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Abstract—When an infinite training set is used, the Mahalanobis distance

between a pattern measurement vector of dimensionality D and the center of the

class it belongs to is distributed as a �2 with D degrees of freedom. However, the

distribution of Mahalanobis distance becomes either Fisher or Beta depending on

whether cross validation or resubstitution is used for parameter estimation in finite

training sets. The total variation between �2 and Fisher, as well as between �2 and

Beta, allows us to measure the information loss in high dimensions. The

information loss is exploited then to set a lower limit for the correct classification

rate achieved by the Bayes classifier that is used in subset feature selection.

Index Terms—Bayes classifier, Gaussian distribution, Mahalanobis distance,

feature selection, cross validation.
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1 INTRODUCTION

THE accurate prediction of the error committed by a classifier Pe

enables to measure the probability k out of NT test patterns are
misclassified. The latter probability is given by P ðkÞ ¼
NT

k

� �
P k
e ð1� PeÞ

NT �k because the random variable (r.v.) k that
models the number of misclassified patterns follows the binomial
distribution. Accordingly, confidence limits for P ðkÞ can be easily
set [1]. For a two-class pattern recognition problem, an upper
limit for Pe is Pe;s ¼ P sð�1ÞP 1�sð�2Þ

P

i p
sðxij�1Þp1�sðxij�2Þ,

where s 2 ½0; 1�; �c denotes the cth class with c ¼ 1; 2; P ð�cÞ is
the a priori probability of the cth class, xi is a pattern
measurement vector, and pðxj�cÞ is the class-conditional prob-
ability density function (pdf) [2]. The accuracy of Pe;s depends on
how well pðxj�cÞ is estimated. Whenever pðxij�cÞ is modeled as a
Gaussian pdf, as is frequently assumed, the accurate estimation
of the Mahalanobis distance between a measurement vector and
a class center becomes significant. In this paper, the prediction
error of the Bayes classifier is studied, when each class pdf is
modeled by a multivariate Gaussian.

Several expressions relate the accuracy of the prediction error

estimate with the number of measurement vectors per �c in the
design set D (denoted as NDc) and the dimensionality of the
measurement vectors (denoted as D) [3], [4], [5], [6], [7], [8]. For
example, it is proposed that the ratio NDc=D should be greater
than 3 in order to obtain an accurate prediction error estimate [3].
In [4] and [6], experiments have demonstrated that this ratio

should be at least 10. In [9], [10], [11], it has been found that, as
NDc=D ! 1, the prediction error estimated by cross validation
approaches that of the random choice. This effect is often called
curse of dimensionality, and is attributed to the sparseness of the

measurement vectors in high-dimensional spaces, which impedes
the accurate estimation of the class-conditional pdfs [10]. If
resubstitution is used to estimate the prediction error of the Bayes
classifier, then it has been found by experiments that the
prediction error tends to zero as NDc=D ! 1. In this case,
although the training and test sets also contain sparse measure-
ment vectors and their cardinality is of the same order of
magnitude as in cross validation, sparseness does not convin-
cingly explain the curse of dimensionality.

In this paper, we study the behavior of the Mahalanobis
distance pdf as D increases, while NDc is kept constant. As D
approaches NDc � 1, the class-conditional dispersion matrix be-
comes singular. To avoid singularity, the class-conditional disper-
sion matrix can be weighted by the gross dispersion matrix (i.e., the
sample dispersion matrix of all training measurement vectors
ignoring the class information) [12]. Alternatively, instead of the
sample dispersion matrix, the first-order tree-type representation of
the covariance matrix can be used [8]. However, the aforemen-
tioned proposals are the only remedies. As D ! NDc � 1, only
confidence limits of the correct classification rate (CCR ¼ 1� Pe)
can be set because there is not sufficient information to estimate
accurately the covariance matrices. This is why we focus on the
derivation of a lower limit for the CCR as a function of D and NDc.

Let rx;c be the Mahalanobis distance of measurement vector x

from the center of class �c. It is proved that rx;c is distributed as:
1) a �2

D r.v., when an infinite training set is used, 2) a Fisher-
Snedecor r.v., when the training set is finite and cross validation is
used for parameter estimation, or 3) a Beta distribution, when the
training set is finite and resubstitution is used for parameter
estimation. The difference between �2

D and either Fisher-Snedecor
or Beta is small, when D is small and NDc is large. However, as
D ! NDc � 1, both Fisher-Snedecor and Beta distributions deviate
significantly from �2

D. The total variation between these two
distributions, which is a special form of an f-divergence [13], is
used to define a quantity termed information loss for the
distribution pairs �2

D and Fisher-Snedecor as well as �2
D and Beta.

As a by-product of the aforementioned analysis, a lower limit for
CCR is set, that is tested for subset feature selection.

The outline of the paper is as follows: In Section 2, the
distributional properties of the Mahalanobis distance in high
dimensions are studied and the proposed information loss is
analytically derived. These findings are exploited for feature
selection in Section 3, where experimental results on real data sets
are demonstrated. Finally, conclusions are drawn in Section 4.

2 THE MAHALANOBIS DISTANCE OF A MEASUREMENT

VECTOR FROM A CLASS CENTER

Let UA ¼ fuig
N
i¼1 be the available set of patterns. Each ui ¼ ðxi; ciÞ

consists of a measurement vector, denoted as xi ¼ ½xi1 xi2 . . .

xid . . . xiD�
T , and a label ci 2 f�1; . . . ;�c; . . . ;�Cg. Let the super-

script W in the notation UW
A explicitly indicate the features

extracted from UA. In s-fold cross validation, the data are split into
s folds and ND ¼ s�1

s N patterns are randomly selected without
resubstitution from UW

A to build the design set D, while the
remaining N=s patterns form the test set T . In the experiments, s
equals 10. The design set is used to estimate the parameters of the
class-conditional pdf, while the test set is used in classifier
performance assessment. In practice, B cross-validation repeti-
tions are made in order to collect enough test samples during
classifier performance assessment. This cross-validation variant
can be considered as a 10-fold cross-validation repeated many
times. For example, when B ¼ 60, this cross-validation variant is
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the 10-fold cross validation repeated six times. Details for the

estimation of B can be found in Section 3. Let us denote the

covariance matrix and the center vector of �c that are estimated

from design set as �̂
Dbc

and �̂Dbc, respectively, where the

additional subscript b indicates the cross-validation repetition.

Throughout the paper, it is assumed that the class-conditional pdf

is given by

pbðxj�cÞ ¼ fMVND
ðxj�̂

Dbc
; �̂DbcÞ ¼

1

ð2�Þ
D
2 j�̂Dbcj

1
2

� exp �
1

2
ðx� �̂

Dbc
ÞT �̂�1

bc ðx� �̂
Dbc

Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rx;c

8

>><

>>:

9

>>=

>>;

;

ð1Þ

where fMVND
ðxj�;�Þ is the multivariate Gaussian pdf and D is the

cardinality of W.
In resubstitution, the whole set UW

A is used to estimate the

covariance matrix and the center vector of each class in a single

repetition of the experiment. Then, �̂
c
and �̂c are estimated from

UW
Ac ¼ fui 2 UW

A jci 2 �cg.
We examine the distributional properties of rx;c for infinite

many training patterns as well as for a finite number of training

patterns, when the class-conditional pdf parameters are estimated

by either cross validation or resubstitution. To stimulate the reader

to assess the analytical findings, first an example for a single class

is discussed, where D ¼ 2, �c ¼ I, and �
c
¼ 0. The example

highlights the problem that is addressed next for arbitrary many

classes, D, �c, and �
c
.

Infinite case. The estimated Gaussian model for NDc ¼ 1 is

plotted in Fig. 1a. Let xv be a measurement vector that stems from

�c. Let also rv;c be the Mahalanobis distance of xv from �̂
c
. From the

overlaid contour, it is seen that rv;c is accurately estimated because

�̂c can be estimated accurately. Accordingly, the CCR predicted by

any classifier that employs this class-conditional pdf is expected to

be accurate.
Finite case with the resubstitution method. The estimated

Gaussian model for NDc ¼ 5 is shown in Fig. 1b. From the

inspection of Fig. 1b, it is inferred that five measurement vectors

are not enough to accurately estimate the covariance matrix. Let

x� be one among the five measurement vectors that are taken

into account in the derivation of �̂c. The Mahalanobis distance

between x� and �̂
c

is denoted as r�;c. Obviously, �̂c bears

information about x� , as it is manifested by the eigenvector

associated to its largest eigenvalue that is in the direction of x�.

So, x� is found to be too close to �
c

with respect to the

Mahalanobis distance. Therefore, x� is likely to be classified into

�c. Since all measurement vectors are used to estimate the

covariance matrix, the CCR will tend to 1.
Finite case with the cross-validation method. Let x� 2 �c.

However, x� is not exploited to derive �̂c, as is depicted in Fig. 1b.

The Mahalanobis distance between x� and �̂
c
is denoted as r�;c.

Since x� has been ignored in �̂c, the mode of variation in the

direction of x� is not captured adequately by �̂c. The eigenvalue

corresponding to the closest eigenvector of �̂c to x� is small, i.e., the

Mahalanobis distance of x� from the center of the class is large, and

x� will probably be misclassified.
In the following, the pdfs of the r.v.s, i.e., rv;c, r�;c, and r�;c,

are derived and the information loss is measured for finite

training sets:

Theorem 1. The total variation between the pdfs of rv;c and r�;c causes

the information loss in cross validation given by

LOSScrossðNDc; DÞ ¼ F�2
D
ðt1Þ � I 1

1þ
N2
Dc

�1

NDc

1
t1

D

2
;
NDc �D

2

� �

; ð2Þ

where

t1 ¼ �NcW�1

 

�
�ðNDc

2
Þ

�ðNDc�D
2

Þ

" # 2
NDc 2

D
NDcN

D
NDc

�2

Dc
�
N2

Dc � 1
� D
NDc

�1

� exp
1�N2

Dc

N2
Dc

� �!

�NDc þ
1

N2
Dc

;

ð3Þ

F�2
D
ðxÞ is the cdf of �2

D; Ixða; bÞ is the incomplete Beta function with

parameters a and b, and WkðxÞ is the kth branch of Lambert’s W

function [14].

Proof. According to Theorem 3 in Appendix A, rv;c is distributed as

frv;cðrÞ ¼ f�2
D
ðrÞ ¼

ð1
2
Þ
D
2

�ðD
2
Þ
r
D
2
�1 e�

r
2; ð4Þ

with f�2
D
ðxÞ being the pdf of �2

D. Theorem 4 in Appendix A

dictates that r�;c has pdf

fr�;c ðrÞ ¼
NDcðNDc �DÞ

ðN2
Dc � 1ÞD

fF isher

 

NDcðNDc �DÞ

ðN2
Dc � 1ÞD

r

�
�
�
�
D;NDc �D

!

ð5Þ

where fF isherðxja; bÞ is the pdf of the Fisher-Snedecor distribu-

tion with parameters a and b. Both frv;cðrÞ and fr�;c ðrÞ are plotted
in Fig. 2, when D ¼ 6. It is seen that, for NDc ¼ 10, frv;c ðrÞ
intersects fr�;cðrÞ at r ¼ t1 given by (3). The derivation of (3) can

be found in Appendix B. Let us examine the area under each

pdf. Since S1 þ S2 ¼ S3 þ S2 ¼ 1, we have S1 ¼ S3. Let

LOSScrossðNDc; DÞ �
R t1
0
ðfrv;cðrÞ � fr�;c ðrÞÞdr be termed the infor-

mation loss in cross validation. The information loss (i.e., the

area S3) is simply one-half of the total variation between the

aforementioned pdfs, which equals S1 þ S3 ¼ 2S3. The area S3

is given by (2). tu
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Fig. 1. Gaussian models with the contour of unit Mahalanobis distance overlaid

when: (a) �̂
c
and �̂c are estimated from NDc ¼ 1 design measurement vectors;

(b) �̂
c
and �̂c are estimated from NDc ¼ 5 measurement vectors and x� is used in

the estimation of �c (resubstitution method), whereas x� is not used in estimating

�c (cross-validation method).

Fig. 2. The distribution of the Mahalanobis distance for D ¼ 6 when (a) NDc ¼ 1;
and (b) NDc ¼ 10 and cross-validation is used.



Theorem 2. The total variation between the distributions of rv;c and r�;c

causes the information loss in resubstitution method given by

LOSSresubðNDc; DÞ ¼ I NDc t
0
2

ðNDc�1Þ2

D

2
;
NDc �D� 1

2

� �

� I NDc t
0
1

ðNDc�1Þ2

D

2
;
NDc �D� 1

2

� �

� F�2
D
ðt02Þ þ F�2

D
ðt01Þ;

ð6Þ

where, for ‘ ¼ 1; 2,

t0‘ ¼ ðNDc �D� 3ÞW1�‘

 

ðNDc � 1Þ
2NDc�6

NDc�D�3ð2NDcÞ
D

3þD�NDc

ð3þD�NDcÞNDc

�
�
� ðNDc�1Þ

2

�

�
�
NDc�D�1

2

�

" # 2
3þD�NDc

e
ðNDc�1Þ2

NDc ð3þD�NDc Þ

!

þ
ðNDc � 1Þ2

NDc
:

ð7Þ

Proof. According to Theorem 5 in Appendix A, the density of r�;c is

given by

fr�;c ðrÞ ¼
NDc

ðNDc � 1Þ2
fBeta

NDc

ðNDc � 1Þ2
r

�
�
�
�
�

D

2
;
NDc �D� 1

2

 !

; ð8Þ

where fBetaðxja; bÞ is the pdf of the beta distribution with

parameters a and b. The distribution of rv;c is given by (4).

The total variation between the distributions frv;cðrÞ and

fr�;c ðrÞ equals the area S0
1 þ S0

3 þ S0
4. However, by examining

the areas below the pdfs in Fig. 3, one finds that

S0
1 þ S0

2 þ S0
4 ¼ S0

2 þ S0
3 ¼ 1 ) S0

3 ¼ S0
1 þ S0

4. That is, the total

variation is simply twice S0
3. Let us define the information

loss in resubstitution as one-half of the total variation. Then,

LOSSresubðNDc; DÞ ¼ S0
3 ¼

R t0
2

t0
1

ðfr�;c ðrÞ � frv;cðrÞÞdr, which is gi-

ven by (6), where t01 and t02 are the abscissas of the points,

where frv;c ðrÞ intersects fr�;c ðrÞ. In Appendix B, it is proved

that t0‘; ‘ ¼ 1; 2 are given by (7). tu

The functions LOSScrossðNDc; DÞ and LOSSresubðNDc; DÞ for

NDc ¼ 50; 200; 500; 103 and D ¼ 1; 2; . . . ; NDc � 1 are plotted in

Figs. 4 and 5, respectively. The information loss in cross validation

is more severe than in resubstitution. For example, let us examine

the information loss in both cases for NDc ¼ 103 and D ¼ 200. In

cross validation, the information loss is found to be 0.75, whereas

in resubstitution, it is only 0.05.

3 APPLICATION TO FEATURE SELECTION

In this section, we set a lower limit for CCR, that is estimated by

either cross validation or resubstitution based on the analytical

results of Section 2. Throughout the section, the Bayes classifier is

used and the CCR of this classifier is studied.
Let CCRB;crossðU

W
A Þ be the cross-validation estimate of CCR,

when B cross-validation repetitions are employed. CCRB;crossðU
W
A Þ

is actually the average over b ¼ f1; 2; . . . ; Bg CCRs that are
measured as follows: Let L½ci; ĉi� denote the zero-one loss function
between the ground truth label ci and the predicted class label ĉi
determined by the Bayes classifier for ui, i.e.,

L½ci; ĉi� ¼
1; if ci ¼ ĉi;
0; if ci 6¼ ĉi:

�

; where ĉi ¼ argmax
C

c¼1

fpbðxij�cÞP ð�cÞg:

ð9Þ

The cross-validation estimate of CCR is given by

CCRB;cross

�
UW
A

�
¼

1

B

XB

b¼1

CCRb

�
UW
A

�

¼
1

B

1

NT

XB

b¼1

X

ui2U
W
T b

L½ci; ĉi�;

ð10Þ

where UW
T b is the test set during the bth iteration. B is estimated as

in [15]. The higher the B, the less CCRB;crossðU
W
A Þ varies. The

estimate of CCR in resubstitution is obviously given by

CCRresub

�
UW
A

�
¼

1

N

X

ui2U
W
A

L½ci; ĉi�: ð11Þ

The information loss implies that accurate estimates of CCRs
cannot be obtained. Therefore, we propose a lower limit for CCR in
either cross validation or resubstitution that is expressed as a
function of the information loss of the Mahalanobis distance. In
particular, the information loss is subtracted from CCR and a
normalization term is added to guarantee a lower limit above 1=C:
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Fig. 3. The distribution of the Mahalanobis distance for D ¼ 6 when (a) NDc ¼ 1;

and (b) NDc ¼ 10 and resubstitution is used.
Fig. 4. The information loss in cross validation.

Fig. 5. The information loss in resubstitution.



CCRLower
resub

�
UW
A

�
¼ CCRresub

�
UW
A

�
� LOSSresubðNDc; DÞ

� CCRresub

�
UW
A

�
�

1

C

	 


;
ð12Þ

CCRLower
B;crossðU

W
A Þ ¼ CCRB;cross

�
UW
A

�
� LOSScrossðNDc; DÞ

� CCRB;crossðU
W
A Þ �

1

C

	 


:
ð13Þ

Such a lower limit is exploited to select the optimum feature
subset in both cases. Three feature selection algorithms are tested,1

namely: 1) the Sequential Forward Selection (SFS) [16], 2) the
Sequential Floating Forward Selection (SFFS) [16], and 3) the
ReliefF algorithm [17]. SFS starts from an empty feature set and
includes one feature at a time. This feature maximizes the CCR.
SFFS performs similarly to SFS except a conditional exclusion step
that is tested after an inclusion step. In this test, it is tested whether
the removal of a previously selected feature increases the CCR. In
ReliefF, a stepwise weighting of all features in ½�1; 1� is performed.
At each step, the weights are updated according to two distances,
namely, the distance between a randomly chosen pattern and the
nearest pattern in the same class and that between itself and the
nearest pattern of a different class. To evaluate the CCR at each
step, only the features with positive weights are retained. Feature
selection experiments are conducted on three data sets:

SUSAS data set. The Speech Under Simulated and Actual
Stress data set consists of 35 words expressed under several speech
styles. The 35 words are related to aircraft environment such as
break, change, degree, destination, etc. Each word is repeated

twice under four speech styles, namely, neutral, anger, clear, and
Lombard. The number of available utterances is thus N ¼ 2;521.
The experiment with SUSAS data set aims at recognizing the
speech style by extracting 90 prosodic features from each
utterance, such as the maximum intensity, the maximum pitch
frequency, to mention a few [18], [19].

Colon cancer data set. Microarray snapshots taken on colon
cells are used in order to monitor the expression level of thousands
of genes at the same time. Cancer cells can thus be separated from
normal ones. Sixty-two pattern snapshots that stem from 40 cancer
and 22 normal cells are included in the experiments. The extracted
features are the 2,000 genes that have shown the highest minimal
intensity across patterns [20].

Sonar data set. This contains impinging pulse returns collected
from a metal cylinder (simulating a mine) and a cylindrically
shaped rock positioned on a sandy ocean floor at several aspect
angles. The returns, which are temporal signals, are filtered by
60 subband filters in order to extract the spectral magnitude in
each band as a feature. The data set consists of 208 returns that are
divided into 111 cylinder returns and 97 rock returns [21].

The experiments aim at demonstrating that the maximum value

admitted by CCRLower
B;cross across feature selection steps is the most

accurate criterion for determining the optimum feature subset. In

particular, the following alternative criteria are considered:

CCRB;cross, CCRLower
resub , and CCRresub and comparisons are also

made between the CCR achieved when the just-mentioned criteria

are employed in subset feature selection and the state-of-the-art

CCR reported for each data set in the literature. More specifically, a

58.57 percent CCR has been achieved for the SUSAS data set using

hidden Markov models with six autocorrelation coefficients [19].

An 88.71 percent CCR has been reported for the colon cancer data

set using the naive Bayes classifier with 30 genes (features) [22].
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Fig. 6. CCR versus the feature selection step, when CCR is estimated by resubstitution. (a) SFS on SUSAS. (b) SFFS on SUSAS. (c) ReliefF on SUSAS. (d) SFS on

Colon C. (e) SFFS on Colon C. (f) ReliefF on Colon C. (g) SFS on Sonar. (h) SFFS on Sonar. (i) ReliefF on Sonar.

1. An implementation of the feature selection algorithm with a graphical
user interface that uses the proposed lower limits can be found at http://
www.mathworks.com/matlabcentral/fileexchange/ under “Feature Selec-
tion DEMO in Matlab.”



Finally, an 84.7 percent CCR has been measured for the sonar data

set by a neural network using 10 spectral features [21].
The CCR is plotted versus the feature selection steps for both

resubstitution and cross validation in Figs. 6 and 7, respectively.

The lower limit of CCR predicted by either (12) or (13) is plotted

with a gray line. The maximum lower limit marked by a
J

indicates the step when the optimum selected feature subset is

derived. From the inspection of Fig. 6, it is seen that CCRresub and

CCRLower
resub are significantly higher than the state-of-the-art CCR. For

example, CCRresub may approach 100 percent as in Figs. 6d, 6e, 6f,

6g, and 6h. The same applies for CCRLower
resub . As seen in Fig. 7,

CCRB;cross is closer to the state of the art. However, CCRB;cross

curve does not often exhibit a clear peak (Figs. 7a, 7b, and 7f).

Accordingly, the optimum feature subset can be arbitrarily long.

CCRB;cross can also be untruthfully high approaching 100 percent

sometimes (e.g., Figs. 7d and 7e). On the contrary, the most reliable

criterion is CCRLower
B;cross that exhibits a clear peak (Figs. 7a, 7b, 7d, 7e,

7g, and 7h) close to the state-of-the-art CCR.

4 CONCLUSIONS

In this paper, we have studied the collapse of the correct
classification rate estimated by cross validation as the dimension-
ality of measurement vectors increases. We have attributed this
phenomenon to the inaccurate estimation of the Mahalanobis
distance of each measurement vector from the center of a class that
causes the inaccurate estimation of the covariance matrix of each
class. Furthermore, we have provend that the increase of correct
classification rate in resubstitution as dimensionality increases is
also due to the inaccurate estimation of the Mahalanobis distance
of each measurement vector from the center of the class. To
quantify the inaccurate estimation of the Mahalanobis distance, we

have derived analytically the information loss with respect to the

number of measurement vectors per class and the dimensionality

of the measurement vectors for both cross validation and

resubstitution. The information loss has been exploited in setting

a lower limit of the correct classification rate that was used in

subset feature selection with the Bayes classifier.
Although, class-conditional pdfs were assumed to be multi-

variate Gaussian for the sake of analytical derivations, the results of

the paper can be extended toGaussianmixtures.Moreover, they can

be applied to any feature subset selection method that employs as a

criterion the correct classification rate achieved by classifiers, which

resort to the Mahalanobis distance, e.g., the k-means. As the best

method for feature selection, we propose the SFSwhere the criterion

is as in (13), i.e., the lower limit of CCR found with cross validation.

APPENDIX A

THEOREMS FOR THE DISTRIBUTION OF THE

MAHALANOBIS DISTANCE

Let us assume that x ¼ ½x1;x2; . . . ;xD�
T is a D-dimensional

random vector of a pattern that belongs to �c distributed according

to the multivariate (MV) normal distribution MVNDð�c
;�cÞ. The

sample mean vector �̂
c
and the sample dispersion matrix �̂c of a

set of measurement vectors XDc ¼ fxi 2 XDjci 2 �cg of cardinality

NDc are used as estimates of �
c
�c, respectively. Our interest is in

the distribution of the Mahalanobis distances rv;c for infinite many

training measurement vectors (case A), r�;c for finite training

measurement vectors when cross validation is used for parameter

estimation (case B), and r�;c for finite training measurement vectors

when resubstitution is employed for parameter estimation (case C).
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Fig. 7. CCR versus the feature selection step, when CCR is estimated by cross validation. (a) SFS on SUSAS. (b) SFFS on SUSAS. (c) ReliefF on SUSAS. (d) SFS on

Colon C. (e) SFFS on Colon C. (f) ReliefF on Colon C. (g) SFS on Sonar. (h) SFFS on Sonar. (i) ReliefF on Sonar.



Theorem 3. (Case A) The Mahalanobis distance rv;c ¼ ðxv �

�
c
ÞT��1

c ðxv � �
c
Þ for the ideal case of infinite many training

measurement vectors (NDc ! 1) is distributed according to �2
D [23].

Proof. Let �c be the matrix with columns the eigenvectors of �c

and �c be the diagonal matrix of eigenvalues of �c. Then,

�c ¼ �c�c�
T
c . So,

rv;c ¼ ðxv � �
c
ÞT�c�

�1
c �T

c ðxv � �
c
Þ ¼

�
ðxv � �

c
ÞT�c�

�1=2
c

�

�
�
��1=2
c �T

c ðxv � �
c
Þ
�
¼ z

T
v;c zv;c;

ð14Þ

where zv;c ¼ ��1=2
c �T

c ðxv � �
c
Þ is a random vector consisting of

univariate independent normal random variables with zero

mean and unit variance. Hence, rv;c follows the �2
D distribution

[23], [24]. tu

Theorem 4. (Case B) Let x� 62 XDc. The distribution of

r�;c ¼ ðx� � �̂
c
ÞT �̂�1

c ðx� � �̂
c
Þ, when x� is not involved in the

estimation of �̂c, and accordingly, x� and �̂c as well as x� and �̂
c
are

independent, is

fðr�;cÞ ¼
NDcðNDc �DÞ
�
N2

Dc � 1
�
D

fF isher
NDcðNDc �DÞ

ðN2
Dc � 1ÞD

r�;c

�
�
�
�
D;NDc �D

� �

:

ð15Þ

Proof. Let d� ¼ x� � �̂
c
, then

d� ¼ x� �
x1þx2þ...þxNDc

NDc
� MVND 0; NDcþ1

NDc
�c


 �

:

Let

~d� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NDc

NDc þ 1

s

ðx� � �̂
c
Þ � MVNDð0;�cÞ: ð16Þ

Since x� is not involved in the estimation of �̂c, we can

consider the distance ~d� independent of �̂c. So, according to

Hotelling’s Theorem [25], � ¼ ~dT
� �̂

�1
c

~d� follows Hotelling

distribution, i.e.,

�

NDc � 1

NDc �D

D
� fF isher

�

NDc � 1

NDc �D

D

�
�
�
�
D;NDc �D
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However,

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NDc

NDc þ 1

s

ðx� � �̂
c
ÞT �̂�1

c
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NDc

NDc þ 1

s
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c
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NDcr�;c
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: ð18Þ

From (17) and (18), it is inferred that

NDcðNDc �DÞ

ðN2
Dc � 1ÞD

r�;c � fF isher
NDcðNDc �DÞ

ðN2
Dc � 1ÞD
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�
�
�
�D;NDc �D

� �
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Given that x � fðxÞ ) x=a � afðxÞ [26], then the distribution

of r�;c is obtained as

fðr�;cÞ ¼
NDcðNDc �DÞ

ðN2
Dc � 1ÞD

fF isher
NDcðNDc �DÞ

ðN2
Dc � 1ÞD

r�;c

�
�
�
�
D;NDc �D

� �

:

ð20Þ

The cdf of r�;c can be found by integrating (20), which,

according to [24, (26.6.2)], yields

F ðr�;cÞ ¼ I 1

1þ
N2
Dc

�1

NDc

1
r�;c

D

2
;
NDc �D

2

� �

: ð21Þ

tu

To find the pdf of r�;c for finite training measurement vectors

when resubstitution is employed in parameter estimation (case C),

we resort to Lemmas 1 and 2 which are exploited in the proof of

Theorem 5.

Lemma 1. If
PNDc

i¼1ð�Þ denotes the sum from 1 to NDc except �;

Âc ¼ ðNDc � 1Þ�̂c, and

Âcð�Þ ¼
XNDc

1ð�Þ

�
xi � �̂

cð�Þ

��
xi � �̂

cð�Þ

�T
; where

�̂
cð�Þ

¼
1

NDc � 1

XNDc

1ð�Þ

xi;

ð22Þ

then

Âcð�Þ ¼ Âc �
NDc

NDc � 1
ðx� � �̂

c
Þðx� � �̂

c
ÞT : ð23Þ

Proof. See [27]. tu

Lemma 2. Let R� ¼
jÂcð�Þ j

jÂcj
be called as one-outlier scatter ratio of

measurement vector x� , i.e., it denotes how much differs the dispersion

of the whole set from the same set when x� is excluded, then

R� � fBetaðR�j
NDc�D�1

2
;D
2
Þ, where fBetaðxja; bÞ is the pdf of the beta

distribution with parameters a and b.

Proof. See [27]. tu

Theorem 5. If R� � fBetaðR�j
NDc�D�1

2
;D
2
Þ, then
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NDc

ðNDc � 1Þ2
fBeta
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;
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2
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Proof. See [27]. tu

APPENDIX B

ROOTS OF EQUATIONS frv;cðtÞ ¼ fr�;cðtÞ AND

frv;cðtÞ ¼ fr�;cðtÞ

The roots of frv;cðtÞ ¼ fr�;c ðtÞ can be found as follows:
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or WkðzÞe
WkðzÞ ¼ z, where WkðzÞ is the kth branch of Lambert’s

W function [14]. So,

Wk �
1

mNDc
e
� d

mNDc

� �

¼ �
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mNDc
)
|{z}

�¼mtþd

t ¼ �NDcWk �
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� d

mNDc

� �

�
d

m
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ð29Þ

We are interested for t 2 IR, thus k is 0 or �1. According to

Fig. 2, �2
D intersects the Fisher-Snedecor distribution for one

positive value of t. It is found experimentally that the positive t

is given by (29) when k ¼ �1. So (3) results.
Following similar lines, the roots of frv;cðtÞ ¼ fr�;cðtÞ can be

found. According to Fig. 3, �2
D intersects the Beta distribution at

two positive values of t01 and t02. Both branches k ¼ 1� ‘ ¼ 0;�1 of

Lambert’s function result in a positive t0. The roots t0‘, ‘ ¼ 1; 2, can

be derived in a similar manner from

f�2
D
ðt0Þ ¼

NDc

ðNDc � 1Þ2
fBeta
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REFERENCES

[1] W. Highleyman, “The Design and Analysis of Pattern Recognition
Experiments,” Bell System Technical J., vol. 41, pp. 723-744, 1962.

[2] R. Duda and P. Hart, Pattern Classification and Scene Analysis. Wiley, 1973.
[3] D. Foley, “Considerations of Sample and Feature Size,” IEEE Trans.

Information Theory, vol. 18, no. 5, pp. 618-626, Sept. 1972.
[4] S. Raudys and V. Pikelis, “On Dimensionality, Sample Size, Classification

Error and Complexity of Classification Algorithm in Pattern Recognition,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 3, pp. 242-
252, May 1980.

[5] K. Fukunaga and R. Hayes, “Effects of Sample Size in Classifier Design,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 8, pp. 873-
885, Aug. 1989.

[6] S. Raudys and A. Jain, “Small Sample Size Effects in Statistical Pattern
Recognition: Recommendations for Practitioners,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252-264, Mar. 1991.

[7] S. Raudys, “On Dimensionality, Sample Size, and Classification Error of
Nonparametric Linear Classification Algorithms,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 6, pp. 667-671, June 1997.

[8] S. Raudys, “First-Order Tree-Type Dependence between Variables and
Classification Performance,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 2, pp. 233-239, Feb. 2001.

[9] P. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach. Prentice
Hall, 1982.

[10] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[11] F. van der Heijden, R. Duin, D. de Ridder, and D.M.J. Tax, Classification,

Parameter Estimation and State Estimation—An Engineering Approach Using
Matlab. Wiley, 2004.

[12] J. Hoffbeck and D. Landgrebe, “Covariance Matrix Estimation and
Classification with Limited Training Data,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 18, no. 7, pp. 763-767, July 1996.

[13] F. Liese and I. Vajda, “On Divergences and Informations in Statistics and
Information Theory,” IEEE Trans. Information Theory, vol. 52, no. 10,
pp. 4394-4412, Oct. 2006.

[14] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the Lambert
W Function,” Advances in Computational Math., vol. 5, pp. 329-359, 1996.

[15] D. Ververidis and C. Kotropoulos, “Fast and Accurate Feature Subset
Selection Applied to Speech Emotion Recognition,” Elsevier Signal Proces-
sing, vol. 88, no. 12, pp. 2956-2970, 2008.

[16] P. Pudil, J. Novovicova, and J. Kittler, “Floating Search Methods in Feature
Selection,” Pattern Recognition Letters, vol. 15, pp. 1119-1125, 1994.

[17] I. Kononenko, E. Simec, and M. Sikonja, “Overcoming the Myopia of
Inductive Learning Algorithms with RELIEFF,” Applied Intelligence, vol. 7,
pp. 39-55, 1997.

[18] D. Ververidis and C. Kotropoulos, “Fast Sequential Floating Forward
Selection Applied to Emotional Speech Features Estimated on DES
and SUSAS Data Collections,” Proc. European Signal Processing Conf.,
2006.

[19] B. Womack and J. Hansen, “N-Channel Hidden Markov Models for
Combined Stressed Speech Classification and Recognition,” IEEE Trans.
Speech and Audio Processing, vol. 7, no. 6, pp. 668-677, Nov. 1999.

[20] U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A.
Levine, “Broad Patterns of Gene Expression Revealed by Clustering
Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide
Array,” Proc. Nat’l Academy of Sciences USA, vol. 96, no. 12, pp. 6745-6750,
1999.

[21] R. Gorman and T. Sejnowski, “Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets,” Neural Networks, vol. 1, pp. 75-
89, 1988.

[22] C. Ding and H. Peng, “Minimum Redundancy Feature Selection from
Microarray Gene Expression Data,” J. Bioinformatics and Computational
Biology, vol. 3, no. 2, pp. 185-205, 2005.

[23] K. Pearson, “On the Criterion that a Given System of Deviations from the
Probable in the Case of a Correlated System Variables Is Such That It Can
Be Reasonably Supposed to Have Arisen from Random Sampling,”
Philosophical Magazine, vol. 50, pp. 157-175, 1900.

[24] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. Dover,
1972.

[25] T. Anderson, An Introduction to Multivariate Statistics. Wiley, 1984.
[26] A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic

Processes, fourth ed. McGraw-Hill, 2002.
[27] D. Ververidis and C. Kotropoulos, “Gaussian Mixture Modeling by

Exploiting the Mahalanobis Distance,” IEEE Trans. Signal Processing,
vol. 56, no. 7B, pp. 2797-2811, July 2008.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009 2281


