training data sets may also include some noise, i.e., some yi

in the pair (vi, yi) is not the value produced with Y = f(X).

2.2.2 The Information Learning Approach

We restate a theorem about the relationship between the mutual information I(X; Y) and

the number of attributes in X.

Theorem 2.2.1 ([122], p. 26) I({X,Z}; Y) ≥ I(X; Y), with equality if and only if p(y|x) =

p(y|x, z) for all (x, y, z) with p(x, y, z) > 0.

In Theorem 2.2.1, it can be seen that {X,Z} will contain more or equal information

about Y as X does. Intuitively, it can be illustrated in Figure 2.4, H(X,Z) will definitely

share no less information with H(Y) than H(X) does alone, since H(X,Z) can provide at

least the part of information about Y already provided by H(X) alone. To put it another

way, the more variables, the more information is provided about another variable.

From Theorem 2.2.1, it can be deduced that individual variables cannot provide more

information about the class attribute than vectors, i.e., a collective of variables. As to be

demonstrated in Figure 2.4, it is obvious that choosing the top variables will not make sure

that we find the optimal subset of features which contains maximum mutual information

with the class attribute. Therefore, it is better to find the optimal subset of variables by

considering the collective effect of variables as vectors.

To measure which subset of variables is optimal, we restate the following theorem,

which is the theoretical foundation of our algorithm.

Theorem 2.2.2 ([50], p. 43) If the mutual information between X and Y is equal to the

entropy of Y , i.e., I(X; Y) = H(Y), then Y is a function of X.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 : Information Learning Approach 27

The entropy H(Y) represents the diversity, or randomness, of the variable Y . The mutual

information I(X; Y) represents the dependence between X and Y . From this point of view,

Theorem 2.2.2 actually says that the dependence between vector X and Y is very strong,

such that there is no more diversity for Y if X has been known. In other words, the value

of X can fully determine the value of Y . We will name the subset of features X which

satisfies the criterion of Theorem 2.2.2 as the Essential Attributes, or EAs for short.

More intuitively as shown in Figure 2.1 (b), if the mutual information between a set of

variables X and another variable Y , I(X; Y), is equal to the entropy of Y , H(Y), then Y

is fully determined by X, i.e., X gives all the information needed to decide the state of Y .

That is to say, Y is a function of X.

Next, we discuss the probabilistic relationship between X, Y and another vector Z ⊆

V\X.

Theorem 2.2.3 If I(X; Y) = H(Y), X = {X(1), . . . , X(k)},∀Z ⊆ V\X, Y and Z are

conditional independent given X.

From Theorem 2.2.3 and Corollary 2.1.1, we have the Corollary 2.2.1.

Corollary 2.2.1 If I(X; Y) = H(Y), X = {X(1), . . . , X(k)}, ∀Z ⊆ V\X, then I(Y ;Z|X) =

0.

Theorem 2.2.3 is actually saying that if we can find a subset of features X which satisfies

I(X; Y) = H(Y), the remaining variables in V will be prevented from giving additional

information about Y , once we know X. Immediately from Theorem 2.1.5 and Corollary

2.2.1, we have Theorem 2.2.4.

Theorem 2.2.4 Let V = {X1, . . . , Xn}, ∀Z ⊆ V \ X, X and Z are independent. Given

enough samples of V. If I(X; Y) = H(Y), then ∀Z ⊆ V\X, the empirical mutual

information Î(Y ;Z) = 0.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

28 Chapter 2 : Information Learning Approach

From Theorem 2.2.4, it is known that if the sample size is large enough, the variables

in V\X will share no mutual information with the variable Y under consideration. As

to be shown in Figure 2.3, Î(Y ;Z) may be larger than zero when sample size is small,

and tends to be zero when sample size is large. This suggests that it is more advisable

to use large training data sets to determine the correct classification functions and optimal

feature subsets, as the negative effects from irrelevant features, Î(Y ;Z), are minimized

when sample size is large.

Based on Theorem 2.2.2, it is known that if I(X; Y) = H(Y), then the subset X

can fully determine the value of Y for the training data sets. And from Theorem 2.2.4, it is

known that if I(X; Y) = H(Y), then ∀Z ⊆ V\X, Z provides no information of Y . Hence,

the X which satisfies I(X; Y) is the complete set of features needed to determine the value

of Y for the training data set.

From Theorem 2.2.2, the learning problem in Definition 2.2.1 is converted to finding

a subset of attributes U ⊆ V whose mutual information with Y is equal to the entropy of

Y , where the U is the EAs which we are trying to find from the data sets. For n discrete

variables, there are totally 2n subsets. Clearly, it is NP-hard to examine all possible subsets

exhaustively. However, since there usually are irrelevant and redundant features in data

sets, it is reasonable to reduce the searching space by considering those subsets with limited

number of features. Hence, the problem can be solved in polynomial time. To efficiently

find the U, we will propose the DFL algorithm in Section 2.4.

2.3 Relation to Markov Blanket

In this section, we will first briefly introduce the Markov Blanket. Then, we will discuss

the relation between the ILA and Markov Blanket.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.3 : Relation to Markov Blanket 29

2.3.1 Markov Blanket

Markov Blanket [131] is defined as follows.

Definition 2.3.1 (Markov Blanket) Let U be some set of features(variables) which does

not contain Xi. We say that U is a Markov Blanket for Xi if Xi is conditional independent

of R = V \ {U ∪ {Xi}}
2 given U, i.e.,

p(xi|r,u) = p(xi|u),∀p(r,u) > 0. (2.10)

A set is called a Markov boundary of Xi, if it is a minimum Markov Blanket of Xi, i.e.,

none of its proper subsets satisfy Equation 2.10.(see [131], p. 97).

In classification problems, the data sets can be assumed to be generated by a joint

distribution of V and Y . Thus, if the V and Y are regarded as nodes in a Bayesian network,

the learning algorithms try to find the conditional probability of Y given V, P (Y |V).

In Bayesian networks, the union of parents and children of Y , and parents of children

(spouses) of Y is equivalent to the Markov Blanket [131, 177]. As shown in Figure 2.2,

the Markov Blanket of the node Tuberculosis or Cancer is the set {Tuberculosis, Has Lung

Cancer, Has Bronchitis, Positive X-ray?, Dyspnoea?}(the gray nodes in Figure 2.2).

From the definition of Markov Blanket, it is known that if we can find a Markov Blanket

U for the class attribute Y , then all other variables in V will be statistically independent

of Y given U. This means that all the information that may influence the value of Y is

stored in values of U [177]. In other words, Markov Blanket U has prevented other nodes

from affecting the value of Y . Markov Blanket U also corresponds to strongly relevant

features [163], as defined by Kohavi and John [103]. Therefore, if we can find a Markov

2In [131], “-” is used to denote the set minus(difference) operation. To be consistent to other parts of this

thesis, we will use “\” to denote the set minus operation. Particularly, A \ B is defined by A \ B = {X :
X ∈ A and X /∈ B}.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

30 Chapter 2 : Information Learning Approach

Blanket U of Y as the candidate feature subsets, U should be the theoretical optimal subset

of features to predict the value of Y , as discussed in [104, 163].

2.3.2 The Relation of Information Learning Approach and Markov

Blanket

From Theorem 2.2.3, it is known that if I(X; Y) = H(Y), then ∀Z ⊆ V\X, Y and Z are

conditional independent given X. From the concept of Markov Blanket, it is known that if

I(X; Y) = H(Y), then X is a Markov Blanket of Y . Formally, we have

Theorem 2.3.1 If I(X; Y) = H(Y), then X is a Markov Blanket of Y .

As to be introduced in Section 2.5, I(X; Y) = H(Y) can be satisfied only when the

data sets are noiseless. However, with the introduction of ǫ method in Section 2.5, the set

that carries most information of Y , H(Y), is still a good estimation of the true Markov

Blanket of Y . In addition, our method has competitive expected computational costs to

other methods for finding Markov Blankets, such as in [10, 104, 163, 164].

2.4 The Discrete Function Learning Algorithm

In this section, we will first discuss the theoretical motivation of the DFL algorithm, then

introduce the DFL algorithm. Next, we analyze the complexity and correctness of the DFL

algorithm.

2.4.1 Theoretical Motivation

From Theorem 2.1.3 and Theorem 2.2.4, the irrelevant features tend to share zero or very

small mutual information with the class attribute in the presence of noise. Therefore, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 31

irrelevant features can be eliminated by choosing those features with relatively large mutual

information with the class attribute in modelling process.

When choosing candidate features, our approach maximizes the mutual information

between the feature subsets and the class attribute. Suppose that Us−1 has already been

selected at the step s − 1, and the DFL algorithm is trying to add a new feature Xi ∈

V \ Us−1 to Us−1. Specifically, our method uses X(1) = arg maxi I(Xi; Y) and Equation

2.11 as criterion to add new features to U.

X(s) = arg max
i

I(Us−1, Xi; Y), (2.11)

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}. From Equation 2.11, it

is obvious that the irrelevant features have lost the opportunity of being chosen as EAs of

the classifiers after the first EA, X(1), is chosen, since I(Xi; Y) is very small if Xi is an

irrelevant feature.

For instance, the mutual information between Xi and the class attribute Y for the

LED+17 data sets from the UCI machine learning repository [31] is shown in Figure 2.3.

In the LED+17 data sets, there are 7 relevant features, each representing a Light Emitting

Diode (LED), and 17 irrelevant features with random values. The 7 relevant features are

boolean, with “1” representing that the LED is turned on and “0” representing that the LED

is turned off. With different instances of the 7 relevant features, the class attribute can take

10 values, each for one decimal digit. The Golden Rule in Figure 2.3 is obtained from a

data set with 10 samples, each for one decimal digit. From Figure 2.3, it is shown that the

relevant features have significantly larger I(Xi; Y) than irrelevant ones. The noise makes

I(Xi; Y) of relevant features much smaller than the Golden Rule, but still larger than the

values of irrelevant ones. Especially, when sample size is large, I(Xi; Y) for irrelevant

features is almost zero, which is due to Theorem 2.2.4. In addition, the curves for large

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

32 Chapter 2 : Information Learning Approach

L1

L2

L7
L6L5

L4
L3

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i

I(
X

i;Y
)

10% Noise
Golden Rule
Noiseless

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i

I(
X

i;Y
)

(a) (b) (c)

Figure 2.3: The mutual information between Xi and the class attribute Y for the LED+17

data sets. The horizontal axis represents the index i of the features Xis. The

curves marked with triangles, pentagrams and circles represents the values for

the Golden Rule, the noiseless data sets and data sets with 10% noise. (a) The

7 relevant attribute of the LED+17 data sets. (b) I(Xi; Y) when the sample

size is 2000. The one with 10% noise is used in the experiments in Section 6.4.

(c) I(Xi; Y) when the sample size is 100.

data sets is quite similar to the Golden Rule.

Next, we illustrate how to eliminate the redundant features. From Theorem 2.1.2, we

have

I(Us−1, Xi; Y) = I(Us−1; Y) + I(Xi; Y |Us−1). (2.12)

In Equation 2.12, note that I(Us−1; Y) does not change when trying different Xi ∈ V \

Us−1. Hence, the maximization of I(Us−1, Xi; Y) in our method is actually maximizing

I(Xi; Y |Us−1), as shown by the shaded region in Figure 2.4, which is the conditional mu-

tual information of Xi and Y given the already selected features Us−1, i.e., the information

of Y not captured by Us−1 but carried by Xi. As shown in Figure 2.4 (b), if the new feature

B is a redundant feature, i.e., I(Us−1; B) is large, then the additional information of Y

carried by Xi, I(B; Y |Us−1), will be small. Consequently, B is unlikely to be chosen as

an Essential Attribute (EA). Hence, the redundant features are automatically eliminated by

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 33

(a) (b)

Figure 2.4: The advantage of using mutual information to choose the most discrimina-

tory feature vectors. The notations are the same as those in Figure 2.1. Us−1

is the features already chosen at step s − 1. The shaded regions represent

I(Xi; Y |Us−1), where Xi ∈ V \ Us−1. (a) When Xi = A. A shares less mu-

tual information with Y than B does. However, the vector {Us−1, A} shares

larger mutual information with Y than the vector {Us−1, B} does. (b) When

Xi = B. B shares larger mutual information with Y than A does. But B and

Us−1 have a large mutual information, which means that Us−1 has contained

most of the information of Y carried by B or the additional information of Y
carried by B, I(B; Y |Us−1), is small.

maximizing I(Us−1, Xi; Y).

Figure 2.4 also illustrates one short-coming of the top-ranking methods based on mutual

information and other measures. The feature A in Figure 2.4 (a) does not share more mutual

information with Y than B in part (b) does. If the top-ranking method is used, then B in

part (b) will be chosen. However, if features are evaluated as vectors, then {Us−1, A} in

part (a) is a better subset than {Us−1, B} in part (b).

Based on Theorem 2.3.1, it is known that if I(X; Y) = H(Y), then X is a Markov Blan-

ket of Y . Hence, in the feature selection process of our method, the I(U; Y) is evaluated

with respect to H(Y). It is critical to compare I(U; Y) with H(Y). Since by performing

this comparison, the optimal subset of features can be automatically determined, without

the need of specifying a predefined number of features or a threshold value of the mutual

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

34 Chapter 2 : Information Learning Approach

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2.5: The rules of the noiseless LED+17 data set learned by the DFL algorithm. The

positions of the attributes are the same as those in Figure 2.3 (a). Part (a) to (j)

corresponds to rules for 0 to 9 respectively. Wide solid and narrow dashed lines

mean that the corresponding attributes take the value of 1 and 0 respectively.

information.

We also use the example of LED+17 to illustrate the removing of redundant features.

For the noiseless LED+17 data sets, the DFL algorithm finds that only 5 features, L1 to

L5, is sufficient to build classification models, with the learned rules shown in Figure 2.5.

For example, in Figure 2.5 (a), L1, L2, L3 and L5 are turned on and L4 is turned off,

which means that the rule for digit “0” is (L1,L2,L3,L4,L5,Y) = (1,1,1,0,1,0). Each rule

in Figure 2.5 uniquely corresponds to one digit from 0 and 9, which means these rules can

correctly classify the noiseless LED+17 data sets. However, the generation function of the

LED+17 data sets has 7 relevant features. This difference means that the 7 relevant features

contain redundant information for the class attribute, which is almost impossible or very

hard to detect explicitly. Fortunately, by evaluating I(U; Y) with respect to H(Y), this

redundancy is automatically detected.

In summary, the irrelevant and redundant features can be automatically removed, if

the new candidate feature Xi is evaluated with respect to the selected features as a vector

Us−1 by maximizing I(Us−1, Xi; Y). Furthermore, the optimal subset of features can be

determined by evaluating the I(U; Y) with respect to H(Y).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 35

Table 2.1: The DFL algorithm.

Algorithm: DFL(V,K,T)

Input: a list V with n variables, indegree K,

T = {(vi, yi) : i = 1, · · · , N}. T is global.

Output: f
Begin:

1 L ← all single element subsets of V;

2 ∆Tree.F irstNode ← L;

3 calculate H(Y); //from T

4 D ← 1; //initial depth

5∗ f = Sub(Y,∆Tree,H(Y), D,K);
6 return f ;

End
∗ Sub() is a subroutine listed in Table 2.2.

2.4.2 The Discrete Function Learning Algorithm

The main steps of the DFL algorithm are listed in Table 2.1. The DFL algorithm has two

parameters, the expected cardinality K and the ǫ value. The ǫ value will be elaborated in

Section 2.5.

The K is the expected maximum number of attributes in the classifier. The DFL algo-

rithm uses the K to prevent the exhaustive searching of all subsets of attributes by checking

those subsets with fewer than or equal to K attributes. When trying to find the EAs from

all combinations whose cardinalities are not larger than K, the DFL algorithm will exam-

ine the mutual information between the combination of variables under consideration, U,

and the class attribute, Y . If I(U; Y) = H(Y), then the DFL algorithm will terminate

its searching process, and obtain the classifiers by deleting the non-essential attributes and

duplicate instances of the EAs in the training data sets. Meanwhile, the counts of different

instances of (U, Y) are stored in the classifiers and will be used in the prediction process.

In the algorithm, we use the following definitions.

Definition 2.4.1 (δ Superset) Let X be a subset of V = {X1, X2, . . . , Xn}, then δi(X) of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

36 Chapter 2 : Information Learning Approach

Table 2.2: The subroutine of the DFL algorithm.

Algorithm: Sub(Y,∆Tree,H,D,K)
Input: variable Y , ∆Tree, entropy H(Y)
current depth D, maximum indegree K
Output: function table for Y , Y = f(X)
Begin:

1 L ← ∆Tree.DthNode;

2 for every element X ∈ L {
3 calculate I(X;Y); //from T

4 if(I(X;Y) == H) { //from Theorem 2.2.2

5 extract Y = f(X) from T;

6 return Y = f(X) ;

}
}

7 sort L according to I;

8 for every element X ∈ L {
9 if(D < K){
10 D ← D + 1;

11 ∆Tree.DthNode ← ∆1(X);
12 return Sub(Y,∆Tree,H,D,K);

}
}

13 return “Fail(Y)”; //fail to find function for Y
End

X is a superset of X so that X ⊂ δi(X) and |δi(X)| = |X| + i.

Definition 2.4.2 (∆ Supersets) Let X be a subset of V = {X1, X2, . . . , Xn}, then ∆i(X)

of X is the collective of all δi(X) and ∆i(X) =
⋃

δi(X).

Definition 2.4.3 (Searching Layer L of V) Let X ⊆ V, then the ith layer Li of all sub-

sets of V is, ∀|X| = i, Li =
⋃

X.

Definition 2.4.4 (Searching Space) The searching space of functions with a bounded in-

degree K is SK =
⋃K

i=1 Li.

From Definition 2.4.3, it is known that there are
(

n

i

)
subsets of V in Li. And there are

∑K

i=1

(
n

i

)
≈ nK subsets of V in SK .

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 37

Table 2.3: The training data set T of the example to learn Y = (A · C) + (A · D).

ABCD Y ABCD Y ABCD Y ABCD Y

0000 0 0100 0 1000 0 1100 0

0001 0 0101 0 1001 1 1101 1

0010 0 0110 0 1010 1 1110 1

0011 0 0111 0 1011 1 1111 1

To clarify the search process of the DFL algorithm, let us consider an example, as

shown in Figure 2.6. In this example, the set of attributes is V = {A,B,C,D} and the

class attribute is determined with Y = (A ·C)+ (A ·D), where “·” and “+” are logic AND

and OR operation respectively. The expected cardinality K is set to 4 for this example. The

training data set T of this example is shown in Table 2.3.

The search procedure of the DFL algorithm for this example is shown in Figure 2.6.

In the learning process, the DFL algorithm uses a data structure called ∆Tree to store the

∆ supersets in the searching process. For instance, the ∆Tree when the DFL algorithm is

learning the Y is shown in Figure 2.7.

As shown in Figure 2.6 and 2.7, the DFL algorithm searches the first layer L1, then

it sorts all subsets according to their mutual information with Y on L1. From Theorem

2.2.4, A,C or D has larger mutual information with Y than B has. Consequently, the DFL

algorithm finds that {A} shares the largest mutual information with Y among subsets on

L1.

Next, the ∆1(A)s are added to the second layer of ∆Tree, as shown in Figure 2.7.

Similarly to L1, the DFL algorithm finds that {A,D} shares the largest mutual information

with Y on L2. Then, the DFL algorithm searches through ∆2(A), . . ., ∆K−1(A), however

it always decides the search order of ∆i+1 (A) based on the calculation results of ∆i(A).

Finally, the DFL algorithm finds that the subset {A,C,D} satisfies the requirement of

Theorem 2.2.2, i.e., I({A,C,D}; Y) = H(Y), and will construct the function f for Y

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

38 Chapter 2 : Information Learning Approach

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

Figure 2.6: The search procedures of the DFL algorithm when learning Y = (A ·C)+(A ·
D). {A,C,D}∗ is the target combination. The combinations with a black dot

under them are the subsets which share the largest mutual information with Y
on their layers. Firstly, the DFL algorithm searches the first layer, then finds

that {A}, with a black dot under it, shares the largest mutual information with

Y among subsets on the first layer. Then, it continues to search ∆1(A) on the

second layer. Similarly, these calculations continue until the target combina-

tion {A,C,D} is found on the third layer.

with these three attributes.

To determine the truth table, firstly, the B is deleted from training data set since it is a

non-essential attribute. Then, the duplicate rows of ({A,C,D}, Y) are removed from the

training data set to obtain the final function f as the truth table of (A · C) + (A · D) along

with the counts for each instance of ({A,C,D}, Y), as shown in Table 2.4. This is the

reason for which we name our algorithm as the Discrete Function Learning algorithm.

If the DFL algorithm still does not find the target subset, which satisfies the requirement

of Theorem 2.2.2, in Kth layer LK , the DFL algorithm will return to the first layer. Now,

the first node on the L1 and all its ∆1, . . . , ∆K−1 supersets have already been checked. In

the following, the DFL algorithm continues to calculate the second node on the first layer

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 39

Table 2.4: The learned classifier f of the example to learn Y = (A · C) + (A · D).

ACD Y Count ACD Y Count

000 0 2 100 0 2

001 0 2 101 1 2

010 0 2 110 1 2

011 0 2 111 1 2

{A} {B} {C} {D}

{ } { } { }

{ } { }

{ }

{A} {C} {D} {B}

{A,B} {A,C} {A,D}

{ } { }

{ }

{A} {C} {D} {B}

{A,D} {A,C} {A,B}

{A,B,D} {A,C,D }*

{ }

(a) (b) (c)

Figure 2.7: The ∆Tree when searching the EAs for Y = (A · C) + (A · D). (a) after

searching the first layer of Figure 2.6 but before the sort step in line 7 of Table

2.2. (b) when searching the second layer of Figure 2.6. The {A}, {C} and {D}
which are included in the EAs of Y are listed before {B} after the sort step in

line 7 of Table 2.2. (c) when searching the third layer of Figure 2.6, {A,C,D}∗

is the target combination. Similar to part (b), the {A,C} and {A,D} are listed

before {A,B}. When checking the combination {A,C,D}, the DFL algorithm

finds that {A,C,D} is the complete EAs for Y since {A,C,D} satisfies the

criterion of Theorem 2.2.2.

(and all its ∆1, . . . , ∆K−1 supersets), the third one, and so on, until it reaches the end of

L1.

We use the example in Figure 2.8 to illustrate the searching steps beyond the first round

searching of the DFL algorithm. Note that the DFL algorithm is the same as the classical

greedy forward selection algorithm [49] and uses the mutual information I(U; Y) as the

greedy measure before it returns to the (K − 1)th layer from Kth layer for the first time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

40 Chapter 2 : Information Learning Approach

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

1 2 3 4

5 6 7

8 9

10 11

12 13

(a) (b)

Figure 2.8: The exhaustive searching procedures of the DFL algorithm when learning

Y = (A ·C) + (A ·D). {A,C,D}∗ is the target combination. (a) The exhaus-

tive searching after the first round searching. The numbers beside the subsets

are the steps of the DFL algorithm in part (b). The solid edges represent the

searching path in the first round searching, marked as blue region in part (b).

The dashed edges represent the searching path beyond the first round searching

(only partly shown for the sake of legibility), marked as yellow regions in the

table below. (b) The exhaustive searching steps. Blue, yellow and red regions

correspond to first round searching, exhaustive searching and the subsets, as

well as their supersets, not checked after deploying the redundancy matrix to

be introduced in Section 2.8.2.

We name the searching steps before this first return as the first round searching of the DFL

algorithm. As shown in Figure 2.8 (a) and (b), this first return happens after step 10.

To produce the exhaustive searching, we add one noisy sample (1100,1) to the training

data set in Table 2.3. Then, we keep the same settings of K = 4 and ǫ = 0. As shown in

Figure 2.8 (b), the mutual information I(X; Y) of all subsets is not equal to H(Y) = 0.977.

Therefore, the DFL algorithm will exhaustively check all subsets and finally report “Fail to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 : The Discrete Function Learning Algorithm 41

identify the model for Y (the classifier) when ǫ = 0”.

In Figure 2.8 (a), the first round searching is show in solid edges and the subsets checked

in each step are shown in the blue region of Figure 2.8 (b). In Figure 2.8 (a), the dashed

edges represent the searching path beyond the first round searching (only partly shown for

the sake of legibility), marked as yellow regions in Figure 2.8 (b). The red regions are the

subsets, as well as their supersets, that will not be checked after deploying the redundancy

matrix to be introduced in Section 2.8.2.

2.4.3 Complexity Analysis

First, we analyze the worst-case complexity of the DFL algorithm. As to be discussed in

Section 2.8.1, the complexity to compute the mutual information I(X; Y) is O(N). For

the example in Figure 2.6, {A,B} will be visited twice from {A} and {B} in the worst

case. {A,B,C} will be visited from {A,B}, {A,C} and {B,C}. Thus, {A,B,C} will

be checked for 3× 2 = 3! times in the worst case. In general, for a subset with K features,

it will be checked for K! times in the worst case. Hence, it takes O((
(

n

1

)
+

(
n

2

)
2! + . . . +

(
n

K

)
K!) × N) = O(N · nK) to examine all subsets in SK . Another computation intensive

step is the sort step in line 7 of Table 2.2. In L1, there is only one sort operation, which

takes O(n log n) time. In L2, there would be n sort operations, which takes O(n2 log n)

time. Similarly, in LK , the sort operation will be executed for nK−1 times, which takes

O(nK log n) time. Therefore, the total complexity of the DFL algorithm is O((N +log n) ·

nK) in the worst case.

As described in Section 2.2.1, we use k to denote the actual cardinality of the EAs.

After the EAs with k attributes are found in the subsets of cardinalities ≤ K, the DFL

algorithm will stop its searching. In our example, the K is 4, while the k is automatically

determined as 3, since there are only 3 EAs for the example.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

42 Chapter 2 : Information Learning Approach

Then, we analyze the expected complexity of the DFL algorithm. Contributing to sort

step in the line 7 of the subroutine, the algorithm makes the best choice on current layer of

subsets. Since there are (n − 1) ∆1 supersets for a given single element subset, (n − 2)

∆1 supersets for a given two element subset, and so on. The DFL algorithm only considers
∑k−1

i=0 (n − i) ≈ k · n subsets on the average. Thus, the expected time complexity of the

DFL algorithm is approximately O(k · n · (N + log n)), where log n is for sort step in line

7 of Table 2.2.

Next, we consider the space complexity of the DFL algorithm. To store the information

needed in the search processes, the DFL algorithm uses two data structures. The first one is

a linked list, which stores the value list of every variable. Therefore, the space complexity

of the first data structure is O(Nn). The second one is the ∆Tree, which is a linked list

of length K, and each node in the first dimension is itself a linked list. The ∆Tree for

the example in Figure 2.6 is shown in Figure 2.7. The first node of this data structure is

used to store the single element subsets. If the DFL algorithm is processing {Xi} and its

∆ supersets, the second node to the Kth node are used to store ∆1 to ∆K−1
3 supersets of

{Xi}. If there are n variables, there would be
∑K−1

i=0 (n − i) ≈ Kn subsets in the ∆Tree.

To store the ∆Tree, the space complexity would be O(Kn), since only the indexes of the

variables are stored for each subsets. Therefore, the total space complexity of the DFL

algorithm is O((K + N) · n).

2.4.4 Correctness Analysis

The DFL algorithm is correct. Formally, we have

Theorem 2.4.1 Let V = {X1, . . . , Xn}. The DFL algorithm can find a consistent function

Y = f(U) of maximum indegree K with O((N + logn) · nK) time in the worse case from

3Except ∆1 supersets, only a part of other ∆i(i = 2, . . . ,K − 1) supersets is stored in ∆Tree.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.5 : The ǫ Value Method for Noisy Data Sets 43

T = {(vi, yi) : i = 1, 2, . . . , N}.

The word “consistent” means that the function Y = f(U) is consistent with the learning

samples, i.e., ∀ui, f(ui) = yi. Clearly, the original function is a consistent function. Note

that Theorem 2.4.1 does not specify the requirement of the sample size. In Theorem 2.4.1,

the U is not necessarily the input X in the original generation function Y = f(X). We will

discuss this issue in detail in Section 4.3.

However, if there are enough samples, the DFL algorithm will correctly find the original

function in polynomial time. Formally, we have

Theorem 2.4.2 Let V = {X1, . . . , Xn}, ∀Z ⊆ V \ X, X and Z are independent. Given

enough samples of V. The DFL algorithm can find the original generation function Y =

f(X) of maximum indegree K with O((N + logn) · nK) time in the worse case from

T = {(vi, yi) : i = 1, 2, . . . , N}.

This is due the fact that when sample size is large enough, I(Z; Y) = 0,∀Z ⊆ V\X, based

on Theorem 2.2.4. Then, the DFL algorithm will not choose the variables in V\X as EAs,

given enough samples.

From Theorem 2.4.1 and 2.4.2, it can be seen that the DFL algorithm will converge

to the original generation function, when the sample size increases. In other words, the

DFL algorithm will produce a hypothesis, which will not change any more, after a certain

number of samples are given.

2.5 The ǫ Value Method for Noisy Data Sets

In this section, we will first introduce the ǫ value method. Then, we discuss the relationship

between the ǫ value method and the over-fitting problem. Finally, we show that the ǫ value

method is useful to reduce the run time of the DFL algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

44 Chapter 2 : Information Learning Approach

H(Y)

H()X

I(;Y)X

(a) (b)

Figure 2.9: The Venn diagram of H(X),H(Y) and I(X, Y), when Y = f(X). (a) The

noiseless case, where the mutual information between X and Y is the entropy

of Y . (b) The noisy case, where the entropy of Y is not equal to the mutual

information between X and Y strictly. The shaded region is resulted from

the noises. The ǫ value method means that if the area of the shaded region

is smaller than or equal to ǫ × H(Y), then the DFL algorithm will stop the

searching process, and build the function for Y with X.

2.5.1 The ǫ Value Method

In Theorem 2.2.2, the exact functional relation demands the strict equality between the

entropy of Y , H(Y) and the mutual information of X and Y , I(X; Y). However, this

equality is often ruined by the noisy data, like microarray gene expression data. The noise

changes the distribution of X or Y , therefore H(X), H(X, Y) and H(Y) are changed due

to the noise. From Equation 2.6, I(X; Y) is changed as a consequence. In these cases, we

have to relax the requirement to obtain a best estimated result. As shown in Figure 2.9,

by defining a significant factor ǫ, if the difference between I(X; Y) and H(Y) is less than

ǫ × H(Y), then the DFL algorithm will stop the searching process, and build the classifier

for Y with X at the significant level ǫ.

Because the H(Y) may be quite different for various classification problems, it is not

appropriate to use an absolute value, like ǫ, to stop the searching process or not. Therefore,

a percentage of H(Y) is used as the criterion to decide whether to stop the searching process

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.5 : The ǫ Value Method for Noisy Data Sets 45

or not. Such normalized form of H(Y) is in accordance with the fundamental of statistics,

like the z-value and t-value in classical statistics.

The main idea of the ǫ value method is to find a subset of attributes which captures not

all the diversity of the Y , H(Y), but the major part of it, i.e. (1− ǫ)×H(Y), then to build

functions with these attributes. The attributes in vectors, which have strong relations with

Y , are expected to be selected as input variables of Y , i.e., the EAs of the models, in the ǫ

value method.

2.5.2 The Relation with The Over-fitting Problem

The ǫ value method can help to avoid over-fitting of the training data sets. For a given

noisy data set, the missing part of H(Y) is determined, so there exists a threshold value of

ǫ with which the DFL algorithm can find the correct input variables X of the generation

function Y = f(X). From Theorem 2.2.1, it is known that more variables tend to contain

more information about the class attribute Y . On the other hand, from Figure 2.9, it can

be seen that some part of H(Y) is not captured by the input variables X due to the noise.

Therefore, it is likely to include more than necessary number of feature as EAs, if we

continue to add variables after the threshold value of ǫ. The unnecessary input variables

often incur complex models and risks of over-fitting the training data sets. By introducing

the ǫ value method, the DFL algorithm will stop the searching procedure when the missing

part of H(Y) is smaller than or equal to ǫ×H(Y), and avoids the inclusion of unnecessary

input variables.

An example is given in Figure 2.10, which is generated with the LED+17 data set [31]

with 3000 samples. The LED+17 data set has 23 Boolean features, 7 relevant and 16 irrele-

vant. We randomly choose 2000 samples as the training data set and the remaining 1000 as

testing data set. This LED+17 data set will be used later in Section 5.3. From Figure 2.10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

46 Chapter 2 : Information Learning Approach

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

2.6 : Selection of Parameters 47

2.5.3 The Relation with The Time Complexity

The ǫ value method is very helpful to avoid the exhaustive searching when dealing with

noisy data sets. Because there is not subset that satisfies Theorem 2.2.2 in all subsets of V

when the data sets are noisy. After introducing proper ǫ value, the DFL algorithm will just

check the n subsets with one variable, and n−1 subsets with two variables, and so on. Thus,

the DFL algorithm maintains its expected complexity of O((k·n·(N+log n)). For example,

as shown in Figure 2.8 (b), since the data set is noisy, the I(X; Y) = H(Y) cannot be

satisfied with ǫ of 0. Thus, the DFL algorithm will exhaustively search all subsets of V and

report “Fail to identify the model for Y (the classifier) when ǫ = 0”. But when the ǫ value

increases to 0.17, the DFL algorithm can correctly find the three input variables {A,C,D}

in the 9th step in Figure 2.8 (b), since H(Y) − I({A,C,D}; Y) = 0.977 − 0.815 =

0.162 < 0.17×H(Y) = 0.17× 0.977 = 0.166. Thus, the complex exhaustive searching is

avoided by introducing ǫ = 0.17. For another example, in Figure 2.10 (c), it is shown that

if proper ǫ value is chosen, the DFL algorithm can be significantly faster while achieves

better prediction performance, in Figure 2.10 (a).

2.6 Selection of Parameters

We first discuss how to select the two parameters, the expected cardinality of the EAs K

and the ǫ value, of the DFL algorithm in this section. Then, the balance between these two

parameters is also discussed.

2.6.1 Selection of The Expected Cardinality K

We discuss the selection of the expected cardinality K in this section. Generally, if a data

set has a large number of features, like several thousands, then K can be assigned to a small

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

48 Chapter 2 : Information Learning Approach

constant, like 20, since the models with large number of features will be very difficult to

understand. If the number of features is small, then K can be directly specified to the

number of features n.

Another usage of K is to control model complexity. If the number of features is more

important than accuracy, then a predefined K can be set. Thus, the learned model will have

fewer than or equal to K features.

The expected cardinality K can also be used to incorporate the prior knowledge about

the number of relevant features. If we have the prior knowledge about the number of

relevant features, then the K can be specified as the predetermined value.

For biological data sets, the introduction of K has its biological foundation. In learning

qualitative models of GRNs, each gene is estimated on the average to interact with four to

eight other genes [19]. In the cancer classification problems, only a small set of genes of

the human genome are responsible for the tumor cell developmental pathway [126]. That

is to say, it is sufficient to consider the combinations whose cardinalities are bounded by a

small integer, K, in solving problems based on biological data sets.

2.6.2 Selection of ǫ value

For a given noisy data set, the missing part of H(Y), as demonstrated in Figure 2.9, is

determined, i.e., there exists a specific minimum ǫ value, ǫm, with which the DFL algorithm

can find the original model. If the ǫ value is smaller than the ǫm, the DFL algorithm will

not find the original model. Here, we will introduce two methods to efficiently find ǫm.

In the first method, the ǫm can be found automatically by a restricted learning process.

To efficiently find the ǫm, we restrict the maximum number of the subsets to be checked to

K × n. A pre-defined scope of ǫ is specified in prior. If the DFL algorithm cannot find the

model for a noisy data set with the specified minimum ǫ value, then the ǫ will be increased

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.6 : Selection of Parameters 49

Figure 2.11: The manual binary search of minimum ǫ value. This figure is generated with

the LED training data set in Table 5.1, with 2000 samples. The ticks indicate

whether the DFL algorithm can find a model after a ǫ value is specified in

each try. K is set to n = 7.

with a step of 0.01. The restricted learning will be performed, until the DFL algorithm finds

a model with a threshold value of ǫ, i.e., the ǫm. Since only K × n subsets are checked, the

time to find ǫm will be O(K · n).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

50 Chapter 2 : Information Learning Approach

In the second method, the ǫm can also be found with a manual binary search method.

Since ǫ ∈ [0, 1), ǫ is specified to 0.5 in the first try. If the DFL algorithm finds a model

with ǫ value of 0.5, then ǫ is specified to 0.25 in the second try. Otherwise, if the DFL

algorithm cannot find a model with a long time, like 10 minutes, then the DFL algorithm

can be stopped and ǫ is specified to 0.75 in the second try. The selection process is carried

out until the ǫm value is found so that the DFL algorithm can find a model with it but cannot

when ǫ = ǫm − 0.01. This selection process is also efficient. Since ǫ ∈ [0, 1), only 5 to 6

tries are needed to find the ǫm on the average.

As shown in Figure 2.11, we use the LED data set [31] with 10 percent noise to show

the manual binary search procedure. There are 3000 samples in this data set, 2000 as

training and 1000 as testing. This LED data set will also be used later in Section 5.3. For

this example, in the first try, DFL algorithm finds a model for the training data set with ǫ

of 0.5. Then, the DFL algorithm cannot find a model with the ǫ of 0.25 in the second try.

Similarly, from the third to sixth tries, the DFL algorithm finds models with the specified

ǫ values, 0.37, 0.31, 0.28 and 0.26. Since we have known in the second try that the DFL

algorithm cannot find a model with ǫ of 0.25. Hence, 0.26 is the minimum ǫ value for this

data set.

The restricted learning process can also be used to find optimal model in solving clas-

sification problems. To get optimal model, we change the ǫ value from 0 to the upper limit

of the searching scope, like 0.8, with a step of 0.01. For each ǫ value, we train a model with

the DFL algorithm, then validate its performance with cross validation or the testing data

sets. The optimal model is the one which produces the best prediction performances. As

demonstrated in Figure 2.10 (a), the optimal ǫ value, ǫop = 0.31, is chosen from the training

data set with a 10-fold cross validation. Then, this model also reaches its best performance

on the testing data set, as demonstrated with the curve for the testing data set in Figure 2.10

(a).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.7 : Prediction Methods 51

2.6.3 Balance between K and ǫ

When the data sets are noisy and ǫ is set to a small value, then it is more advisable to

choose a large K. Because it is possible that there are no good feature subsets with only

a few features that can satisfy the small ǫ. For the example in Figure 2.11, if the K is set

to 5 and ǫ to 0.26, then the DFL cannot find the model. But when K is set to 7, the DFL

algorithm can find the model when ǫ = 0.26. Similarly, if ǫ is large, then K can be adjusted

to a relatively small value.

2.7 Prediction Methods

After the DFL algorithm obtains the classifiers as function tables of the pairs (u, y), or

called as rules, the most reasonable way to use such function tables is to check the input

values u, and find the corresponding output values y. This is due to the fact that the DFL

algorithm is based on Theorem 2.2.2. As demonstrated in Section 2.4.2, the learned model

of the DFL algorithm is actually the generation function as a truth table or an estimation

of it in the ǫ value method. Like the way in which people use truth tables, it is advisable

to use a classification model as a truth table, or the estimation of it, with the 1NN algo-

rithm. Therefore, we perform predictions in the space defined by the EAs, called the EA

space, with the 1-Nearest-Neighbor algorithm [5] based on the Hamming distance defined

as follows.

Definition 2.7.1 Let 1(a, b) be an indicator function, which is 0 if and only if a = b,

otherwise is 1. The Hamming distance between two arrays A = [a1, . . . , an] and B =

[b1, . . . , bn] is Dist(A,B) =
∑n

i=1 1(ai, bi).

Note that the Hamming distance [88] is dedicated to binary arrays, however, we do not

differentiate between binary or non-binary cases in this thesis. In the generation process

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

52 Chapter 2 : Information Learning Approach

F
re

q
u
e

n
c
y

C1

C2

Figure 2.12: The noisy rules in the one-dimensional space. The rules below the two char-

acters C1 and C2 are the genuine rules. Other rules are resulted from the

noise in the data set. The vertical axis represents the frequencies of the rules

in the training data sets. The rules are arranged according to their distance to

the genuine rules. The solid and dashed curves are the distributions of rules

for two class C1 and C2. In the real data sets, the frequencies of rules are

represented by the histograms of solid and dashed lines.

of data samples, some features may change their values due to all kinds of reasons, like

noise. We use the Hamming distance as a criterion to decide the class value of a new

sample, since we believe that the rule with minimum Hamming distance to the EA values

of a sample contains the maximum information of the sample. Thus, the class value of this

rule is the best prediction for the sample.

In the prediction process, if a new sample is of same distance to several rules, we choose

the rule with the biggest count value. The reason can be interpreted with the example shown

in Figure 2.12. In Figure 2.12, it can be seen that a new sample in the region covered by two

types of histograms can be of either classes. However, it is statistically more reasonable to

believe the sample has the class value of a rule with higher frequency in the training data

set. Hence, we call the 1NN algorithm used in our method as the weighted 1NN algorithm.

It is clear that the complexity of the weighted 1NN algorithm is mainly related to three

parameters, the number of rules r in learned classifier f , the number of samples M in the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.8 : Implementation Issues 53

testing data set and the actual cardinality of the EAs k. To compute the Hamming distance,

it is sufficient to scan the two sequences with O(k) time. Each sample in the testing data set

is evaluated with respect to the r rules in the classifier, which takes O(k × r) steps. Thus,

the total complexity of the weighted 1NN algorithm is O(k · r · M).

Although there exists the probability that some instances of the EAs in the testing data

set are not covered by the training data set, the 1NN algorithm still gives the most reason-

able predictions for such samples.

For convenience, we will express the proposed classification method as the DFL algo-

rithm hereafter when it does not result in misunderstanding.

2.8 Implementation Issues

In this section, we talk about two important issues in the implementation.

2.8.1 The Computation of Mutual Information I(U; Y)

We use Equation 2.6 to compute I(U; Y). The H(Y) does not change in the searching

process of the DFL algorithm. To compute H(U) and H(U, Y), we need to estimate the

joint distribution of U and (U, Y), which can be estimated from the input table T. The

DFL algorithm will construct a matrix containing the values of U. Then, it scans the matrix

and finds the frequencies of different instances of U, which are stored in a frequency table

with a linked list. The size of the frequency table grows exponentially with the number of

variables in U, but will not exceed N . Next, the DFL algorithm will obtain the estimation of

H(U) with Equation 2.1.1. For each instance of U in T, we need to update its frequency in

the frequency table, which takes O(min(||U||, N) steps. The total complexity to compute

H(U) is O(N · min(||U||, N)). The computation of H(U; Y) is similar to that of H(U).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

54 Chapter 2 : Information Learning Approach

Hence, if U only contains a few variables, it will need approximate O(N) steps to compute

I(U; Y), since ||U|| is small. While |U| is large, the computation of I(U; Y) tends to take

O(N2) steps in the worst case.

However, the complexity for computing I(U; Y) can be improved by storing the fre-

quencies of different instances of U and {U, Y } in a hash table. For each instance of U

in T, it only takes O(1) time to update its frequency in the hash table [49]. Hence, the

total complexity to compute H(U) is O(N). The computation of H(U; Y) is similar to

that of H(U). Therefore, it will only need approximate O(N) steps to compute I(U; Y).

An important issue to notice is the proper setting of the initial capacity of the hash table,

since too large value brings waste but too small value may incur the dynamic increasing

the capacity and reorganizing of the hash table, which is time-consuming.

In summary, if |U| and N are large at the same time and there are enough memory space

available, it is more advisable to use hash tables for calculating I(U; Y). While |U| or N

is small and memory space is limited, it is better to use linked lists or arrays to compute

I(U; Y).

2.8.2 Redundancy Matrix

The subroutine in Table 2.2 is recursive, which will introduce some redundant compu-

tation when the DFL algorithm exhaustively searches the searching space SK . For in-

stance, the A,B is a common ∆1 supersets of {A} and {B}. Hence, if the DFL algo-

rithm will check {A,B} twice in the worst case. Generally, for a subset with K vari-

ables, since the permutation number of variables in the subset is K!, hence this subset

will be checked for K! times. Thus, the worst time complexity of the DFL algorithm is

O((n +
(

n

2

)
· 2! + . . . +

(
n

K

)
· K!)N + nK log n) = O((N + log n) · nK).

However, this redundant computation can be relieved by storing the information of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.9 : Conclusions 55

whether a subset has been checked with a Boolean type matrix. Let us consider the subsets

with 2 variables. We introduce an n by n matrix called redundancy matrix, boolean R(n×

n). After a subset {Xi, Xj} and its supersets have been checked, R[i][j] is assigned as

true. Later, when the DFL algorithm is trying {Xj, Xi}, it will first check whether R[i][j]

or R[j][i] is true. If yes, it will examine next subset. By doing so, the original worst time

complexity becomes O((n+ 1
2
[
(

n

2

)
·2!+. . .+

(
n

K

)
·K!])N+nK log n) = O((N+log n)·nK).

Although, this alleviated worst time complexity is in the same order as the original one, but

it saves about half of the run time. The space complexity of R is O(n2). However, the

type of R[·][·] is boolean, so R will cost very limited memory space. In addition, if run

time is more critical and the memory space is sufficient, higher dimensional matrices can

be introduced to further reduce the run time of the DFL algorithm.

For instance, as shown in Figure 2.8, after introducing the redundancy matrix, the ex-

haustive searching of the DFL algorithm will take n+1/2∗ [
(

n

2

)
2!+

(
n

3

)
3! +...+

(
n

K

)
K!] =

4+1/2∗ [
(
4
2

)
∗2+

(
4
3

)
∗3!+

(
4
1

)
4!] = 4+1/2∗ (6∗2+4∗6+1∗24) = 4+30 = 34 steps,

which is in the order of O(n4) = O(44) but much smaller than 44. As shown in Figure

2.8 (b), there are totally 40 steps. But six of them marked as red regions, as well as their

supersets, are not computed by checking the redundancy matrix.

To clearly show the implementation of the redundancy matrix R, an extended version

of the main steps of the DFL algorithm is provided at Table E.1.

2.9 Conclusions

In this chapter, we propose the ILA as a new approach to the computational learning theory.

The ILA is based on information theory, incorporating some ideas from graphical models.

In ILA, learning is interpreted and regarded as a procedure to acquire information about

the considering concept.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

56 Chapter 2 : Information Learning Approach

We propose the DFL algorithm to implement the ILA. The DFL algorithm is flexible in

learning functions with restricted or unrestricted number of inputs by introducing a param-

eter called expected cardinality K to control the cardinality of the EAs. We also discuss

the selection of K and its underlying biological reasons for biological data sets.

We also propose the ǫ value to deal with noisy data sets. In the ǫ value method, the

strong feature collectives which provide major part of the diversity, i.e., the entropy, of the

concept H(Y), are chosen to estimate the original models. We discuss relation between the

ǫ value method and the over-fitting problem. We display that the ǫ value method is useful

to reduce the run time of the DFL algorithm. We also discuss the selection of ǫ value in

dealing with noisy data sets.

The searching method of the DFL algorithm is different from the classical greedy algo-

rithm [49]. The merit of our searching method lies in that it is greedy in the first round of

searching as shown in Figure 2.6. But the DFL algorithm still guarantees to check all the

subsets in SK , as shown in Figure 2.8. Although it takes more time in its worst complexity,

the DFL algorithm can still find the correct models in polynomial time as proved in Theo-

rem 2.4.2. This searching scheme can also be used for solving many other combinatorial

optimization problems.

To fulfill the prediction tasks in classification problems, we propose to use the weighted

1NN algorithm to perform predictions after the DFL algorithm obtains the classification

model as a truth table or an estimation of it.

Two important issues in implementation of the DFL algorithm, to compute I(U; Y)

and to introduce the redundancy matrix R, are also discussed.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

Learning Qualitative Models of Gene

Regulatory Networks

O
NE of the fundamental biological problems of 21st century is to understand how

cellular phenomena arise from the interactions of genes and proteins. This chapter

is dedicated to this problem from a reverse engineering approach.

Currently, still a little is known about the complex networks which are responsible for

different expression patterns within cells. However, we have more and more data about

gene regulatory networks with the availability of high-throughput technologies, such as

DNA microarray [145, 146], which introduces an ambitious challenge to identify the orig-

inal Gene Regulatory Networks (GRNs) from these data with a reverse engineering ap-

proach. In this chapter, we will apply the DFL algorithm to learning multi-value qualitative

models of GRNs. In next chapter, we will use the DFL algorithm to learn Boolean net-

works, which is a special type of qualitative models of GRNs.

This chapter is organized as follows. First, in Section 3.1, we will briefly introduce

GRNs, the motivation of researching on GRNs, and the approaches to deciphering GRNs.

57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

58 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Then, in Section 3.2, we describe the qualitative models of GRNs. In Section 3.3, we will

learn a qualitative model of GRN with the DFL algorithm. In Section 3.4, we present the

results of applying the DFL algorithm to the yeast cell cycle gene expression data sets.

When validated with published literature, many of the regulatory relations found by the

DFL algorithm are biologically significant. Section 3.5 presents a summary of this chapter.

3.1 A Brief Introduction to Gene Regulatory Networks

First, we briefly introduce the microarray technology [145,146]. Next, we show how to use

the DFL algorithm to analyze the microarray gene expression data sets. Then, we discuss

three basic questions in the introduction to the GRNs: what are GRNs? why we research

on GRNs? how to obtain GRNs? and what are the challenges?

3.1.1 Introduction to Microarray Technology

The microarray technology was first introduced by Schena et al. [146] to measure the ex-

pression (concentration) level of messenger RNA in the cells. As shown in Figure 3.1, in

an array experiment, many gene-specific polynucleotides derived from the 3
′

end of RNA

transcripts are individually arrayed on a single matrix. This matrix is then simultaneously

probed with fluorescently tagged cDNA representations of total RNA pools from test and

reference cells, allowing one to determine the relative amount of transcript present in the

pool by the type of fluorescent signals generated. Relative message abundance is inher-

ently based on a direct comparison between a ‘test’ cell state and a ‘reference’ cell state;

an internal control is thus provided for each measurement.

Microarray gene expression profiles have widely used to detect a specific biological

pathway or process, like the cell cycle of yeast by Spellman et al. [158], to investigate

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 59

Figure 3.1: Overview of cDNA microarray technology. Templates for genes of interest

are obtained and amplified by Polymerase Chain Reaction (PCR). Following

purification and quality control, aliquots (∼5 nl) are printed on coated glass

microscope slides using a computer-controlled, high-speed robot. Total RNA

from both the test and reference sample is fluorescently labelled with either

Cye3- or Cye5-dUTP using a single round of reverse transcription. The fluo-

rescent targets are pooled and allowed to hybridize under stringent conditions

to the clones on the array. Laser excitation of the incorporated targets yields an

emission with a characteristic spectra, which is measured using a scanning con-

focal laser microscope. Monochrome images from the scanner are imported

into software in which the images are pseudo-colored and merged. Informa-

tion about the clones, including gene name, clone identifier, intensity values,

intensity ratios, normalization constant and confidence intervals, is attached

to each target. Data from a single hybridization experiment is viewed as a

normalized ratio (that is, Cye3/Cye5) in which significant deviations from 1

(no change) are indicative of increased (>1) or decreased (<1) levels of gene

expression relative to the reference sample. In addition, data from multiple ex-

periments can be examined using any number of data mining tools. (Courtesy

of Duggan et al. [64])

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

60 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

differences between the tumor cell lines and non-tumor cell lines, like the colon tumor

detection by Alon et al. [12], and to investigate differences between the tumor subtypes,

like leukemia subtype detection by Golub et al. [81]. The first application often consists

of some time-series experiments which are used to detect the change of gene expression

levels in the biological pathway. These expression profiles are often named as time specific

gene expression profiles. In Section 3.4, we will use time specific gene expression profiles

of yeast cell cycle to infer GRN models. In comparison, the experiments in the second and

third application are often tissue or spatial specific in the sense that the samples are from

different tissue, like a tumor or a normal tissue (used as control). In Chapter 5, we will

investigate the classification problems based on spatial specific gene expression profiles.

3.1.2 Analyzing Gene Expression Profiles with The DFL Algorithm

Let us see a schematic view of using the DFL algorithm to analyze microarray gene ex-

pression profiles in Figure 5.3, where the heat-maps are prepared with the GeneCluster

2.0 [141]. The DFL algorithm has also been used to perform cancer classification based

on proteomic profiles [188] and microRNA gene expression profiles [190, 192]. These ap-

plications are similar to the application of cancer classification based on microarray gene

expression profiles, as shown in Figure 5.3 (b), although not shown here.

The application for learning qualitative models of GRNs is shown in Figure 5.3 (a),

where the gene expression profiles is related to yeast cell cycle [44]. In Figure 5.3 (a), it

is shown that the data is discretized with unsupervised discretization methods [62], then

rearranged to transition tables. Finally, the DFL algorithm is applied to transition pairs to

obtain the qualitative models of GRNs. The network shown in Figure 5.3 (a) is a combined

result for several sets of parameters, which will be discussed in Section 3.4.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 61

Figure 3.2: A schematic view of using the Discrete Function Learning algorithm to ana-

lyze microarray gene expression profiles. The blue arrows are the processes

to use the DFL algorithm. (a) The DFL algorithm is used to learn qualitative

models of GRNs from time-series gene expression profiles. The red dashed

arrows means that the time-series gene expression data sets are assumed to be

generated by the GRN model. The solid and dashed edges in the GRN model

represent verified and putative regulatory relations respectively [184]. (b) The

The DFL algorithm is used to perform tumor classification based on tissue-

specific gene expression profiles. The black line in the prediction details is the

cutting point of the CST3 gene determined in the discretization process. In the

testing data set, the two samples pointed by arrows are the incorrect predictions

made by the classifier [189].

The application of classification is demonstrated in Figure 5.3 (b), where the gene ex-

pression profile is the leukemia subtype data [81]. The features Xis are the expression

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

62 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

levels of genes. In Figure 5.3 (b), it is shown that the data is first discretized with super-

vised discretization methods [67], which has been implemented in the Weka software [69].

The DFL algorithm obtains the classifier shown in the central bottom part of Figure 5.3 (b)

with K = 20 and ǫ = 0.29. The ǫ value is automatically found with the restricted learning

method introduced in Section 2.6.2. In prediction process, the obtained classifier makes

2 prediction errors in the independent testing data set. More details of this example are

available in Section 5.4 and [189].

The application of feature selection is also demonstrated in Figure 5.3 (b). The DFL

algorithm chooses the CST3 gene to build the classifier, since the CST3 gene captures the

major diversity of the class attribute. We apply the C4.5 algorithm [140], the Naive Bayes

(NB) algorithm [106], the 1NN and k-Nearest-Neighbors (kNN) algorithm [5] and the

Support Vector Machines (SVM) algorithm [137] implemented in the Weka software to the

disrectized data sets with all features and with only the CST3 gene. The C4.5, NB, 1NN,

kNN (k = 5) and SVM algorithms make 3, 5, 8, 6 and 6 prediction errors respectively

on the data sets with all features [189], but only 2 errors on the data sets with the CST3

gene, which demonstrates the discriminatory power of the feature subset chosen by the

DFL algorithm. The details of this example are available in Section 6.4.

3.1.3 What Are Gene Regulatory Networks

To clarify GRNs, we should first of all know what genes are, i.e., the components of GRNs.

In this section, we first discuss some basic biological background knowledge about genes.

Then, we introduce how these genes are regulated to produce their functional products.

Finally, we describe GRNs which are the interaction networks of genes.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 63

Genes: The Basic Functional Component of Gene Regulatory Networks

The genome is universally defined as the total DNA content of a haploid cell or half the

DNA content of a diploid cell. In cells, the DNA molecules are often organized as chromo-

somes. A gene is defined in molecular terms as a complete chromosomal segment respon-

sible for making a functional product [157]. Thus, from this point, the genome also could

be seen as the entire collection of genes encoded by a particular organism.

Gene Regulations

The expressions of genes are regulated by many factors. To start the transcription, the RNA

polymerase II needs to be bound to the upstream regions of genes. The Transcription Fac-

tors (TFs) control the binding of RNA polymerase II. Some TFs are called transcriptional

activators, who impose specificity on polymerase by binding the polymerase to the DNA.

Other TFs, called repressors, work in a variety of ways, the simplest of which is to block

the binding of polymerase to the gene. The polymerase can work on a wide array of genes

(each a potential substrate), and the choice of substrate is regulated by the TFs. In the bac-

terium Escherichia coli, for example, the RNA polymerase transcribes some 3000 genes:

certain genes are transcribed only at certain times, often as determined by signals received

by the cell from its surroundings. In eukaryotes, similar RNA polymerases face the same

regulatory task but on a larger scale. This example of substrate choice is called regulation

of gene expression or, more casually, gene regulation [139]. Let see an example of gene

regulation as shown in Figure 3.3.

In the bacterium Escherichia coli, the enzyme β-galactosidase, the product of the lacZ

gene, cleaves lactose, the first step in metabolism of that sugar, as shown in Figure 3.3. The

gene is transcribed if, and only if, lactose is present in the medium. But that physiological

signal is almost overridden by the simultaneous presence of glucose, a more efficient energy

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

64 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Figure 3.3: Three states of the lac genes. When bound to the operator, repressor (rep) ex-

cludes polymerase whether or not activate adenylyl Cylclase Associated Pro-

tein (CAP) is present. In the upper graph, We have a constitutively active

enzyme (RNA polymerase) that, alone, works with a certain frequency. The

activator “CAP” increases this frequency by recruiting the enzyme to the gene

(middle), and the repressor “rep” decreases the frequency by excluding the

enzyme (bottom). (Courtesy of Ptashne and Gann, [139])

source that lactose. Only after having exhausted the supply of glucose does the bacterium

fully turn on expression of lacZ.

The effects of these two signals (lactose and glucose) are mediated by two DNA-binding

regulatory proteins, each of which senses one of the sugars. Lac repressor “rep” binds the

operator only in the absence of lactose, and adenylyl Cylclase Associated Protein (CAP),

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 65

an activator, binds DNA only in the absence of glucose.

Gene Regulatory Networks

The TFs are essentially themselves proteins, i.e., the products of expression of other genes.

In this way a product of one gene can influence the expression of other genes, thus it forms

a network of gene regulations, gene regulatory networks [53], within a cell.

Every regulatory module contained in the genome receives multiple disparate inputs

and processes them in ways that can be mathematically represented as combinations of

logic functions (e.g., “and” functions, “switch functions”, “or” functions) [54]. Then, dif-

ferent regulatory modules are waved into complex GRNs, which give specific outputs, i.e.,

different gene expression patterns (like in developmental process), depending on their in-

puts, i.e., current status of the cell. Hence, the architecture of GRN is fundamental for both

explaining and predicting developmental phenomenology [55, 109].

GRNs are the on-off switches and rheostats of a cell operating at the gene level. Gene

regulatory networks govern which genes are expressed in a cell at any given time, how

much product is made from each one, and the cell’s response to diverse environmental cues

and intracellular signals [71].

As shown in Figure 3.4, a regulatory network can be viewed as a cellular input-output

device. At minimum, a gene regulatory network typically contains the following compo-

nents: (1) an input signal reception and transduction system that mediates intra and ex-

tracellular cues (left box; often, more than one signal impinges on a given target gene);

(2) a “core component” complex composed of transacting regulatory proteins and cog-

nate cis-acting DNA sequences (circle; functionally similar components may be associated

with multiple target genes, resulting in similar gene-expression patterns); and (3) primary

molecular outputs from target genes, which are RNA and protein (box to right of circle).

The net effects are changes in cell phenotype and function (right box). Direct and indirect

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

66 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Figure 3.4: Gross anatomy of a minimal gene regulatory network (GRN) embedded in a

regulatory network. (Courtesy of U.S. Department of Energy Genomes to Life

Program, http://www.doegenomestolife.org.)

feedbacks typically are important. More realistic networks often feature multiple tiers of

regulation, with first-tier gene products regulating expression of another group of genes,

and so on. Beyond GRN boundaries are signaling responses and feedbacks, such as those

that drive bacterial chemotaxis, which do not involve any regulation of gene expression

but instead act directly on proteins and protein machine assemblies (dashed arrows). Some

regulatory networks have no embedded GRN component.

3.1.4 Why We Research on Gene Regulatory Networks

GRNs are critical for us to understand many fundamental phenomena of biological pro-

cesses within a cell.

First, GRNs are critical for understanding the developmental process from a zygote

to a mature human body, as well as those of other species. One of the most fundamental

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 67

challenges of 21st century biological research is to decipher the complex GRNs responsible

for embryonic development [85]. GRNs regulate the expression of thousands of genes in

any given developmental process [54]. They are essentially hardwired genomic regulatory

codes, the role of which is to specify the sets of genes that must be expressed in specific

spatial and temporal patterns [54].

Second, GRNs help to explain the discrepancy between the large difference between

species whose genome sizes are however differing less severely. One such basic question

has emerged from the Human Genome Project: How can a multicellular organism as com-

plex as a human, with all its cell and tissue types and functions, use only 2 or 3 times as

many as genes (about 30,000) as the simple worm and 5 to 10 times as many as single-cell

microbe? Much of the answer may be in the regulatory network architecture and complex-

ity [71]. Given the remarkable commonality of protein families in the animal kingdom, we

must conclude that the morphological differences between animal species arise primarily

through differential regulation of genes and their products, and that the information for this

differential regulation must be encoded in the inherited DNA [32].

Third, a global gene network is assumed to be useful for disease diagnosis, disease

treatment, and drug discovery as well as contributing tremendously to the fundamental

understanding of biological processes. The gene may be expressed with an interesting

temporal or spatial pattern during the development of a cell or organism, which suggests

that the gene’s TFs play an important developmental role. Alternatively, aberrant regulation

of the gene may contribute to a particular disease, or the gene may be specifically expressed

in a cell type associated with a disease. In these instances, the TFs may contribute to an

understanding of disease pathogenesis or may provide targets for therapeutic intervention

[38].

For these important roles of GRNs, the Genomes to Life program of the US Depart-

ment of Energy has placed characterizing GRNs as its second goal [72]. After the Human

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

68 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Genome Project, the next step, even a more difficult one, is to annotate the human genome

and to find the complex the GRNs.

3.1.5 How to Obtain Gene Regulatory Networks

There are mainly two ways to obtain the Gene Regulatory Networks. One possible way, as

demonstrated by Lee et al. [108], Simon et al. [156], Yuh et al. [179, 180] and Davidson

et al. [56], is the classical experimental method. The regulatory network architecture is

determined by experimental perturbation followed by measured of the effects on function

of individual genes. However, the GRN architecture can be authenticated only by experi-

mental molecular biology in which the functional meaning of given regulatory sequences

is directly determined [54].

The other way is the reverse engineering method, which reconstructs the original GRNs

from the data of the GRNs, i.e., the gene expression data and other biological data. If the

expression of gene A is regulated by proteins B and C, then A’s expression level is a

function of the joint activity levels of B and C [73]. By mapping the output of each gene

to the inputs of other genes, it is possible to reverse engineer development circuits and

even whole gene network [93]. This kind of methods always employ Machine Learning

methods to learn the underlying models from a vast amount of data. For instance, Friedman

et al. [75] reconstructed a GRN of yeast Saccharomyces cerevisiae, which is related to the

cell cycle, under the framework of Bayesian networks.

3.1.6 What Are the Challenges for Reconstructing Gene Regulatory

Networks?

The goal of reconstructing Gene Regulatory Networks is a daunting task even with the

technological developments nowadays. Here, we will talk about two major challenges, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.1 : A Brief Introduction to Gene Regulatory Networks 69

complexity of biological systems and the scarceness of data sets, when constructing GRNs

with the reverse engineering approach.

The Biological Systems Are Complex

Biological systems, through evolution, have achieved levels of intricacy and subtlety that

dwarf the complexities of the 21st century’s most sophisticated engineering feats [71].

First, the number of genes are large. Computational models of GRNs are required

for analysis, for experimental manipulation and, most fundamentally, for comprehension

of how GRNs work. The number of genes within a genome is very large, e.g., there are

approximate 6000 genes within a yeast genome. It is beyond the human capacity to analyze

the 6000 component simultaneously, which has made it necessary to investigate GRNs with

the help of computational models.

Second, genes are combinatorially controlled by the TFs. In the combinatorial control

of transcription initiation processes, different combinations of ubiquitous and cell-type-

specific regulatory proteins are used to turn genes on and off in different regulatory contexts

[34]. For example, the cis-regulatory region of the Endo16 gene of sea urchin embryo

consists of 2300 base pairs and 55 protein binding sites [179]. In different context, different

combinations of regulators bind to the cis-regulatory region, thus, give rise to different

expression levels of the Endo16 gene.

The third kind of complexities of biological systems are coming from the temporal and

spatial expression patterns in the development process. Different genes are expressed in

different developmental stages. For example, the EMF1 gene of Arabidopsis thaliana is

a flowering repressing element, which is only active in the early stage of flower devel-

opment [175]. In high metazoa, the expression of genes are also spatially different, for

instance, the expression of the Endo16 gene in sea urchin embryo [179]. Another ex-

ample of spatial patterns of gene expression is that gap genes of Drosophila (such as Gt,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

70 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Hb, Kr, etc.) are expressed at different level along the anterior-posterior axis of the em-

bryo [53, 139]. In some cases, the temporal and spatial patterns are shown simultaneously.

For example, Davidson et al. [56] summarized a comprehensive GRN, which have both

temporal and spacial properties, for the specification of endoderm and mesoderm in the sea

urchin embryo.

The Data Sets Are Scarce

Second, the data sets needed to reconstruct GRNs are not sufficient but scarce.

We first talk about the gene expression data sets. As discussed in the prior section,

the number of genes are large, thus, many experiments are needed to capture the different

expression patterns of these large number of genes. To correctly infer the regulation of a

single gene, we need to observe the expression of the gene under many different combina-

tions of expression levels of its regulatory inputs [60]. The spatial and temporal expression

of different genes makes it necessary to obtain expression data sets of them under many

of these spatial and temporal conditions. The integration and exchange of expression data

from different experiments and different technological platforms are difficult, since it lacks

standards in the microarray fields [33]. Ball et al. [20] reported one of the endeavors to

set up a standard for the microarray data. But there is still much work to overcome the

difficulty of exchanging microarray data sets of different platforms.

Beside gene expression data sets, other data sets, such as the cis-regulatory motif [93,

109], genome-wide location data sets [21, 90] and literature, are also available. How to

combine different kinds of data sets to construct more reliable models is another challenge

for reconstructing GRNs.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.2 : Methods 71

How We Handle These Challenges in Our Method?

To simulate gene networks with the limited data sets, we use several strategies in our

method. First, we simplify the expression values as discrete variables, which makes large-

scale simulation become feasible. Second, we only use the microarray gene expression

data sets, although the gene expression level is controlled by many other factors. Third, we

only consider the expression profiles of a specific biological process. In next section, we

will describe how to use our method to learn qualitative models of GRNs, which is built

from microarray gene expression profiles based on these three simplifications.

3.2 Methods

In this section, we will first briefly introduce the qualitative models of GRNs. Next, we for-

mally define the problem of learning GRN models from state transition pairs and introduce

the modified version of the DFL algorithm for solving this problem.

3.2.1 Qualitative Models of Gene Regulatory Networks

Due to the fact that very little data is available about the quantitative values of the con-

centrations of messenger RNA molecules and the strength of interactions between proteins

and DNA, the traditional methods to simulate dynamic systems, like ordinary differential

equations, cannot be applied to biological system easily. Therefore, qualitative models,

like Generalized Logical Formalism (GLF) [160, 161] and Piecewise Linear Differential

Equation (PLDE) [79,125], are introduced to meet this problem. In qualitative models, the

architecture of the GRNs are represented with regulatory function related to each gene, and

the strength of the regulation impressed by the TFs is represented by discrete values. The

purpose of using qualitative models is to understand the GRNs at the precision of enough

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

72 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

expression levels of different genes that are needed to interpret the biological processes, as

shown in [124, 143, 144].

However, it is not easy to build qualitative models of GRNs. Currently, almost all GLF

and PLDE models are built by collecting evidence from literature, as shown in [13, 57, 58,

78, 124, 143, 144]. The manual extraction of knowledge from literature clearly hinders the

applicability of these models on a large scale. With the recent development of microarray

technology [59, 158], the expression levels of thousands of genes can simultaneously be

obtained at discrete time points. It is a worthy effort to make use of these data to accelerate

the building of qualitative models of GRNs.

Our aim is to learn qualitative models of GRNs from discretized microarray gene ex-

pression data. The qualitative models of GRNs are a set of discrete functions which depict

the regulatory relations between genes under consideration. In our method, the expression

data are assumed to be the products of these functions. Then, we use a reverse engineering

method based on information theory to find these functions from gene expression data.

In qualitative models of GRNs, the genes are represented by a set of discrete variables,

V = {X1, . . . , Xn}. In GRNs, the expression level of a gene X at time step t + 1 is

controlled by the expression levels of its regulatory genes, which encode the TFs of the

gene X , at time step t. Hence, in qualitative models of GRNs, the genes at the same

time step are assumed to be independent of each other, which is a standard assumption

in learning GRNs under the qualitative models, as assumed in [6, 7, 9, 105, 113, 184]. In

other words, the messenger RNAs of different genes produced at the same time cannot

interact with each other. Formally, ∀1 ≤ i, j ≤ n, Xi(t), Xj(t) are independent. And the

regulatory relationships between the genes are expressed by discrete functions related to

each variables. Formally, a GRN G(V,F) with indegree k (the number of inputs) consists

of a set V = {X1, . . ., Xn} of nodes representing genes and a set F = {f1, . . ., fn} of

discrete functions, where a discrete function fi(Xi1, . . ., Xik) with inputs from specified

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.2 : Methods 73

nodes Xi1, . . ., Xik at time step t is assigned to the node Xi at time step t + 1 [9,13,57,58,

78, 105, 113, 124, 143, 184], as shown in the following equation

Xi(t + 1) = fi(Xi1(t), . . . , Xik(t)), (3.1)

where 1 ≤ i ≤ n. We call the inputs of fi as the parent nodes of Xi(t + 1), and let

Pa(Xi(t + 1)) = {Xi1(t), . . . , Xik(t)}.

The state of the GRN is expressed by the state vector of its nodes. We use v(t) =

{x1, . . . , xn} to represent the state of the GRN at time t, and v(t + 1) = {x
′

1, . . . , x
′

n} to

represent the state of the GRN at time t + 1. {x
′

1, . . . , x
′

n} is calculated from {x1, . . . , xn}

with Equation 3.1. A state transition pair is (v(t),v(t + 1)).

When fis in Equation 3.1 are Boolean functions, the G is a Boolean Network (BLN)

model [6, 102, 184]. When using BLNs to model GRNs, genes are represented with binary

variables with two values ON (1) and OFF (0), which means the genes are turned on or

turned off respectively. In qualitative models like the Generalized Logical Formalism [160,

161] and Piecewise Linear Differential Equation [79, 125], the fis are multi-value discrete

functions.

3.2.2 The DFL Algorithm for Learning Gene Regulatory Network Mod-

els

The problem of inferring the qualitative model of the GRN from input-output transition

pairs (time series of gene expression) is defined as follows.

Definition 3.2.1 (Inference of Qualitative Models) Let V = {X1, . . . , Xn}. Given a tran-

sition table T = {(vj,v
′

j) : j = 1, 2, . . . , N}, find a set of functions F = {f1, f2, · · · , fn},

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

74 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Table 3.1: The DFL algorithm for learning qualitative models of GRNs.

Algorithm: DFL(V,K,T)

Input: V with n genes, indegree K,

T = {(vj ,v
′

j) : j = 1, 2, . . . , N}.

Output: F = {f1, f2, · · · , fn}
Begin:

1 L ← all single element subsets of V;

2 ∆Tree.F irstNode ← L;

3 for every gene Y ∈ V {
4 calculate H(Y ′); //from T

5 D ← 1; //initial depth

6∗ F.add(Sub(Y,∆Tree,H(Y ′), D,K));
}

7 return F;

End

∗ The Sub() is a subroutine listed in Table 2.2.

so that Xi(t + 1) is calculated from fi as follows

Xi(t + 1) = fi(Xi1(t), . . . , Xik(t)).

From Equation 3.1, it is obvious that the qualitative models of GRNs can be learned

with the DFL algorithm by using it to learn the regulatory function fi for each gene se-

quentially, since the expression levels of the genes at the same time step are assumed to be

independent.

As discussed in Section 2.6.1, in GRNs, each gene is estimated on the average to in-

teract with four to eight other genes [19]. That is to say, it is sufficient to consider the

combinations whose cardinalities are bounded by a small integer, K. The main steps of the

DFL algorithm for learning qualitative models of GRNs are given in Table 3.1, where the

subroutine is the same as those in Table 2.2. In learning GRN models, it is not needed to

perform the prediction step introduced in Section 2.7.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.2 : Methods 75

Since there are n genes in the V, the complexity of the DFL algorithm for learning GRN

models will be n times the original complexity in Theorem 2.4.1. We will comprehensively

analyze the complexity of the DFL algorithm for learning Boolean networks in next chapter.

3.2.3 Data Quantity for Learning Qualitative Gene Regulatory Net-

work Models

We discuss how much data is necessary to successfully infer F in this section. Akutsu et

al. [6] proved that Ω(2k + k log2 n) 1 transition pairs are the theoretic lower bound to infer

the BLNs, where n is the number of genes and k is the maximum indegree of these genes.

Theorem 3.2.1 (Akutsu et al. [6]) Ω(2k + k log2 n) transition pairs are necessary in the

worst case to identify the Boolean network of maximum indegree ≤ k.

To meet the requirement of multi-state discrete functions in GLF and PLDE models,

we introduce the following theorem in [184], which is a generalization of Theorem 3.2.1.

The proof of the theorem is also given in Appendix B.

Theorem 3.2.2 (Zheng & Kwoh [184]) Ω(bk + k logb n) transition pairs are necessary in

the worst case to identify the qualitative GRN models of maximum indegree ≤ k and the

maximum number of discrete level for variables ≤ b.

In the DFL algorithm, we can introduce a coefficient c to determine the actual size of

synthetic data sets as follows,

N = c × (bk + k logb n). (3.2)

1Just as O-notation provides an asymptotic upper bound on a function, Ω-notation provides an asymptotic

lower bound [49]. For a given function g(n), we denote by Ω(g(n)) the set of functions, Ω(g(n)) = {f(n):
there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

76 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Figure 3.5: A simple GLF model of GRN. The genes are represented by circles. The di-

rected edges represents the regulatory relations between genes. The “+” and

“-” beside an edge represents this regulatory relation is activation and repres-

sion respectively.

That is to say, the parameter j in Definition 3.2.1 goes from 1 to N . In practice, the c

is often bigger than 1, since the sample distribution of the data is not strictly following a

predefined distribution. In addition, the large sample size is also a guarantee of convergence

of the DFL algorithm, as discussed in Section 2.4.4.

3.3 Learning Models of Generalized Logical Formalism

We implement the DFL algorithm with the Java language version 1.4.1. The experiments in

this chapter and those in later chapters are conducted on an HP AlphaServer SC computer,

with one EV68 1GHz CPU and 1GB memory, running Tru64 Unix operating system. The

implementation software and the data sets, and those used in later chapters, are available at

the supplementary website of this thesis.

In this section, we use the DFL algorithm to find a GLF model discussed in [159]

and shown in Figure 3.5. In [159], Thieffry and Thomas provided the transition table

of the model, which consists of 18 lines. We use this transition table as the input table

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 : Learning Gene Regulatory Networks Related to Yeast Cell Cycle 77

Table 3.2: The correlation coefficient matrix of the GLF example in Figure 3.5.

A′ B′ C ′

A 0.2 0.6 -0.7

B 0.3 0 0.3

C -0.7 0.6 0.2

T of the DFL algorithm. The DFL algorithm can correctly find that A′ = f1(A,B,C),

B′ = f2(A,C), and C ′ = f3(A,B,C). The learned fis are truth tables, since we still lack

the tools to simplify the multi-value discrete functions like the Karnaugh maps for Boolean

functions. In addition, the activation or repression relations in the graph can be obtained by

analyzing the correlation coefficient between genes [21]. The correlation coefficient matrix

of the example in Figure 3.5 is listed in Table 3.2.

In the correlation coefficient matrix, positive, negative and zero values indicate activa-

tion, repression and no direct interaction respectively. In our example, the 0.2 in the first

column of the first line in Table 3.2 means A gives activation to A′, and so on. We see that

the activation and repression relations in Figure 3.5 are correctly identified with the cor-

relation coefficient matrix in Table 3.2. Hence, the GLF model has correctly been rebuilt

from its output data by the DFL algorithm.

3.4 Learning Gene Regulatory Networks Related to Yeast

Cell Cycle

In this section, we apply the DFL algorithm to the gene expression data of yeast Saccha-

romyces cerevisiae cell cycle from Cho et al. [44], which covers approximately two full

cell cycles [44]. In [108], Lee et al. reported a GRN related to cell cycle of yeast. The

GRN consists of 11 well-known yeast cell cycle regulators, which are Mbp1, Swi4, Swi6,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

78 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

(a) (b)

Figure 3.6: The learned GRN model related to yeast cell cycle. (a) The number of discrete

levels for gene expression value is 3 and the indegree of the GRN is set to 5.

(b) Idem, where the base for gene expression value is 4. The regulators are rep-

resented by ovals. The directed edge from Gene A to Gene B means that Gene

A is a regulator of Gene B. The solid edges represent regulatory relations that

have been verified by other approaches. The dashed edges represent regulatory

relations that have not been verified.

Mcm1, Fkh1, Fkh2, Ndd1, Swi5, Ace2, Skn7 and Stb1. The Mcm1, Swi5, Ace2 and Stb1

are relatively loosely related to other genes. Thus, we only consider the remaining 7 genes.

3.4.1 Learning Gene Regulatory Networks with The DFL Algorithm

We discretize the data set in [44] to three and four levels, then rearrange these expres-

sion values to state-transition pairs such that the expression values at current time step are

the product of expression values at the prior time step. As mentioned in Section 3.1.1,

the equal-width binning discretization algorithm, which is an unsupervised discretization

method and has been implemented in the DFLearner software, is used here. Finally, we

apply the DFL algorithm to the obtained transition table. The learned models are shown in

Figure 3.6.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 : Learning Gene Regulatory Networks Related to Yeast Cell Cycle 79

Table 3.3: The literature evidences for the GRN model in Figure 3.6 and Figure 3.7.

Gene Regulator (Protein) Evidence

Mbp1 Swi4 Swi6 Fkh1 Fkh2 Ndd1 Skn7

MBP1 *3 * *34 *34 *34 [108], [156]

SWI4 *34 *3 *34 *3 *34 * [108], [156]

SWI6 * 4 * *34 3 *34 * * 4 [108], [156]

FKH1 * 4 *3 *4 * *34 *34 3 [108], [156]

FKH2 * 4 *34 *3 *3 *34 * 4 *3 [108], [156]

NDD1 *34 * *34 * *34 * 4 *3 [108], [156]

SKN7 34 *3 *34 *3 *34 *34 [108]

“*” means regulatory relations. For example, “*” in the first cell of first line means that Mbp1 gives MBP1

gene autoregulation [108]. “3” and “4” represent the regulatory relations found with the DFL algorithm when

the bases for expression values are 3 and 4 respectively.

The DFL algorithm is automatic and requires no prior knowledge of the regulatory

relations between the genes under consideration. The DFL algorithm is also quite efficient,

only needs less than 0.2 seconds for all experiments done.

The literature evidence for regulatory relations represented in Figure 3.6 is shown in

Table 3.3. For instance, Swi4 transcription is regulated in late G1 by both SBF(Swi4/Swi6)

and MBF(Mbp1/Swi6) [156]. In Figure 3.6, these regulatory relations are identified in (a)

and (b) respectively.

From Table 3.3, we obtain the accuracy, sensitivity and precision of the DFL algorithm,

and tabulate them in Table 3.5, where the accuracy, sensitivity and precision are defined in

Equation 3.3, 3.4 and 3.5. The TP, FP, TN and FN in these equations are defined in Table

3.4.

In Table 3.5, we see that approximate 83 percent of the regulatory relations which have

literature evidences are found with the DFL algorithm, when we combine the results from

both Figure 3.6 and Figure 3.7. It is also shown that the precision of the DFL algorithm is

quite high no matter what the bases for expression values are. That means, it is quite proba-

ble that the regulatory relations found with the DFL algorithm are biologically meaningful.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

80 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

Table 3.4: The prediction measures.

predicted predicted

as positive as negative

positive TP FN

negative FP TN

In Table 3.5, it is shown that over 90 percent of the regulatory relations found by the DFL

algorithm are biologically significant.

Accuracy =
NO.ofCorrectPredictions

NO.ofPredictions

=
TP + TN

TP + FP + TN + FN
(3.3)

Sensitivity =
NO.ofCorrectPositivePredictions

NO.ofPositives

=
TP

TP + FN
(3.4)

Precision =
NO.ofCorrectPositivePredictions

NO.ofPositivePredictions

=
TP

TP + FP
(3.5)

To do a comparison with another commonly used model, Bayesian networks, we apply

the K2 algorithm [48] to the same data sets. Then, we calculate the accuracy, sensitivity and

precision of the K2 algorithm with respect to literature evidences, and list them in Table 3.5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 : Learning Gene Regulatory Networks Related to Yeast Cell Cycle 81

Table 3.5: The accuracy, sensitivity and precision of the DFL algorithm and the K2 algo-

rithm.

Accur. Sensi. Preci.

DFL (b = 3) 65 67 90

DFL (b = 4) 63 60 96

DFL (Combined) 80 83 92

K2 (b = 3) 27 17 88

K2 (b = 4) 22 12 83

K2 (Combined) 33 24 91

also. In Table 3.5, it is shown that the measures of the K2 algorithm are substantially lower

than those of the DFL algorithm. Another important thing is that the autoregulations cannot

be represented by Bayesian networks due to fact that the structures of them are directed

acyclic graphs [131]. Therefore, the autoregulations are predeterminately missed no matter

what algorithm for learning Bayesian networks is used. However, the autoregulations are

very common in GRNs as shown in Table 3.3, in which the diagonal line from upper-left

corner to lower-right corner is fully occupied with autoregulation evidences.

Some regulatory relations which have literature evidence are not found by the DFL

algorithm, as shown in Table 3.3. This is also shown by the sensitivity value in Table 3.5.

There are mainly two reasons for this discrepancy. First, the size of the data set is too

small. Second, there is noise in the gene expression data. It is reasonable to expect that

the model obtained from the DFL algorithm will become more reasonable when the input

data is larger and more precise. Further, there are also some putative regulatory relations

(represented by dashed edges) to be verified yet. When we calculate the measures in Table

3.5, we count these relations as false positives.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

82 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

(a) (b)

Figure 3.7: The learned GRN model for yeast cell cycle with the ǫ function method. (a)

The base for gene expression value is 3, the indegree of the GRN is 5, and the

ǫ is 0.2. (b) The base for gene expression value is 4, the indegree of the GRN

is 5, and the ǫ is 0.15. The legends are the same as those of Figure 3.6.

3.4.2 Applying The ǫ Value Method to Yeast Cell Cycle Data

We apply the ǫ value method to the same data set and the results in shown in Figure 3.7.

As shown in Figure 3.7 (a) and (b), some regulatory relations that are not found in 3.6 (a)

are identified with the ǫ value method. For example, the autoregulation of Mph1 and Swi4

are successfully found in Figure 3.7 (a). In Figure 3.7 (b), the regulation of Fkh1 by Mbp1

is identified. In addition, the regulation of Fkh2 by Fkh1 is identified in experiments with

b = 3 and ǫ = 0.25 (not shown in Figure 3.7).

However, some regulatory relations also disappear when we apply the ǫ value method.

For instance, the regulation of Fkh1 by Fkh2 disappears in Figure 3.7 (a). Generally, the

GRN model tends to become scarcer (contain fewer edges) when the value of ǫ increases.

This is due to the fact that fewer genes can satisfy the requirement of the ǫ value method

when ǫ increases.

Finally, we give unified models in Figure 3.8, in which (a) combines results in both

Figure 3.6 and Figure 3.7, and (b) is a combined Bayesian network model learned by the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.5 : Conclusions 83

(a) (b)

Figure 3.8: The combined GRN models. (a) Combined model of Figure 3.6 and Figure

3.7. (b) Combined Bayesian network structure learned with the K2 algorithm

where the base for expression value is set to 3 and 4 respectively. The legends

are the same as those of those of Figure 3.6.

K2 algorithm when the base for expression value is 3 and 4. It is shown in Figure 3.8 that

the model found with the DFL algorithm is more significant than that learned with the K2

algorithm. As we mentioned before, there are no autoregulations found in Figure 3.8 (b),

but 6 out of 7 autoregulations are found in Figure 3.8 (a).

3.5 Conclusions

The GRNs are critical for understanding the developmental process. Qualitative models

provide structures of GRNs with easily understandable rules between the regulators and

the genes. In this chapter, we apply the DFL algorithm to learning qualitative models of

GRNs. The DFL algorithm can correctly find the original structure of a GLF model. While

incorporating the analysis the correlation coefficient matrix of the genes, the regulation

relations of the GLF model are correctly identified as activations or repressions. We also

show that the DFL algorithm finds biologically significant GRNs related to yeast cell cycle

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

84 Chapter 3 : Learning Qualitative Models of Gene Regulatory Networks

from limited time-series microarray gene expression profiles.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

Learning Boolean Networks

C
URRENT methods for learning Boolean networks (BLNs) are inefficient, with their

complexity of at least O(N · nk+1). Particularly, it is still an open problem to

Boolean learn functions with bounded number of inputs k in o(N ·nk) time [7]. This high-

order complexity of O(N · nk+1) also makes it impractical to use them for learning Gene

Regulatory Network (GRN) models from real data on a large scale.

In this chapter, we will use the DFL algorithm to learn BLNs. We prove that each

bounded OR/AND Boolean function can be learned with O(k · (N + log n) · n) time com-

plexity, hence OR/AND BLNs can be inferred with O(k · (N + log n) · n2) time complex-

ity. For general Boolean functions, we will show that the DFL algorithm still maintains its

complexity of O(k · (N + log n) · n) in most cases, which is supported and verified with

comprehensive experimental results.

We will also discuss the learning problem of unbounded Boolean functions. We show

that the complexity of learning unbounded OR/AND Boolean functions are mainly coming

from the sample complexity, not from the searching.

To deal with noisy data sets, we use the ǫ value method to find the original BLN models.

We show that the DFL algorithm can correctly find the original BLNs even when there are

85

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

86 Chapter 4 : Learning Boolean Networks

substantial amount of noisy samples, as high as 20%, in the data sets.

This chapter is organized as follows. In Section 4.1, we will describe current meth-

ods for learning BLNs, and discuss two open problems in learning Boolean functions. In

Section 4.2, we define the inference problem of BLNs, and introduce a method to obtain

correct truth tables from noisy data sets. In Section 4.3, we introduce the evaluation crite-

rion for learning BLNs. In Section 4.4, we prove the complexity of the DFL algorithm for

learning OR/AND BLNs. In Section 4.5, we analyze performance of the DFL algorithm for

learning the general BLNs. In Section 4.6, we perform experiments to validate our proof

about the complexity of the DFL algorithm. In Section 4.7, we discuss the related models

to BLNs, and show that the DFL algorithm is also useful to learn these related models. In

Section 4.8, we summarize this chapter and propose some future directions for the DFL

algorithm on the learning of Boolean functions/networks.

4.1 Current Methods For Learning Boolean Networks

Since (1) the architectures of GRNs are of the primary importance; (2) the number of

microarray gene expression experiments is limited; (3) Boolean networks (BLNs) are rel-

atively computational tractable; BLNs as models have received much attention in recon-

structing GRNs from gene expression data sets [6–9, 95, 105, 113, 119, 148, 184]. Liang et

al. [113] proposed the REVEAL algorithm, with O(N · nk+1) complexity, to reconstruct

BLNs from binary transition pairs. Akutsu et al. [6] introduced an algorithm for the same

purpose, but the complexity of it, O(k · 22k

·N ·nk+1), is even worse. Akutsu et al. [7] pro-

posed another algorithm with complexity of O(Nω−2 ·nk+1+N ·nk+ω−2) where ω = 2.376

to find the BLNs with high probability. Schmulevich et al. [148] introduced an algorithm

with the complexity of O(k · 22k

· N · nk+1). Lähdesmäki et al. [105] proposed an algo-

rithm with O(
(

n

k

)
· n · N · poly(k)) complexity, where poly(k) is k in most cases. These

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.1 : Current Methods For Learning Boolean Networks 87

Table 4.1: The summary of complexities of different algorithms for learning BLNs.

Time Complexity Reference

O(N · nk+1) [113]

O(k · 22
k

· N · nk+1) [6]

O(Nω−2 · nk+1 + N · nk+ω−2) [7]

O(k · 22
k

· N · nk+1) [148]

O(
(
n

k

)
· n · N · poly(k)) [105]

algorithms are computationally expensive, with their complexities of at least O(N · nk+1),

as summarized in Table 4.1.

In the field of machine learning, there are also many algorithm introduced for learning

Boolean functions [29, 35, 66, 94, 114, 120, 121, 123, 142]. If these algorithms are modified

to learning BLNs of bounded indegree of k, i.e., n Boolean functions with k inputs, their

complexities are also at least O(N · nk+1).

Akutsu et al. [9] proposed an approximation algorithm called GREEDY1 with the com-

plexity of O((2 ln N + 1) ·N · n2), but the success ratio of the GREEDY1 algorithm is not

satisfactory, especially when k is small. For example, the success ratio of the GREEDY1

algorithm is only around 50% no matter how many learning samples are used when k = 2

for the general Boolean functions.

Hence, more efficient and accurate algorithms are indispensable to simulate GRNs with

BLNs on a large scale. In our work [184], we introduced the Discrete Function Learning

(DFL) algorithm with the expected complexity of O(k · (N + log n) · n2) to reconstructing

qualitative models of GRNs from gene expression data sets. In this chapter, we investigate

the two open problems listed below with the DFL algorithm.

Problem 1 Are there efficient algorithms for inferring AND/OR functions with unbounded

indegree [9]? (This problem is NP-hard.)

Problem 2 Are there algorithms with o(N ·nk) complexity for learning Boolean functions

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

88 Chapter 4 : Learning Boolean Networks

with bounded indegree k [7]? (This problem is of polynomial time.)

For the first problem, we will prove that the complexity of the DFL algorithm is O((N+

log n) ·n2) for the unbounded OR/AND functions, in the worst case given enough samples.

For the second problem, we will prove that for learning OR/AND functions with bounded

indegree k, the complexity of the DFL algorithm is strictly O(k · (N + log n) · n) given

enough samples. The experimental results soundly support that the time complexity of the

DFL algorithm is O(k · (N + log n) · n) for inferring OR/AND Boolean functions, and

O(k · (N + log n) · n2) for inferring OR/AND BLNs. Supported by experimental results,

the complexity of the DFL algorithm is still O(k · (N + log n) · n) for learning general

Boolean functions in most cases.

For the noisy data sets, the DFL algorithm is used in combination with the ǫ value

method, which is called the ǫ function method in our early work [184]. The experimental

results show that the DFL algorithm can correctly find the original BLNs in over 98% data

sets, even when there are 20% noisy instances in the data sets.

4.2 Learning Boolean Networks With The DFL Algorithm

In this section, we first define the problem of learning BLNs. Then, we discuss how to

obtain correct truth table from noisy data sets.

4.2.1 Problem Definition

The problem of inferring the BLN model of the GRN from input-output transition pairs

(time series of gene expression) is defined as follows, where the difference between the

problem defined in Definition 3.2.1 is that the function set F here is a set of Boolean

functions.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 : Learning Boolean Networks With The DFL Algorithm 89

Definition 4.2.1 (Inference of BLNs) Let V = {X1, . . . , Xn}. Given a transition table

T = {(vj,v
′

j) : j = 1, 2, . . . , N}, find a set of Boolean functions F = {f1, f2, · · · , fn}, so

that Xi(t + 1) is calculated from fi as follows

Xi(t + 1) = fi(Xi1(t), . . . , Xik(t)).

Akutsu et al. [7] proposed another set of problems for inferring BLNs. The CONSIS-

TENCY problem defined by Akutsu et al. [7] is to decide whether or not there exists a

Boolean network consistent with the given examples, and output one if it exists. So, the

CONSISTENCY problem is the same as Definition 4.2.1.

To solve the problem in Definition 4.2.1, the version of the DFL algorithm in Table

3.1 is also applicable, since BLNs are a special type of qualitative models of GRNs as

discussed in Section 3.2.1.

4.2.2 Obtaining Correct Truth Table From Noisy Data Sets

When data sets are noisy, the DFL algorithm, combined with the ǫ value method, can still

find the correct structure of BLNs, but it is probable that there are two different instances

of (Pa(X
′

i), X
′

i) for each instance of Pa(X
′

i). Recall that the counts of different instances

of (Pa(X
′

i), X
′

i) are obtained in the learning process, as discussed in Section 2.4. In the

noisy data sets, these count values can be used to obtain the correct truth tables for X
′

i .

Specifically, the DFL algorithm finds all the instances of (Pa(X
′

i), X
′

i) for each instance

of Pa(X
′

i) and chooses the one with largest count value.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

90 Chapter 4 : Learning Boolean Networks

4.3 Evaluation Criterion for Learning Boolean Networks

In the context of GRN, it is important to find the correct regulatory relations between genes.

Therefore, we use the sensitivity of the edges (the inputs of functions) in the models to eval-

uate the performance of the DFL algorithm for inferring BLNs. The structure sensitivity

measures the percentage of correctly predicted edges of the BLNs by the DFL algorithm.

Formally, the structure sensitivity is defined in Equation 3.4, i.e.,

Sensitivity =
TP

TP + FN
,

where the TP is true positive predictions, i.e., correctly predicted edges, the FN is the

false negative predictions, i.e., the missing edges. The denominator, TP + FN , is the

total number of edges in the original BLNs. For instance, if the original Boolean network

is defined by X
′

i = f(X1, X2, X3), and the DFL algorithm obtains a network defined by

X
′

i = f(X1, X3, X10) from a data set, then the sensitivity is 2/3.

Let us consider the factors which will affect the sensitivity of the DFL algorithm. As

shown in Figure 4.1, the I(Xj; X
′

i) of the Boolean network is affected by two factors,

sample size N and noise level of data sets λ. In a data set with noise level λ, there are λ

percent of samples, whose x
′

i 6= f(pa(xi)).

First, we consider the effect of N . Based on Theorem 2.2.4, the I(Xj; X
′

i) will be

zero for j = 4, . . . , 10 given enough samples in the example of Figure 4.1. Actually,

when N = 1000, the I(Xj; X
′

i) for j = 4, . . . , 10 is almost zero, as shown in Figure

4.1. But when N is small, the I(Xj; X
′

i) will be very different from the Golden Rule.

For instance, the DFL algorithm finds that X
′

i = f(X2, X7, X9), which is incorrect, since

I(X2, X7, X9; X
′

i) = H(X
′

i) when N = 20 in the example of Figure 4.1. This is due the

fact that I(Xj; X
′

i) is not zero when sample size is small. Since p(x) is unknown from

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.3 : Evaluation Criterion for Learning Boolean Networks 91

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

j

Golden Rule
N1000
N100
N20

N100,λ10

Figure 4.1: The I(Xj; X
′

i) for OR BLNs with 10 variables, where X
′

i = X1 + X2 + X3.

The unit is bit. The curve marked with circle is learned from the truth table of

X
′

i = X1 + X2 + X3, so it is the ideal case, or the Golden Rule. The curves

marked with circles, diamonds, squares, triangles and stars represent the values

obtained from truth table of X
′

i = X1 + X2 + X3, data sets of N = 1000,

N = 100, N = 20 and N = 100 with 10% noise respectively.

small data sets, I(Xj; X
′

i) for j = 4, . . . , 10 is not zero, as shown by the curve for N = 20

in Figure 4.1. Therefore, merely by coincidence, there probably exist other subsets of V

which satisfy the criterion of Theorem 2.2.2. Consequently, it is probable that the DFL

algorithm cannot find the original BLNs. Note that Theorem 2.4.1 is correct no matter

how many learning samples are provided. In case of small sample size, like N = 20 in

the example, the obtained BLNs are still consistent with the learning data sets. But, the

sensitivity of the DFL algorithm becomes 1/3 for this example, since only 1/3 edges of

the original network is correctly identified. In this case, the consistency used by Akutsu

et al. [6] is not a suitable criterion to measure the performance of a learning algorithm.

This the reason for which we use the sensitivity to evaluate the performance of the DFL

algorithm.

Then, we consider the effect of noise level λ. As shown by the dotted curve in Figure

4.1, the I(Xj; X
′

i) for the noisy data set is quite different from the Golden Rule. The DFL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

92 Chapter 4 : Learning Boolean Networks

algorithm finds the correct network structure {X1, X2, X3} → X
′

i , by setting K = 3 and

ǫ = 0.68. The sensitivity of the DFL algorithm is still 1 for the noisy data set in this

example.

Subsequently, the DFL algorithm finds the correct truth table by using the method in-

troduced in Section 4.2.2. For the example shown in Figure 4.1, the DFL algorithm finds

((1, 0, 1), 1) with count 10 for the instance (1, 0, 1) of Pa(X
′

i) = {X1, X2, X3} in the

noiseless data sets with 100 samples, but finds ((1, 0, 1), 1) with count 9 and ((1, 0, 1), 0)

with count 1 in the data sets with 100 samples and 10% noise. Hence, the DFL algorithm

will choose ((1, 0, 1), 1), which is correct, for the instance (1, 0, 1) of {X1, X2, X3} in this

case. Similarly, the whole truth table of X
′

i can correctly be found.

4.4 The Analysis Of Some Special Boolean Networks

In this section, we first analyze the mutual information between variables in special BLNs

where all relations are logic OR(AND) operation. Then, we propose the theorems about

the complexity of the DFL algorithm for learning OR/AND BLNs.

4.4.1 The Mutual Information in OR Boolean Networks

Formally, we define the OR BLN as follows.

Definition 4.4.1 The OR BLN of a set of binary variables V = {X1, . . . , Xn} is, ∀ Xi

X
′

i = Xi1(t) + . . . + Xik(t), (4.1)

where the “+” is the logic OR operation.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 : The Analysis Of Some Special Boolean Networks 93

Table 4.2: The truth table of B
′

= A +C.

A C B
′

0 0 0

0 1 1

1 0 1

1 1 1

Next, we derive the value of I(Xij; X
′

i), ∀Xij ∈ Pa(X
′

i). The data sets are generate

with the original generation BLNs. Then, based on Theorem 2.1.4, if enough samples are

provided, the distributions of Pa(X
′

i) and X
′

i will tend to be those in the truth table of

X
′

i = f(Pa(X
′

i)). Consider the simple function B
′

= A +C in Table 4.2.

Without loss of generality, we derive I(A; B
′

). From the truth table of B
′

, the H(A),

H(B
′

), and H(A,B
′

) are obtained as follows. First, we have

H(A) = −2 ×
1

2
log

1

2
= 1(bit),

and

H(B
′

) = −
1

4
log

1

4
−

3

4
log

3

4
= 0.81(bits).

Then, we compute the joint entropy H(A,B′). There are only three possible instance

for the tuple (A,B
′

), i.e., (0, 0), (0, 1) and (1, 1). Therefore, we obtain

H(A,B
′

) = −
1

4
log

1

4
−

1

4
log

1

4
−

2

4
log

2

4
= 1.5(bits).

Finally, we obtain

I(A; B
′

) = H(A) + H(B
′

) − H(A,B
′

) = 0.31(bits). (4.2)

Generally, we have Theorem 4.4.1 to compute the I(Xij; X
′

i) in OR BLNs.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

94 Chapter 4 : Learning Boolean Networks

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

p

k = 10
k = 6

(a) (b)

Figure 4.2: Mutual information in OR function X
′

i = Xi1 + . . . + Xik. The unit

is bit. (a) The I(Xij; X
′

i) as a function of k, ∀Xij ∈ Pa(X
′

i). (b)

I({Xi(1), . . . , Xi(p)}; X
′

i) as a function of p, where k = 6, 10, and p goes from

1 to k.

Theorem 4.4.1 Given enough samples for an OR BLN over V, the mutual information

between ∀Xij ∈ Pa(X
′

i) = {Xi1, . . ., Xik} and X
′

i is

I(Xij; X
′

i) =
1

2
−

2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
. (4.3)

From Equation 4.3, we see that I(Xij; X
′

i) is strictly positive, and tends to zero when k →

∞, as shown in Figure 4.2 (a). In Figure (a). In Figure 4.2 (a), when k = 2, the 0.31 bits,

which is the same as the derived I(A; B
′

) in Equation 4.2. Intuitively, when k increases,

there would be more “1” in the X
′

i column of the truth table while only one “0” whatever

value the k is. That is to say, X
′

i tends to take the value “1” with higher probability, or

there is less uncertainty in X
′

i when k increases, which causes H(X
′

i) to decrease. From

Theorem 2.1.6, H(X
′

i) = I(Pa(X
′

i); X
′

i), thus, I(Pa(Xi); X
′

i) also decreases. Therefore,

each Xij shares less information with X
′

i when k increases.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 : The Analysis Of Some Special Boolean Networks 95

Similar to Theorem 4.4.1, we have Theorem 4.4.2 for computing I({Xi(1), . . . , Xi(p)}; X
′

i),

∀Xi(j) ∈ Pa(X
′

i), j = 1, 2, . . . , p and p ≤ k. Here, the parentheses in Xi(j)s are used to

denote that the order of input variables is irrelevant to the value I({Xi(1), . . . , Xi(p)}; X
′

i).

From Theorem 4.4.2, we further have Theorem 4.4.3.

Theorem 4.4.2 Given enough samples. In OR BLNs with maximum indegree k over V,

∀1 ≤ p ≤ k, Xi(1), Xi(2), . . . , Xi(p) ∈ Pa(X
′

i), the mutual information between {Xi(1),

Xi(2), . . . , Xi(p)} and X
′

i is

I({Xi(1), Xi(2), . . . , Xi(p)}; X
′

i) =
p

2p

2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
. (4.4)

Theorem 4.4.3 Given enough samples. In OR BLNs with maximum indegree k over V,

∀2 ≤ p ≤ k, I({Xi(1), Xi(2), . . . , Xi(p)}; X
′

i) > I({Xi(1), Xi(2), . . . , Xi(p−1)}; X
′

i).

From Theorem 4.4.3, it is known that when variables from Pa(X
′

i) are added to the can-

didate parent set U for X
′

i , the mutual information I(U; X
′

i) is increasing, which is also

shown in Figure 4.2 (b).

4.4.2 The Complexity Analysis for Bounded OR Boolean Networks

Since the DFL algorithm only checks
∑k−1

i=0 (n − i) ≈ kn combinations in the searching

process for each gene in OR BLNs, we obtain the following theorem.

Theorem 4.4.4 Given enough samples for an OR BLN with maximum indegree k over V,

then the DFL algorithm can identify the OR BLN in O(k · (N + log n) · n2) time strictly.

Enough learning samples are required in Theorem 4.4.4, since if sample size is small, it

is possible that variables in Pa(X
′

i) do not share larger mutual information than variables

in V \ Pa(X
′

i) do. In the example demonstrated in Figure 4.1, it is shown that when

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

96 Chapter 4 : Learning Boolean Networks

N = 20, I(X7; X
′

i) > I(Xj; X
′

i), j = 1, 2, 3. However, Pa(X
′

i) = {X1, X2, X3} in this

example, so it takes more steps before the DFL algorithm finally finds the target subset

{X1, X2, X3}. Therefore, the complexity of the DFL algorithm becomes worse than O(k ·

(N + log n) · n2) in these cases. Fortunately, based on Theorem 3.2.1, a sufficient sample

size for successfully inferring BLNs can be known apriori. For instance, for learning an

OR BLN with 100 genes and bounded indegree of 3, the sample size can be obtained

by multiplying (2k + k log2 n) in Ω(2k + k log2 n) of Theorem 3.2.1 with 3 to 4. In our

experiments, we find that when k increases, a larger constant should be used to obtain the

enough learning sample size by multiplying (2k + k log2 n).

If there are some variables taking their inverse, then the OR BLN will change. We call

these kinds of OR BLNs “generalized OR BLNs”.

Definition 4.4.2 The generalized OR BLN of a set of binary variables V = {X1, . . . , Xn}

is, ∀ Xi

X
′

i = Xi1(t) + . . . + Xik(t), (4.5)

where the “+” is the logic OR operation, Xijs can also take their inverse.

For generalized OR BLNs, the DFL algorithm also keeps its time complexity of O(k ·(N +

log n) · n2).

Corollary 4.4.1 Given enough samples for a generalized OR BLN with maximum indegree

k over V, then the DFL algorithm can identify the BLN in O(k · (N + log n) · n2) time

strictly.

In a binary system, there are only two values for variables. If we replace the 0 in OR

BLN truth table with 1 and vice versa, the resulted BLN will have an opposite probability

of 1 and 0 to those of the original OR BLN. It is easy to show that such a BLN is an AND

BLN defined in the following.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 : The Analysis Of Some Special Boolean Networks 97

Definition 4.4.3 The AND BLN of a set of binary variables V = {X1, . . . , Xn} is, ∀ Xi

X
′

i = Xi1(t) · . . . · Xik(t), (4.6)

where the “·” is the logic AND operation.

From Theorem 4.4.4, it is straightforward to obtain the following corollary.

Corollary 4.4.2 Given enough samples for an AND BLN with maximum indegree k over

V, then the DFL algorithm can identify the BLN in O(k · (N + log n) · n2) time strictly.

Similarly to generalized OR BLN, we define generalized AND BLN in the following and

obtain Corollary 4.4.3.

Definition 4.4.4 The generalized AND BLN of a set of binary variables V = {X1, . . . , Xn}

is, ∀ Xi

X
′

i = Xi1(t) · . . . · Xik(t), (4.7)

where the “·” is the logic AND operation, Xijs can also take their inverse.

Corollary 4.4.3 Given enough samples for a generalized AND BLN with maximum inde-

gree k over V, then the DFL algorithm can identify the BLN in O(k · (N +log n) ·n2) time

strictly.

From Theorem 4.4.4 and Corollary 4.4.2, it is straightforward to know that the DFL

algorithm can find a OR/AND function with k inputs is O(k ·(N +log n)·n) time. Problem

2 in Section 4.1 is solved for the OR/AND functions with the DFL algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

98 Chapter 4 : Learning Boolean Networks

4.4.3 The Complexity Analysis for Unbounded OR Boolean Networks

From Theorem 4.4.4, we see that the complexity of the DFL algorithm will become O((N+

log n) · n3) if the k becomes n. That is to say that if the indegree of the variables is

unbounded in OR/AND Boolean functions, the complexity of the DFL algorithm is O((N+

log n) · n2) given enough samples.

But according to Theorem 3.2.1, it needs Ω(2n + n log2 n) samples to successfully find

the BLNs of indegree n. In other word, N ∼ (2n + n log2 n), i.e., the sample complexity

for inferring unbounded BLNs is NP-hard. The NP-hard sample complexity in turn makes

the complexity of the DFL algorithm be NP-hard in this case, even if enough samples are

provided. Therefore, Problem 1 in Section 4.1 is still NP-hard even enough samples are

provides.

However, if the indegree of OR/AND BLNs is undetermined but known to be much

smaller than n, which is often true in real gene expression data sets (as discussed in Sec-

tion 2.6.1), the DFL algorithm is still useful. In these cases, the expected cardinality K

can assigned as n, and the DFL algorithm can automatically find how many variables are

sufficient for each X
′

i . From Theorem 4.4.4, the DFL algorithm still has the complexity of

O(k · (N + log n) · n2) for OR/AND BLNs given enough samples.

4.5 The Analysis of General Boolean Functions

There are 22k

Boolean functions for X
′

i with k inputs. In our empirical studies, most

of the 22k

Boolean functions can be found in O(k · (N + log n) · n) time. In the rest

cases, I(Xij; X
′

i) = 0, ∀Xij ∈ Pa(X
′

i), such as in the exclusive OR (XOR) function, e.g.,

X1

⊕
X2, and the inversion of the XOR function, e.g., ¬(X1

⊕
X2). We discuss the later

cases and the constant functions in this section.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.5 : The Analysis of General Boolean Functions 99

4.5.1 The Cases Which Require More Computation Time

In some Boolean functions, such as the XOR functions, the I(Xij; X
′

i) = 0, ∀Xij ∈

Pa(X
′

i). This makes it very unlikely to rank the Xij in the front part of the list after

the sort step in line 7 of Table 2.2. However, the DFL algorithm can still find the correct

subset {Xi1, . . . , Xik} for each X
′

i with O(N · nk) time in the worst case, since the DFL

algorithm guarantees the exhaustive search of the searching space Sk.

Fortunately, in the empirical studies to be performed in Section 4.6, the worst case

happens with very low probability, about 1%, for inferring random Boolean functions of

indegree 3. The experimental results show that although the DFL algorithm uses more

steps for finding the target subsets for those functions whose I(Xij; X
′

i) = 0 than for other

functions, its complexity is still in polynomial time for each X
′

i .

In the context of GRNs, the XOR function is also unlikely to happen between different

regulators of a gene. In some cases, a gene can be activated by several activators, and any

of these activators is strong enough to activate the gene. This introduces an “OR” logic

between these activators. In other cases, several activators must simultaneously bind to

their binding sites in the cis-regulatory region to turn on the gene, which introduces an

“AND” logic. Repressors often are used to turn off the gene, so it introduces the “NOT”

logic. Suppose that the regulators act with XOR relation, then there need to have odd

number of regulators with high expression level (in logic 1 state). For example, a gene X

has one activator A and one repressor R, then X = A
⊕

R = AR+AR, where the second

term in the right side is clearly unreasonable. The second term in the right side says that if

the activator is on its low level and the repressor is in its high level, then the gene G will be

turned on. From above analysis, it is known that such a situation will not happen in a real

biological system.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

100 Chapter 4 : Learning Boolean Networks

4.5.2 The Constant Functions

The DFL algorithm will output that “X
′

i is a constant” for two extreme cases, i.e., X
′

i

= f(Xi1, . . . , Xik) = 1 or 0, ∀(xi1, . . . , xik). Since in these two cases, the X
′

i is a constant,

there is no entropy for X
′

i . In other words, the information content of X
′

i is zero. Therefore,

there is no need to know which subset of features are the genuine inputs of X
′

i in these two

cases.

In case of GRNs, some genes also show a constant expression level in a specific biolog-

ical process. For example, a large amount of genes do not show a significant change in their

expression level during the yeast Saccharomyces cerevisiae cell cycle in the study of [158].

These genes are considered as house-keeping genes and are removed before further analysis

of the expression data sets [158].

4.6 Results

In this section, we first introduce the synthetic data sets of BLN models that we use. Then,

we perform experiments for various data sets to validate the efficiency of the DFL algo-

rithm. In the following sections, we carry out experiments on small data sets and noisy

data sets to examine the sensitivity of the DFL algorithm.

4.6.1 Synthetic Data Sets of Boolean Networks

We present the synthetic data sets of BLNs in this section. For a BLN consisting of n

genes, the total state space would be 2n. The v of a transition pair is randomly chosen from

2n possible instances of V with the Discrete Uniform Distribution, i.e., p(i) = 1
2n , where

i is randomly chosen one value from 0 to 2n − 1 inclusively. Since the DFL algorithm

examines different subsets in the kth layer of ∆Tree with lexicographic order, the run

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 101

time of the DFL algorithm may be affected by the different position of the target subsets

in the kth layer of ∆Tree. Therefore, we select the first and the last k variables in V

as the inputs for all X
′

i . The data sets generated from the first k and last k variables are

named as “head” and “tail” data sets. There are 22k

different Boolean functions when

the indegree is k. Then, we use OR function (OR), AND function (AND), or one of the

Boolean functions randomly selected from 22k

possible functions (RANDOM) to generate

the v
′

, i.e., f1 = f2 = . . . = fn. If a data set is generated by OR function defined with the

first or last k variables, then we name it as an OR-h or OR-t (OR-tail) data set, and so on.

4.6.2 Experiments for Time Complexity

As introduced in Section 4.4, the complexity of the DFL algorithm is O(k ·(N +log n) ·n2)

for OR/AND BLNs. We will first perform experiments for OR/AND BLNs to further

validate our analysis. Then, we perform experiments for random BLNs to examine the

complexity of the DFL algorithm for them.

Complexity for Bounded OR/AND Boolean Networks

In all experiments of this section, the expected cardinality K and ǫ of the DFL algorithm

is set to k of the generation BLNs and 0 respectively. In this study, we will perform three

types of experiments to investigate the effect of k, n and N respectively. In each type of

experiments, we will change only one of k, n, N , and keep the other two unchanged. We

generate 20 OR and 20 AND data sets for each k, N and n, specifically, 10 OR-h, 10 OR-t,

10 AND-h and 10 AND-t data sets. Then we use the average value of these 20 data sets as

the run time for this k, N and n value.

First, we perform the experiments for various k, when n = 1000, N = 600. The run

times are show in Figure 4.3 (a). Then, we perform the experiments for various N , when

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

102 Chapter 4 : Learning Boolean Networks

2 3 4 5 6
0

2000

4000

6000

8000

10000

k

t
(s

)

OR
AND

200 400 600 800 1000
0

500

1000

1500

2000

N

t
(s

)

1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5
x 10

4

n

t
(s

)

(a) (b) (c)

Figure 4.3: The run time, t (vertical axes, shown in seconds), of the DFL algorithm for

inferring the bounded BLNs. The values shown are the average of 20 data sets.

The curves marked with circles and diamonds are for OR and AND data sets

respectively. (a) The run time vs k, when n = 1000 and N = 600. (b) The run

time vs N , when n = 1000 and k = 3. (c) The run time vs n, when k = 3 and

N = 200.

n = 1000, k = 3. The run times of these experiments are shown in Figure 4.3 (b). Finally,

we perform the experiments for n, and let k = 3, N = 200. The run times are shown in

Figure 4.3 (c). In all experiments for various k, N and n, the DFL algorithm successfully

finds the original BLNs.

As shown in Figure 4.3, the DFL algorithm uses almost the same time to learn OR and

AND BLNs. As introduced in Theorem 4.4.4 and Corollary 4.4.2, the DFL algorithm has

the same complexity of O(k·(N+log n)·n2) for learning OR and AND BLNs. The run time

of the DFL algorithm grows slightly faster than linear growth with k, as shown in Figure

4.3 (a). This is due to the fact that the computation of entropy and mutual information

needs more time when k increases. As shown in Figure 4.3 (b), the run time of the DFL

algorithm grows linearly with N . As shown in Figure 4.3 (c), the run time of the DFL

algorithm grows quasi-squarely with n, and a BLN with 6000 genes can correctly be found

in a modest number of hours.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 103

2 4 6 8 10
0

5

10

15

20

25

30

k

t
(s

)

2 4 6 8 10
10

20

30

40

50

60

k

OR−h
OR−t

(a) (b)

Figure 4.4: The efficiency of the DFL algorithm for the unbounded OR data sets. The

values shown are the average of 20 OR data sets. (a) The run time, t (vertical

axis, shown in seconds), of the DFL algorithm to infer the unbounded BLNs.

(b) The number of the subsets checked by the DFL algorithm for learning one

OR Boolean function. The curves marked with circles and diamonds are for

OR-h and OR-t data sets respectively.

Complexity for Unbounded OR/AND Boolean Networks

To examine the complexity of the DFL algorithm for unbounded OR/AND BLNs, we gen-

erate 20 OR data sets (10 OR-h and 10 OR-t) of N = 10000, n = 10, and the k is chosen

from 2 to 10. Then, we apply the DFL algorithm to these data sets. In all experiments of

this section, the expected cardinality K and ǫ of the DFL algorithm is set to 10 and 0 re-

spectively, since it is assumed that the DFL algorithm does not know the indegree of BLNs

in prior.

The DFL algorithm successfully finds the original BLNs for all data sets. The average

run times of the DFL algorithm for these data sets are shown in Figure 4.4 (a). The number

of the subsets checked by the DFL algorithm for learning one OR Boolean function is

shown in Figure 4.4 (b).

As shown in Figure 4.4 (a), the run time of the DFL algorithm grows linearly with k

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

104 Chapter 4 : Learning Boolean Networks

for the unbounded OR data sets. In Figure 4.4 (b), the number of subsets checked by the

DFL algorithm is exactly
∑k−1

i=0 (n− i) for the unbounded OR data sets. In other words, the

complexity of the DFL algorithm is O((N + log n) · n3) in the worst case for learning the

unbounded OR BLNs given enough samples. The DFL algorithm checked a lightly more

subsets for the OR-t data sets than for the OR-h data sets, when k < 10. This is due to

the fact that the DFL algorithm examines different subsets in the kth layer of ∆Tree with

lexicographic order, as introduced in Section 4.6.1.

Complexity for General Boolean Networks

In all experiments of this section, the expected cardinality K and ǫ of the DFL algorithm is

set to k of the generation BLNs and 0 respectively. To examine the complexity of the DFL

algorithm for random BLNs, we examine the random BLNs of k = 2 and k = 3.

First, we generate 16 RANDOM-h and 16 RANDOM-t data sets with k = 2, n = 100

and N = 100, so that each of the 16 RANDOM-h and the 16 RANDOM-t data sets is for

one of the 222
possible Boolean functions of indegree 2. Then, we run the DFL algorithm

on these data sets. We find that the DFL algorithm can correctly find the original BLNs in

about 1 second after checking O(k · n) subsets for each X
′

i except two cases, where the

Boolean functions for X
′

i are the XOR function and the inversion of the XOR function. As

discussed in Section 4.5, the DFL algorithm may be inefficiently for inferring these two

functions. In our experiments, the DFL algorithm still correctly finds the original BLNs for

these two special cases in tens of seconds after checking thousands of subsets, which is less

than n2. Hence, the worst complexity of the DFL algorithm happens with 1/8 frequency

for inferring random Boolean functions with indegree of 2.

Next, we generate 200 data sets, 100 RANDOM-h and 100 RANDOM-t data sets,

with Boolean functions of indegree k = 3 randomly chosen from 223
functions. The DFL

algorithm counts the checked subsets for inferring one Boolean function, denoted with m.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 105

0 2000 4000 6000 8000 10000
0

50

100

150

200

m
0 50 100 150 200

0

50

100

150

200

t (s)
0 50 100 150 200

0

50

100

150

200

t (s)

(a) (b) (c)

Figure 4.5: The histograms of the number of subsets checked, m, and run time of the DFL

algorithm for learning one Boolean function in RANDOM data sets, when

n = 100, k = 3 and N = 200. For part (b) and (c), the cases pointed by arrows

are the worst ones. (a) The histogram of m without using redundancy matrix

R. (b) The histogram of run time, t (horizontal axis, shown in seconds). (c)

The histogram of run time after using the redundancy matrix R introduced in

Section 2.8.2.

The histogram of m is shown in Figure 4.5 (a). The run times for these data sets are shown

in Figure 4.5 (b).

From Figure 4.5 (a), it is shown that the original Boolean function for X
′

i can be found

after checking O(k · n) subsets in 178 of out the 200 random functions. The complexity

of the DFL algorithm will become O(k · (N + log n) · n2) for reconstructing the BLNs

for the 178 random functions. The corresponding run times of the 178 cases are only a

few seconds, as demonstrated in Figure 4.5 (b). As shown in Figure 4.5 (a), for 20 out of

the remaining 22 cases, the original Boolean function for X
′

i can be found after checking

several thousands or less than n2 subsets of V. The last two cases are learned after the

DFL algorithm checked less than n3 = 106 subsets of V. The last two cases are generated

with special Boolean functions, similar to X
′

i = X1 · ¬X2 · ¬X3 + ¬X1 · X2 · X3. In

these Boolean functions, I(Xij; X
′

i) is zero, which makes the DFL algorithm be more

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

106 Chapter 4 : Learning Boolean Networks

computationally complex than for other data sets. In summary, the worst time complexity

of the DFL algorithm, O(N · nk), happens with about 2/200 = 1% frequency for inferring

random Boolean functions with indegree of 3.

For the 200 RANDOM data sets, the DFL algorithm finds the correct BLNs in 196

cases, and finds 2/3 correct edges of the original BLNs in the remaining 4 cases. Hence,

the average sensitivity of the DFL algorithm is 596/600 ≈ 99.3% for inferring general

BLNs from noiseless data sets.

From the experimental results for general BLNs, it is known that the DFL algorithm

can find most Boolean functions with k inputs in O(k · (N + log n) · n) time.

To prove the usefulness of the redundancy matrix R introduced in Section 2.8.2, we

also perform the same experiments on these 200 RANDOM data sets after deploying the

redundancy matrix in the DFL algorithm. Figure 4.5 (c) demonstrates that the run time

of the worst case has been reduced from 203 to 127 seconds, which equals to a reduction

of 37%. This is slightly smaller than the 50% reduction analyzed in Section 2.8.2. We

attribute this to the access and exchange of the memory used by R.

4.6.3 Experiments for Sensitivity

As discussed in Section 4.3, the sensitivity of the DFL algorithm is affected by sample size

and noisy level of data sets. We perform experiments to examine the sensitivity of the DFL

algorithm for different sample size and noise levels of data sets.

Experiments of Small Data Sets

From Theorem 3.2.1, it is known that the sufficient sample size for inferring BLNs is related

to the indegree k and the number of variables n in the networks. Therefore, we apply the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 107

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

N

OR
RANDOM

10
1

10
2

0

0.2

0.4

0.6

0.8

1

N

n=100
n=500
n=1000

10
1

10
2

0.2

0.4

0.6

0.8

1

N

k=2
k=3
k=4

(a) (b) (c)

Figure 4.6: The sensitivity of the DFL algorithm vs sample size N . The values shown are

the average of 200 data sets. (a) The sensitivity vs N for OR and RANDOM

data sets, when n = 100, k = 3. The curves marked with circles and diamonds

are for OR and RANDOM data sets respectively. (b) The sensitivity vs N for

OR data sets, when n = 100, 500, 1000, and k = 3. The curves marked with

circles, diamonds and triangles are for data sets of n = 100, 500 and 1000

respectively. (c) The sensitivity vs N for OR data sets, when k = 2, 3, 4, and

n = 100. The curves marked with diamonds, circles and triangles are for data

sets of k = 2, 3 and 4 respectively.

DFL algorithm to 200 OR (100 OR-h and 100 OR-t) and 200 RANDOM (100 RANDOM-

h and 100 RANDOM-t) data sets with k = 3, n = 100 with various N . Then, we apply

the DFL algorithm to 200 OR (100 OR-h and 100 OR-t) data sets, where k = 3, n =

100, 500, 1000 and various N . Finally, we apply the DFL algorithm to 200 OR (100 OR-h

and 100 OR-t) data sets, where k = 2, 3, 4, n = 100 and various N . The relation between

the sensitivity of the DFL algorithm and N are shown in Figure 4.6. In all experiments

of this section, the expected cardinality K and ǫ of the DFL algorithm is set to k of the

generation BLNs and 0 respectively.

From Figure 4.6, it is shown that the sensitivity of the DFL algorithm grows approx-

imately linearly with the logarithmic value of N , but becomes 1 after a certain N value

except the RANDOM data sets in part (a). For the RANDOM data sets, the sensitivity of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

108 Chapter 4 : Learning Boolean Networks

20 60 100 160 200
0

5

10

15

20

25

30

N

t
(s

)

Figure 4.7: The run time, t (vertical axis, shown in seconds), of the DFL algorithm for

small OR data sets, where n = 100 and k = 3. The values shown are average

of 200 data sets.

the DFL algorithm has increases to 99.3% when N = 200, and further to 99.7% when

N = 1000. That means, if the data is enough, the DFL algorithm can correctly identify

the original OR BLNs, and correctly find the original RANDOM BLNs with very high

probability.

In Figure 4.6 (a), it is shown that the sensitivity of the DFL algorithm for RANDOM

data sets is slightly higher than that for the OR data sets, when the sample size N is smaller

than a certain value, but becomes lower after this value. As shown in Figure 4.6 (b), the

sensitivity of the DFL algorithm for various n shows a small decrease when n increases

and N is the same. From Figure 4.6 (c), it is shown that the sensitivity for various k shows

a large decrease when k increases and N is the same. This is due to the different effect of

k and n in deciding the enough sample size. In Theorem 3.2.1, the enough sample size N

grows exponentially with k but linearly with log n.

In this section, we find that when the sample size is small, the DFL algorithm may

use much more time than O(k · (N + log n) · n2). For example, the run time of the DFL

algorithm for the 200 small OR data sets of n = 100 and k = 3 used in this section is

shown in Figure 4.7. As shown in Figure 4.7, the complexity of the DFL algorithm is bad

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 109

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

λ

ε m

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

λ

ε m

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

λ

OR
RANDOM

(a) (b) (c)

Figure 4.8: The setting and performance of the DFL algorithm for noisy data sets, whose

k = 3, n = 100 and N = 1000. The values shown are the average for 100 data

sets. (a) The minimum ǫ value, ǫm, vs noise level λ (%) in the OR data sets. (b)

The minimum ǫ value, ǫm, vs noise level λ (%) in the RANDOM data sets. (c)

The sensitivity of the DFL algorithm vs λ for noisy OR/RANDOM data sets.

The curves marked with circle and diamond are for OR and RANDOM data

sets respectively.

when the sample size N falls into the region from 20 to 100, but resumes linear growth

after N is bigger than 100. This is due to the fact that the DFL algorithm requires enough

learning samples to find OR/AND BLNs in O(k · (N + log n) · n2) time, as discussed in

Section 4.4.2.

Experiments of Noisy Data Sets

The noisy data sets are generated by randomly selecting λ percent samples, then inverting

their output values v
′

. To examine the performance of the DFL algorithm when dealing

with noisy data sets, we generate 100 OR/RANDOM data sets (50 “head” and 50 “tail”

data sets) with different noise levels λ from 1% to 20%. The expected cardinality K of the

DFL algorithm is still set to k of the generation BLNs in experiments of this section.

Then, we run the DFL algorithm by choosing different ǫ values for these data sets with

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

110 Chapter 4 : Learning Boolean Networks

the restricted learning method introduced in Section 2.6.2. The relation of ǫm and λ for

OR/RANDOM data sets is shown in Figure 4.8 (a)/(b), where the ǫm value is the average

of the 10 sets for each λ value. The relation of ǫm and λ for AND data sets is similar to that

for OR data sets. As demonstrated in Figure 4.8 (a), the ǫm is increasing with the increase

of λ value. This means that the missing part of the entropy of Y , as demonstrated by the

shaded region of Figure 2.9 (b), tends to increase when there is more and more noise in the

data sets. The variances of the ǫm in RANDOM data sets are bigger than those in OR data

sets, as demonstrated in Figure 4.8 (a) and (b). This is reasonable, since the I(Pa(X
′

i); X
′

i)

and H(X
′

i) are more diverse in RANDOM data sets than those in OR data sets.

The sensitivity of the DFL algorithm maintains 1 for all noisy OR data sets, as demon-

strated in Figure 4.8 (c). In other words, for all noisy OR data sets, the DFL algorithm can

correctly find the original BLNs. As shown in Figure 4.8 (c), the sensitivity of the DFL

algorithm for RANDOM data sets does not decrease significantly even when λ increases to

20%. The DFL algorithm correctly finds the original BLNs for over 98% noisy RANDOM

data sets, and find 2/3 correct edges of the BLNs for the rest RANDOM data sets.

The DFL algorithm also correctly finds the truth table with the method introduced in

Section 4.2.2 for all noisy data sets when the sensitivity is one. For instance, the obtained

rules for one RANDOM-h data sets are shown in Table 4.3.

As shown in Table 4.3, the left rules have significantly larger counts than their coun-

terparts on the right side. By using the method introduced in Section 4.2.2, the rules on

the right side will be eliminated and the truth table for this data sets is the 8 rules on the

left side. By applying the Karnaugh-map to the obtained truth table, the obtained Boolean

function is actually the X
′

i = ¬X1 ·X2 +X1 ·¬X2 ·X3 in the origination Boolean network.

Up till now, the original Boolean network has successfully and completely been identified

by the DFL algorithm from this data sets with 10% noise. In addition, the total count value

of the rules on the right side is 100 which is exactly 10%× 1000. This means that the rules

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 111

Table 4.3: The obtained Boolean rules from one noisy RANDOM-h data set with 1000

samples and 10% noise. In the original BLN, X
′

i = ¬X1 · X2 + X1 · ¬X2 · X3.

Rules From Noiseless Samples Rules From Noisy Samples

X1 X2 X3 X
′

i Count X1 X2 X3 X
′

i Count

0 0 0 0 137 0 0 0 1 10

0 0 1 0 123 0 0 1 1 8

0 1 0 1 97 0 1 0 0 10

0 1 1 1 105 0 1 1 0 12

1 0 0 0 98 1 0 0 1 19

1 0 1 1 118 1 0 1 0 15

1 1 0 0 107 1 1 0 1 12

1 1 1 0 115 1 1 1 1 14

Total Count 900 100

on the right side are coming from the 10% noise in the data set.

The run times of the DFL algorithm do not change severely for data sets with different

noise levels. In other words, the DFL algorithm is still efficient when the data sets are

noisy.

4.6.4 Comparisons of Time Complexity with Existing Methods

In this section, we will compare the time complexity of the DFL algorithm with the RE-

VEAL algorithm [113], which is a benchmark algorithm for reconstructing BLNs from

state transition pairs. As introduced in Section 4.1, the time complexity of the REVEAL

algorithm is O(N · nk+1) [184]. We have also implemented the REVEAL algorithm with

the Java programming language in the Discrete Function Learner software. We will use the

noiseless OR data sets to compare the run time of the two algorithms. For all experiments,

the expected cardinality K is set to the real number of input variables k and ǫ to 0.

In this section, we use Equation 3.2 to determine the sample size N . Therefore, the time

complexity of the DFL algorithm becomes O(k ·n · (N +log n)) = O(k ·n · (2k +k log n))

for learning one Boolean function and O(k · n2 · (2k + k log n)) for learning a BLN. Thus,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

112 Chapter 4 : Learning Boolean Networks

20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

n

t
(s

)
REVEAL
DFL

2 3 4 5 6
10

−2

10
0

10
2

10
4

k

t
(s

)

REVEAL
DFL

(a) (b)

Figure 4.9: Comparison of the run times of the DFL algorithm and the REVEAL algo-

rithm. In all experiments, both the DFL algorithm and the REVEAL algorithm

can correctly find the original model. (a) when n increases alone, (b) when k
increases alone.

the run time of the DFL algorithm will grow in an exponential way with k if the sample

size N is calculated with Equation 3.2.

Experiments when k is fixed, n increases

In this section the indegree of each gene k is fixed to 3, and the number of transition pairs

is calculated with Equation 3.2 where c is 3. The number of genes goes from 20 to 100.

The experiment results are shown in Figure 4.9 (a), where the time is the average value

of 5 different OR-h and 5 different OR-t data sets. The run time values are shown in loga-

rithmic values. In all experiments of this kind, both the DFL algorithm and the REVEAL

algorithm can find the original BLNs correctly. However, the DFL algorithm is signifi-

cantly faster than the REVEAL algorithm as shown in Figure 4.9 (a).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6 : Results 113

Table 4.4: The success ratio (%) of the GREEDY1 algorithm [9] for noisy data sets of

general BLNs, where the indegree k = 3 and n = 1000 (Table courtesy of

Akutsu et al. [9]).

λ = 0.1 λ = 0.2 λ = 0.3
N = 500 68% 71% 29%

N = 1000 71% 72% 60%

N = 2000 77% 73% 76%

Experiments when n is fixed, k increases

In this section, the number of genes n is fixed to 20, and k is increased from 2 to 6. Similar

to the results of the prior section, both the DFL algorithm and the REVEAL algorithm

can find the original BLNs correctly. However, the run times of the DFL algorithm are

significantly smaller than those of the REVEAL algorithm in all cases, as shown in Figure

4.9 (b), where the time is also the average value of 5 different OR-h and 5 different OR-t

data sets. The run time values are also shown in logarithmic values.

In Figure 4.9 (b), the run time of the DFL algorithm grows approximately linearly in

logarithmic coordinate, which means an exponential growth in ordinary coordinate.

4.6.5 Comparisons of Robustness to Noisy Data Sets with Existing

Methods

In [9], the GREEDY1 algorithm was used to learn general (RANDOM) BLNs from noisy

data sets, as shown in Table 4.4. From Table 4.4, it can be seen that when the sample size is

small, the performance of the GREEDY1 algorithm decreases with the increase of the noise

level λ. When the sample size is large enough, the GREEDY1 algorithm finds the original

BLNs with a success ratio of about 75%. In comparison, as shown in Figure 4.8 (c), the

DFL algorithm correctly finds the original RANDOM BLNs with a much higher success

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

114 Chapter 4 : Learning Boolean Networks

ratio of 98%, where n = 100, N = 1000 and 0 ≤ λ ≤ 0.2. The experimental results of

the DFL algorithm for n = 1000 and N = 2000 should be similar to that for n = 100 and

N = 1000. Because according to Theorem 3.2.1, the sample size for successfully finding

the original BLNs has lower bound of Ω(2k + k log2 n). This means that the samples size

N should grows in logarithmic value of n. Hence, when n changes from 100 to 1000, the

corresponding sample size N should be changed with log2 1000/ log2 100 = 1.5 fold. The

original sample size becomes N = 1000 × 1.5 = 1500, which is smaller than 2000. In

other words, N = 2000 is large enough.

The above comparisons demonstrate that the DFL algorithm has a better robustness to

noise than the GREEDY1 algorithm. It is difficult to compare the robustness of the DFL

algorithm to those of other methods in the literature, such as methods in [6, 95, 105, 113,

119], since these methods cannot handle noisy data sets.

4.7 Related Models

In this section, we discuss the related models, the Probabilistic Boolean Networks (PBNs)

and Dynamic Bayesian Networks (DBNs). We will show that the DFL algorithm combined

with the ǫ value method can be used to infer PBNs and DBNs. More discussion about the

relationships of BLNs, PBNs and DBNs is given in [127, 155].

4.7.1 Probabilistic Boolean Networks

To cope with the uncertainty, Shmulevich et al. [155] introduced the PBNs. The basic idea

is to extend the BLN to accommodate more than one possible functions for each node [155].

A PBN G(V,F) is defined by a set of variables V = {X1, . . . , Xn} and a function matrix,

F = {F1, . . . , Fn}, where Fi is defined by Equation 4.8.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.7 : Related Models 115

Fi = {f
(i)
j : j = 1, . . . , l(i)} (4.8)

where each f
(i)
j is a possible function determining the value of gene Xi and l(i) is the num-

ber of possible functions for gene Xi. The functions f
(i)
j is referred to as predictors, since

the process of inferring these functions from measurements or equivalently, of producing a

minimum-error estimate of the value of a gene at the next time point, is known as prediction

in estimation theory [155].

The major difference between the PBNs and standard BLNs lies in the F. As shown

in Table 4.3, the noisy rules learned from noisy data sets contain two truth table of the

three input variables, shown on the left and right side respectively. In BLNs, the functional

relations are deterministic, hence only the rules on left side are used as the estimated truth

table of X
′

i .

However, if we consider this situation from another aspect, the rules on the right side

can also be seen as alternative gene expression patterns. That is to say, we can consider

building a PBN model with the rules in Table 4.3. Formally, we let Fi = {f1, f2}, where

f1 = ¬X1 ·X2 +X1 ·¬X2 ·X3 and f2 = X1 ·X2 +¬X1 ·¬X2 +¬X2 ·¬X3. The probability

that fi is selected is estimated by the total counts of rules, i.e., p(f1) = 900/1000 = 0.9

and p(f2) = 0.1. Hence, the DFL algorithm combined with the ǫ can be used to build PBNs

efficiently.

4.7.2 Dynamic Bayesian Networks

Bayesian networks have been used to model GRNs [73, 75, 89, 150]. However, since di-

rected circles are not allowed in standard Bayesian networks, Murphy and Mian [127] and

Ong et al. [129] used the DBNs to model GRNs. As shown in Theorem 2.2.3, X
′

i and

∀Z ⊆ V \ Pa(X
′

i) are independent given Pa(X
′

i) in BLNs. Hence, the BLN is a special

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

116 Chapter 4 : Learning Boolean Networks

case of DBN, where the relations between variables are deterministic.

Similar to the discussion in Section 4.7.1, the DFL algorithm combined with the ǫ

value method can also be used to learn DBNs, even the relations between variables are

probabilistic. The CPT of variables can be estimated with the frequencies of rules, for the

same instances of Pa(X
′

i). For the example in Table 4.3, for (0, 0, 0) of {X1, X2, X3}, we

can have p(0|000) = 137
137+10

= 0.932 and p(1|000) = 0.068 as estimation of P (X
′

i |Pa(X
′

i))

based on Table 4.3.

There is one limitation when learning DBNs with the DFL algorithm. Recall that it is

assumed that ∀1 ≤ i, j ≤ n, Xi(t), Xj(t) are independent in Section 3.2.1. That means in

the DBNs learned with the DFL algorithm, the Pa(X
′

i) are all from the prior time step.

4.8 Conclusions

The main contributions of this chapter are three-fold.

First, we prove the DFL algorithm can learn OR/AND Boolean functions with O(k ·

(N + log n) · n) time complexity in Theorem 4.4.4. In other words, the Problem 2 intro-

duced in Section 4.1 can be solved with the DFL algorithm, for OR/AND Boolean func-

tions. For general Boolean functions, the experimental results show that the DFL algorithm

still maintains its complexity of O(k · (N + log n) · n) in most cases. Sample distribution

is another point to be noted. Although the learning samples of this study are drawn with

the Discrete Uniform Distribution, the requirement of enough samples in Theorem 4.4.4 is

distribution free, since Theorem 2.1.4 is correct regardless of sample distribution.

Second, the DFL algorithm still maintains O(k · (N + log n) · n) complexity for un-

bounded OR/AND Boolean functions given enough samples, as discussed in Section 4.4.

However, based on Theorem 3.2.1, the sample size for the unbounded OR/AND Boolean

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.8 : Conclusions 117

functions is NP-hard, which makes the the inference problem of unbounded OR/AND func-

tions, i.e., Problem 1 in Section 4.1, still be NP-hard.

Third, we demonstrate that the DFL algorithm combined with the ǫ value method can

find the original BLNs from noisy data sets, even when there have been 20% noisy instances

in the learning data sets. These results suggest that the DFL algorithm is effective when

applied to real gene expression data sets since gene expression data sets are often noisy.

We also discuss that relationship between the BLNs and the PBNs, DBNs. We show that

the DFL algorithm combined with the ǫ value method is also useful in learning PBNs and

DBNs.

We introduce the sensitivity, which is affected by sample size N and noise level of

data sets, as the criterion to evaluate the performance of the DFL algorithm. Experimental

results show that the sensitivity of the DFL algorithm is more severely affected by the

sample size N , than the noise level of data sets, which suggest that it is more advisable to

use a large data sets with reasonable noise level than to use a small data sets with small

noise level for inferring GRN models from gene expression profiles.

The major limitation of BLNs is that the expression levels of genes are simply repre-

sented with two states, ON and OFF. However, BLNs are good initial points for finding

more realistic models of GRNs. To understand the operation of whole systems of regula-

tory interactions, computational models are essential: for organizing experimental exten-

sions and tests at each stage of construction of the model, to check on consistency, and to

integrate experimental results with the current network architecture by means of simula-

tion [56]. BLNs are simple and very suitable for large scale simulation. BLNs can be used

to reconstruct initial models of GRNs, then further biological experiments can be carried

to refine the initial GRN models, as done by Yuh et al. [179, 180].

Since Boolean function learning algorithms have been used to solve many problems

[29, 35, 66, 94, 114, 120, 121, 123, 142], the DFL algorithm can also find its applications in

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

118 Chapter 4 : Learning Boolean Networks

other fields, such as classification [183, 185, 188, 189, 192], pattern recognition, functional

dependencies retrieving and association rules retrieving.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

Solving Classification Problems

C
LASSIFICATION is one of the fundamental problems in artificial intelligence. The

aim of classification is to form a classification function or a model from training

data sets, then use it to predict new samples, as defined in Definition 2.2.1.

In this chapter, we will apply the DFL algorithm to solving classification problems. The

24 data sets in Table 5.1 are used to validate the performances of the DFL algorithm. The

DFL algorithm shows good prediction performances in terms of accuracy, model complex-

ity, and run time. We also compare the results of the DFL algorithm with those from other

well-known methods and in literature.

This chapter is organized as follows. In Section 5.1, we describe the problem of can-

cer classification based on biological data. In Section 5.2, we describe an entropy based

discretization method. In Section 5.3, we show the results of the DFL algorithm and other

classification algorithms. In Section 5.4, we evaluate the results of the biological data sets

used in the experiments. In Section 5.5, we summarize this chapter.

119

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

120 Chapter 5 : Solving Classification Problems

Figure 5.1: Overview of Surface-Enhanced Laser Desorption/Ionization (SELDI) type

mass spectrometry technology. (Courtesy of Petricoin et al., 2004 [135])

5.1 Cancer Classification with Biological Data

In this section, we first briefly introduce the technology of Surface-Enhanced Laser Des-

orption/Ionization (SELDI) type mass spectrometry. Then, we describe the motivation and

challenge of cancer classification problem based on biological data sets.

5.1.1 A Brief Introduction to SELDI Technology

As shown in Figure 5.1, this type of Matrix-Assisted Laser Desorption/Ionization (MALDI)

Time-Of-Flight (TOF) mass is proving very useful in high-throughput proteomic finger-

printing of serum, body fluids, and tissue. Using an automated methodology, the biological

material is processed with a robotic sample dispenser, where one microliter of raw serum

is applied to the surface of a protein-binding chip. Some laboratories prefractionate their

samples beforehand, whereas others perform complex analysis for optimizing binding by

diluting into a myriad of pH and salt permutations. Based on the underlying SELDI chip

chemistry and the pH and buffer used, only a small subset of the proteins in the entire sam-

ple’s proteomic and metabonemic repertoire will bind to the surface of the chip. The bound

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.1 : Cancer Classification with Biological Data 121

molecules are then treated with an organic acid MALDI matrix and washed and dried. The

chip, which contains multiple patient samples, is inserted into a vacuum chamber where

it is irradiated with a laser. The laser desorbs the adherent proteins, causing them to be

launched as ions. The TOF of the ion prior to detection by an electrode is a measure of

the mass to charge (M/Z) value of the ion. The ion spectra can be analyzed by computer-

assisted pattern recognition tools that classify a subset of the spectra by their characteristic

patterns of relative intensity.

Using this method, one microliter of raw unfractionated serum from a patient is ana-

lyzed by SELDI-TOF to create a proteomic signature of the serum (right part of Figure

5.1). This serum proteomic bar-code is comprised of potentially tens of thousands of pro-

tein signatures, which then require extensible data mining operations for analysis.

5.1.2 Cancer Classification with Biological Data

In this section, we will briefly describe the problem of cancer classification based on bio-

logical data, like microarray gene expression profiles [81] and proteomic profiles [130].

The challenge of cancer treatment has been to detect cancer as early as possible and/or

to target specific therapies to pathogenetically distinct cancer types [81]. Therefore, early

detection of cancer and/or its subtypes is central to apply accurate therapies and improve

the cure and survival rate. With recent development of microarray and mass spectrometry

technology, it is possible to detect cancer and/or its subtypes in the early stages [12, 18,

81, 96, 134, 136, 173]. To diagnose early stage cancer, new technologies are introduced to

analyze the expression pattern or the proteomic patterns in serum, since the pathological

changes within the an organ might be reflected in gene expression levels [81] or serum

protein profiles [134].

How to use these biological data to build accurate and meaningful classification models

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

122 Chapter 5 : Solving Classification Problems

introduces another a big challenge, since biological data sets are often high-dimensional

but the sample size is relatively small [92, 112].

There have been many successful stories of use biological data to identify tumor and/or

its subtypes in the literature. However, most methods use complex models, like the Sup-

port Vector Machines and k-Nearest-Neighbors, to perform classification. According to

the principle of Occam’s razor, simple models are preferable than complex ones, if they

can produce comparable prediction performances. Hence, the complex models are not op-

timal in terms of model complexity and very hard to understand, although accurate in prac-

tice. Some examples of performing cancer classification based on gene expression profiles

include classification of leukemia subtype by Golub et at. [81], colon tumor by Alon et

al. [12], multi-class leukemia by Armstrong et al. [18], central nervous system (CNS) tu-

mor by Pomeroy et al. [138], breast cancer by van’t Veer et al. [167], diffused large B-cell

lymphoma (DLBCL) by Alizadeh et al. [11] and Shipp et al. [154], lung cancer by Beer et

al. [25], Gordon et al. [82], Bhattacharjee et al. [28] and Wigle et al. [171]. Some exam-

ples of performing cancer classification based on proteomic profiles include classification

of ovarian cancer by Cohen et al. [46], Petricoin et al. [134] and Wang et al. [170], prostate

cancer by Adam et al. [4], Petricoin et al. [135] and Gretzer et al. [84], breast cancer by

Becker et al. [24].

In Section 4.6, we will use the DFL algorithm to perform cancer classification based on

microarray gene expression profiles [18, 81, 154] and on proteomic profiles [134].

5.2 A Supervised Discretization Method

We use a widely used supervised discretization method introduced by Fayyad and Irani [67]

to discretize the continuous features. Following the notation in [62, 67], we will briefly

summarize the discretization algorithm. Let partition boundary T separate set S into S1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.2 : A Supervised Discretization Method 123

and S2. Let there be k classes C1, · · · , Ck. Let P (Ci, Sj) be the proportion of examples in

Sj that have class value Cj . The class entropy of a subset Sj , j = 1, 2 is defined as:

Ent(Sj) = −
k∑

i=1

P (Cj, Sj)logP (Cj, Sj).

Let S1 and S2 be induced with the boundary T of attribute A, then the class information

entropy of the partition is given by:

E(A, T ; S) =
|S1|

|S|
Ent(S1) +

|S2|

|S|
Ent(S2).

For a given attribute A, the boundary Tmin is chosen to minimize E(A, T ; S) as a binary

discretization boundary. This method is recursively used to the two partitions induced

by Tmin, until some stop criteria is reached, therefore creating multiple intervals on the

attribute A.

The Minimum Description Length principle is used as the stop criterion of the parti-

tioning by Fayyad and Irani [67]. The recursive partitioning within a set of values S stops

iff

Gain(A, T ; S) <
logc(N − 1)

N
+

δ(A, T ; S)

N

where N is the number of instances in the set S, Gain(A, T ; S) = Ent(S) − E(A, T ; S),

δ(A, T ; S) = log2(3
k − 2) − [k · Ent(S) − k1 · Ent(S1) − k2 · Ent(S2)], and ki is the

number of class labels represented in set Si.

After the discretization process, a substantial number of features, which are not con-

tributing to the class distinction, are assigned with only one value. Meanwhile, the remain-

ing discriminatory features are assigned with limited value intervals. For example in our

experiments, the Zyxin gene in the ALL data set is one of the genes most highly correlated

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

124 Chapter 5 : Solving Classification Problems

with the ALL-AML class distinction [81]. In the discretization process, the expression val-

ues of the Zyxin gene are discretized into two intervals, (−∞− 994] and (994 −∞). This

discretization method has been implemented by the Weka1 software [69, 172].

5.3 Results

First, we briefly introduce the benchmark data sets used in this section. Then, we show the

performance of the DFL algorithm on these data sets.

5.3.1 Data Sets

We use the 24 data sets summarized in Table 5.1 to compare the DFL algorithm with other

classification and feature selection methods. Twenty out of the twenty four data sets are

classic machine learning data sets from UCI machine learning repository [31]. The detailed

description of these data sets are available at the supplementary wetsite of the thesis. We

arrange the data sets in the ascending order of the number of features.

In all the data sets used, the missing values are dealt as an independent state marked

with “?”. Therefore, it is possible that the learned classifiers also have some missing values

marked with “?”.

For data sets with continuous features, we discretize their continuous features with the

discretization algorithm introduced in Section 5.2. The discretization is carried out in such

a way that the training data set is first discretized. Then the testing data set is discretized

according to the cutting points of variables determined in the training data set. For the

Breast data set, the attributes are numerical with some limited integers. Therefore, we do

not apply the pre-discredization method to this data set.

1The Weka software, available at http://www.cs.waikato.ac.nz/∼ml/weka/, is written with the Java lan-

guage and is an open source software issued under the GNU General Public License.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 : Results 125

Table 5.1: The benchmark data sets used in the experiments for comparison.

Dataset Feature NO.1 Classes Training Testing Missing Source

1 Lenses 4 (4D) 3 24 LOO2 0 UCI

2 Iris 4 (4N) 3 100 50 0 UCI

3 Monk1 6 (D) 2 124 432 0 UCI

4 Monk2 6 (D) 2 169 432 0 UCI

5 Monk3 6 (D) 2 122 432 0 UCI

6 LED 7 (7D) 10 2000 1000 0 UCI

7 Nursery 8 (8D) 5 12960 CV103 0 UCI

8 Breast 9 (9N) 2 699 CV10 16 UCI

9 Wine 13 (13N) 3 119 59 0 UCI

10 Credit 15 (9D6N) 2 460 230 67 UCI

11 Vote 16 (16D) 2 435 CV10 392 UCI

12 Zoo 16 (D) 7 101 LOO 0 UCI

13 ImgSeg 19 (N) 7 210 2100 0 UCI

14 Mushroom 22 (22D) 2 8124 CV10 2480 UCI

15 LED+17 24 (D) 10 2000 1000 0 UCI

16 Ionosphere 34 (34N) 2 234 117 0 UCI

17 Chess 36 (36D) 2 2130 1066 0 UCI

18 Anneal 38 (29D9N) 6 798 100 22175 UCI

19 Lung 56 (56D) 3 32 LOO 0 UCI

20 Ad 1558 (1555D3N) 2 2186 1093 2729 UCI

21 ALL 7129 (7129N) 2 38 34 0 [81]

22 DLBCL 7129 (7129N) 2 55 22 0 [154]

23 MLL 12582 (12582N) 3 57 15 0 [18]

24 Ovarian 15154 (15154N) 2 169 84 0 [134]

1 The number does not include the class attribute. “D” and “N” represents discrete and numerical attributes

respectively. 2 LOO and 3 CV10 stands for leave-one-out and 10 fold cross validation respectively.

5.3.2 Comparison with Other Classification Methods

In this research, we use the restricted learning method introduced in Section 2.6.2 to obtain

optimal models for the DFL algorithm, with the searching scope of the ǫ from 0 to 0.8.

As discussed in Section 2.6.1, the expected cardinality K is set to a small integer, like 20,

for the high-dimensional data sets and to n for the low-dimensional data sets. The optimal

settings are shown in Table D.1. The optimal classifiers and prediction details of the DFL

algorithm are available at the supplementary website of this thesis.

The optimal ǫ values are obtained from cross validation on the training data sets. Since

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

126 Chapter 5 : Solving Classification Problems

Table 5.2: The comparison of accuracies for the DFL algorithm and other well-known clas-

sification methods. The unit is percent. The accuracies for those data sets with

numerical attributes are for discretized/numerial data sets. The best result for

each data set is shown in bold face.

Data Set DFL C4.5 NB 1NN kNN1 SVM

1 Lenses 75.0 83.3 70.8 60.8 70.8 65.4

2 Iris 96.0 94.0/92.0 94.0/94.0 94.0/94.0 92.0/98.0 94.0/94.0

3 Monk1 100.0 75.7 71.3 78.7 77.8 72.2

4 Monk2 73.8 65.0 61.6 73.8 62.3 67.1

5 Monk3 97.2 97.2 97.2 82.9 92.8 97.2

6 LED 74.9 74.6 75.1 71.0 75.6 75.3

7 Nursery 93.1 97.1 90.3 78.6 98.1 93.1

8 Breast 95.0 94.7 97.3 95.6 95.2 95.8

9 Wine 98.3 93.2/93.2 98.3/98.3 98.3/94.9 96.6/93.2 98.3/94.9

10 Credit 88.3 84.3/87.8 87.4/76.5 78.7/81.7 86.5/84.8 86.5/87.4

11 Vote 95.7 95.3 90.0 92.7 92.8 95.5

12 Zoo 92.8 92.1 94.1 96.2 92.1 96.0

13 ImgSeg 90.6 89.7/91.0 88.3/80.1 88.8/91.9 86.3/89.8 90.6/87.5

14 Mushroom 100.0 100.0 95.5 100.0 100.0 100.0

15 LED+17 75.4 73.3 74.6 47.3 64.4 74.8

16 Ionosphere 94.9 91.5/88.0 92.3/82.1 92.3/88.0 92.3/84.6 94.9/87.2

17 Chess 97.4 99.5 87.3 90.4 94.2 95.2

18 Anneal 99.0 94.0/95.0 97.0/79.0 97.0/98.0 98.0/96.0 94.0/91.0

19 Lung 62.5 43.8 53.1 35.7 46.9 37.5

20 Ad 95.0 95.0/95.0 93.5/93.6 90.5/93.1 92.4/92.6 95.0/95.0

21 ALL 94.1 91.2/91.2 85.3/88.2 76.5/73.5 82.4/67.7 82.4/85.3

22 DLBCL 95.5 95.5/81.8 95.5/81.8 95.5/81.8 95.5/81.8 95.5/95.5

23 MLL 100.0 86.7/80.0 86.7/100.0 86.7/80.0 80.0/86.7 100.0/100.0

24 Ovarian 98.8 92.9/97.6 76.2/84.5 88.1/90.5 92.9/91.7 98.8/100.0

average 91.0 87.5/86.8 85.5/84.0 82.9/82.1 85.9/84.6 87.3/86.8

1 The k value of the kNN algorithm is set to 5.

the distribution of features and the class attribute may be a slightly different in cross valida-

tion, a wider region around the optimal ǫ value found from cross validation is validated in

training and testing process. For instance, as shown in Figure 2.10 (a), in the 10-fold cross

validation of the LED+17 training data set, the optimal ǫ value of 0.31 is found. Then, the

DFL algorithm also reaches its best performance with this ǫ value in the training testing

process.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 : Results 127

Table 5.3: The summary of prediction performances of different algorithms in Table 5.2.

Discretized D.S. Continuous D.S.

Algo. Pair win draw lose win draw lose

DFL:C4.5 17 4 3 16 4 4

DFL:NB 18 3 3 18 3 3

DFL:1NN 18 4 2 19 2 3

DFL:kNN 19 2 3 19 1 4

DFL:SVM 11 10 3 14 6 4

sum 83 23 14 86 16 18

We use the Weka software (version 3.4) to evaluate the performance of other classi-

fication methods. Specifically, we compare the DFL algorithm with the C4.5 algorithm

by Quinlan [140], the Naive Bayes (NB) algorithm described by Langley et al. [106] and

Duda et al. [63], the 1NN and k-Nearest-Neighbors (kNN) algorithm by Aha et al. [5] and

the Support Vector Machines (SVM) algorithm by Platt [137]. For the SVM algorithm, the

linear kernels are used. All these methods are implemented in the Weka software. The accu-

racies of all compared algorithms are listed in Table 5.2, where the values are the averages

of 10 runs.

As shown in Table 5.2, the DFL algorithm performs well for the selected data sets.

Especially for the data sets with large number of features, like data sets with index from

14 to 24, the accuracies of the DFL algorithm are more competitive than those from other

compared classification methods, which suggests good generality of the DFL algorithm

for high-dimensional data sets. For instance, the DFL algorithm correctly finds the seven

relevant features of the LED+17 data set without any prior knowledge since the expected

cardinality K is specified to 20 (see Figure 2.10), and obtains better prediction accuracies

than other well-known algorithms. For another example, the DFL also correctly find the

original generation function for the Monk1 data set (details available at the supplementary

prediction details) and obtains 100% accuracy that is significantly better than those of other

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

128 Chapter 5 : Solving Classification Problems

Table 5.4: The comparison of the DFL algorithm and other methods in literature. The

column names k, Acc., Al. and F.S. stand for the number of features in the

classifiers, the accuracies, the algorithm used, the feature selection method used

respectively. For all columns, NA stands for not available. For all data sets, the

training/testing samples are the same as those in Table 5.1.

DFL Methods in Literature

Data Set k Acc. Acc. k Al.2 F.S.3 Literature

Monk1 3 100.0 100.0 6 CN2 NA p.67, [162]

Monk2 6 73.8 79.6 6 ARQ NA p.67, [162]

Monk3 2 97.2 95.6 6 ID3 NA p.67, [162]

97.2 6 CC NA p.110, [162]

Nursery 5 93.1 99.1 8 ART NA [27]

Vote 4 95.7 95.9 16 ART NA [27]

Mushroom 4 100.0 98.5 22 ART NA [27]

Chess 19 97.4 92.3 36 TAN NA [74]

96.4 NA BAN WSE [98]

ALL 1 94.1 85.3 50 WV S2N [81]

94.1-88.2 1000 SVM S2N [77]

91.2 1 EP E [111]

100.0 42 kNN MB [174]

MLL 2 100.0 90.0 40 kNN1 S2N [18]

80.0 20 C45 χ2 [110]

93.3 20 SVM χ2 [110]

93.3 20 kNN χ2 [110]

100.0 20 PCL χ2 [110]

100.0 20 NB χ2 [110]

1 The kNN classifier in [18] misclassified 1 sample out of 10 independent testing samples. 2 For Al. column,

the CN2, ARQ, ID3, CC, ART, TAN, BAN, WV, SVM, EP, kNN, C45, PCL and NB represent the CN2 [162],

ARQ [162], ID3 [162], Cascade Correlation, ART [27], TAN [74], BAN [98], Weighted-Voting [81], Support

Vector Machine, Emerging Pattern [111], k-Nearest-Neighbors, C4.5, Prediction by Collective Likelihoods

[110] and Naive Bayes algorithm respectively. 3 For the F.S. column, the WSE, S2N, E, MB and χ2 are the

wrapper subset evaluation method, ranking with the signal-to-noise statistic [81], ranking with entropy [67],

Markov Blanket [174] and ranking with χ2-statistic respectively.

algorithms.

We summarize the prediction performances of different classification algorithms in Ta-

ble 5.3. For two algorithms in Table 5.2, we count the number of the data sets, where the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 : Results 129

first algorithm performs better, equally to, and worse than the second one. As shown in Ta-

ble 5.3, the DFL algorithm performs better than other compared algorithms when applied

to most of selected data sets with all features. The average accuracies shown in Table 5.2

also reflect this result.

In Table 5.4, we also compare some of our results with those in the literature, on con-

dition that the training/testing samples are the same as those in Table 5.1. As shown in

Table 5.4, the DFL algorithm also performs fairly well when compared to the results in

the literature. Except for the Monk2, Nursery, Vote and ALL data set, the DFL algorithm

obtains better or equal prediction accuracies for the data sets in Table 5.4. However, the

DFL algorithm uses much fewer features than the methods in the literature. This suggests

that the DFL algorithm finds preferable models to those used in these literature, based on

the principle of Occam’s razor.

5.3.3 Comparison of Model Complexity

First, we compare the model complexities of different classification algorithms. From Fig-

ure 6.3, it can be seen that the classifiers of the DFL algorithm are very simple, 23 out of

24 learned models with fewer than 10 features (details available at Table D.1 and D.2). The

model from the C4.5 algorithm is comparable to our models (details available at the supple-

mentary Table S15 to S16), but the performances of the C4.5 algorithm are not better than

our method. The NB, 1NN, kNN and SVM algorithms build very complex models, using

all features of the data sets. The complex models from these algorithms make it difficult for

the users to understand which subset of features is really important in contributing to the

class distinctions between samples. When handling multi-class data sets, such as the LED

data sets, the SVM algorithm and the NB algorithm solve the problems by building indi-

vidual one-vs-all (OVA) pairwise classifiers for each class. Although effective in practice,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

130 Chapter 5 : Solving Classification Problems

this method also makes the model even more complex than individual classifiers obtained

from the SVM algorithm and the NB algorithm. In comparison, the DFL algorithm just

builds one model for multi-class data sets.

Next, we compare the model complexity of the DFL algorithm with those in literature.

As shown in Table 5.4, the DFL algorithm uses much fewer features than those methods in

literature and obtains comparable or more competitive prediction accuracies.

5.3.4 Comparison of Efficiency

Since all compared algorithms are implemented with the Java language and all experiments

are performed on the same computer, the comparisons of their efficiency are meaningful.

In this section, we will compare the training time of the DFL algorithm with those of the

C4.5, NB and SVM algorithm, as shown in Figure 5.2. The detailed training times are also

provided in the supplementary Table S17 and S18. As shown in Table 5.1, there are 7 data

sets with cross validation as testing data sets. For these 7 data sets, the training times of

the DFL algorithm shown in Figure 5.2 are the total run times of the corresponding cross

validation tests. We do not compare the training times of the DFL algorithm with those of

the 1NN and kNN algorithm, since these two algorithms actually build very simple models

and spend most of their run times on testing.

As shown in Figure 5.2, the training time of the DFL algorithm and the C4.5 algo-

rithm is comparable. The NB and SVM algorithm is more and less efficient than the DFL

algorithm respectively. Particularly, the DFL algorithm is very efficient when applied to

high-dimensional data sets, like the last 4 data sets in Figure 5.2.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.4 : Biological Evaluation 131

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2 t (s), DFL vs C4.5

DFL
C4.5

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2 t (s), DFL vs NB

DFL
NB

0 5 10 15 20 25
10

−2

10
0

10
2

10
4

t (s), DFL vs SVM

DFL
SVM

(a) (b) (c)

Figure 5.2: The comparison of training time of different classification algorithms. The

results are for the discretized data sets. The horizontal axis is the index of data

sets. In all parts, the curves marked with circles and pentagrams represent the

training time of the DFL algorithm and other classification algorithms. (a) The

training time of the DFL algorithm and the C4.5 algorithm. (b) The training

time of the DFL algorithm and the NB algorithm. (c) The training time of the

DFL algorithm and the SVM algorithm.

5.4 Biological Evaluation

The ALL data set consists of 72 bone marrow or peripheral blood samples of patient with

acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) [81]. The training

data set contains 27 ALL and 11 AML and the testing data set contains 20 ALL and 14

AML samples.

There are three classes in the MLL data set, ALL, AML and MLL. MLL is a new

subtype of leukemia with rearranged MLL gene [18]. The MLL data set consists of 57

training samples, with three classes, 20 ALL, 20 AML and 17 MLL. In [18], Armstrong et

al. did validation on an independent testing data set of 10 samples, and made 1 error. The

testing data set that we used consists of 15 samples, 4 ALL, 8 AML, and 3 MLL.

There are two classes in the DLBCL data set, Diffuse Large B-Cell Lymphomas (DL-

BCL) and Follicular Lymphoma (FL) [154]. The training/testing split schema used in this

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

132 Chapter 5 : Solving Classification Problems

Table 5.5: The classifier for the ALL data set learned with the DFL algorithm.

CST3 Class Count

(−∞− 1419.5] ALL 27

(1419.5 −∞) AML 10

(−∞− 1419.5] AML 1

(a) (b) (c)

Figure 5.3: The comparisons of the expression values of the genes chosen by the DFL al-

gorithm. In part (a) and (b), ALL, AML and MLL samples are represented

with circles, triangles and diamonds respectively. In all parts, blue and red

samples are from training and testing data sets respectively. The black solid

lines are the cutting points of the genes introduced in the discretization pre-

processing. (a) The expression values of CST3 in the ALL data set. The two

samples pointed by arrows are the incorrect predictions. (b) The expression

values of POU2AF1 and ADCY9 in the MLL data set. (c) The expression val-

ues of the MCM7 in the DLBCL data set. The sample pointed by an arrow

is the incorrect prediction. The DLBCL and FL samples are represented with

circles and triangles respectively.

thesis is 55:22, and DLBCL sample ratio of 41:17 and FL sample ratio of 14:5. The train-

ing/testing samples used are randomly chosen from the original data set.

As shown in Table 5.5, the DFL algorithm learns the optimal classifier of three rules for

the ALL data set. The cutting point of the CST3 gene is determined by the discretization

preprocessing [67]. The first rule of Table 5.5 means that if the expression level of CST3

gene is smaller than or equal to 1419.5, then the sample is an ALL sample.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 : Discussions and Conclusions 133

Figure 5.3 shows the expression values of the genes chosen by the DFL algorithm in the

ALL, MLL and DLBCL data sets. In part (a) and (c) of Figure 5.3, the expression values

are shown in logarithmic values, so some samples with negative expression values are not

shown. As shown in Figure 5.3 (a), the classifier in Table 5.5 only makes two incorrect

predictions in the ALL testing data set. CST3 (Cystatin C, M27891) is one of the 50 genes

most highly correlated with the ALL-AML class distinction in the classification model of

Golub et al. [81]. In Figure 5.3 (b), it can be seen that the samples in the MLL testing

data set are all correctly classified in the EA space defined by the two genes POU2AF1 and

ADCY9. POU2AF1 is one of the genes required for the appropriate B-cell development

and one of the genes that are specifically expressed in MLL, ALL or AML [18]. From

Figure 5.3 (b), it can be seen that most AML, MLL and ALL samples are located in the

left, central and right regions divided by the cutting points of the POU2AF1 expression

values respectively. ADCY9 is not as discriminative as POU2AF1, however, it serves as a

good complement to POU2AF1. POU2AF1 captures 77% diversity (entropy) of the class

attribute in the MLL training data set, but the combination of POU2AF1 and ADCY9, as

a vector, captures 94.7% of the same measurement. For the DLBCL data set, the DFL

algorithm selects MCM7 (CDC47 homolog) gene, which is associated with cellular prolif-

eration and one of the genes highly correlated with the class distinctions [154].

5.5 Discussions and Conclusions

The fundamental difference between the DFL algorithm and other classification methods

lies in the underlying philosophy of the algorithms, as shown in Figure 5.4. What the DFL

algorithm does is to estimate the classification functions directly (based on Theorem 2.2.2)

with low-complexity models, as demonstrated in Table 2.4. However, other classification

methods are trying to approximate the classification functions with complex models, like

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

134 Chapter 5 : Solving Classification Problems

1

2

3

4

Generation
Function

Irrelevant
Features

Noiseless/
Noisy

Approx.

DataX YA …
… …

A

B

C

(Feature selection)

DFL
e = 0/
e > 0

(Discretization, remove
some irrelevant features)

X

Y

Figure 5.4: The philosophy of the DFL algorithm and other classification algorithms.

Y = f(X) is the generation function. The 1, 2, 3 and 4 are four steps in

the production of data sets. The arrows on the left represent the production

process of the data sets. In the first step, the generation function generates the

original data sets. In the second and the third step, irrelevant features and noise

are introduced into the data sets respectively. The arrows on the right stand for

the learning philosophy of different algorithms. Other algorithms, like Multi-

Layer Perceptrons and SVMs, are approximating the generation function with

complex models from noisy data sets. The feature selection process is an op-

tional step for these algorithms. However, the DFL algorithm directly estimates

the generation function with low-complexity models. As indicated by the dot-

ted arrow, when the data sets are noisy or noiseless, the DFL algorithm uses

the positive or zero ǫ values. The discretization step [67] is optional for all

algorithms, and helps to remove some irrelevant features from continuous data

sets.

what have been done by the Multi-Layer Perceptrons (MLPs) and the SVMs with different

kernels. The complex MLP and SVM models are “black boxes” and very hard to under-

stand, while the DFL algorithm provides understandable low-complexity models without

loss of prediction performances, as shown in Table 5.2 and 5.4.

The DFL algorithm, combined with the weighted 1NN prediction method, is used to

solve classification problems. We demonstrate that the DFL algorithm can obtain compa-

rable accuracies to existing well-known classification algorithms and those in the litera-

ture, with lower-complexity models. By comparing the training time, the DFL algorithm is

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 : Discussions and Conclusions 135

shown to be both accurate and efficient, especially for the high-dimensional data sets.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

Performing Feature Selection

F
EATURE SELECTION is fundamental for avoiding the curse of dimensionality. We

will discuss the feature selection problem with the ILA in this chapter. By choosing

a Markov Blanket X of Y as the candidate feature subsets, the irrelevant and redundant

features can be automatically eliminated and prevented from deteriorating the performances

of classification algorithms.

In this chapter, we use the DFL algorithm to choose informative and discriminatory

feature subsets for other algorithms. We show that the DFL algorithm can find small subsets

of features, on which the classification algorithms can obtain better prediction performance

with less time.

This chapter is organized as follows. In Section 6.1, we will describe the motivation of

feature selection problem, and introduce two problems which are not formally solved by

current methods. In Section 6.2, we describe related feature selection methods, and discuss

their limitations. In Section 6.3, we discuss the two problem introduced in Section 6.1 with

the ILA. Section 6.4 shows the experimental results and compare the performances of the

DFL algorithm with those from other feature selection methods. In Section 6.5, we discuss

the differences between the DFL algorithm and other feature selection methods. Finally,

136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.1 : Introduction 137

we summarize the work of this chapter in Section 6.6.

6.1 Introduction

In solving classification problems, many induction algorithms suffer from the curse of di-

mensionality [104]. There exist two aspects for this curse. First, when the number of fea-

tures increases, the run time of the algorithms grows very fast, even exponentially. Second,

in data sets with a large number of features, the data points are often scarce which makes

it very difficult to correctly estimate the parameters of classification models or find good

margins between the classes. Therefore, the number of learning samples needed to find

models grows quickly, sometimes also exponentially. Unfortunately, the data sets are actu-

ally limited, which makes many algorithms suffer from the risk of overfitting the training

data sets with their complex models. Furthermore, the inclusion of irrelevant, redundant

and noisy attributes in the model building process phase can also result in poor predictive

performance and increased computation [87].

To overcome the overfitting problems, the principle of Occam’s razor is often used in

building classification models. According to the principle of Occam’s razor, a small set of

informative and discriminatory features is preferable to a large number of features, if the

models built over the small set of features can obtain comparable prediction performances

to those built over large number of features [104]. Hence, feature selection is critical to

overcome the overfitting problems by finding the informative and discriminatory features,

to improve the performance of classification algorithm, and to further avoid the curse of

dimensionality. Based on the different nature of the metric used to evaluate features, feature

selection methods fall into two categories, called “filter” and “wrapper” methods [100].

In the filter methods, the feature selection is performed as a preprocessing step and often

independent of the classification algorithms which will be applied to the processed data sets

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

138 Chapter 6 : Performing Feature Selection

later. The wapper method [103] evaluates a subset of features by applying a target learning

algorithm to the training data set with cross validation, and selects the subset of features

which produces the highest accuracy in the cross validation process. The evaluation with

cross validation makes the wrapper method very inefficient when dealing with the high-

dimensional data sets like gene expression profiles.

In this chapter, we will concentrate on the filter methods. The existing filter feature

selection methods often require a predefined number of features k. However, the perfor-

mance of algorithms applied on the selected features may be sensitive to the predefined k,

as demonstrated by Koller and Sahami [104]; Peng et al. [133]; Chow and Huang [45].

In a more general view, the following two problems are central to the effectiveness of

the feature selection methods, for both filters and wrappers.

Problem 1 How to know the selected features are complete to determine the class value,

at least for the training data set?

Problem 2 How to determine the optimal subset of features?

In this chapter, we discuss the two problems with the ILA. As shown in Theorem 2.3.1,

the feature subset U which satisfies I(U; Y) = H(Y) is Markov Blanket of Y . By choos-

ing a Markov Blanket U of Y as the candidate feature subset, the irrelevant and redundant

features can be automatically eliminated from deteriorating the performances of classifica-

tion algorithms. We name the subset of the features in the Markov Blanket or its estimation

as the essential attributes, or the EAs for short. We use the Discrete Function Learning

(DFL) algorithm [184,189] to efficiently find or estimate the Markov Blanket U of Y from

the exponential number of subsets.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 : Related Work 139

6.2 Related Work

In this section, we will describe current feature selection methods, and discuss their limita-

tions. First, we categorize current feature selection methods. Then, we specifically describe

feature selection methods based on information theory. Finally, we analyze the shortcom-

ings of them.

6.2.1 Categorization of Feature Selection Methods

Feature selection methods fall into two main categories, those evaluating individual features

and those evaluating feature subsets.

In the individual feature selection methods, the evaluation statistics for each feature

are calculated, then a feature ranking list is provided in predefined order of the statistics.

The statistics used for individual feature selection include information gain [87, 115, 174],

signal-to-noise (S2N) statistic [18, 77, 81, 154], correlation coefficient [167], t-statistic

[115], F -statistic [61], χ2-statistic [110, 115] and others. The main shortcoming of these

individual feature selection methods lies in that a larger than necessary number of redun-

dant top features with similar value patterns, like gene expression patterns, are selected to

build the models. Hence, such choice often brings much redundancy to the models, since

the selected features carry similar information about the class attribute. According to the

principle of Occam’s razor, these models are not optimal although accurate, since they are

often complex and suffer from the risk of overfitting the training data sets [174]. In addi-

tion, the large number of features in the predictors makes it difficult to know which features

are really useful for recognizing different classes.

In the feature subset selection methods, a search algorithm is often employed to find

the optimal feature subsets. In evaluating a feature subset, a predefined score is calculated

for the feature subset. Since the number of feature subsets grows exponentially with the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

140 Chapter 6 : Performing Feature Selection

number of features, heuristic searching algorithms, such as forward greedy selection, are

often employed to solve the problem. Examples of feature subset selection methods are

CFS (Correlation-based Feature Selection) [86], CSE (Consistency-based Subset Evalua-

tion) [116], and the WSE (Wrapper Subset Evaluation) [103]. Most feature subset selection

methods use heuristic scores to evaluate feature subset under consideration, such as CFS

and CSE methods. As discussed in Section 6.1, the WSE method is inefficient, especially

when dealing with high-dimensional data sets.

There is another popular way of categorizing these algorithms, called “filter” and “wrap-

per” methods [100], as discussed in Section 6.1.

Logistic regression is a regularization or shrinkage methods which trim the hypothesis

space by constraining the magnitudes of parameters [30, 174]. L1 regularization uses a

penalty term which encourages the sum of the absolute values of the parameters to be small

[128]. L2 regularization encourages the sum of the squares of the parameters to be small

[128]. It has been frequently been observed that L1 regularization in many models causes

many parameters to equal zero, so that the parameter vector is sparse [128]. This makes it a

natural candidate in feature selection settings, such as the work in [40,153,194,195], where

we believe that many features should be ignored [128]. In comparison, feature selection

methods normally search good features in the combinatorial space of feature subsets [174]

based on some measures, such as the high-dimensional mutual information used by the

DFL algorithm [189].

6.2.2 Feature Selection Methods Based on Information Theory

Some feature selection methods based on mutual information have been introduced by

Dumais et al. [65], Yang and Pedersen [176], Vidal-Naquet and Ullman [169], Fleuret [68],

Chow and Huang [45] and Peng et al. [133]. These methods also fall into two categories.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 : Related Work 141

In the first category, features are ranked according to their mutual information with the

class label. Then, the first k features [65] or the features with a bigger mutual information

than a predefined threshold value [176] are chosen.

The second category is feature subset selection. In this category, the forward selection

searching algorithm, i.e., greedy algorithm, is often used to find the predefined k features.

In the first iteration, the Xi which shares the largest mutual information with Y is selected

to the target feature subset U. Then, in the next step, the selection criterion is how much

information can be added with respect to the already existing X(1). Therefore, the X(2)

with maximum I(Xi, X(1); Y) − I(X(1); Y) is added to U [169]. Formally, the features

X(1), . . . , X(k) are selected with the following criteria, X(1) = arg maxi I(Xi; Y) and

X(s) = arg max
Xi∈Ps−1

min
X(j)∈Us−1

[I(Xi, X(j); Y) − I(X(j); Y)], (6.1)

where ∀s, 1 < s ≤ k, i = 1, . . . , (n− s + 1), j = 1, . . . , (s− 1), and Ps is the feature pool

by removing X(1), . . . , X(s), with P1 = V \ X(1), Ps = Ps−1 \ X(s), and Us is the set of

selected features, with U1 = {X(1)}, Us = Us−1 ∪ {X(s)}.

From Theorem 2.1.2, we have

I(Xi, X(j); Y) = I(X(j); Y) + I(Xi; Y |X(j)),

then

I(Xi; Y |X(j)) = I(Xi, X(j); Y) − I(X(j); Y).

Therefore, Equation 6.1 is equivalent to maximizing conditional mutual information,

minX(j)∈Us−1 I(Xi; Y |X(j)) [68] in Equation 6.2.

X(s) = arg max
Xi∈Ps−1

min
X(j)∈Us−1

I(Xi; Y |X(j)). (6.2)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

142 Chapter 6 : Performing Feature Selection

Battiti [23] introduced a heuristic algorithm to find the feature subsets. In this method,

the mutual information I(Xi; Y) of a new feature Xi is penalized by a weighted sum of

the I(Xi; X(j)), where X(j) ∈ Us−1. This method is similar to those in [68, 169], but not

theoretically formulated.

Chow and Huang [45] proposed an approximation method to evaluate mutual informa-

tion between continuous features and the class attribute. Then, Chow and Huang [45] used

the heuristic criteria feature relevance criterion (FRC) and feature similarity criterion (FSC)

in Equation 6.3 and 6.4 respectively to choose features with a forward selection process.

FRC(Xi) = I({U, Xi}; Y) (6.3)

FSC(Xi) = arg max
X(j)∈U

(
I(Xi; X(j))

H(X(j))
) (6.4)

This method essentially finds the most relevant feature with maximal FRC(Xi), then eval-

uates its redundancy by calculating FSC(Xi) with respect to the selected features individu-

ally. If FSC(Xi) is larger than a predefined threshold value, it is considered as a redundant

feature and will not be chosen [45].

Peng et al. [133] proposed to use X(1) = arg maxi I(Xi; Y) and Equation 6.5 to choose

a new feature.

X(s) = arg max
Xi∈Ps−1

[I(Xi; Y) −
1

s − 1

∑

X(j)∈Us−1

I(Xi; X(j))] (6.5)

Peng et al. [133] also used an approximation method to calculate the mutual information

between continuous features and the class attribute.

Koller and Sahami [104] proposed to choose Markov Blanket of the class attribute as the

candidate features for classification problems, and introduced an approximation algorithm

to estimate the Markov Blanket of the class attribute. The method by Koller and Sahami

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 : Related Work 143

[104] tries to find a subset of features which minimize the distance between the distribution

of the selected feature subsets and the distribution of all features. The backward selection

algorithm is used to eliminated features which minimize the expected cross-entropy [104]

until some predefined number of features have been eliminated.

6.2.3 Limitations of Current Feature Subset Selection Methods

For all existing feature subset selection method based on mutual information, one common

major shortcoming is that the candidate feature is evaluated with respect to every individ-

ual feature in the selected features subset Us−1 step by step. The motivation underlying

Equation 6.1 and 6.2 is that Xi is good only if it carries information about Y , and if this

information has not been caught by any of the X(j) already picked [68]. However, it cannot

be known whether the existing features as a vector have captured the information carried

by Xi or not. Another shortcoming is that it needs to specify the number of features k in

prior. As discussed in Section 6.1, the performances of algorithms applied to the selected

features may be sensitive to the predefined k. In addition, it also introduces some redundant

computation when evaluating the new feature Xi with respect to the already picked features

X(j) ∈ Us−1, which will be discussed further in Section 6.5.

Furthermore, there are still two problems which are not formally solved by previous

methods. First, to find the most informative feature subsets, the aim is to maximize the

conditional mutual information, I(Y ; X(s)|Us−1) = H(Y |Us−1) − H(Y |Us−1, X(s)), as

shown in Equation 2.7. H(Y |Us−1) does not change when trying different Xi ∈ V \Us−1.

Hence, the ultimate goal of feature subset selection is converted to finding {Us−1, X(s)}

which minimizes H(Y |Us−1, X(s)), as pointed out by [68]. But H(Y |Us−1, X(s)) can-

not be estimated with a training set of realistic size as it requires the estimation of 2k+1

probabilities [68]. Hence, Fleuret [68] and Vidal-Naquet and Ullman [169] proposed the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

144 Chapter 6 : Performing Feature Selection

estimated increase of the information content of the feature subset using Equation 6.1 and

6.2. Second, as pointed by Kollar and Sahami [104], finding either a true or even an ap-

proximate Markov Blanket might be very hard. In particular, the expected cross-entropy

does not really test for the Markov Blanket property [104].

In the next section, we will demonstrate that it is unnecessary to compute H(Y |Us−1, X(s)),

as the problem can be directly solved by maximizing I(Us−1, X(s); Y).

6.3 Choosing Essential Attributes with The Information

Learning Approach

In this section, we show that the two problems introduced in Section 6.1 can formally be

solved from the viewpoint of the ILA.

Let us recall the Problem 1 in Section 6.1. Based on Theorem 2.2.2, it is known that

if I(X; Y) = H(Y), then the subset X can fully determine the value of Y for the training

data sets. And from Theorem 2.2.4, is is known that if I(X; Y) = H(Y), then ∀Z ∈ V\X,

Z provides no information of Y . Hence, the X which satisfies I(X; Y) = H(Y) is the

complete set of features needed to determine the value of Y for the training data set.

Recall the Problem 2 in Section 6.1. Based on Theorem 2.3.1, it is known that if

I(X; Y) = H(Y), then X is a Markov Blanket of Y . Hence, in the feature selection

process of our method, the I(X; Y) is evaluated with respect to H(Y). It is critical to

compare I(X; Y) with H(Y). Since by performing this comparison, the optimal subset

of features can be automatically determined, without the need of specifying a predefined

number of features or a threshold value of the mutual information.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.4 : Results 145

As discussed in Section 2.4.1, when choosing candidate features, our approach max-

imizes the mutual information between the feature subsets and the class attribute. Sup-

pose that Us−1 is the already selected feature subset in step s − 1, and the DFL algorithm

is trying to add a new feature Xi ∈ V \ Us−1 to Us−1. Specifically, our method uses

X(1) = arg maxi I(Xi; Y) and Equation 2.11 to add new features to U, i.e.,

X(s) = arg max
i

I(Us−1, Xi; Y),

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}.

As demonstrated in Section 2.4.1, the irrelevant and redundant features can be auto-

matically removed, if the new candidate feature Xi is evaluated with respect to the selected

features as a vector Us−1 by maximizing I(Us−1, Xi; Y). Furthermore, the optimal subset

of features can be determined by evaluating the I(U; Y) with respect to H(Y).

6.4 Results

We will use the data sets in Table 5.1 to validate the DFL algorithm as a filter feature

selection method. In this section, we first show the improvement of other classification

algorithms when they are applied to the data sets filtered with the features chosen by the

DFL algorithm, or in short, to the DFL features. Then, we compare the DFL algorithm

with other feature selection methods.

6.4.1 The DFL Algorithm as A Filter Feature Selection Method

In this thesis, we use the restricted learning method introduced in Section 2.6.2 to obtain

optimal models for the DFL algorithm, with the searching scope of the ǫ from 0 to 0.8.

The optimal settings are shown in Table D.1, which is also available at the supplementary

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

146 Chapter 6 : Performing Feature Selection

website of this thesis as Table S2. The features chosen by the DFL algorithm are listed in

Table D.2.

In this section, we apply the well-known classification algorithms to the data sets fil-

tered with the features chosen by the DFL algorithm, or in short, to the DFL features. The

accuracy results are shown in Table 6.1, where the values are the averages of 10 runs. For

comparison, the accuracies of the DFL algorithm, which is for all features, are also given

in Table 6.1.

As shown in Table 6.1, the compared classification algorithms generally perform better

for the Lenses, LED+17, Chess, Lung, ALL, MLL and Ovarian data sets when applied the

the DFL features. In Table 6.2, we also check the improvements of the different algorithms

when applied to the DFL features. Similar to Table 5.3, for a given classification algorithm,

we count the number of data sets, where the algorithm applied to the DFL features performs

better, equally to, or worse than to all features.

As shown in Table 6.2, the learning algorithms, except the SVM algorithm, performs

better when applied to the DFL features than to the original data sets with all features. For

the SVM algorithm, although there are more data sets whose accuracies are better on all

features than on the DFL features, but the average accuracy of all data sets on the DFL fea-

tures is better than that on all features, as shown in Table 6.1 and Table 5.2. Meanwhile, as

the number of features chosen by the DFL algorithm is much smaller than the total number

of features (see Table D.1), the run times of the compared well-known classification algo-

rithms are dramatically reduced, as shown in Figure 6.1. For instance, the SVM algorithm

uses 138 seconds to train a model for the discretized Ad data set with all features, and uses

only 1.6 seconds to train a model for the discretized Ad data set with the DFL features.

Meanwhile, as shown in Table 5.2 and 6.1, the accuracies of the SVM algorithm for the

discretized Ad data set with all features, 95.0, is only 0.6 percent higher than that on the

DFL features, 94.4. Hence, it may be a better trade-off.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.4 : Results 147

Table 6.1: The accuracies of the well-known classification methods on the data sets filtered

with the features chosen by the DFL algorithm. The unit is percent. The accu-

racies for those data sets with numerical attributes are for discretized/numerial

data sets.

Data Set DFL C4.5 NB 1NN kNN1 SVM

1 Lenses 75.0 87.5 75.0 75.0 62.5 66.7

2 Iris 96.0 94.0/92.0 94.0/94.0 96.0/98.0 92.0/94.0 94.0/96.0

3 Monk1 100.0 88.9 72.2 97.2 77.8 72.2

4 Monk2 73.8 65.0 61.6 73.8 62.3 67.1

5 Monk3 97.2 97.2 97.2 88.9 97.2 97.2

6 LED 74.9 74.6 75.1 71.0 75.6 75.3

7 Nursery 93.1 93.1 89.1 89.9 93.1 90.4

8 Breast 95.0 94.8 96.2 94.6 94.4 95.0

9 Wine 98.3 93.2/93.2 96.6/98.3 93.2/96.6 96.6/98.3 94.9/98.3

10 Credit 88.3 87.4/87.4 87.4/87.4 44.3/44.3 87.4/87.4 87.4/87.4

11 Vote 95.7 94.9 92.2 94.9 95.7 94.9

12 Zoo 92.8 90.1 93.1 96.6 83.2 94.3

13 ImgSeg 90.6 90.4/90.8 90.8/84.3 86.8/92.0 89.8/91.1 90.7/76.1

14 Mushroom 100.0 100.0 98.6 100.0 100.0 100.0

15 LED+17 75.4 75.1 74.2 57.8 75.2 75.1

16 Ionosphere 94.9 93.2/94.9 95.7/94.0 89.7/91.5 94.9/87.2 94.9/80.3

17 Chess 97.4 99.0 90.5 97.0 96.4 96.1

18 Anneal 99.0 84.0/84.0 80.0/74.0 84.0/84.0 91.0/91.0 89.0/88.0

19 Lung 62.5 68.8 56.3 58.1 50.0 71.9

20 Ad 95.0 92.6/94.4 93.2/92.4 36.0/90.7 93.8/94.2 94.4/92.6

21 ALL 94.1 94.1/94.1 94.1/94.1 94.1/94.1 94.1/94.1 94.1/82.4

22 DLBCL 95.5 95.5/95.5 95.5/90.9 77.3/86.4 95.5/95.5 95.5/77.3

23 MLL 100.0 93.3/93.3 100.0/100.0 100.0/100.0 93.3/100.0 100.0/73.3

24 Ovarian 98.8 98.8/98.8 98.8/98.8 35.7/97.6 98.8/98.8 98.8/97.6

average 91.0 89.4/89.5 87.4/86.7 80.5/86.2 87.2/87.3 88.7/85.2

1 The k value of the kNN algorithm is set to 5.

6.4.2 Comparison with Other Feature Selection Methods

In this section, we compare the DFL algorithm with two well-known filter feature subset

selection methods, the CFS method by Hall [86] and the CSE method by Liu and Setiono

[116], and the wrappers subset selection method, i.e. the WSE method, by Kohavi and

John [103]. We do not compare the DFL algorithm with the method proposed by Fleuret

[68] and Vidal-Naquet and Ullman [169], since their methods can only deal with boolean

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

148 Chapter 6 : Performing Feature Selection

Table 6.2: The improvement of performances of different learning algorithms when ap-

plied to the features chosen by the DFL algorithm.

Discretized Data Sets Continuous Data Sets

Algo. Features better equally worse better equally worse

C4.5 DFL:all 11 7 6 9 7 8

NB DFL:all 11 6 7 12 6 6

1NN DFL:all 12 3 9 17 3 4

kNN DFL:all 12 7 5 14 4 6

SVM DFL:all 7 10 7 6 6 12

sum 53 33 34 58 26 36

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2 Time of C4.5, on All and DFL features

t
(s

)

All
DFL

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1 Time of NB, on All and DFL features

t
(s

)

All
DFL

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3 Time of SVM, on all and DFL features

t
(s

)

All
DFL

(a) (b) (c)

Figure 6.1: The comparison of training times of different classification algorithms on all

features and on the features chosen by the DFL algorithm. The results are

for the discretized data sets. The horizontal axis is the index of data sets. In

all parts, the curves marked with circles and pentagrams represent the training

times on DFL features and all features of the data sets. (a) The training times

of the C4.5 algorithm. (b) The training times of the NB algorithm. (c) The

training times of the SVM algorithm.

features. We use the CFS, CSE and WSE implemented by the Weka software to compare

their results with those from the DFL algorithm. As discussed in Section 6.2.1, the forward

selection is used with the CFS, CSE and WSE feature subset selection methods.

We choose three classification algorithms with different theoretical foundation, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.4 : Results 149

C4.5, NB and SVM algorithm, to validate different feature subsets selection methods. For

the SVM algorithm, the linear kernels are used. These algorithms are applied to the DFL,

CFS, CSE, and WSE features with discretized values and original numerical values. The

results for discretized values are shown in Figure 6.2. The results for original numerical

values are similar to discretized values and not shown here. But the results of both the

discretized and numerical values are summarized in Table 6.3. The details of accuracies

for different feature selection methods are also given in the supplementary Table S3 to S6.

The 1NN and kNN algorithm are also applied to the CFS and CSE features, but not

the WSE features, since the WSE takes too much time to iterate for the 1NN and kNN

algorithms. The results for the 1NN and kNN algorithms when applied to the CFS and CSE

features are available at the supplementary Table S4 and S5. We also perform experiments

for the continuous data sets, whose results are available at the supplementary Table S3 to

S6.

When using the CFS algorithm to perform feature selection, the Weka software reports

out of memory error for the continuous MLL and Ovarian data sets. The CSE and WSE

algorithm do not find a candidate feature subset for the Monk2 data set. In addition, the

WSE algorithm when coupled with the SVM algorithm does not find a candidate feature

subset for the Lenses data set. Therefore, the accuracies for these cases are not shown in

Figure 6.2.

From Figure 6.2, it is shown that the learning algorithms generally perform better on

the DFL features when the number of features in the data sets are large, such as the data

sets with index from 15 to 24, than on other features. This again consolidates the good

generality of the DFL algorithm for the high-dimensional data sets.

We also summarize the comparison of accuracies obtained by different feature selection

methods in Table 6.3. Similar to Table 5.3, for two feature selection methods, we count

the number of data sets, where the classification algorithm applied to features of the first

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

150 Chapter 6 : Performing Feature Selection

0 5 10 15 20 25
50

60

70

80

90

100
C4.5 on DFL features vs on CFS features

0 5 10 15 20 25
50

60

70

80

90

100
C4.5 on DFL features vs on CSE features

0 5 10 15 20 25
65

70

75

80

85

90

95

100
C4.5 with DFL features vs with WSE features

(a) (b) (c)

0 5 10 15 20 25
50

60

70

80

90

100
NB with DFL features vs with CFS features

0 5 10 15 20 25
50

60

70

80

90

100
NB on DFL features vs on CSE features

0 5 10 15 20 25
50

60

70

80

90

100
NB on DFL features vs on WSE features

(d) (e) (f)

0 5 10 15 20 25
50

60

70

80

90

100
SVM with DFL features vs with CFS features

0 5 10 15 20 25
40

50

60

70

80

90

100
SVM with DFL features vs with CSE features

0 5 10 15 20 25
65

70

75

80

85

90

95

100
SVM with DFL features vs with WSE features

(g) (h) (i)

Figure 6.2: The comparison of accuracies for different feature subset selection methods.

The values are for the discretized data sets. The curves marked with circles

and pentagrams are for data sets filtered with the DFL algorithm and other

feature subset selection methods respectively. Part (a) to (c) are the results for

the C4.5 algorithm. Part (d) to (f) are the results for the NB algorithm. Part (g)

to (i) are the results for the SVM algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.4 : Results 151

Table 6.3: The comparison summary of accuracies obtained by different feature selection

methods.

Discretized D.S. Continuous D.S.

F.S. Pair Learning Algo. better equally worse better equally worse

DFL:CFS C4.5 11 7 6 13 5 4

NB 8 6 8 8 5 9

SVM 12 5 7 9 6 7

sum 31 18 21 30 16 20

DFL:CSE C4.5 8 7 8 9 6 8

NB 8 6 9 10 5 8

SVM 11 7 5 10 5 8

sum 27 20 22 29 16 24

DFL:WSE C45 4 10 9 7 7 9

NB 7 4 12 7 4 12

SVM 5 6 11 4 5 13

sum 16 20 32 18 16 34

method performs better, equally to, or worse than applied to features of the second one.

From Table 6.3, it can be seen that the DFL algorithm chooses more discriminatory

feature subsets than the CFS and CSE algorithm do, as the learning algorithms show better

prediction performances on the DFL features than on those chosen by the CFS and CSE

algorithm. The learning algorithms perform slightly better on the WSE features than on

those chosen by the DFL algorithm, but the WSE algorithm chooses more features than the

DFL algorithm does, as to be shown in Section 6.4.3.

6.4.3 Comparison of Model Complexity

The accuracy is only one aspect of the performance of each learning algorithm. The model

complexity is another aspect of the performance of each one.

We compare the number of features chosen by different feature selection methods, as

shown in Figure 6.3. The detailed results of the number of features chosen by different fea-

ture selection methods are also available at the supplementary Table S7 and S8. The feature

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

152 Chapter 6 : Performing Feature Selection

0 5 10 15 20 25
10

0

10
1

10
2 DFL vs CFS

DFL
CFS

0 5 10 15 20 25
0

5

10

15

20

25
DFL vs CSE

DFL
CSE

0 5 10 15 20 25
0

5

10

15

20
DFL vs WSE for C4.5

DFL
WSE for C4.5

(a) (b) (c)

0 5 10 15 20 25
0

5

10

15

20
k, DFL vs WSE for NB

DFL
WSE for NB

0 5 10 15 20 25
0

5

10

15

20
k, DFL vs WSE for SVM

DFL
WSE for SVM

(d) (e)

Figure 6.3: The number of features chosen by different feature selection methods. The

results are for the discretized data sets. The horizontal axis is the index of data

sets. In all parts, the curves marked with circles and pentagrams represent the

number of features chosen by the DFL algorithm and other feature selection

algorithms. (a) DFL vs CFS. (b) DFL vs CSE. (c) DFL vs WSE for C4.5. (d)

DFL vs WSE for NB. (e) DFL vs WSE for SVM.

lists chosen by different feature selection methods are also available at the supplementary

Table S9 to S14.

We also summarize the number of features for different feature selection methods in

Table 6.4. Similar to Table 5.3, for two feature selection methods, we count the number

of data sets, where the first method chooses smaller, equal, bigger number of features than

the second one does. As summarized in Table 6.4, the DFL chooses comparable number of

features to the CFS method, but less features than the CSE and WSE method do.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.4 : Results 153

Table 6.4: The comparison summary of the number of features chosen by different feature

selection methods.

Discretized Data Sets Continuous Data Sets

F.S. Pair Learning Algo. smaller equal bigger smaller equal bigger

DFL:CFS NA1 9 6 8 7 6 9

DFL:CSE NA 17 4 2 17 5 1

DFL:WSE C4.5 6 9 8 8 7 8

NB 10 4 9 9 7 7

SVM 12 5 5 13 5 4

sub sum 28 18 22 30 21 17

total sum 54 26 34 54 30 29

1 “NA” stands for not applicable.

6.4.4 Comparison of Efficiency

Next, we compare the run times of the DFL algorithm with other feature selection methods,

as shown in Figure 6.4. The detailed training times are also provided in the supplementary

Table S21 and S22. In Figure 6.4, it is shown that the the DFL algorithm uses less time than

the CFS and CSE algorithm in most data sets, 18 and 20 out of the 24 data sets respectively.

The DFL algorithm is overwhelmingly faster than the WSE algorithm for all the three

learning algorithm used with the WSE algorithm. Especially for the high-dimensional data

sets, those with index from 20 to 24, the DFL algorithm shows great reduction of run time

when compared with other feature selection methods. These experimental results suggest

that the DFL algorithm is faster than other compared feature selection methods. In addition,

the WSE method uses much more time than other feature selection methods do, like the

DFL, CFS and CSE method, as shown in Figure 6.4.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

154 Chapter 6 : Performing Feature Selection

0 5 10 15 20 25
10

−2

10
0

10
2

10
4 t (s), DFL vs CFS

DFL
CFS

0 5 10 15 20 25
10

−2

10
0

10
2

10
4

t (s), DFL vs CSE

DFL
CSE

0 5 10 15 20 25
10

−2

10
0

10
2

10
4 t (s), DFL vs WSE for C4.5

DFL
WSE for C4.5

(a) (b) (c)

0 5 10 15 20 25
10

−2

10
0

10
2

10
4 t (s), DFL vs WSE for NB

DFL
WSE for NB

0 5 10 15 20 25
10

−2

10
0

10
2

10
4

10
6

t (s), DFL vs WSE for SVM

DFL
WSE for SVM

(d) (e)

Figure 6.4: The run times of different feature selection methods. The results are for the

discretized data sets. The horizontal axis is the index of data sets. In all parts,

the curves marked with circles and pentagrams represent the run times of the

DFL algorithm and other feature selection algorithms. (a) DFL vs CFS. (b)

DFL vs CSE. (c) DFL vs WSE for C4.5. (d) DFL vs WSE for NB. (e) DFL vs

WSE for SVM.

6.5 Discussions

The DFL algorithm can be categorized as a feature subset selection method or a filter

method. However, the DFL algorithm is also different from other feature subset selec-

tion methods, like the CFS, CSE and WSE methods. Based on Theorem 2.2.2, the DFL

algorithm can produce function tables for the training data sets, while other subset feature

selection methods only generate a subset of features. Particularly, the DFL algorithm is

different from existing feature subset selection methods based on information theory in the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.5 : Discussions 155

following four aspects.

First, the stopping criterion of the DFL algorithm is different from those of existing

methods. The DFL algorithm stops the searching process based on Theorem 2.2.2. The

existing methods stop the searching process with a predefined k or threshold value of the

mutual information. Hence, the feature subsets selected by existing methods may be sensi-

tive to the k or threshold value of the mutual information.

Second, the feature subset evaluation method of the DFL algorithm is also different

from those in existing methods. I(U; Y) is evaluated with respect to H(Y) in the DFL

algorithm. The DFL algorithm uses X(1) = arg maxi I(Xi; Y) and Equation 2.11, i.e.,

X(s) = arg max
i

I(Us−1, Xi; Y),

to evaluate a new feature, while existing methods use X(1) = arg maxi I(Xi; Y) and Equa-

tion 6.2 [68, 169], i.e.,

X(s) = arg max
Xi∈Ps−1

min
X(j)∈Us−1

I(Xi; Y |X(j)),

or similar algebraic combinations of two dimensional mutual information [23, 45, 133] for

the same purpose. As mentioned early in Section 2.4.1, to maximize I(Us−1, Xi; Y) is

equal to maximize I(Xi; Y |Us−1) in Equation 2.12. I(Xi; Y |Us−1) of Equation 2.12 is

different from I(Xi; Y |X(j)) of Equation 6.2 used in [68], where the new feature is eval-

uated with respect to individual features in Us−1. As intuitively shown in Figure 2.4, by

considering the selected features as vectors, the redundancy introduced by new features to

be added to Us−1 is automatically eliminated.

Furthermore, the maximization of I(Us−1, Xi; Y) used in the DFL algorithm is more

efficient than penalizing the new feature with respect to every selected features, as done

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

156 Chapter 6 : Performing Feature Selection

by [23, 68, 169]. As analyzed in Section 2.8.1, to evaluate I(U; Y), O(n · N) operations

are needed when adding each feature, and O(k · n · N) operations are necessary to choose

k features in the DFL algorithm. However, in calculating I(Xi, X(j); Y) − I(X(j); Y)

[68,169], since there are already (s− 1) features in Us−1 in the s iteration, there would be

(s−1)×O(n·N) operations in this iteration. Therefore, it needs
∑k

s=1(s−1)×O(n·N) ≈

O(k2 ·n ·N) operations to select k features, which is less efficient. The computational cost

of the backward selection for approximating Markov Blanket is at least O(2k ·n ·N) [104],

which is even worse than the O(k2 ·n ·N) of the forward selection in [68,169]. In addition,

the correlation matrix of all features needs to be computed in the approximation method

of [104], which costs O(n2(log n + N)) operations.

Third, the searching method used by the DFL algorithm is also different from the greedy

(forward) selection searching or the backward selection searching used by methods dis-

cussed above. In the DFL algorithm, the exhaustive search of all subsets with ≤ K features

is guaranteed and can be terminated with the criterion of Theorem 2.2.2. In some data sets,

I(Xi; Y) = 0,∀Xi ∈ X, as demonstrated by the example in Figure 6.5. The data set of this

example is available at the supplementary website of this thesis. Existing feature selection

methods based on mutual information [45, 68, 133, 169] will fail for this kind of data sets.

For the example in Figure 6.5, it is shown that the three true relevant features, X21, X29

and X60, share smaller mutual information with Y than many other irrelevant features do.

Actually, ∀Xi ∈ V, I(Xi; Y) should be zero in this data set since ∀Xi ∈ V, Xi and Y are

independent. But they are still larger than zero, although very small as shown in Figure 6.5,

in practice. Hence, if a simple forward selection is used, existing feature selection methods

in [45,68,133,169] will choose X31, which is an irrelevant feature, in the first round of the

forward selection. Consider the selection criteria in Equation 6.2 [68, 169] and Equation

6.5 [133]. First, I(Xi; Xj) = 0, since ∀Xi, Xj ∈ V, Xi and Xj are independent. Second,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.5 : Discussions 157

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 10

−3

Figure 6.5: The I(Xi; Y) in the data sets of 1000 samples generated with Y =
¬(X21

⊕
X29

⊕
X60), and V = {X1, . . . , X100},∀Xi, Xj ∈ V, Xi and Xj

are independent. The horizontal axis is the index of the features. The vertical

axis is the I(Xi; Y) shown in bits. The features pointed by the arrows are the

relevant features.

∀Xi ∈ V, Xi and Y are independent. Consequently, the criteria in Equation 6.2 and Equa-

tion 6.5 will become X(s) = arg maxXi∈P
I(Xi; Y). In later rounds, many other irrelevant

features will be added to the candidate feature subset, which will also be incorrect, since

they have larger mutual information than the relevant features do. However, the DFL algo-

rithm can still find the correct feature subsets in polynomial time for this kind of data sets,

since it guarantees the exhaustive searching of all subsets with ≤ K features and evaluates

all selected features as a vector with Equation 2.11. For the example in Figure 6.5, the

DFL algorithm successfully finds the correct feature subsets with less than 15 minutes in

each fold of a 10 fold cross validation and obtains 100% prediction accuracy in the cross

validation in our experiment.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

158 Chapter 6 : Performing Feature Selection

Fourth and last, the methods in [68, 169] can only deal with binary features, however,

the DFL algorithm can deal with multi-value discrete features as well.

In summary, three unique properties of the DFL algorithm are prerequisite to solve

feature selection problems introduced by the data sets similar to that in Figure 6.5. First,

the candidate features are considered as a vector to compute I(U; Y). Second, I(U; Y)

is evaluated with respect to H(Y) based on Theorem 2.2.2, which guarantees to find the

correct feature subset. Last, the searching schema of the DFL algorithm guarantees to

exhaustively search all subsets of V with ≤ K features, although the first round searching

is greedy forward selection.

In Bayesian network fields, Friedman et al. [76] proposed an algorithm for learning

Bayesian networks, called as the Sparse Candidate algorithm. The Sparse Candidate algo-

rithm chooses parent nodes for the node under consideration with the similar idea of select-

ing those having strong relations. One of the statistics, I(Xi; Xj,Pa(Xi)), used for evaluat-

ing the new parent node in the Sparse Candidate algorithm is similar to the I(Us−1, Xi; Y)

used in the DFL algorithm. However, there are two fundamental differences between the

Sparse Candidate algorithm and the DFL algorithm. Firstly, the Sparse Candidate algo-

rithm does not compare the statistic I(Xi; Xj,Pa(Xi)) with the entropy of Xi, H(Xi), but

the DFL algorithm compares I(Us−1, Xi; Y) with H(Y). As discussed in Section 2.4.1,

this comparison is critical. Since by comparing I(Us−1, Xi; Y) with H(Y), the DFL al-

gorithm knows which set of variables is a Markov Blanket of Y , based on Theorem 2.3.1,

and is complete in deciding the value of Y , based on Theorem 2.2.2. Consequently, the

DFL algorithm avoids the exhaustive searching of all subsets of V, which is NP-hard. Sec-

ondly, the forward selection is used in the Sparse Candidate algorithm. However, the DFL

algorithm uses a better searching schema, which guarantees the exhaustive searching of all

subsets of V with ≤ K features.

We briefly compare our approach and logistic regression methods at the result level

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.6 : Conclusions 159

because logistic regression does not belong to feature selection methods as discussed in

Section 6.2. For the benchmark ALL data set [81], SLogReg [153] and BLogReg [40]

made 4 and 5 prediction errors out of the total 72 samples in a leave one out cross validation

with about 12 and 5 features. We also use the DFL algorithm to perform the same leave

one out cross validation for this data set. The DFL algorithm makes 5 prediction errors

with only one feature, D88422, with the parameters ǫ = 0.36 and K = 20. The run times

used by SLogReg and BLogReg in each fold are 2392.2s and 1.16s, as reported in [40].

In comparison, the DFL algorithm implemented with the Java language in our DFLearner

software only uses 0.048s for the same computational task on a PC with Intel Pentium 4,

3.2GHz, CPU and 2GB memory, running Windows XP operating system. These suggest

that the DFL algorithm performs better in terms of efficiency and model complexity than

both SLogReg and BLogReg, but marginally loses to SLogReg in term prediction accuracy.

6.6 Conclusions

In this chapter, we analyze the feature selection problem from the information theory ap-

proach, with some concepts in graphical models. As discussed in Section 6.3, the Problem

1 and Problem 2 in Section 6.1 can be solved by comparing I(U; Y) with H(Y), based on

Theorem 2.2.2, 2.2.4 and 2.3.1. Then, based on Theorem 2.3.1, we use the DFL algorithm

to efficiently find the Markov Blanket of Y .

The DFL algorithm is used as a filter feature subset selection method. We evaluate the

features chosen by the DFL algorithm, and compare the results with those from existing

feature subset selection methods, both filters and wrappers. The well-known classification

methods show improvements of accuracies in most cases when applied to the essential at-

tributes chosen by the DFL algorithm with significantly less time, as shown in Table 6.2 and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

160 Chapter 6 : Performing Feature Selection

in Figure 6.1 respectively. In Table 6.3, the comparisons with other feature selection meth-

ods show that the DFL algorithm chooses more informative and discriminatory features

when compared to other filter methods, such as the CFS and CSE method.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7

Conclusions

I
N this chapter, we will summarize the contributions of the thesis. We start by sum-

marizing the comparisons between the ILA and other approaches of computational

learning theory. Then, we summarize the contributions of this thesis. Finally, we analyze

the limitations of the ILA and propose some future directions for continuing research.

7.1 Discussions

In this section, we compare the ILA with other approaches to computational learning theory

and discuss their relations.

7.1.1 Comparison of The ILA and PAC Theory

First, we compare the ILA with the PAC theory. The PAC theory provides approximations

of the original functions to a satisfactory threshold value with a high probability using

noiseless training samples. The PAC theory also introduces the restrictions, i.e., there are

fewer than or equal to k inputs, to the target functions to make the learning process be

161

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

162 Chapter 7 : Conclusions

with polynomial complexity. However, the ILA can definitely find the original function

in polynomial time under the same restrictions about the original function, as shown in

Theorem 2.4.1. If there are no restrictions to the original functions, the ILA can also

identify the original function when given enough samples, as discussed in Section 4.4.3.

But the sample complexity grows exponentially, N ∼ (2n + n log2 n) based on Theorem

3.2.1, in this situation. Thus, the learning process is NP-hard.

In the PAC theory, the learner updates the hypothesis when given a new sample. In this

sense, the learner of the PAC theory makes use of the training data set from the dimension

of the samples. However, it is a fact that for a given sample, the attributes are specified

with deterministic values. In other words, there is no diversity, no randomness, no entropy

for a given sample. In comparison, the ILA makes use of the training data sets from the

dimension of attributes. In ILA, all samples are used as a collective set, in which attributes

are not deterministic any more. The attributes can take different values with some proba-

bilities. To put it another way, there appears diversity, randomness and entropy when the

training data sets are used from the dimension of attributes. It is these attributes as random

variables that carry the information about the concept under consideration. Thus, the DFL

algorithm learns the models from the dimension of attributes.

7.1.2 Comparison of The ILA and VC Theory

Second, we compare the ILA with VC theory. The SVM methods select some samples

in the training data sets as support vectors, and approximate the classification function

with these vectors. There exist several shortcomings with the choice of support vectors.

First, in the sense of choosing supporting vectors, the SVM methods do not reduce the

dimensions of the classification problems. However, it is not the number of samples but the

number of features (dimensions) of the data sets that mostly deteriorates the performances

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

7.1 : Discussions 163

-

-
+

f1 -

+
+

A

B

C

-

-
+

f1

+

f2

+
+

-A

B

C
D

(a) (b)

Figure 7.1: A schematic view of the unstableness of the classifiers obtained by the SVM

algorithm. (a) The three samples enclosed in circles, {A,B,C}, are chosen as

support vectors. The obtained classifier is the solid line f1. (b) There appears

a new sample D in the training data set. Sample A is not chosen as support

vector any more. Instead, the new sample D is chosen as support vector, since

the new set of support vectors, {B,C,D}, provides a maximum margin in the

new data sets. The new classifier f2 is quite different from the old classifier f1.

of learning algorithms. From the statistical point of view, large training data set provides us

a better knowledge repository. As shown in Theorem 2.2.4, the large sample size minimizes

the undesirable effect from irrelevant features. Hence, it is more advisable to reduce the

number of attributes than to reduce the number of training samples. Second, it is impossible

to know whether a set of support vectors is sufficient to correctly find the classification

functions. Third, the choice of support vectors often suffers from the risk of obtaining

unstable classifiers, as shown in Figure 7.1. In Figure 7.1, we see that if there appear new

training samples besides the old classification boundary, i.e., the old classifier, it is very

likely that the new classification model is different from the old one, since the support

vectors has changed in these cases.

In comparison, the DFL algorithm reduces the complexity of the classification problems

from another dimension, i.e., from the number of attributes. Due to the merit of Theorem

2.2.2, the DFL algorithm can determine whether a set of EAs is a complete set of attributes

needed to decide the class value. Precisely, the class attribute is an exact function of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

164 Chapter 7 : Conclusions

EAs when ǫ = 0 based on Theorem 2.2.2. The models obtained by the DFL algorithm are

also stable given enough samples, as to be discussed in Section 7.1.4.

7.1.3 Comparison of ILA and Bayesian Inference

Third, we compare the ILA with the Bayesian inference. Bayesian networks provide global

conditional probability of the class attribute P (Y |V), which is factorized with some local

conditional probability encoded with the structure of the Bayesian networks. The global de-

ciphering of the conditional independence between variables in Bayesian networks makes

the learning and inference problems very difficult. As discussed in Section 1.1.3, both the

learning and inference of Bayesian inference are NP-hard. However, there is no need to

use expensive computational resource to obtain all the conditional independent relational

between variables. It is the immediate parents Pa(Y) of the class attribute Y that give

most information about Y . Based on Theorem 2.1.5, it is obvious that other variables ex-

cept Pa(Y) will give no information about Y , since variables in V\Pa(Y) are conditional

independent of Y given Pa(Y) in Bayesian networks.

Therefore, the ILA solves the problem with local conditional probability, P (Y |U), as

discussed in Section 2.1.2. To find complete U, the ILA uses Theorem 2.2.2 and 2.2.4.

Based on Theorem 2.2.2, U fully determines the value of Y if I(U; Y) = H(Y). Based

on Theorem 2.2.4, it is shown that other variables in V \ U do not provide additional

information about Y if I(U; Y) = H(Y). The evaluation of I(U; Y) with respect to

H(Y) is important, since it provides a criterion to determine whether the selected features

are sufficient to decide Y or not. Consequently, the NP-hard exhaustive searching of all

subsets of V is avoided in the ILA. For noiseless data sets, there would be only one rule for

each u. That means the probability of Y given U is one for each u. For noisy data sets, the

ILA provides a list of rules, (u, y), with the their counts in training data sets. These counts

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

7.1 : Discussions 165

provide statistically meaningful predictions for the new samples. These count values are

easily converted to conditional probabilities of Y given U, as shown in Section 4.7.2.

In addition, there is an additional implicit assumption over the parent nodes of Y in

Bayesian networks. Since the structures of Bayesian networks are DAGs (Directed Acyclic

Graphs), it is assumed that there are no cycles among the parent nodes of Y . However, in

our method, there is no such an assumption for the inputs of Y .

7.1.4 Comparison of ILA and Algorithmic Learning Theory

Fourth, we compare the ILA with the algorithmic learning theory. The algorithmic learning

theory emphasizes that after some finite number of examples the system produces a correct

hypothesis, which does not improve with any more given new samples.

Recall Theorem 2.4.1, in which the sample size is not explicitly required. Actually,

when sample size is small, it is probable that the inputs of learned function U are not the

inputs in the original function X. See the example in Figure 4.1. When the sample size is

only 20, the learned function is X
′

i = f(X2, X7, X9), however the original function is X
′

i =

f(X1, X2, X3). The reason for this discrepancy lies in Theorem 2.1.4. Since when sample

size is small, I(Z; Y) 6= 0,∀Z ∈ V\X, as discussed in Section 4.3. But when sample

size is large, I(Z; Y) will become zero, based on Theorem 2.2.4. Hence, when sample size

is growing, the models learned with the DFL algorithm will finally converge to a definite

function, i.e., the original function, and will not change any more given additional samples.

Based on Theorem 2.4.2, if the number of inputs of the original function is bounded by

a constant, then the DFL algorithm can correctly find it in polynomial time given enough

samples, with the lower bound defined by Theorem 3.2.2. This convergence of the DFL

algorithm is essentially the convergence emphasized in the algorithmic learning theory.

For example, recall Theorem 4.4.4, in which we demonstrate that if enough samples

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

166 Chapter 7 : Conclusions

are given, the DFL algorithm can correctly learn the original BLNs, i.e., a set of Boolean

functions, in polynomial time. The BLN model learned with the DFL algorithm will not

change after the number of learning samples grows to a certain value, with the lower bound

defined by Theorem 3.2.1.

If the samples are noisy, the situation is much more complex, but Theorem 2.2.4 is also

correct for noisy data sets. See example in Figure 2.3, where the I(Xi; Y) of irrelevant

features is probabilistically zero, for the noisy data sets with 2000 samples and 10% noise.

This suggests that the functions estimated with the ǫ value method will contain the true

inputs of the original functions with high probability, as demonstrated in Section 4.6.3.

7.2 Contributions

In this dissertation, we propose a new philosophy to understand learning as a procedure

to acquire information of the concept under consideration, such as the class attribute in

classification problems. Hence, we name it as information learning approach. The ILA

is robust to noisy and efficient in practice, as demonstrated by the experimental results in

Section 4.6.3, 4.6.2, 5.3.4 and 6.4.4. Generally, both the existing learning methods based on

information theory and our approach belong to Information Learning Approach, although

we use ILA to stand for our approach in the thesis.

Based on the ILA, we propose a new algorithm, called discrete function learning al-

gorithm, to learn functions from data sets. The DFL algorithm is versatile and has been

used to learn qualitative models of GRNs, to solve classification problems, and to find

informative and discriminatory feature subsets for other classification algorithms.

We prove that the DFL algorithm can learn a bounded OR/AND Boolean function with

O(k ·(N +log n)·n) time compared to o(N ·nk) time before this work. For general Boolean

functions, we have demonstrated that the DFL algorithm can still correctly find the original

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

7.2 : Contributions 167

function in O(k · (N + log n) · n) steps with high probability. In Section 4.6.3, we have

also shown that Boolean functions can efficiently and correctly be learned even when there

are substantial amount, up to 20%, of noise in the learning data sets.

The searching method of the DFL algorithm extends the classical greedy algorithm

[49]. The merit of our searching method lies in that it is greedy in the first round of search-

ing as shown in Figure 2.6, but still guarantees to check all the subsets in the searching

space SK , as shown in Figure 2.8. Although it takes more time in its worst complexity, the

DFL algorithm can still find the correct models in polynomial time as proved in Theorem

2.4.2. As shown in Table 5.2, the DFL algorithm can find fairly good models for most prob-

lems after its first round greedy searching. But the exhaustive searching is also necessary

in some situations, as shown in Figure 6.5.

We discussed the completeness of features with the ILA. We prove that complete feature

subsets for classification problems can be obtained with the DFL algorithm.

The completeness of features makes it possible to overcome the curse of dimensional-

ity, since many irrelevant and redundant features strictly proved to be useless for building

accurate models are excluded. In many benchmark data sets, the DFL algorithm finds

informative and discriminatory feature subsets for other classification methods.

We propose a new method to evaluate the performances of inference algorithm for

learning qualitative models of GRNs. We propose to use the structure sensitivity as the

criterion to evaluate the performance of inference algorithm for learning GRN models.

We implement the DFL algorithm for learning qualitative models, solving classifica-

tion problems, and performing feature selection in an integrated software, called Discrete

Function Learner.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

168 Chapter 7 : Conclusions

7.3 Limitations and Future Work

In learning Boolean functions, there is one kind of functions that the DFL algorithm and

many other algorithms cannot solve soundly. As discussed in Section 4.5, the DFL algo-

rithm will use more time, but still polynomial, to find Boolean functions Y = f(X) in

which I(Xi; Y) = 0,∀Xi ∈ X, e.g., Y = X1

⊕
X2.

In Section 4.5, we discussed the constant functions. The DFL algorithm can correctly

find the constant functions. But it introduces another problem which cannot be solved by

the DFL algorithm. That is if the training samples are all with the same class attribute, then

the entropy of the class attribute is zero. Consequently, the DFL algorithm cannot find the

original function in this case. Nevertheless, this is an extreme case and unlikely to happen

in practice. This problem can also be solved by drawing samples with the restriction of

ergodicity, i.e., all possible samples are included in the training data sets.

The DFL algorithm may use more time to find the model when sample size is small.

As shown in the example of Figure 4.1, when sample size is small, the irrelevant features

may share more information with the concept under consideration. Consequently, the DFL

algorithm will use more time to find the original functions, as shown in Section 4.6.3.

However, these problems may be solved by increasing the sample size.

In the current implementation, the DFL algorithm will stop its searching when it finds

the first feature subset to satisfy I(X; Y) = H(Y) or I(X; Y) ≥ (1 − ǫ) × H(Y) in

the ǫ value method. In gene expression profiles or proteomic profiles, it is possible that

there exist several subsets of features which are biologically meaningful and can give good

prediction performance [134, 173]. In the future, the DFL algorithm can be used to find all

feature vectors which capture H(Y) or at least (1− ǫ)×H(Y) with fewer than or equal to

k features, and to find the prediction performances of the classifiers built over these feature

vectors, by continuing the search process after the DFL algorithm finds the first satisfactory

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

7.4 : Perspective 169

feature subset.

7.4 Perspective

As demonstrated in Section 4.6, the DFL algorithm can find most bounded Boolean func-

tions in smaller than o(N · nk) steps. This observation makes us propose the following

conjecture about multi-value discrete functions.

Conjecture 7.4.1 The DFL algorithm can correctly find most bounded multi-value discrete

functions in smaller than o(N · nk) steps with high probability.

The DFL algorithm can be used to solve more problems than those shown in this thesis.

Some promising future applications include, but not restricted to character recognition,

image recognition, DNA sequence classification as coding or non-coding [185, 193], RNA

splicing site classification [185, 193], association rule extraction from database, etc.

The searching schema of the DFL algorithm should be useful for solving many other

combinatorial optimization problems. In computer science, many difficult problems are

finally resorted to combinatorial searching, such as the learning problem of Bayesian net-

works [42, 43]. Many combinatorial searching problems are NP-complete and the greedy

algorithm is often used to find the global or local optimal results. The searching method

of the DFL algorithm provides an alternative choice to the greedy searching method for

solving these problems.

We propose the information learning approach as a new approach to the computational

learning theory by interpret learning as a procedure to acquire information about the con-

cept under consideration. We propose the discrete function learning algorithm to implement

the ILA. We have shown several applications of the DFL algorithm. We have demonstrated

that bounded discrete functions are learnable in polynomial time with the DFL algorithm,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

170 Chapter 7 : Conclusions

even when the data sets are noisy. In general, Boolean functions are widely used in knowl-

edge representation. In this sense, the DFL algorithm is a useful and efficient method for

automatically learning knowledge from data sets.

In a more profound view, we hope that the ILA is useful in helping us to understand

learning from the mechanistic perspective. In particular, as demonstrated by the lost PC

and human DNA example in Section 1.2, there exist some essential attributes in describing

a concept. If we can know these essential attributes with the aid of computational means

from a small set of samples in prior, it will save enormous resources, like time and expense,

when we are exploring to understand the concept.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix A

The Proofs of the Theorems in Chapter 2

A.1 Jensen’s Inequality

Jensen’s inequality [122] deals with convex functions of only one variable. Let K be an

interval in E1 (Euclidean 1-space), and let F (x) be a probability distribution function con-

centrated on K. Let K be the associated random variable, i.e., P (X ≤ x) = F (X). If the

expectation E(X) exists, and if f(X) is a convex ∪1, Jensen’s inequality says that

E(f(X)) ≥ f(E(X)). (A.1)

Furthermore, if f is strictly convex, inequality (Equation A.1) is strict unless X is concen-

trated at a single point x0, that is, P (X = x0) = 1. Naturally, if f is instead convex ∩, the

inequality reverses:

E(f(X)) ≤ f(E(X)). (A.2)

1The convex ∪ is also called concave and the convex ∩ is also called convex.

171

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

172 Appendix A : The Proofs of the Theorems in Chapter 2

A.2 Proofs of the Theorems in Section 2.1

Theorem A.2.1 (Theorem 2.1.5) Let V = {X1, . . . , Xn}, ∀Z ⊆ V \ X, X and Z are

independent. Given enough samples of V. If Y and Z are conditional independent given

X, then empirical mutual information Î(Y ;Z) = 0.

Proof. From Theorem 2.1.4, p(x) can be correctly estimated from the enough samples.

Since Y and Z are conditional independent given X, i.e.,

p(y|x, z) = p(y|x). (A.3)

Since X and Z are independent, we have

p(x|z) = p(x) (A.4)

Multiply both sides of Equation A.3 and Equation A.4, then sum up the two sides over all

possible x.

∑

x

p(y|x, z)p(x|z) =
∑

x

p(y|x)p(x)

p(y|z) = p(y).

That is to say, when the probability of every instance x of X is known, Y and Z are

independent. From Theorem 2.1.3, we have Î(Y ;Z) = 0. ¥

Theorem A.2.2 (Theorem 2.1.6) If Y = f(X), then I(X; Y) = H(Y).

Proof. Since Y is a deterministic function of X, p(Y = f(x)|X = x) = 1, otherwise

p(Y |X) = 0. Hence ∀x, H(Y |X = x) = 0. Thus, we get I(X; Y) = H(Y) − H(Y |X) =

H(Y). ¥

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

A.3 : Proofs of the Theorems in Section 2.2 173

The proof of Theorem A.2.2 can also be found in [83].

A.3 Proofs of the Theorems in Section 2.2

Theorem A.3.1 (Theorem 2.2.2, 1.2.2) If the mutual information between X and Y is

equal to the entropy of Y , i.e., I(X; Y) = H(Y), then Y is a function of X.

Proof. From the definition of mutual information, we obtain I(X; Y) = H(Y)−H(Y |X) =

H(Y). Thus, H(Y |X) = 0.

From the definition of conditional entropy,

H(Y |X) = −
∑

x

∑

y

p(x, y) log p(y|x)

= −
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)

= 0

Hence, p(x, y) = p(x). That is to say, for every value x of X with p(x) > 0, there exists

only one possible value y of Y that satisfy p(x, y) = p(x) > 0. In other words, Y is a

function of X. ¥

In [50, 178], it is proved that if H(Y |X) = 0, then Y is a function of X . Since

I(X; Y) = H(X)+H(Y |X), it is immediate to obtain Theorem A.3.1. Based on Theorem

(or Corollary) A.3.2 to A.3.5, we propose Theorem A.3.6 (Theorem 2.2.3).

Theorem A.3.2 (Theorem 2.1.3) For any discrete random vectors Y and Z, I(Y ;Z) ≥ 0.

Moreover, I(Y ;Z) = 0 if and only if Y and Z are independent.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

174 Appendix A : The Proofs of the Theorems in Chapter 2

Proof. From the definition of mutual information in Equation 2.4,

I(Y ;Z) = −
∑

y

∑

z

p(y, z) log
p(y, z)

p(y)p(z)
.

Hence, I(Y ;Z) > 0, and is zero when ∀y, z, p(y, z) = p(y)p(z). In other words, I(Y ;Z) =

0, if and only if Y and Z are independent. ¥

Proof of Theorem A.3.2 can also be found in [50]. Immediately from Theorem A.3.2,

the following corollary is also correct.

Corollary A.3.1 (Corollary 2.1.1) I(Y ;Z|X) ≥ 0, with equality if and only if Y and Z

are independent given X.

Then, we discuss the relationship between H(X) and H(Y) when Y = f(X) in the

following theorem.

Theorem A.3.3 If Y = f(X), where X is a set of discrete random variables, then H(X) ≥

H(Y).

Proof. From the Definition of joint entropy in Equation 2.3,

H(X, Y) = H(X) + H(Y |X) = H(X)

= H(Y) + H(X|Y) ≥ H(Y)

Thus, H(X) ≥ H(Y). ¥

Again, the proof of Theorem A.3.3 is also available in [50].

Theorem A.3.4 Suppose that X is a set of discrete random variables, and Y are a finite

discrete random variables. Then, min(H(X), H(Y)) ≥ I(X; Y) ≥ 0.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

A.3 : Proofs of the Theorems in Section 2.2 175

Proof. Since I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) and H(X|Y) ≥ 0,

H(Y |X) ≥ 0. ¥

Theorem A.3.5 (Theorem 2.2.1, 1.2.1) I(X,Z; Y) ≥ I(X; Y), with equality if and only

if p(y|x) = p(y|x, z) for all (x, y, z) with p(x, y, z) > 0.

Proof.

I(X; Y) − I(X,Z; Y) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
−

∑

x,y,z

p(x, y, z) log
p(x, y, z)

p(x, z)p(y)

=
∑

x,y,z

p(x, y, z) log
p(y|x)

p(y|x, z)

= E[log
p(y|x)

p(y|x, z)
]

log(·) is a convex ∩ function. Applying Jensen’s inequality in Equation A.2, we have

I(X; Y) − I(X,Z; Y) ≤ log
∑

x,y,z

p(x, y, z)
p(y|x)

p(y|x, z)

= log
∑

x,y,z

p(x, z) · p(y|x)

= log 1 = 0.

The conditions for equality are
p(y|x)

p(y|x,z)
= 1, i.e., for all (x, y, z) with p(x, y, z) > 0,

p(y|x) = p(y|x, z). ¥

Proof of Theorem A.3.5 can also be found in [122].

Theorem A.3.6 (Theorem 2.2.3) If I(X; Y) = H(Y), X = {X(1), . . . , X(k)},∀Z ⊆

V\X, Y and Z are conditional independent given X.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

176 Appendix A : The Proofs of the Theorems in Chapter 2

Proof. Let us consider I(X,Z; Y), ∀Z ⊆ V\X. Firstly,

H(X,Z) = H(X) + H(Z|X) ≥ H(X).

Secondly, from Theorem A.3.1, Y = f(X). Then, from Theorem A.3.3, H(X) ≥

H(Y). So, H(X,Z) ≥ H(X) ≥ H(Y). Thus, min(H(X,Z), H(Y)) = H(Y). From

Theorem A.3.4, we have

I(X,Z; Y) ≤ min(H(X,Z), H(Y)) = H(Y) = I(X; Y). (A.5)

On the other hand, from Theorem A.3.5, we get

I(X,Z; Y) ≥ I(X; Y). (A.6)

From both Equation A.5 and Equation A.6, we obtain I(X,Z; Y) = I(X; Y). Again

from Theorem A.3.5, we get p(y|x, z) = p(y|x). That is to say, Y and Z are conditional

independent given X. ¥

Corollary A.3.2 (Corollary 2.2.1) If I(X; Y) = H(Y), X = {X(1), . . . , X(k)}, ∀Z ⊆

V\X, then I(Y ;Z|X) = 0.

Proof. Immediately from Theorem A.3.6 and Corollary A.3.1. ¥

Theorem A.3.7 (Theorem 2.2.4) Let V = {X1, . . . , Xn}, ∀Z ⊆ V \ X, X and Z are in-

dependent. Given enough samples of V. If I(X; Y) = H(Y), then ∀Z ⊆ V\X, empirical

mutual information Î(Y ;Z) = 0.

Proof. From Theorem A.3.6, Y and Z are conditional independent given X. Immediately

from Theorem A.2.1, we have the results. ¥

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

A.4 : Proofs of the Theorems in Section 2.4 177

Theorem A.3.8 (Theorem 2.3.1) If I(X; Y) = H(Y), X = {X(1), . . . , X(k)}, then X is a

Markov blanket of Y .

Proof. From Theorem A.3.2, Y and Z, ∀Z ⊆ V\X, are conditional independent given X.

Immediately from Definition 2.3.1, we have the result. ¥

A.4 Proofs of the Theorems in Section 2.4

Theorem A.4.1 (Theorem 2.4.1) Let V = {X1, . . . , Xn}. The DFL algorithm can find a

consistent function Y = f(U) of maximum indegree K with O((N + log n) · nK) time in

the worse case from T = {(vi, yi) : i = 1, 2, . . . , N}.

Proof. Since |X| = k, X is included in the searching space SK , where K ≥ k. Since

Y = f(X), I(X; Y) = H(Y) based on Theorem A.2.2. In the searching space SK , there

exists at least one subset of V, i.e., X, which satisfies the criterion of Theorem A.3.1.

Since the maximum indegree of the function is K ≥ k, the target subset U is included

in the searching space SK . The DFL algorithm guarantees the check of all subsets in SK ,

which takes O(N · nK) time. The sort step in line 7 of Table 2.2 will be executed for

O(nK−1) times, which takes O(nK · log n) time. Finally, based on Theorem A.3.1, the

DFL algorithm will find a consistent function Y = f(U) in O((N + log n) · nK) time in

the worst case. ¥

Theorem A.4.2 (Theorem 2.4.2) Let V = {X1, . . . , Xn}, ∀Z ⊆ V \ X, X and Z are

independent. Given enough samples of V. The DFL algorithm can find the original gen-

eration function Y = f(X) of maximum indegree K with O((N + log n) · nK) time in the

worse case from T = {(vi, yi) : i = 1, 2, . . . , N}.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

178 Appendix A : The Proofs of the Theorems in Chapter 2

Proof. Since |X| = k, X is included in the searching space SK , where K ≥ k. Since

Y = f(X), I(X; Y) = H(Y) based on Theorem A.2.2. In the searching space SK , there

exists at least one subset of V, i.e., X, which satisfies the criterion of Theorem A.3.1.

Based on Theorem A.3.7, I(Z; Y) = 0,∀Z ⊆ V\X. Hence, X is the only subset of V

which satisfies the criterion of Theorem A.3.1 in SK .

The DFL algorithm guarantees the check of all subsets in SK , which takes O(N · nK)

time. The sort step in line 7 of Table 2.2 will be executed for O(nK−1) times, which takes

O(nK · log n) time. Finally, based on Theorem A.3.1, the DFL algorithm will find the

original function Y = f(X) in O((N + log n) · nK) time in the worst case. ¥

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix B

The Proofs of the Theorems in Chapter 3

Theorem B.0.3 (Theorem 3.2.2) Ω(bk + k logb n) transition pairs are necessary in the

worst case to identify the qualitative GRN models of maximum indegree ≤ k and the max-

imum base for variables ≤ b.

Proof. Firstly, we consider the number of mutually distinct qualitative GRN models of

maximum indegree ≤ k and the maximum base for variables ≤ b.

There are
(

n

k

)
≈ nk possible combinations of inputs for a given gene, and bbk

possible

discrete functions of base b for each gene. Thus, there are Ω((bbk

· nk)n) qualitative GRN

models of maximum indegree ≤ k and the maximum base for variables ≤ b.

Therefore, Ω(bk · n log2 b + nk log2 n) bits are required to represent a GRN model

of maximum indegree ≤ k and of maximum indegree ≤ k and the maximum base for

variables ≤ b.

Lastly, we consider the number of transition pairs. For each transition pair, the informa-

tion quantity is n log2 b bits if the maximum base for variables ≤ b. Hence, Ω(bk +k logb n)

transition pairs are required in the worst case. ¥

179

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix C

The Proofs of the Theorems in Chapter 4

Theorem C.0.4 (Theorem 4.4.1) Given enough samples for an OR BLN over V, the mu-

tual information between ∀Xij ∈ Pa(X
′

i) = {Xi1, . . ., Xik} and X
′

i is

I(Xij; X
′

i) =
1

2
−

2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
. (C.1)

Proof. The data sets are generated with the original Boolean functions of the BLNs. From

Theorem 2.1.4, the empirical probability of Pa(X
′

i) and X
′

i in the Boolean functions X
′

i =

fi(Pa(X
′

i)) will tend to be the probabilities in the truth table of fi when sample size is

large enough.

Without loss of generality, we consider I(Xi1, X
′

i). In the truth table of X
′

i , there are

equal number of “0” and “1” for Xi1. Thus, H(Xi1) = 1.

In the truth table of X
′

i , there are 2k lines totally. And in the column of X
′

i , there are

only one “0”, and 2k − 1 number of “1”. Thus,

H(X
′

i) = −
1

2k
log

1

2k
−

2k − 1

2k
log

2k − 1

2k
=

k

2k
−

2k − 1

2k
log

2k − 1

2k
.

180

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

181

There are only three possible instances for the tuple (Xi1, X
′

i), i.e., (0, 0), (0, 1) and

(1, 1). By counting the number of these patterns, and divided by the total number of lines,

we have

H(Xi1, X
′

i) = −
1

2k
log

1

2k
−

2k−1 − 1

2k
log

2k−1 − 1

2k
−

1

2
log

1

2
.

Therefore, from Equation 2.6, we obtain

I(Xi1; X
′

i) = H(Xi1) + H(X
′

i) − H(Xi1, X
′

i)

=
1

2
−

2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
.

¥

Theorem C.0.5 (Theorem 4.4.2) Given enough samples. In OR BLNs with maximum in-

degree k over V, ∀1 ≤ p ≤ k, Xi(1), Xi(2), . . . , Xi(p) ∈ Pa(X
′

i), the mutual information

between {Xi(1), Xi(2), . . . , Xi(p)} and X
′

i is

I({Xi(1), Xi(2), . . . , X(p)}; X
′

i) =
p

2p
−

2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
. (C.2)

Proof. From Theorem 2.1.4, the empirical probability of Pa(X
′

i) and X
′

i in the Boolean

functions X
′

i = fi(Pa(X
′

i)) will tend to be the probabilities in the truth table of fi when

sample size is large enough.

Similar as in proof of Theorem C.0.4, we have

H(X
′

i) =
k

2k
−

2k − 1

2k
log

2k − 1

2k
. (C.3)

Consider X
′

i = X1 +X2 +X3 and p = 2 first. Without loss of generality, we derive

I({X1, X2}; X
′

i). For H(X1, X2), as shown in Table C.1, there are 2p = 4 possible in-

stances for the (X1, X2), i.e., (0,0), (0,1), (1,0), and (1,1). By counting the number of these

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

182 Appendix C : The Proofs of the Theorems in Chapter 4

patterns, and divided by the total number of lines, we get H(X1, X2) = 2p×(− 1
2p log 1

2p) =

2 (bits).

Table C.1: The truth table of X
′

i = X1 +X2 +X3.

X1 X2 X3 X
′

i

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Next, we derive H(Xi(1), . . . , Xi(p), X
′

i). There are 2p + 1 = 5 possible instances for

(X1, X2, X
′

i), i.e., (0,0,0), (0,0,1), (0,1,1), (1,0,1) and (1,1,1). Their probabilities are

p(0, 0, 0) =
1

2k
,

p(0, 0, 1) =
2k−p − 1

2k
=

2k−2 − 1

2k
,

p(0, 1, 1) =
2k−p

2k
=

2k−2

2k
,

p(1, 0, 1) =
2k−p

2k
=

2k−2

2k
,

p(1, 1, 1) =
2k−p

2k
=

2k−2

2k
. (C.4)

Hence, we get

H(X1, X2, X
′

i) = −
1

2k
log

1

2k
−

2k−2 − 1

2k
log

2k−2 − 1

2k
− 3 × (

2k−2

2k
log

2k−2

2k
)

=
3

2
−

1

2k
log

1

2k
−

2k−2 − 1

2k
log

2k−2 − 1

2k
.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

183

Finally, from Equation 2.6, we have

I({X1, X2}; X
′

i) = H(X1, X2) + H(X
′

i) − H(X1, X2, X
′

i)

= −
1

2k
log

1

2k
−

2k − 1

2k
log

2k − 1

2k
+ 2

−
3

2
+

1

2k
log

1

2k
+

2k−2 − 1

2k
log

2k−2 − 1

2k

=
1

2
−

2k − 1

2k
log

2k − 1

2k
+

2k−2 − 1

2k
log

2k−2 − 1

2k
. (C.5)

By generalizing 3 to p, we have

H(Xi(1), . . . , Xi(p)) = 2p × (−
1

2p
log

1

2p
) = p(bits). (C.6)

From Equation C.4, there are one instance of (0, . . . , 0, 0) for (Xi(1), Xi(2), . . . , Xi(p), X
′

i).

There are 2k−p − 1 instances of (0, . . . , 0, 1) for (Xi(1), Xi(2), . . . , Xi(p), X
′

i). There are

2p−1 possible instances of (Xi(1), Xi(2), . . . , Xi(p), X
′

i) with the same probabilities of 2k−p

2k .

Hence,

H(Xi(1), . . . , Xi(p), X
′

i) = −
1

2k
log

1

2k
−

2k−p − 1

2k
log

2k−p − 1

2k

−(2p − 1)(
2k−p

2k
log

2k−p

2k
)

= p +
k

2k
−

p

2p
−

2k−p − 1

2k
log

2k−p − 1

2k
. (C.7)

Finally, by combing the Equation C.3, C.6, and C.7, we have the result, ∀1 ≤ p ≤ k,

I({Xi(1), . . . , Xi(p)}; X
′

i) = H(Xi(1), . . . , Xi(p)) + H(X
′

i) − H(Xi(1), . . . , Xi(p), X
′

i)

=
p

2p
−

2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

184 Appendix C : The Proofs of the Theorems in Chapter 4

¥

When p = k, from Theorem C.0.5, we have

I(Xi(1), . . . , Xi(k); X
′

i) =
k

2k
−

2k − 1

2k
log

2k − 1

2k
= H(X

′

i),

as shown in Equation C.3. This result is in accord with Theorem A.2.2, which validates

Theorem C.0.5 from another aspect. For instance, as shown in Figure 4.2 (b), when p = 6,

the I({Xi(1), . . . , Xi(p)}; X
′

i) in the curve for k = 6 is 0.116 bits, which should be equal to

H(X
′

i) from Theorem A.2.2. Then, from Equation C.3, when k = 6, H(X
′

i) = 6
64

− 63
64

·

log2(
63
64

) = 0.116 bits too.

Theorem C.0.6 (Theorem 4.4.3) Given enough samples. In OR BLNs with maximum in-

degree k over V, ∀2 ≤ p ≤ k,

I({Xi(1), Xi(2), . . . , Xi(p)}; X
′

i) > I({Xi(1), Xi(2), . . . , Xi(p−1)}; X
′

i).

Proof. From Theorem C.0.5, we have

I({Xi(1), Xi(2), . . . , Xi(p)}; X
′

i) − I({Xi(1), Xi(2), . . . , Xi(p−1)}; X
′

i) =

p

2p
−

p − 1

2p − 1
+

2k−p − 1

2k
log

2k−p − 1

2k
−

2k−p+1 − 1

2k
log

2k−p+1 − 1

2k
. (C.8)

Since p

2p −
p−1
2p−1

> 0, and 2k−p−1
2k log 2k−p−1

2k − 2k−p+1−1
2k log 2k−p+1−1

2k > 0, therefore, Equation

C.8 > 0. Then, we have the result. ¥

Theorem C.0.7 (Theorem 4.4.4) If given enough samples for an OR BLN with maximum

indegree k over V, then the DFL algorithm can identify the OR BLN in O(k·(N+logn)·n2)

time strictly.

Proof. First, consider the searching process in the first layer of the search graph like Figure

2.6. From Theorem A.3.7, we obtain I(Z; X
′

i) = 0 if Z ∈ V\Pa(X
′

i). Meanwhile, from

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

185

Theorem C.0.4, I(Xij; X
′

i) > 0. Thus, the true input values will be listed in front of the

other variables Zs after the sort step in line 7 of Table 2.2. Without loss of generality,

assume that Xij ∈ Pa(X
′

i) is listed in the first place.

In the following, the ∆1(Xij) will be dynamically added to the second layer of the

∆Tree. Now, consider the mutual information I(Xij, Z; X
′

i), where Z is one of the vari-

ables in V\Xij . First, if Z ∈ V\Pa(X
′

i), from Theorem 2.2.4, I(Z; X
′

i) = 0. Since

∀Xi, Xj ∈ V, Xi and Xj are independent variables, from Theorem 2.1.1, we get H(Xi|Xj) =

H(Xi). From Theorem 2.1.2, we have

I(Xij, Z; X
′

i) = I(Z; X
′

i) + I(Xij; X
′

i |Z)

= I(Xij; X
′

i |Z)

= H(Xij|Z) − H(Xij|X
′

i , Z)

= H(Xij) − H(Xij|X
′

i)

= I(Xij; X
′

i). (C.9)

Second, if Z ∈ Pa(X
′

i), from Theorem C.0.6, we have I({Xij, Z}; X
′

i) > I(Xij; X
′

i).

Combined with the results in Equation C.9, we have that ∀Z ∈ Pa(X
′

i), I({Xij, Z}; X
′

i)

is larger than the same measure when Z ∈ V\Pa(X
′

i).

Therefore, in the second layer of the ∆Tree, the combinations with two elements from

Pa(X
′

i) will be listed in front of other combinations. And so on so forth, until the DFL

algorithm finally finds Pa(X
′

i) in the kth layer of the ∆Tree.

In the searching process, only
∑k−1

i=0 (n − i) ≈ kn subsets are visited by the DFL

algorithm. Therefore, the complexity of the DFL algorithm becomes, O(k ·(N +logn)·n2),

where logn is for sort step in line 7 of Table 2.2 and N is for the length of input table T. ¥

Corollary C.0.1 (Corollary 4.4.1) If given enough samples for a generalized OR BLN

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

186 Appendix C : The Proofs of the Theorems in Chapter 4

Table C.2: The tuple (Xij, X
′

i) and (X∗
ij, X

′

i), where k is two.

Xij X
′

i X∗

ij X
′

i

0 0 1 0

0 1 1 1

1 1 0 1

1 1 0 1

with maximum indegree k over V, then the DFL algorithm can identify the BLN in O(k ·

(N + logn) · n2) time strictly.

Proof. We replace those Xijs ∈ Pa(X
′

i) that are taking their inverse with another variable

X∗
ij , i.e., let X∗

ij = ¬Xij , then the resulted BLN is an OR BLN. H(X
′

i) does not change in

the new OR BLN.

To satisfy the criterion of Theorem 2.2.2, compare the mutual information I(X∗
ij; X

′

i)

with I(Xij; X
′

i). From Equation 2.6, we have

I(X∗
ij; X

′

i) = H(X∗
ij) + H(X

′

i) − H(X∗
ij, X

′

i).

H(X
′

i) remains the same value as the corresponding item in I(Xij; X
′

i). In binary sys-

tems, there are only two states, i.e., “0” and “1”. It is straightforward to obtain H(X∗
ij) =

H(Xij). Therefore, the only item changed in the I(X∗
ij; X

′

i) is the joint entropy H(X∗
ij, X

′

i).

Next, we prove that H(X∗
ij, X

′

i) = H(Xij, X
′

i).

Consider the tuple (Xij, X
′

i). If we replace “0” of Xij with “1” and vice versa, it be-

comes (X∗
ij, X

′

i), as shown in Table C.2. The three instances (0, 0), (0, 1) and (1, 1) of

(Xij, X
′

i) change to (1, 0), (1, 1) and (0, 1) of (X∗
ij, X

′

i). However, the probabilities (fre-

quencies) of them are coincidently equal respectively. Thus, H(X∗
ij, X

′

i) = H(Xij, X
′

i).

From Theorem C.0.7, the results are obtained. ¥

Corollary C.0.2 (Corollary 4.4.2) If given enough samples for an AND BLN with maxi-

mum indegree k over V, then the DFL algorithm can identify the BLN in O(k · (N + logn) ·

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

187

n2) time strictly.

Proof. In an AND BLN, the P (X
′

i = 0) and P (X
′

i = 1) is equal to the P (X
′

i = 1) and

P (X
′

i = 0) in an corresponding OR BLN with the same Pa(X
′

i) for all Xi. Therefore,

I(Xij; X
′

i) are the same as those of the corresponding OR BLN. From Theorem C.0.7, the

result can be directly obtained. ¥

Corollary C.0.3 (Corollary 4.4.3) If given enough samples for a generalized AND BLN

with maximum indegree k over V, then the DFL algorithm can identify the BLN in O(k ·

(N + logn) · n2) time strictly.

Proof. Similar to that of Corollary C.0.1. ¥

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix D

The Detailed Settings

In Table D.1, the settings of the DFL algorithm for the data sets listed in Table 5.1 are

given. The features chosen by the DFL algorithm for them are also given in Table D.2.

188

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

189

Table D.1: The settings of the DFL algorithm. To get optimal model, we change the epsilon

value from 0 to 0.8, with a step of 0.01. For each epsilon value, we train a model

with the DFL algorithm, then do corresponding test for the selected data sets. In

our implementation of the DFL algorithm, the process to choose optimal model

can be automatically fulfilled. For those data sets whose testing processes are

performed with the cross validation, the number of features k and the number

of the rules r in the classifier are from the most frequently obtained classifiers.

Performances Settings Classifiers

Data Set Accuracy (%) Time(s) n K ǫ k r k/n(%)

1 Lenses 75.0 0.03 4 4 0.26 3 12 75.0

2 Iris 96.0 0.01 4 4 0.08 2 6 50.0

3 Monk1 100.0 0.01 6 6 0 3 35 50.0

4 Monk2 73.8 0.02 6 6 0.21 6 168 100.0

5 Monk3 97.2 0.01 6 6 0.64 2 17 33.3

6 LED 74.9 0.08 7 7 0.29 7 207 100.0

7 Nursery 93.1 20.21 8 8 0.13 5 541 62.5

8 Breast 95.0 0.20 9 9 0.05 3 185 33.3

9 Wine 98.3 0.01 13 13 0.04 4 29 30.8

10 Credit 88.3 0.01 15 15 0.57 2 11 13.3

11 Vote 95.7 0.22 16 16 0.11 4 41 25.0

12 Zoo 92.8 1.24 16 16 0 5 21 31.3

13 ImgSeg 90.6 0.01 19 15 0.16 3 41 15.8

14 Mushroom 100.0 11.45 22 10 0 4 96 18.2

15 LED+17 75.4 0.83 24 20 0.31 7 286 29.2

16 Ionosphere 94.9 0.11 34 20 0.12 6 96 17.6

17 Chess 97.4 13.30 36 20 0.01 19 844 52.8

18 Anneal 99.0 0.22 38 20 0.04 5 44 13.2

19 Lung 62.5 0.10 56 20 0.44 2 12 3.6

20 Ad 95.0 42.80 1558 20 0.23 6 104 0.4

21 ALL 94.1 0.02 7129 20 0.3 1 3 0.014

22 DLBCL 95.5 0.01 7129 20 0.52 1 4 0.014

23 MLL 100.0 0.48 12582 20 0.06 2 11 0.016

24 Ovarian 98.8 0.31 15154 20 0.29 1 4 0.007

average 91.0 3.82 1829 14 0.20 4 117 31.5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

190 Appendix D : The Detailed Settings

Table D.2: The features chosen by the DFL algorithm.

Feature Index

Data Set k Discretized Data Continuous Data

1 Lenses 2 1,3,4 1,3,4

2 Iris 2 3,4 3,4

3 Monk1 3 1,2,5 1,2,5

4 Monk2 6 1,2,3,4,5,6 1,2,3,4,5,6

5 Monk3 2 2,5 2,5

6 LED 7 1,2,3,4,5,6,7 1,2,3,4,5,6,7

7 Nursery 5 1,2,5,7,8 1,2,5,7,8

8 Breast 3 1,3,6 1,3,6

9 Wine 4 1,7,10,13 1,7,10,13

10 Credit 2 4,9 4,9

11 Vote 4 3,4,7,11 3,4,7,11

12 Zoo 5 3,4,6,9,13 3,4,6,9,13

13∗ ImgSeg 3 1,13,15 2,17,19

14 Mushroom 4 5,20,21,22 5,20,21,22

15 LED+17 7 1,2,3,4,5,6,7 1,2,3,4,5,6,7

16 Ionosphere 6 3,5,6,12,21,27 3,5,6,12,21,27

17 Chess 19 1,3,4,6,7,10,15,16,17,18,20, 1,3,4,6,7,10,15,16,17,18,20,

21,23,24,30,32,33,34,35 21,23,24,30,32,33,34,35

18 Anneal 5 3,5,8,9,12 3,5,8,9,12

19 Lung 2 6,20 6,20

20 Ad 6 1,2,3,352,1244,1400 1,2,3,352,1244,1400

21∗ ALL 1 234 1882

22∗ DLBCL 1 55 506

23∗ MLL 2 709,1550 2592,5083

24∗ Ovarian 1 839 1679

∗ For these 5 data sets, the discretized data sets is preprocessed by deleting the features with only 1 value.

Hence, the index of discrete data sets are different from those for continuous data sets. The match tables for

these feature index are available at the supplementary website of this thesis.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix E

The Extended Main Steps of The DFL

Algorithm

The extended main steps of the DFL algorithm are listed in Table E.1. As shown in line

21 to 23 of Table E.2, R[X[0]][X[1]] will be set to true if all ∆ supersets of X have been

checked. When the DFL algorithm is trying to check X later, it will find that X and its ∆

supersets have been checked in line 3 and 14 respectively. For instance, {A,B} has been

checked when the DFL algorithm is examining the supersets of {A}. Later, when it trying

supersets of {B}, the DFL algorithm will revisit {A,B}, but this time the computation of

{A,B} and its supersets will be saved by checking R. Thus, the computation of all subsets

with equal to or more than 2 elements is reduce to half of the original computation without

introducing redundancy matrix R, as analyzed in Section 2.8.2.

191

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

192 Appendix E : The Extended Main Steps of The DFL Algorithm

Table E.1: The extended version of the DFL algorithm.

Algorithm: DFL(V,K,T)

Input: a list V with n variables, indegree K,

T = {(vi, yi) : i = 1, · · · , N}. T is global.

Output: f
Begin:

1 R ← boolean[n][n]; //initialize R, default value is false

2 L ← all single element subsets of V;

3 ∆Tree.F irstNode ← L;

4 calculate H(Y); //from T

5 D ← 1; //initial depth

6∗ f = Sub(Y,∆Tree,H(Y), D,K);
7 return f ;

End
∗ Sub() is a subroutine listed in Table E.2.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

193

Table E.2: The extended version of the subroutine of the DFL algorithm.

Algorithm: Sub(Y,∆Tree,H,D,K)
Input: variable Y , ∆Tree, entropy H(Y), current depth D, maximum indegree K
Output: function table for Y , Y = f(X)
Begin:

1 L ← ∆Tree.DthNode;

2 for every element X ∈ L {
3∗ if ((|X| == 2) && (R[X[0]][X[1]] == true || R[X[1]][X[0]] == true)) {
4 continue; //if X has been checked, continue to check next element in L

}
5 calculate I(X;Y); //from T

6 if(I(X;Y) == H) { //from Theorem 2.2.2

7 extract Y = f(X) from T;

8 return Y = f(X) ;

}
9 else if (D == K) && X is the last element in L) {
10 return “Fail(Y)”;

}
}

11 sort L according to I;

12 for every element X ∈ L {
13 if(D < K){
14 if ((|X| == 2) && (R[X[0]][X[1]] == true || R[X[1]][X[0]] == true)) {
15 continue;

}
16 D ← D + 1;

17 ∆Tree.DthNode ← ∆1(X);
18 f = Sub(Y,∆Tree,H,D,K);
19 if f 6= “Fail(Y)” {
20 return f ;

}
21 else if (|X| == 2){
22 R[X[0]][X[1]] ← true; //if all ∆(X) have been checked, set R[·][·] to true.

23 continue;

}
}

}
24 return “Fail(Y)”; //fail to find function for Y

End

∗ The && and || represent the logic AND and OR operations respectively.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix F

Notation

The following uniform notation is used throughout the thesis. We use capital letters to

represent discrete random variables, such as X and Y ; lower case letters to represent an

instance of the random variables, such as x and y; bold capital letters, like X, to represent

a vector; and lower case bold letters, like x, to represent an instance of X. The cardinality

of X is represented with |X|.

DATA

X,Xi a random variable, a feature in V or a gene in GRN models over V

x, xi an instance of X,Xi

Y the concept, the class attribute in the classification problems

V the feature set, with V = {X1, X2, . . . , Xn}

v an instance of V, v = {x1, x2, . . . , xn}

n the number of features

N the number of samples in the training data sets

X the inputs of the original function

|X| the cardinality of X

194

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

195

||X|| the number of difference instances of X

PARAMETERS OF THE DFL ALGORITHM

K the expected cardinality of the EAs for the classification,

or the expected indegree of the GRN models

ǫ the ǫ value, one of the two parameters of the DFL algorithm

T the training data sets, T = {(vi,v
′

i) : i = 1, 2, . . . , N} for learning

GRN models, or T = {(vi, yi) : i = 1, 2, . . . , N} for classification

∆i(A) the ∆ i supersets of A, ∆i(A) =
⋃
{X ∪ {A}},∀|X| = i

Li the ith searching layer of V, Li =
⋃

X,∀|X| = i

SK the searching space of functions with bounded number of inputs K,

SK =
⋃K

i=1 Li

RESULTS

k the actual cardinality of the EAs, k ≤ K

U the set of EAs chosen by the DFL algorithm

Us−1 the features already chosen at s − 1 step

f the obtained function, the classification model

X
′

i the expression level of gene Xi at time step t + 1

fi the obtained function for a gene Xi in the GRN models, X
′

i = fi

F the regulatory function set in GRN models, F = {f1, f2, . . . , fn}

B A Boolean network model, B(V,F)

DISTRIBUTION AND INFORMATION THEORY

P (X) the probability distribution of random variable X

p(x) the probability of X taking the value x, i.e., P (X = x)

H(X) the entropy of X

I(X; Y) the mutual information between X and Y

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix G

Abbreviations

The following abbreviations are used throughout the thesis.

Abb. Full Text Chapter/Section

1NN 1-Nearest-Neighbor 1.2, 2.7

ALL Acute Lymphoblastic Leukemia 3.1.1, 5.4

AML Acute Myeloid Leukemia 3.1.1, 5.4

BLNs Boolean Networks 3.2.1, 4

C4.5 C4.5 classification algorithm 5.3.2

CAP adenylyl Cylclase Associated Protein 3.1.3

CPT Conditional Probability Table 2.1.2, 4.7

DAG Directed Acyclic Graph 2.1.2, 7.1.3

DBN Dynamic Bayesian Networks 4.7

DFL Discrete Function Learning 1.2, 2.4

DLBCL Diffused Large B-Cell Lymphomas 5.4

EAs Essential Attributes 2.2

FL Follicular Lymphoma 5.4

GLF Generalized Logical Formalism 3.2.1

196

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

197

Abb. Full Text Chapter/Section

GRNs Gene Regulatory Networks 3.1

ILA Information Learning Approach 1.2, 2.2

kNN k-Nearest-Neighbors 5.3.2

MLL leukemia with rearranged MLL gene 5.4

NB Naive Bayes classification algorithm 5.3.2

PAC Probably Approximately Correct 1.1.1

PBNs Probabilistic Boolean Networks 4.7

PCR Polymerase Chain Reaction 3.1.1

PLDE Piecewise Linear Differential Equation 3.2.1

SELDI Surface-Enhanced Laser Desorption/Ionization 5.1

SVM Support Vector Machine 1.1.2, 5.3.2

TFs Transcription Factors 3.1.3

TOF Time-Of-Flight 5.1

VC Vapnik Chervonenkis 1.1.2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography

[1] http://en.wikipedia.org/wiki/law of large numbers.

[2] http://search.eb.com/eb/article-9384410.

[3] http://stat-www.berkeley.edu/ stark/sticigui/text/gloss.htm#law of large numbers.

[4] B.-L. Adam, Y. Qu, J. W. Davis, M. D. Ward, M. A. Clements, L. H. Cazares, O. J. Semmes,

P. F. Schellhammer, Y. Yasui, Z. Feng, and J. Wright, George L. Serum Protein Fingerprint-

ing Coupled with a Pattern-matching Algorithm Distinguishes Prostate Cancer from Benign

Prostate Hyperplasia and Healthy Men. Cancer Res, 62(13):3609–3614, 2002.

[5] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Mach. Learn.,

6:37–66, 1991.

[6] T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a small number

of gene expression patterns under the boolean network model. In Proceedings of Pacific

Symposium on Biocomputing ’99, volume 4, pages 17–28, Hawaii, HI, 1999.

[7] T. Akutsu, S. Miyano, and S. Kuhara. Algorithm for identifying boolean networks and

related biological networks based on matrix multiplication and fingerprint function. Journal

of Computation Biology, 7(3/4):331–343, 2000.

[8] T. Akutsu, S. Miyano, and S. Kuhara. Inferring qualitative relations in genetic networks and

metabolic pathways. Bioinformatics, 16(8):727–734, 2000.

[9] T. Akutsu, S. Miyano, and S. Kuhara. A simple greedy algorithm for finding functional rela-

tions: efficient implementation and average case analysis. Theor. Comput. Sci., 292(2):481–

495, 2003.

198

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 199

[10] C. F. Aliferis, I. Tsamardinos, and A. Statnikov. Hiton: a novel markov blanket algorithm

for optimal variable selection. In AMIA Annu Symp Proc., pages 21–25, 2003.

[11] A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos, A. Rosenwald, J. Boldrick, H. Sabet,

T. Tran, X. Yu, J. Powell, L. Yang, G. Marti, T. Moore, J. J. Hudson, L. Lu, D. Lewis,

R. Tibshirani, G. Sherlock, W. Chan, T. Greiner, D. Weisenburger, J. Armitage, R. Warnke,

R. Levy, W. Wilson, M. Grever, J. Byrd, D. Botstein, P. Brown, and L. Staudt. Distinct types

of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–

511, 2000.

[12] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues

probed by oligonucleotide arrays. PNAS, 96(12):6745–6750, 1999.

[13] R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin, and J. Schug.

Hybrid modeling and simulation of biomolecular networks. Lecture Notes in Computer

Science, 2034:19–32, 2001.

[14] I. Alvarez-Garcia and E. A. Miska. Microrna functions in animal development and human

disease. Development, 132:4653–62, 2005.

[15] V. Ambros. The functions of animal micrornas. Nature, 431:350–5, 2004.

[16] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343–370,

1988.

[17] D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Comput. Surv.,

15(3):237–269, 1983.

[18] S. Armstrong, J. Staunton, L. Silverman, R. Pieters, M. den Boer, M. Minden, S. Sallan,

E. Lander, T. Golub, and S. Korsmeyer. Mll translocations specify a distinct gene expression

profile that distinguishes a unique leukemia. Nature Genetics, 30:41–47, 2002.

[19] M. Arnone and E. Davidson. The hardwiring of development: organization and function of

genomic regulatory systems. Development, 124:1851–1864, 1997.

[20] C. A. Ball, G. Sherlock, H. Parkinson, P. Rocca-Sera, C. Brooksbank, H. C. Causton, D. Cav-

alieri, T. Gaasterland, P. Hingamp, F. Holstege, M. Ringwald, P. Spellman, J. Stoeckert,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

200 BIBLIOGRAPHY

Christian J., J. E. Stewart, R. Taylor, A. Brazma, and J. Quackenbush. Standards for Mi-

croarray Data. Science, 298(5593):539b–, 2002.

[21] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo, F. Robert, D. B. Gordon,

E. Fraenkel, T. S. Jaakkola, R. A. Young, and D. K. Gifford. Computational discovery of

gene modules and regulatory networks. Nature Biotechnology, 21:1337–1342, 2003.

[22] D. P. Bartel. Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 116:281–

297, 2004.

[23] R. Battiti. Using mutual information for selecting features in supervised neural net learning.

Neural Networks, IEEE Transactions on, 5:537–550, 1994.

[24] S. Becker, L. H. Cazares, P. Watson, H. Lynch, O. J. Semmes, R. R. Drake, and C. Laronga.

Surfaced-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI-TOF) Differentia-

tion of Serum Protein Profiles of BRCA-1 and Sporadic Breast Cancer. Ann Surg Oncol,

11(10):907–914, 2004.

[25] D. Beer, S. Kardia, C. Huang, T. Giordano, A. Levin, D. Misek, L. Lin, G. Chen, T. Gharib,

D. Thomas, M. Lizyness, R. Kuick, S. Hayasaka, J. Taylor, M. Iannettoni, M. Orringer, and

S. Hanash. Gene-expression profiles predict survival of patients with lung adenocarcinoma.

Nature Med, 8:816–824, 2002.

[26] F. Bergadano and L. Saitta. On the error probability of boolean concept descriptions. In

Proceedings of the 4th European Working Session on Learning EWSL-89, pages 25–36,

1989.

[27] F. Berzal, J.-C. Cubero, D. Sánchez, and J. M. Serrano. Art: A hybrid classification model.

Mach. Learn., 54(1):67 – 92, 2004.

[28] A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Be-

heshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E.

Johnson, T. R. Golub, D. J. Sugarbaker, and M. Meyerson. Classification of human lung car-

cinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. PNAS,

98:1379013795, 2001.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 201

[29] A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner, and H. U. Simon. On restricted-focus-

of-attention learnability of boolean functions. Mach. Learn., 30(1):89–123, 1998.

[30] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford,

UK, 1995.

[31] C. Blake and C. Merz. UCI repository of machine learning databases, 1998.

[32] H. Bolouri and E. H. Davidson. Modeling transcriptional regulatory networks. BioEssays,

24:1119–1129, 2002.

[33] A. Brazma, A. Robinson, G. Cameron, and M. Ashburner. One-stop shop for microarray

data. Nature, 403:699–700, 2000.

[34] R. J. Britten and E. H. Davidson. Gene Regulation for Higher Cells: A Theory. Science,

165(3891.):349–357, 1969.

[35] N. H. Bshouty. Exact learning boolean functions via the monotone theory. Inf. Comput.,

123(1):146–153, 1995.

[36] W. Buntine. A Theory of Learning Classification Rules. PhD thesis, Sydney, February 1990.

[37] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min.

Knowl. Discov., 2(2):121–167, 1998.

[38] M. Carey and S. T. Smale. Transcriptional Regulation in Eukaryotes: Concepts, Strategies

and Techniques. Cole Spring Harbor Laboratory Press, Cold Spring Harbor, New York,

2001.

[39] J. Case, S. Jain, and F. Stephan. Vacillatory and bc learning on noisy data. Theor. Comput.

Sci., 241(1-2):115–141, 2000.

[40] G. C. Cawley and N. L. C. Talbot. Gene selection in cancer classification using sparse

logistic regression with Bayesian regularization. Bioinformatics, 22(19):2348–2355, 2006.

[41] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods. John

Wiley & Sons, Inc., New York, NY, 1998.

[42] D. Chickering, D. Geiger, and D. Heckerman. Learning bayesian networks is np-hard. Tech-

nical report, Microsoft Research, 1994.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

202 BIBLIOGRAPHY

[43] D. M. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian net-

works is hard. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial

Intelligence, Acapulco, Mexico, pages 124–133. Morgan Kaufmann, 2003.

[44] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. G.

Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, and R. W. Davis. A genome-

wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2:65–73, 1998.

[45] T. W. S. Chow and D. Huang. Estimating optimal features subsets using efficient estimation

of high-dimensional mutual information. IEEE Trans Neural Networks, 16:213–224, 2005.

[46] L. S. Cohen, P. F. Escobar, C. Scharm, B. Glimco, and D. A. Fishman. Three-dimensional

power doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction.

Gynecologic Oncology, 82:40–48, 2001.

[47] G. Cooper. Computational complexity of probabilistic inference using bayesian belief net-

works (research note). Artificial Intelligence, 42:393–405, 1990.

[48] G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic net-

works from data. Mach. Learn., 9:309, 1992.

[49] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, Second Edi-

tion. MIT Press, 2001.

[50] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,

New York, NY, 1991.

[51] N. Cristianini, J. Shawe-Taylor, and J. Kandola. On kernel target alignment. In Proceedings

of the Neural Information Processing Systems, NIPS’01, pages 367–373, Cambridge, MA,

2001.

[52] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief networks

is np-hard. Artificial Intelligence, 60:141–153, 1993.

[53] E. Davidson. Genomic regulatory systems: Development and evolution. Academic Press,

San Diego, California, 2001.

[54] E. Davidson and M. Levin. Gene Regulatory Networks Special Feature: Gene regulatory

networks. PNAS, 102(14):4935–, 2005.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 203

[55] E. Davidson, D. McClay, and L. Hood. Regulatory gene networks and the properties of the

developmental process. PNAS, 100(4):1475–1480, 2003.

[56] E. H. Davidson, J. P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.-H. Yuh, T. Minokawa,

G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C. T. Brown, C. B. Livi, P. Y. Lee, R. Re-

villa, A. G. Rust, Z. j. Pan, M. J. Schilstra, P. J. C. Clarke, M. I. Arnone, L. Rowen, R. A.

Cameron, D. R. McClay, L. Hood, and H. Bolouri. A Genomic Regulatory Network for

Development. Science, 295(5560):1669–1678, 2002.

[57] H. de Jong, J. Geiselmann, G. Batt, C. Hernandez, and M. Page. Qualitative simulation of

the initiation of sporulation in B. subtilis. Technical Report 4527, INRIA, 2002.

[58] H. de Jong, M. Page, C. Hernandez, and J. Geiselmann. Qualitative simulation of genetic

regulatory networks: Method and application. In B. Nebel, editor, Proceedings of the 17th

International Joint Conference on Artificial Intelligence, pages 67–73, San Mateo, CA, 2001.

Morgan Kaufmann.

[59] J. DeRisi, V. Iyer, and P. Brown. Exploring the Metabolic and Genetic Control of Gene

Expression on a Genomic Scale. Science, 278(5338):680–686, 1997.

[60] P. D’haeseleer, S. Liang, and R. Somogyi. Genetic networks inference: from co-expression

clustering to reverse engineering. Bioinformatics, 16(8):707–726, 2000.

[61] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expres-

sion data. In CSB ’03: Proceedings of the IEEE Computer Society Conference on Bioinfor-

matics, page 523, Washington, DC, USA, 2003. IEEE Computer Society.

[62] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of con-

tinuous features. In Proceedings of the 12th International Conference on Machine Learning,

pages 194–202, Tahoe City, CA, 1995.

[63] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wily & Sons, Inc.,

New York, NY, second edition, 2000.

[64] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent. Expression profiling using

cdna microarrays. Nature Genetics, 21:10–14, 1999.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

204 BIBLIOGRAPHY

[65] S. Dumais, J. Platt, D. Hecherman, and M. Sahami. Inductive learning algorithms and rep-

resentations for text categorization. In Proceedings of the 7th International Conference on

Information and Knowledge Management, pages 148–155, 1998.

[66] T. Eiter, T. Ibaraki, and K. Makino. Decision lists and related boolean functions. Theor.

Comput. Sci., 270(1-2):493–524, 2002.

[67] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for clas-

sification learning. In Proceedings of the 13th International Joint Conference on Artificial

Intelligence, IJCAI-93, pages 1022–1027, Chambery, France, 1993.

[68] F. Fleuret. Fast binary feature selection with conditional mutual information. J. Mach. Learn.

Res., 5:1531–1555, 2004.

[69] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. Witten. Data mining in bioinformatics using

Weka. Bioinformatics, 20(15):2479–2481, 2004.

[70] D. A. S. Fraser. Statistics, An Introduction. John Wiley & Sons, Inc., New York, NY, 1958.

[71] M. Frazier, M. Knotek, B. Wold, E. Uberbacher, E. Branscomb, M. Buchanan, J. Trewhella,

L. Makowski, D. Vaughan, A. Reeves, M. Broido, M. Colvin, O. Edward, D. Thomassen,

J. Zhou, J. Tiedle, B. Mansfield, D. Casey, J. Wyrick, and A. Adamson. Genomes to Life:

Accelerating Biological Discovery. 2001.

[72] M. E. Frazier, G. M. Johnson, D. G. Thomassen, C. E. Oliver, and A. Patrinos. Real-

izing the Potential of the Genome Revolution: The Genomes to Life Program. Science,

300(5617):290–293, 2003.

[73] N. Friedman. Inferring Cellular Networks Using Probabilistic Graphical Models. Science,

303(5659):799–805, 2004.

[74] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach. Learn.,

29:131–168, 1997.

[75] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian networks to analyze

expression data. Journal of Computational Biology, 7(3/4):601–620, 2000.

[76] N. Friedman, I. Nachman, and D. Pe’er. Learning bayesian network structure from massive

datasets: The “sparse candidate” algorithm. In Proceedings of the 15th Annual Conference

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 205

on Uncertainty in Artificial Intelligence, UAI-99, pages 206–215, San Francisco, CA, 1999.

Morgan Kaufmann Publishers.

[77] T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer, and D. Haussler. Sup-

port vector machine classification and validation of cancer tissue samples using microarray

expression data. Bioinformatics, 16(10):906–914, 2000.

[78] R. Ghosh and C. J. Tomlin. Lateral inhibition through delta-notch signaling: A piecewise

affine hybrid model. Lecture Notes in Computer Science, 2034:232–246, 2001.

[79] L. Glass and S. Kauffman. The logical analysis of continuous non-linear biochemical control

networks. Journal of Theoretical Biology, 39:103–129, 1973.

[80] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.

[81] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,

J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. Molecular Classification of

Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science,

286(5439):531–537, 1999.

[82] G. J. Gordon, R. V. Jensen, L.-L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy,

W. G. Richards, D. J. Sugarbaker, and R. Bueno. Translation of Microarray Data into Clin-

ically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and

Mesothelioma. Cancer Res, 62(17):4963–4967, 2002.

[83] R. M. Gray. Entropy and Information Theory. Springer Verlog, 1991.

[84] M. Gretzer, D. Chan, C. van Rootselaar, J. Rosenzweig, S. Dalrymple, L. Mangold, A. Partin,

and R. Veltri. Proteomic analysis of dunning prostate cancer cell lines with variable

metastatic potential using seldi-tof. Prostate, 60:325–331, 2004.

[85] M. S. Halfon and A. M. Michelson. Exploring genetic regulatory networks in metazoan

development: Methods and models. Physiol Genomics, 10:131–143, 2002.

[86] M. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis, Waikato

University, Department of Computer Science, 1999.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

206 BIBLIOGRAPHY

[87] M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data

mining. IEEE Transactions on Knowledge and Data Engineering, 15:1–16, 2003.

[88] R. Hamming. Error detecting and error correcting codes. Bell System Technical Jounral,

9:147–160, 1950.

[89] A. Hartemink, D. Gifford, T. Jaakkola, and R. Young. Using graphical models and genomic

expression data to statistically validate models of genetic regulatory networks. In Proceed-

ings of Pacific Symposium on Biocomputing ’2001, volume 6, pages 422–433, 2001.

[90] A. Hartemink, D. Gifford, T. Jaakkola, and R. Young. Combining location and expression

data for principled discovery of genetic regulatory network models. In Proceedings of Pacific

Symposium on Biocomputing ’2002, volume 7, pages 437–449, 2002.

[91] D. Haussler. Probably approximately correct learning. In National Conference on Artificial

Intelligence, pages 1101–1108, 1990.

[92] M. Hilario, A. Kalousis, J. Prados, and P.-A. Binz. Data mining for mass-spectra based

diagnosis and biomarker discovery. Drug Discovery Today: BIOSILICO, 2:214–222, 2004.

[93] M. L. Howard and E. H. Davidson. cis-regulatory control circuits in development. Develop-

mental Biology, 271(1):109–118, 2004.

[94] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An efficient algorithm for

discovering functional and approximate dependencies. The Computer Journal, 42(2):100–

111, 1999.

[95] T. Ideker, V. Thorsson, and R. Karp. Discovery of regulatory interactions through perturba-

tion: Inference and experimental design. In Pacific Symposium on Biocomputing, volume 5,

pages 302–313, 2000.

[96] H. Issaq, T. Veenstra, T. Conrads, and D. Felschow. The seldi-tof ms approach to proteomics:

protein profiling and biomarker identification. Biochem Biophys Res Commun, 292:587–592,

2002.

[97] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn, 2nd Edition: An

Introduction to Learning Theory. The MIT Press, Cambridge, MA, 1999.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 207

[98] C. Jie and G. Russell. Comparing bayesian network classifiers. In Proceedings of the 15th

Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 101–108, San

Francisco, CA, 1999. Morgan Kaufmann Publishers.

[99] T. Joachims. Text categorization with support vector machines: learning with many relevant

features. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-98, 10th Euro-

pean Conference on Machine Learning, number 1398, pages 137–142, Chemnitz, DE, 1998.

Springer Verlag, Heidelberg, DE.

[100] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem.

In Proceedings of the 11th International Conference on Machine Learning, pages 121–129,

1994.

[101] M. I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA, 1998.

[102] S. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Jour-

nal of Theoretical Biology, 22:437–467, 1969.

[103] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-

2):273–324, 1997.

[104] D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of the 13th

International Conference on Machine Learning, pages 284–292, 1996.

[105] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks

under the boolean network model. Mach. Learn., 52(1-2):147–167, 2003.

[106] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In National

Conference on Artificial Intelligence, pages 223–228, 1992.

[107] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical struc-

tures and their application to expert systems. Journal of Royal Statistics Society, Series B,

50(2):157–224, 1988.

[108] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett,

C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B.

Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

208 BIBLIOGRAPHY

R. A. Young. Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science,

298(5594):799–804, 2002.

[109] M. Levine and E. Davidson. From the Cover. Gene Regulatory Networks Special Feature:

Gene regulatory networks for development. PNAS, 102(14):4936–4942, 2005.

[110] J. Li, H. Liu, J. Downing, A. Yeoh, and L. Wong. Simple rules underlying gene expression

profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioin-

formatics, 19(1):71–78, 2003.

[111] J. Li and L. Wong. Identifying good diagnostic gene groups from gene expression profiles

using the concept of emerging patterns. Bioinformatics, 18(5):725–734, 2002.

[112] L. Li, H. Tang, Z. Wu, J. Gong, M. Gruidl, J. Zou, M. Tockman, and R. A. Clark. Data mining

techniques for cancer detection using serum proteomic profiling. Artificial Intelligence in

Medicine, 32:71–83, 2004.

[113] S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse engineering algorithms for

genetic network architectures. In Proceedings of Pacific Symposium on Biocomputing ’98,

volume 3, pages 18–29, Maui, HI, 1998.

[114] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm. Mach. Learn., 2:285–318, 1988.

[115] H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classification

methods using gene expression profiles and proteomic patterns. Genome Informatics, 13:51–

60, 2002.

[116] H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter solution. In

Proceedings of the 13th International Conference on Machine Learning, pages 319–327,

1996.

[117] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification

using string kernels. J. Mach. Learn. Res., 2:419–444, 2002.

[118] W. Luo and O. Schulte. Mind change efficient learning. Information and Computation,

204(6):989–1011, 2006.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 209

[119] Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi. Development of a system

for the inference of large scale genetic networks. In Pacific Symposium on Biocomputing,

volume 6, pages 446–458, 2001.

[120] H. Mannila and K. Raiha. On the complexity of inferring functional dependencies. Discrete

Applied Mathematics, 40:237–243, 1992.

[121] H. Mannila and K.-J. Räihä. Algorithms for inferring functional dependencies from rela-

tions. Data Knowl. Eng., 12(1):83–99, 1994.

[122] R. J. McEliece. The Theory of Information and Coding: A Mathematical Framework for

Communication, volume 3 of Encyclopedia of Mathematics and Its Applications. Addison-

Wesley Publishing Company, Reading, MA, 1977.

[123] D. Mehta and V. Raghavan. Decision tree approximations of boolean functions. Theor.

Comput. Sci., 270(1-2):609–623, 2002.

[124] L. Mendoza, D. Thieffry, and E. Alvarez-Buylla. Genetic control of flower morphogenesis

in arabidopsis thaliana: A logical analysis. Bioinformatics, 15(7-8):593–606, 1999.

[125] T. Mestl, E. Plahte, and S. Omholt. A mathematical framework for describing and analysing

gene regulatory networks. Journal of Theoretical Biology, 176:291–300, 1995.

[126] J.-P. Mira, V. Benard, J. Groffen, L. C. Sanders, and U. G. Knaus. Endogenous, hyperac-

tive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent

pathway. PNAS, 97(1):185–189, 2000.

[127] K. Murphy and S. Mian. Modelling gene expression data using dynamic bayesian networks.

Technical report, Computer Science Division, U.C., at Berkeley, Berkeley, CA, 1999.

[128] A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In Proceedings

of the Twenty-first International Conference on Machine Learning, 2004.

[129] I. M. Ong, J. D. Glasner, and D. Page. Modeling regulatory pathways in e. coli from time

series expression profiles. Bioinformatics, 18:S241–S248, 2002.

[130] C. P. Paweletz, J. W. Gillespie, D. K. Ornstein, N. L. Simone, M. R. Brown, K. A. Cole,

Q.-H. Wang, J. Huang, N. Hu, T.-T. Yip, W. E. Rich, E. C. Kohn, W. M. Linehan, T. Weber,

P. Taylor, M. R. Emmert-Buck, L. A. Liotta, and E. F. P. III. Rapid protein display profiling

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

210 BIBLIOGRAPHY

of cancer progression directly from human tissue using a protein biochip. Drug Development

Research, 49:34–42, 2000.

[131] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Mateo, CA, 1988.

[132] J. Pearl. Causality: models, reasoning, and inference. Cambridge University Press, Cam-

bridge, UK, 2000.

[133] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: Criteria

of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.

Intell., 27(8):1226–1238, 2005.

[134] E. Petricoin, A. Ardekani, B. Hitt, P. Levine, V. Fusaro, S. Steinberg, G. Mills, C. Simone,

D. Fishman, E. Kohn, and L. Liotta. Use of proteomic patterns in serum to identify ovarian

cancer. The Lancet, 359:572–577, 2002.

[135] E. F. Petricoin, D. K. Ornstein, and L. A. Liotta. Clinical proteomics: Applications for

prostate cancer biomarker discovery and detection. Urologic Oncology: Seminars and Orig-

inal Investigations, 22:322–328, 2004.

[136] E. F. Petricoin, K. C. Zoon, E. C. Kohn, J. C. Barrett, and L. A. Liotta. Clinical proteomics:

translating benchside promise into bedside reality. Nature Reviews Drug Discovery, 1:683–

695, 2002.

[137] J. Platt. Fast training of support vector machines using sequential minimal optimization,

chapter 12, pages 185–208. MIT Press, Cambridge, MA, 1999.

[138] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaughlin, J. Y.

Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran,

C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky,

D. N. Louis, J. P. Mesirov, E. S. Lander, and T. R. Golub. Prediction of central nervous

system embryonal tumour outcome based on gene expression. Nature, 415:436–442, 2002.

[139] M. Ptashne and A. Gann. Genes & Signals. Cold Spring Harbor Laboratory Press, Cold

Spring Harbor, New York, 2002.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 211

[140] J. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco, CA,

1993.

[141] M. Reich, K. Ohm, M. Angelo, P. Tamayo, and J. P. Mesirov. GeneCluster 2.0: an advanced

toolset for bioarray analysis. Bioinformatics, 20(11):1797–1798, 2004.

[142] R. L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987.

[143] L. Sanchez and D. Thieffy. A logical analysis of the drosophila gap genes. Journal of

Theoretical Biology, 211:115–141, 2001.

[144] L. Sanchez, J. van Helden, and D. Thieffy. Establishment of the dorso-ventral pattern during

embryonic development of drosophila melanogaster: A logical analysis. Journal of Theoret-

ical Biology, 189:377–389, 1997.

[145] M. Schena. Microarray Analysis. John Wiley & Sons, Inc., New York, NY, 2003.

[146] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative Monitoring of Gene

Expression Patterns with a Complementary DNA Microarray. Science, 270(5235):467–470,

1995.

[147] J. C. Schlimmer and J. Richard H. Granger. Incremental learning from noisy data. Mach.

Learn., 1(3):317–354, 1986.

[148] I. Schmulevich, O. Yli-Harja, and J. Astola. Inference of genetic regulatory networks under

the best-fit extension paradigm. In Nonlinear Signal and Image Processing, NSIP 2001,

2001.

[149] B. Scholkopf, P. Simard, A. Smola, and V. Vapnik. Advances in Neural Information Process-

ing Systems 10, chapter Prior Knowledge in Support Vector Kernels, pages 640–646. MIT

Press, Cambridge, MA, 1998.

[150] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction

and gene expression data. Bioinformatics, 19(90001):264i–272, 2003.

[151] C. Shannon and W. Weaver. The Mathematical Theory of Communication. University of

Illinois Press, Urbana, IL, 1963.

[152] A. Sharma, F. Stephan, and Y. Ventsov. Generalized notions of mind change complexity.

Information and Computation, 189(2):235–262, 2004.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

212 BIBLIOGRAPHY

[153] S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using

sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

[154] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasenbeek, M. Angelo,

M. Reich, G. Pinkus, T. Ray, M. Koval, K. Last, A. Norton, T. Lister, J. Mesirov, D. Neu-

berg, E. Lander, J. Aster, and T. Golub. Diffuse large b-cell lymphoma outcome prediction

by gene-expression profiling and supervised machine learning. Nature Medicine, 8:68–74,

2002.

[155] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a

rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274,

2002.

[156] I. Simon, J. Barnett, N. Hannett, C. Harbison, T. Rinaldi, N.J. amd Volkert, J. Wyrick,

J. Zeitlinger, D. Gifford, T. Jaakkola, and R. Young. Serial regulation of transcriptional

regulators in the yeast cell cycle. Cell, 166:679–708, 2001.

[157] M. Snyder and M. Gerstein. Defining Genes in the Genomics Era. Science, 300(5617):258–

260, 2003.

[158] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Botstein,

and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast Sac-

charomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9:3273–

3297, 1998.

[159] D. Thieffry and R. Thomas. Qualitative analysis of gene networks. In Proceedings of Pacific

Symposium on Biocomputing ’98, volume 3, pages 77–88, 1998.

[160] R. Thomas and R. d’Ari. Biological Feedback. CRC Press, Boca Raton, Florida, 1990.

[161] R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of biological regulatory

networks: I. biological rool of feedback loops and pratical use of the concept of the loop-

characteristic state. Bulletin of Mathematical Biology, 57(2):247–276, 1995.

[162] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. D. Jong, S. Džeroski,

S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger,

R. S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, W. V. de Welde, W. Wenzel,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 213

J. Wnek, and J. Zhang. The MONK’s problems: A performance comparison of different

learning algorithms. Technical Report CS-91-197, Pittsburgh, PA, 1991.

[163] I. Tsamardinos and C. Aliferis. Towards principled feature selection: Relevancy, filters and

wrappers. In C. M. Bishop and B. J. Frey, editors, Proceedings of the Ninth International

Workshop on Artificial Intelligence and Statistics, Key West, FL, 2003.

[164] I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient discovery of

markov blankets and direct causal relations. In KDD ’03: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 673–

678, New York, NY, USA, 2003. ACM Press.

[165] L. Valiant. Learning disjunctions and conjunctions. In Proceedings of the 9th International

Joint Conference on Artificial Intelligence, pages 560–565, 1985.

[166] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[167] L. van ’t Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao, H. Peterse, K. van der Kooy,

M. Marton, A. Witteveen, G. Schreiber, R. Kerkhoven, C. Roberts, P. Linsley, R. Bernards,

and S. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature,

415:530 – 536, 2002.

[168] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, NY, 1998.

[169] M. Vidal-Naquet and S. Ullman. Object recognition with informative features and linear

classification. In Proceedings of the 9th IEEE International Conference on Computer Vision,

ICCV 2003, pages 281–288, Nice, France, 2003. IEEE Computer Society.

[170] Z. Wang, C. Yip, Y. Ying, J. Wang, X.-Y. Meng, L. Lomas, T.-T. Yip, and E. T. Fung. Mass

Spectrometric Analysis of Protein Markers for Ovarian Cancer. Clin Chem, 50(10):1939–

1942, 2004.

[171] D. A. Wigle, I. Jurisica, N. Radulovich, M. Pintilie, J. Rossant, N. Liu, C. Lu, J. Woodgett,

I. Seiden, M. Johnston, S. Keshavjee, G. Darling, T. Winton, B.-J. Breitkreutz, P. Jorgenson,

M. Tyers, F. A. Shepherd, and M. S. Tsao. Molecular Profiling of Non-Small Cell Lung

Cancer and Correlation with Disease-free Survival. Cancer Res, 62(11):3005–3008, 2002.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

214 BIBLIOGRAPHY

[172] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations. Morgan Kaufmann, San Francisco, CA, 1999.

[173] J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin. Early detection: Proteomic applications

for the early detection of cancer. Nature Review Cancer, 3:267–275, 2003.

[174] E. Xing, M. Jordan, and R. Karp. Feature selection for high-dimensional genomic microarray

data. In Proceedings of the 18th International Conference on Machine Learning, pages 601–

608. Morgan Kaufmann Publishers Inc., 2001.

[175] C. H. Yang, L. J. Chen, and Z. R. Sung. Genetic regulation of shoot development in ara-

bidopsis: role of the EMF genes. Dev Biol, 169:421–435, 1995.

[176] Y. Yang and J. Pedersen. A comparative study on feature selection in text categorization. In

D. H. Fisher, editor, Proceedings of the 14th International Conference on Machine Learning,

pages 412–420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US.

[177] S. Yaramakala and D. Margaritis. Speculative markov blanket discovery for optimal feature

selection. In ICDM ’05: Proceedings of the Fifth IEEE International Conference on Data

Mining, pages 809–812, Washington, DC, USA, 2005. IEEE Computer Society.

[178] R. W. Yeung. A First Course in Information Theory. Kluwer Academic/Plenum Publishers,

New York, NY, 2002.

[179] C.-H. Yuh, H. Bolouri, J. Bower, and E. Davidson. Computational Modeling of Genetic

and Biochemical Networks, chapter A logical model of cis-regulatory control in eukaryotic

system, pages 73–100. MIT Press, Cambridge, MA, 2001.

[180] C.-H. Yuh, H. Bolouri, and E. H. Davidson. Genomic Cis-Regulatory Logic: Experimental

and Computational Analysis of a Sea Urchin Gene. Science, 279(5358):1896–1902, 1998.

[181] P. D. Zamore and B. Haley. Ribo-gnome: The Big World of Small RNAs. Science,

309(5740):1519–1524, 2005.

[182] G. L. Zhang, J. C. Tong, Z. H. Zhang, Y. Zheng, J. T. August, C. K. Kwoh, and V. Bru-

sic. Computational models for identifying promiscuous hla-b7 binders based on informa-

tion theory and support vector machine. In Proceedings of the International Conference on

Biomedical and Pharmaceutical Engineering 2006 (ICBPE 2006), page to appear, 2006.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

BIBLIOGRAPHY 215

[183] Y. Zheng, W. Hsu, M. L. Lee, and L. Wong. Exploring essential attributes for detecting mi-

crorna precursors from background sequences. In 2006 VLDB Workshop on Data Mining in

Bioinformatics, volume 4316 of Lecture Notes in Computer Science, pages 131–145, Seoul,

Korea, 2006.

[184] Y. Zheng and C. K. Kwoh. Dynamic algorithm for inferring qualitative models of gene

regulatory networks. In Proceedings of the 3rd Computational Systems Bioinformatics Con-

ference, CSB 2004, pages 353–362, Stanford, CA, 2004. IEEE Computer Society Press.

[185] Y. Zheng and C. K. Kwoh. Identifying decision lists with the discrete function learning

algorithm. In Proceedings of the 2nd International Conference on Artificial Intelligence in

Science And Technology, AISAT 2004, pages 30–35, Hobart, Australia, 2004.

[186] Y. Zheng and C. K. Kwoh. Improved mdl score for learning of bayesian networks. In

Proceedings of the 2nd International Conference on Artificial Intelligence in Science And

Technology, AISAT 2004, pages 98–103, Hobart, Australia, 2004.

[187] Y. Zheng and C. K. Kwoh. Reconstructing boolean networks from noisy gene expression

data. In Proceedings of the 8th International Conference on Control, Automation, Robotics

and Vision, ICARCV 2004, pages 1049–1054, Kunming, China, 2004.

[188] Y. Zheng and C. K. Kwoh. A feature vector selection method for cancer classification.

In Proceedings of International Conference of Bioinformatics, Bioinfo2005, pages 23–28,

Busan, Korea, 2005.

[189] Y. Zheng and C. K. Kwoh. Identifying simple discriminatory gene vectors with an infor-

mation theory approach. In Proceedings of the 4th Computational Systems Bioinformatics

Conference, CSB 2005, pages 12–23, Stanford, CA, 2005.

[190] Y. Zheng and C. K. Kwoh. Cancer classification with microrna expression patterns found by

an information theory approach. Journal of Computers, accepted, 2006.

[191] Y. Zheng and C. K. Kwoh. Dynamic algorithm for inferring qualitative models of gene

regulatory networks. International Journal of Data Mining and Bioinformatics, 1:111–137,

2006.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

[192] Y. Zheng and C. K. Kwoh. Informative microrna expression patterns for cancer classifica-

tion. In J. Li, Q. Yang, and A.-H. Tan, editors, Data Mining for Biomedical Applications,

PAKDD 2006 Workshop, BioDM 2006, volume 3916 of Lecture Notes in Computer Science,

pages 143–154, Singapore, 2006.

[193] Y. Zheng, C. K. Kwoh, W. Hsu, M. L. Lee, and L. Wong. The discrete function learner for

bioinformatics. Technical report, Nanyang Technological University, 2006.

[194] X. Zhou, K.-Y. Liu, and S. T. Wong. Cancer classification and prediction using logistic

regression with bayesian gene selection. Journal of Biomedical Informatics, 37(4):249–259,

2004.

[195] J. Zhu and T. Hastie. Classification of gene microarrays by penalized logistic regression.

Biostatistics, 5(3):427–443, 2004.

216

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

