
UC Riverside
UC Riverside Previously Published Works

Title
Information Losses in Neural Classifiers From Sampling.

Permalink
https://escholarship.org/uc/item/19m4k5vj

Journal
IEEE transactions on neural networks and learning systems, 31(10)

ISSN
2162-237X

Authors
Foggo, Brandon
Yu, Nanpeng
Shi, Jie
et al.

Publication Date
2020-10-01

DOI
10.1109/tnnls.2019.2952029
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19m4k5vj
https://escholarship.org/uc/item/19m4k5vj#author
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

90
2.

05
99

1v
3 

 [
cs

.L
G

] 
 4

 N
ov

 2
01

9
1

Information Losses in Neural Classifiers from

Sampling
Brandon Foggo, Student Member, IEEE, Nanpeng Yu, Senior Member, IEEE, Jie Shi, Student Member, IEEE,

and Yuanqi Gao, Student Member, IEEE,

Abstract—1 This paper considers the subject of information
losses arising from the finite datasets used in the training of
neural classifiers. It proves a relationship between such losses as
the product of the expected total variation of the estimated neural
model with the information about the feature space contained in
the hidden representation of that model. It then bounds this
expected total variation as a function of the size of randomly
sampled datasets in a fairly general setting, and without bringing
in any additional dependence on model complexity. It ultimately
obtains bounds on information losses that are less sensitive to
input compression and in general much smaller than existing
bounds. The paper then uses these bounds to explain some recent
experimental findings of information compression in neural
networks which cannot be explained by previous work. Finally,
the paper shows that not only are these bounds much smaller
than existing ones, but that they also correspond well with
experiments.

I. INTRODUCTION

An estimator is limited to the information that it has about

the variable it’s estimating. But this information is limited to

what the estimator has seen from the samples training it. The

full information of a random variable cannot be transferred

to an estimator by finite samples - some information is lost.

This paper analyzes such losses for neural network classifiers.

Analyzing these losses can lead to improved architecture

designs and training data selection strategies, and provide

explanations for empirical results in machine learning theory.

The study of these loses as a tool for deep learning

theory arose from the attempts to understand neural network

behavior through the concept of an information bottleneck [1],

[2]. This theory was later investigated both analytically [3]

and experimentally [4], [5]. They are used, primarily, as an

explanatory tool which can act as a supplement to classical

statistical learning theory (CSLT), which typically fails to

explain the success of deep learning models (for example, deep

networks tend to perform better when they have higher VC

dimension, while CSLT would predict the opposite). We will

further discuss the utility of these losses in section III, and we

will denote this newly arising field of deep learning theory as

information theoretic deep learning theory (ITDLT).

But this theory is still somewhat incomplete. The reader will

find that reference [5] above actually contradicts the others

- giving experimental evidence against some of the claims

1 c© 20XX IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

established in the earlier works. In particular, ITDLT, as it

previously stood, would claim that neural networks should

always act as a lossy compressor of the input data - a claim

which arises from bounds on information losses that are

exponential in the information content of the final hidden layer

of the network (while still being smaller than CSLT bounds

for larger networks). But experiments show that this is only

sometimes true. While compression does seem to always occur

when using saturating activation functions, like sigmoid and

tanh, compression in networks using linear and relu activation

functions seems to be more nuanced.

But instead of abandoning ITDLT, we believe that the theory

can be improved in such a way that it explains all of these

experiments. Since most contrary evidence to the theory can

be traced to those exponential bounds, we hypothesize that

these bounds, while tighter than those of CSLT, are still not

quite tight enough to account for every experiment. In this

paper, we aim to derive bounds which are much tighter than

the existing ones. This will make up the bulk of this paper,

and can be found in section IV.

With these new bounds, we will be able to explain the exper-

imental discrepancy found in the above literature, giving detail

into why some situations yield neural network compression,

even with relu activation functions, and others do not. For

example, in the case of low entropy feature spaces, our bounds

show that there is simply not enough information to lose such

that compression is beneficial. We will illustrate this concept

further in section V-A.

This will lead to a better understanding of the information

relationships found in neural networks, and to a better under-

standing of neural networks in general. This better understand-

ing will allow guided development of network architectures

and other algorithms which are theoretically sound.

In one critical step to achieving these bounds (Theorem 1),

we decompose information losses as a product of a term that

mostly depends on network architecture and a term that mostly

depends on the training dataset used to train that architecture.

This decomposition can thus be applied to network architecture

design and training data selection strategies independently.

These aspects of applying this theory will be the subject of

future work.

Finally, while these new bounds are much tighter than both

CSLT bounds and the old ITDLT bounds, and while they are

capable of explaining all experiments in literature, we will

see experimentally that these bounds are fairly tighter than

they needed to be to achieve our goals. This will be shown

experimentally in section V-B.

http://arxiv.org/abs/1902.05991v3
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pY pX|Y pZ|X Estimator
y x z ỹ

Fig. 1: The classification model assumed in this paper.

Section II will address some notations and assumptions that

we will use throughout the paper. Section III will provide more

details into the literary background and motivation of this work.

We conclude in section VI.

II. NOTATION AND ASSUMPTIONS

Capital letters denote random variables. Lower case letters

describe instances of the corresponding random variable. Fig-

ure 1 depicts the classification model used in this paper. A

class variable y generates a feature vector x according to

a fixed (unknown) distribution PX|Y . This feature vector is

then fed through a learned distribution PZ|X , which acts as

a lossy compressor of x. This should be thought of as the

hidden layers of a neural network. z is then used to form

an estimator of y, denoted ỹ. We will drop the subscripts

on probability distributions when the context is clear. The

calligraphic symbols X and Y refer to the set of values that X
and Y can take on. We assume that X is a Polish space such

as Rd and that Y is a finite set with the discrete topology.

This model has three variables of interest, X,Y and Z
which satisfy the Markov chain Y − X − Z . We denote the

true model as PXY Z = PXPZ|XPY |X and consider the case

of estimating the conditional probability distribution PY |X .

We denote this estimate as P̂Y |X and denote the estimated

full model as P̂XY Z = PXPZ|X P̂Y |X . We will use the hat

notation for all information theoretic quantities referring to

the estimated model. For example:

Î(X ;Y ) := E
P̂XY



log
dP̂XY

d
(

PX ⊗ P̂Y

)





Finally, we assume that all distributions can be written as

density functions such as pXY (x, y). We will occasionally

drop the variable-specifying subscript when the context is clear.

We will assume that the support of p(x) is all of X .

III. BACKGROUND

A. The Information Bottleneck Principle

The use of the compressor pZ|X comes from the Infor-

mation Bottleneck Problem [1] which attempts to find a

variable Z that is minimally sufficient for the input pair of

variables (X,Y ). The minimal sufficiency of Z refers to the

following two properties. First, X and Y must be conditionally

independent given Z , or, put in a more enlightening way,

I(Z;Y ) = I(X ;Y ). And second, for any other sufficient

statistic T , I(X ;T ) ≥ I(X ;Z). Intuitively, a minimally suf-

ficient statistic is the most efficient description of X which

retains all of the available information about the class variable

Y . Further reasons that we wish to find a minimally sufficient

statistic will become clear in the following sections.

B. Information and Generalization

We now focus on the reason for caring about the first

aspect of finding a minimally sufficient statistic. That is, on

finding a variable such that I(Z;Y ) = I(X ;Y ), or, in a more

relaxed form, at least ensuring finding one such that I(Z;Y )
is relatively large. Pursuing this goal is backed by information

theory as well as standard estimation theory. On the estimation

theory side, this property just amounts to ensuring that Z
be a sufficient statistic for X and Y . It thus has importance

in finding optimal estimators, for example, through the Rao-

Blackwell theorem [6]. On the information theoretic side, if

I(Y ;Z) = H(Y ), then having an instance z would completely

determine the corresponding instance y, and so there exists an

estimator of Y that takes Z as input and has zero probability

of error. This notion can be expanded to I(Y ;Z) < H(Y )
by Fano’s inequality and its generalizations [7] [8]. Fano’s

inequality provides the following bound on estimation error

for any estimator of Y defined as a function of Z:

h2(Pe) + Pelog2 (|Y| − 1) ≥ H(Y )− I(Y ;Z) (1)

where Pe is the error rate of the estimator

and h2 denotes the binary entropy function

h2(t) = −tlog2(t)− (1− t)log2(1− t). This inequality

has a left hand side (LHS) that is strictly increasing in Pe for

Pe ≤ 1
2 . Thus the restriction of the LHS to [0, 12 ] is invertible,

and since H(Y ) is fixed, we can say that Pe is lower bounded

by a monotonically decreasing function of I(Y ;Z). In some

cases we do achieve near equality in (1) - particularly when

1.) the estimator performs (nearly) equally well on each class

and 2.) the estimator Z → Ŷ incurs relatively low levels of

compression when compared to that which was incurred in

the map X → Z.

C. Information Losses

We now turn to the reason for caring about the second aspect

of finding a minimally sufficient statistic - the minimality. This

is where the role of our sampled data comes into play, and with

it, the concept of information losses.

When we train on a finite sample of data, achieving the first

aspect of a minimally sufficient statistic - the sufficiency - be-

comes difficult. This is because, no matter what representation

we choose, we always have an information loss of the form:

I
(1)
Loss , |I(Y ;Z)− Î(Y ;Z)| (2)

(The superscript (1) here is to distinguish between this form

of information loss and another form which will appear later.

We will call the current form type one information losses). In

choosing our representation, we will only be able to control

the latter term in this expression, as that term corresponds to

the model we have estimated from our training data. Thus, if

this loss is large, then, no matter what we do, we will have

trouble in making I(Y ;Z) as large as possible.

Throughout this paper, we will find that this term, I
(1)
Loss,

depends on I(X ;Z). In the old bounds (i.e. previous to this

paper), its dependence is exponential [9]:

I
(1)
Loss ≤ O

(
√

|Y|
2m

2I(X;Z)

)

(3)
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where m is the number of training samples. And so we see

that, at least in this form, keeping I(X ;Z) low is pertinent.

In this paper, we will find that the dependence on I(X ;Z)
is relaxed to a linear one. Thus it may not always be so

clear that we should minimize I(X ;Z). A perhaps more

illuminating perspective can be found if we transfer instead to

what we call type two information losses. These relate the best

possible representation (in terms of achieving sufficiency) to

the one that we would obtain by optimizing Z jointly with our

estimated probability distribution. Before describing this new

type of information loss, we will need to rigorously define the

representations that we qualitatively described in the previous

sentence.

Definition 1. Let ǫ > 0. We denote as Z∗
ǫ (I) and Ẑǫ(I)

any random variables that are at most ǫ-suboptimal for the

following information bottleneck problems respectively:

sup
p(z|x)

I(Y ;Z)

subject to I(X ;Z) = I

sup
p(z|x)

Î(Y ;Z)

subject to I(X ;Z) = I

We will then define type two information losses as

I
(2)
Loss,ǫ(I) , I(Y ;Z∗

ǫ (I)) − I(Y ; Ẑǫ(I)) (4)

which is, in general, a function of I , I(X ;Z). Then, rear-

ranging, we see that the quantity we care about, I(Y ; Ẑǫ(I)), is

given by I(Y ;Z∗
ǫ (I)) − I

(2)
Loss,ǫ(I), and so picking an I(X ;Z)

that maximizes this expression is critical, though it may not

always result in a direct minimization of I(X ;Z).
In any case, it is easy to convert bounds on type one

information losses into corresponding bounds on type two

information losses, as we will see in the next lemma.

Lemma 1. Suppose that we have a bound of the form

I
(1)
Loss ≤ K(·), where K(·) can be any function of any number

of arguments. Then:

I
(2)
Loss,ǫ(I) ≤ 2K(·) + ǫ (5)

D. Automatic Implementation via Neural Networks

There is evidence [4] [3] that neural networks automatically

solve the information bottleneck problem. The first set of

evidence is experimental. Authors of [4] found that a wide

range of neural networks undergo training in two phases. In

the first phase, the neural networks memorized the inputs. This

corresponded to an increase of I(X ;Z) and I(Y ;Z) simulta-

neously. During this phase, the average magnitude of back-

propagated gradients surpassed the variance. In the second

phase, this dynamic swapped and the variance surpassed the

average. During this phase, I(Y ;Z) increased, but I(X ;Z)
dropped - the neural networks were compressing the input to

learn more about Y .

The second set of evidence is theoretical. The authors of

[3] show that I(X ;Z) is tightly related to the information

between the weights and the data I(W ;Dl). This relationship

holds with only a few assumptions on the corresponding

neural network. They then shown that I(W ;Dl) is small

when the network converges to a wide local minimum of the

cross entropy loss function. Finally, they argue that stochastic

gradient descent tends to converge to such minima.

Some more recent experimental evidence [5] counters these

two arguments. This new evidence shows that some networks

can achieve high I(Y ;Z) without compression. Thus some

networks can significantly outperform the lower bound of

inequality (3). This paper presents new lower bounds which

are much tighter and less sensitive to I(X ;Z) than (3). These

bounds - while useful on their own right- help to explain this

counter evidence.

IV. NEW BOUNDS ON INFORMATION LOSSES

We will now move on to deriving the new bounds on

information losses.

A. Product Form Decomposition - Intuition and Setup

Our first major step is a decomposition of information losses

into a product of two terms, one being I(X ;Z), and the

other being a term related to a statistical distance between

P and P̂. The proof of this decomposition takes some setting

up. The setup is performed by generalizing the well studied

maximal coupling [10] from statistics to our purposes. We will

call our generalization the conditional maximal coupling, and

will begin its construction by quickly reviewing couplings in

general [11].

Definition 2 (Coupling). Given two probability models PS̃

and QS on a list of variables S, a coupling of these models

is a pair of random variables (S̃, Ŝ) with joint distribution

γ
S̃,Ŝ such that the marginal distributions satisfy γS̃ = PS̃ and

γ
Ŝ
= QS .

Construction 1 (Conditional Maximal Coupling). We set

our coupling
(

(X̃, Ỹ , Z̃), (X̂, Ŷ , Ẑ)
)

as follows. First,

define the function ml : X × Y → [0, 1] through

ml(a, b) := min{pY |X(b|a), p̂Y |X(b|a)} (6)

Next, define a real number ρ as

ρ :=

∫

(

∑

y

ml(x, y)

)

dPX (7)

and define J as a Bernoulli random variable

with success probability ρ. Then define variables

U = (U1, U2), V = (V1, V2) and W = (W1,W2)
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J

U

W

V Ỹ

Ŷ

X̃

X̂

Z̃

Ẑ

Fig. 2: Bayesian network describing the relationships between ran-
dom variables in the proof of Theorem 1.

through

pU1,U2(u1, u2) :=
pX(u1)ml(u1, u2)

ρ
(8)

pV1,V2(v1, v2) :=
pX,Y (v1, v2)− pX(v1)ml(v1, v2)

1− ρ
(9)

pW1,W2(w1, w2) :=
p̂X,Y (v1, v2)− pX(w1)ml(w1, w2)

1− ρ
(10)

Next define (X̃, Ỹ , X̂, Ŷ ) as functions of the above

random variables as follows:
{

(X̃, Ỹ ) = (X̂, Ŷ ) = (U1, U2) if J = 1

(X̃, Ỹ ) = (V1, V2), (X̂, Ŷ ) = (W1,W2), if J = 0
(11)

Finally, we define Z̃ and Ẑ through

γ
Ẑ|X̂ = γZ̃|X̃ = pZ|X (12)

Lemma 2. Construction 1 yields a valid coupling.

Lemma 3. The definitions of Construction 1 satisfy the

following relationship:

1−ρ = γ(Ỹ = Ŷ |X̃ = X̂) = EPX

[

1

2

∑

y

|p(y|x)− p̂(y|x)|
]

(13)

Motivated by Lemma 3, we will denote 1 − ρ as δ̄(P̂).
This notation emphasizes its role as an average total variation

distance. This finishes our setup for the decomposition, which

we will now move on to prove.

B. Product Form Decomposition - Theorem and Proof

Theorem 1.
∣

∣

∣
I(Y ;Z)− Î(Y ;Z)

∣

∣

∣
≤ δ̄(P̂)I(X ;Z) + h2

(

δ̄(P̂)
)

(14)

Proof. We will use several Markov chains in this proof. All of

them follow from the following Bayesian network describing

the generative process of all relevant random variables which

is shown in figure 2. Each Markov chain that we use comes

from the fact that the X variables d-separate the Z variables

from the rest of the network.

First, via coupling, we have
∣

∣

∣
I(Y ;Z)− Î(Y ;Z)

∣

∣

∣
=
∣

∣

∣
I(Ỹ ; Z̃)− I(Ŷ ; Ẑ)

∣

∣

∣
(15)

We decompose the above terms as follows:

I(Ỹ ; Z̃) = I(Ỹ ; Z̃|X̃) + I(X̃; Z̃)− I(X̃; Z̃|Ỹ ) (16)

I(Ŷ ; Ẑ) = I(Ŷ ; Ẑ|X̂) + I(X̂; Ẑ)− I(X̂; Ẑ|Ŷ ) (17)

But, due to the Markov chains Z̃ − X̃ − Ỹ and Ẑ − X̂ − Ŷ ,

we have I(Ỹ ; Z̃|X̃) = I(Ŷ ; Ẑ|X̂) = 0. Furthermore,

I(X̃; Z̃) = I(X̂; Ẑ) = I(X ;Z), so:
∣

∣

∣
I(Ỹ ; Z̃)− I(Ŷ ; Ẑ)

∣

∣

∣
=
∣

∣

∣
I(X̂ ; Ẑ|Ŷ )− I(X̃ ; Z̃|Ỹ )

∣

∣

∣
(18)

We can further decompose each of these terms as:

I(X̂ ; Ẑ|Ŷ ) = I(Ẑ; X̂|J, Ŷ ) + I(Ẑ; J |Ŷ )− I(Ẑ; J |X̂, Ŷ )

I(X̃ ; Z̃|Ỹ ) = I(Z̃; X̃|J, Ỹ ) + I(Z̃; J |Ỹ )− I(Z̃; J |X̃, Ỹ )
(19)

But we have from the Markov chains Ẑ − X̂ − J and

Z̃ − X̃ − J that I(Ẑ; J |X̂, Ŷ ) = I(Z̃; J |X̃, Ỹ ) = 0, so these

terms will disappear from the decomposition. Next, we can

break down the term I(Ẑ; X̂ |J, Ŷ ) to:

ρI(Ẑ; X̂ |J = 1, Ŷ ) + (1− ρ)I(Ẑ ; X̂|J = 0, Ŷ )

=ρI(Ẑ;U1|U2) + δ̄(P̂)I(Ẑ;W1|W2) (20)

and similarly, we can break down:

I(Z̃; X̃|J, Ỹ ) = ρI(Z̃;U1|U2) + δ̄(P̂)I(Z̃;V1|V2) (21)

But when X̃ = X̂ = U1, I(Ẑ;U1|U2) = I(Z̃;U1|U2). Thus,

in total,

∣

∣

∣
I(Y ;Z)− Î(Y ;Z)

∣

∣

∣
is given by:

∣

∣

∣
δ̄(P̂)

(

I(Ẑ;W1|W2)− I(Z̃;V1|V2)
)

+ I(Ẑ; J |Ŷ )− I(Z̃; J |Ỹ )
∣

∣

∣

(22)

which can be bounded by the triangle inequality on each inner

term.

Now, from the Markov chains Ẑ − X̂ −W1, Ẑ − X̂ −W2,

Z̃ − X̃ − V1, and Z̃ − X̃ − V2, we have (via applications of

the data processing inequality and its corollaries [7]):

I(Ẑ;W1|W2) ≤ I(Ẑ; X̂|W2) ≤ I(Ẑ; X̂) = I(X ;Z) (23)

I(Z̃;V1|V2) ≤ I(Z̃; X̃|V2) ≤ I(Z̃; X̃) = I(X ;Z) (24)

Further, I(Ẑ; J |Ŷ ) ≤ H(J) and I(Z̃; J |Ỹ ) ≤ H(J). Then as

0 ≤ a ≤ c ∧ 0 ≤ b ≤ c =⇒ |a− b| ≤ c, we have
∣

∣

∣
I(Z;W1|W2)− I(Z̃;V1|V2)

∣

∣

∣
≤ I(X ;Z) (25)

∣

∣

∣
I(Ẑ; J |Ŷ )− I(Z̃; J |Ỹ )

∣

∣

∣
≤ H(J) = h2

(

δ̄(P̂)
)

(26)

And so, in total, we have
∣

∣

∣
I(Y ;Z)− Î(Y ;Z)

∣

∣

∣
≤ δ̄(P̂)I(X ;Z) + h2

(

δ̄(P̂)
)

(27)

which completes the proof.

A potentially useful special case of this bound occurs when

we set Z = X :
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Corollary 1. If X is discrete,
∣

∣

∣
I(X ;Y )− Î(X ;Y )

∣

∣

∣
≤ δ̄(P̂)H(X) + h2(δ̄(P̂)) (28)

But we won’t be using this corollary in the rest of the paper.

C. Understanding δ̄(P̂)

The above relationships looks linear on I(X ;Z). However,

p̂(y|x) is typically learned jointly with Z and therefore δ̄(P̂)
may itself depend on I(X ;Z). Thus we cannot yet say that

this relationship is truly linear, and we certainly cannot yet say

that it is tight. Before we can make those claims, we will need

to study δ̄(P̂) explicitly. We will begin with a ‘sanity-check’

lemma. This lemma shows us that δ̄(P̂) does at least converge

with the convergence of a typical neural classifier loss function.

It arises from an application of Pinsker’s inequality [12].

Lemma 4. Suppose that H(Y |X) = 0. Then:

δ̄(P̂) ≤
√

1

2
H

P,P̂
(Y |X) (29)

where H
P,P̂

(Y |X) is the conditional cross entropy between P

and P̂, i.e. the usual cross entropy loss function.

This lemma is particularly applicable when we are esti-

mating our cross entropy error on a validation set, as we

can then take P in this lemma to be the empirical measure

corresponding to the validation or training sample, in which we

are almost certain to have H(Y |X) = 0. In this sense Lemma

4 can bound such empirical estimates of δ̄(P̂).

D. Bounding δ̄(P̂) - Setting

Finally, we will derive a rate of decrease for δ̄(P̂) in a

general continuous learning algorithm. Our setup will involve

defining a learning algorithm as a continuous map from a

special topology on input probability measures on X × Y to

conditional probability functions. This is basically to say that,

given a training dataset (i.e. an empirical measure on X ×Y),

we have a well-behaved way of obtaining the corresponding

p̂ν(y|x). This is just slightly generalized so that we can

consider any input measure (empirical or not) as a ‘training

dataset’. We begin by reviewing that special topology, and

then we will construct the topology that we will place on our

output conditional probability distributions.

Definition 3. Let M1 denote the set of Borel probability

measures on X × Y . Then the τ -topology [13]

(page 263) is the topology generated by the sets

Wf,r,c = {ν : |
∫

fdν − r| < c} for all bounded Borel

measurable functions f : X × Y → R, all r ∈ R and all

c > 0. If we restrict f to bounded continuous functions, we

get the weak topology W , which is strictly coarser than the

τ -topology.

Definition 4. Let Σ|Y| be the probability simplex in |Y|
dimensions. Let L1(X ) denote the space of absolutely inte-

grable functions from X to R with norm ‖f‖L1 =
∫

|f |dPX.

Let L1(X )|Y| denote the product space on L1(X ), con-

sisting of functions from X to R|Y| which are abso-

lutely integrable in each output dimension, and with norm

‖f‖
L

|Y|
1

= 1
2

∫
∑

y |f(x, y)|dPX. Finally, let L1(X ,Σ|Y|) de-

note the subspace of L1(X )|Y| to the set of functions whose

co-domain is Σ|Y|.

The topology we’ve placed on L1(X ,Σ|Y|) is metrized

by the conditional total variation function that we’ve been

working with. With these topologies defined, we will restrict

ourselves to the study of algorithms which act as continuous

maps between these topologies. This essentially requires that,

when our training datasets are very similar (e.g. moving one

training point to a point within a distance ǫ from the original),

our algorithm will return very similar output functions in terms

of conditional total variation. Thus this condition is somewhat

related to algorithmic stability [14], though not completely

equivalent.

We will obtain two bounds on δ̄(P̂) in the remains of this

paper. The first is asymptotic, and applies when we have

continuity from the τ -topology. The second is non asymptotic,

and applies when we further have continuity from the weak

topology. We will next show that gradient descent algorithms,

under mild conditions, achieve these continuities.

Theorem 2. Let Θ denote a normed parameter space and

let L : X × Y ×Θ → R denote a loss function which is inte-

grable in X ×Y for each θ ∈ Θ, which is differentiable with

respect to θ for all (x, y) ∈ X × Y , and whose θ-gradients

yield bounded continuous functions on X ×Y when evaluated

at each point θ ∈ Θ. Suppose further that our parameter space

admits lipschitz-continuous outputs for each (x, y). That is,

|pθ1(y|x)− pθ2(y|x)| < L‖θ1 − θ2‖ ∀(x, y) ∈ X × Y . Then

gradient descent applied to the empirical risk minimization

of L, with a fixed initiation θ(0) and which proceeds for a

fixed number of iterations, is continuous from (M1,W) to

L1(X ,Σ|Y|).

If we relax the condition that the θ gradients of L be

bounded continuous functions on X × Y when evaluated at

each point θ ∈ Θ to just bounded measurable functions, then

this algorithm is still continuous from (M1, τ) to L1(X ,Σ|Y|).

Proof. The assumptions on L allow us to differentiate (with

respect to θ) under the integral sign. Let αk denote the step size

of the kth iteration. Let ν∗ ∈ M1. We proceed by induction

on the number of iterations.

Let ǫ > 0. Let δ1 = 2ǫ
Lα1|Y| . Let ν∗ ∈ M1 and let ν be

contained in the open set of the weak topology given by

{ν : |
∫

∇θ(0)dν −
∫

∇θ(0)dν∗| < δ1} (which clearly contains

ν∗). Let θ
(1)
∗ denote the parameter chosen after one gradient

update when training on ν∗, and let θ(1) denote the parameter

chosen after one gradient update when training on ν. Then:

‖θ(1)∗ − θ(1)‖ =

∥

∥

∥

∥

α1

(
∫

∇θ(0)dν −
∫

∇θ(0)dν∗
)∥

∥

∥

∥

≤ α1δ1

(30)
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so

1

2

∫

∑

y

‖p
θ
(1)
∗
(y|x)− pθ(1)(y|x)‖dPX ≤ L|Y|α1δ1

2
= ǫ

(31)

and so the hypothesis is true if our algorithm consists of one

iteration.

Suppose that the hypothesis when we use (k − 1) iter-

ations. Let ǫ > 0. Let δk−1 = ǫ
L|Y| and let δk = ǫ

L|Y|αk
.

Chose an open set U of the weak topology such that

‖θ(k−1)
∗ − θ

(k−1)
c ‖ ≤ δk when νc ∈ U which is possible by

the induction hypothesis, and where θ
(k−1)
∗ and θ

(k−1)
c

denote the chosen parameters after iteration k − 1 of

the gradient descent when trained on ν∗ and νc. Let

ν ∈ U ∩ {ν : |
∫

∇θ(k−1)dν −
∫

∇θ(k−1)dν∗| < δk}. Then by

the triangle inequality:

‖θ(k)∗ − θ(k)‖ ≤ δk−1 + αkδk (32)

so the conditional total variation between p
θ
(k)
∗

(y|x) and

pθ(k)(y|x) is less than or equal to
L|Y|(δk−1+αkδk)

2 which is

equal to ǫ.
For the final statement, note that all of the above open sets

in the W-topology used in this proof remain open sets in the

τ -topology when we relax the conditions of L. This completes

the proof.

E. Bounding δ̄(P̂) - The Asymptotic Case

We now wish to bound the conditional total variation of

an estimated model against the true model when we use

such a general learning algorithm in our setting. We will re-

label δ̄(P̂) to δ̄(Pf ) to emphasize that our estimated model is

coming from such an algorithm. We then have the following

asymptotic theorem on the rate of decay for δ̄(Pf ). This

will apply whenever we have continuity from the τ -topology

in our algorithm, and will be used in our non-asymptotic

specialization that follows. We will use two final lemmas in

both of those proofs.

Lemma 5. Let (Ω,F , µ) be a probability space and let

h : Ω → R be bounded and measurable. Let G denote the set

of non-negative measurable functions with expectation 1. Then

inf
g∈G

E [g · (h+ log g)] = −log E
[

e−h(ω)
]

.

Lemma 6. Let (Ω,F , µ) be a probability space

and let f : Ω → R be bounded and measurable with

Range(f) ⊆ [0, 1]. Then log
(

E

[

e−2f2
])

≤ −2E [f ]2.

Theorem 3. Let ǫ ∈ (0, 1), and let 0 < ζ < 1. If F is a

continuous learning algorithm from (M1, τ) to L1(X ,Σ|Y|)
such that, for any ν ∈ M1, the total variation between Fν
and νy|x is smaller than the total variation between Fν and

py|x at any point in the support of ν. Suppose further that the

‘training’ total variation, Eν

[

1
2

∑

y |νy|x −Fν|
]

, is bounded

above by ζ. Then:

limsup
m→∞

1

m
log Pm(δ̄(Pf ) ≥ ǫ) ≤ 4ζ − 2ǫ2 (33)

where Pm is the probability measure on M1 induced by the

sampling of m data-points on X × Y .

Proof. For notational convenience, we will denote as δν(x)
the conditional total variation between p(y|x) and (Fν)(y|x)
for a fixed x.

We will first need to show that the map δ̄ : M1 → R,

given by ν 7→ EPX
[δν ] is continuous from the τ -topology to

the Euclidean topology. This is trivial since EPX
[δν ] is just

the composition of F , which was assumed continuous, with

the fixed-point distance function d(·, py|x(y|x)) defined over

L1(X ,Σ|Y|).
Now, let Γ = {ν ∈ M1 : EPX

[δν ] ≥ ǫ}. By the above con-

tinuity and by the fact that [ǫ, 1] is closed in R, we have that

Γ is closed. Then, by Sanov’s Theorem [13]:

limsup
m→∞

1

m
log Pm(Pf ∈ Γ) ≤ −inf

ν∈Γ
DKL(ν||p(x, y)) (34)

We thus wish to lower bound DKL(ν||p(x, y)) over Γ. We

begin by decomposing dν
dP

into dνx
dPx

νy|x
py|x

. Where νx and Px

are the marginal distributions of ν and p(x, y) on X . We

are guaranteed that the functions and νy|x exist on the

support of νx since y is discrete. The KL-divergence then

becomes: DKL(ν||p(x, y)) = EPX

[

dνx
dPx

(h̃+ log dνx
dPx

)
]

where

h̃ ,
∑

y νy|xlog
νy|x
py|x

is bounded below (via Pinsker’s inequal-

ity) by the function 2
(

∑

y |py|x − νy|x|
)2

, which itself is

bounded below by 2
(

∑

y |py|x −Fν| −∑y |νy|x − Fν|
)2

because the absolute value of the second term in this expres-

sion is smaller than that of the first term for each point in the

support of ν. The first term is just the function δν defined at the

start of this proof. We will call the second term δtν . We can

lower bound this expression one more time with 2δ2ν − 4δtν .

We are left with:

DKL(ν||p(x, y)) ≥ EPX

[

dνx
dPx

(2δ2ν + log
dνx
dPx

)

]

− 4Eν

[

δtν
]

(35)

We will bound these two remaining terms separately. The

second is taken care of in this theorem’s hypothesis, being

bounded below by −4ζ. For the latter, we can combine

Lemmas 5 and 6 to obtain a lower bound of 2ǫ2 (since ν ∈ Γ).

Since neither of these two bounds depend on ν, negating

their sum yields the result.

F. Bounding δ̄(P̂) - The Non-Asymptotic Case

The previous theorem gives us:

Pm(δ̄(Pf ) ≥ ǫ) ≤ em(4ζ−2ǫ2)+o(m) (36)

where o(m) refers to any terms such that lim
m→∞

o(m)
m

= 0. We

will need to study o(m) since it’s somewhat of an unknown

here, and may be large for small m. The next theorem, which

is non-asymptotic, will take care of this when F is continuous

from the weak topology.

Theorem 4. Take all assumptions from Theorem 3, but remove

the assumption that F be a continuous map from (M1, τ) to

L1(X ,Σ|Y|) and assume it is instead continuous linear from
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(M1,W). Suppose further that X is compact, and that p(x)
has full support with density p(x, y) > 0 everywhere. Then

there exists a function k(m′) : Z+ → R with k(m′) ≤
√
m′

such that:

Pm(δ̄(Pf ) ≥ ǫ) ≤ inf
m′∈Z+

2m
′|Y|e

−2m

(

(

ǫ−2 k(m′)√
m′

)2
−4ζ

)

+2 k(m′)√
m′

(37)

(A more detailed description of k(m′), from which we can

discover more of its properties, is contained in the proof).

Proof. Let the notations δν and Γ be defined as they were in

the proof of Theorem 3.

Let E(Sm′ , k(m′)) constitute a family of conditions,

indexed first by samples of m′ points of X and

second by functions Z+ → R, which constitute that

|Ep(x) [δν ]− ESm′ [δν ] | ≤ k(m′)√
m′ , where the second expecta-

tion is the monte-carlo estimate over the indexed sample.

Let the sets Γ(Sm′ , i), indexed first over

samples of X consisting of m′ points and

second over the set 1, 2, · · · , 2m′|Y|, be given by

Γ(Sm′ , i) = {h : Ep(x) [δh] ≥ ǫ, Fh(y|xj) ≥ / ≤ py|x(y|xj)}
(where the x′

js run over the sampled points in Sm′

and i runs over the possible choices of ≥ / ≤).

Let F (S′
m, i, k(m′)) denote the family of conditions

{ν : ESm′ [δν ] ≥ ǫ− k(m′)√
m′ , Fν(y|xj) ≥ / ≤ py|x(y|xj)}

where the xj run over the sampled points and the choices

of ≥ and ≤ correspond to those of Γi. Let G(Sm′ , i)
denote the condition on measures µ ∈ M1 such that there

exists a measure µ′ ∈ Γ(Sm′ , i) with µ′
y|x = µy|x. Note that

E(Sm′ , k(m′)) ∩G(Sm′ , i) ⊆ F (S′
m, i, k(m′)).

Let M denote the vector space of finite signed measures on

X × Y endowed with the weak topology. For any probability

measure ν′x ∈ M1(X ), let Rν′
x be the subspace of measures

with marginal distribution ν′x. Let R
ν′
x

1 be the subset of Rν′
x

consisting of probability measures. Define a linear map on

R
ν′
x

1 , denoted Cν′
x
, which takes ν′ to its disintegration ν′

y|x.

Let fν′
x
: M1 × Cν′

x
R

ν′
x

1 denote the family of real valued

function (indexed by M1(X )) taking (ν, ν′
y|x) to the value

Eνx

[

∑

y νy|xlog
ν′
y|x

py|x
+ log dνx

dPX

]

, which is to be taken as

infinite when the support of ν′x is not a superset of the

support of νx, and is further infinite when νx is not absolutely

continuous with respect to p(x). Note that each fν′
x
(·, a) is

convex and continuous in the weak topology for each fixed

a (as p(x) > 0 and py|x > 0 everywhere by the theorem’s

hypothesis), and each fν′
x
(b, ·) is concave and continuous for

each fixed b.
Now, since X × Y is compact, M1 is compact in the weak

topology. Then for any ν′x, R
ν′
x

1 is compact (being a closed

subset of a compact space). Then Cν′
x
R

ν′
x

1 is compact and con-

vex. We also have that the subsets G(Sm′ , i), E(Sm′ , k(m′)),
and F (Sm′ , i, k(m′)) are all closed, and therefore compact.

We also have convexity in F (Sm′ , i, k(m′)), but not in the

other two.

Arbitrarily pick some ν′′x ∈ M1 with full support

and denote f as fν′′
x

as f . Let r(Sm′ , i, k(m′)) de-

note the minimum of the expression f(a, ay|x) over

K(Sm′ , i) ∩ E(k(m′)) ∩ F (Sm′ , i, k(m′)) and denote the

minimizer as a(Sm′ , i, k(m′)). The image of the map

f(·, a(Sm′ , i, k(m′))) is a compact subset of R - i.e. a closed

and bounded interval I(Sm′ , i, k(m′)). Let Ĩ(Sm′ , k(m′)) de-

note the union of these intervals over the finite indices i. Cover

this interval with a family of subintervals Ĩ(Sm′ , k(m′), j) of

size
k(m′)√

m′ .

We will now fix k(m′) to be the smallest num-

ber such that there exists a sample S∗
m′ in which

both G(S∗
m′ , i) ∩ E(S∗

m′ , k(m′)) 6= ∅ for all i in which

G(S∗
m′ , i) 6= ∅ and I(S∗

m′ , k(m′), j) ∩ E(S∗
m′ , k(m′)) 6= ∅ for

all j in which Ĩ(S∗
m′ , k(m′), j) 6= ∅. Such a k(m′) exists, and

is less than or equal to
√
m′ since E(Sm′ ,

√
m′) is all of M1.

Fix Sm′ to any of the samples that we just established the

existence of. We will drop the notations Sm′ and k(m′) from

the notation for any conditions referring to them from now on.

Now, denote as Cb(X ) the set of bounded continuous

functions from X to R and construct a family of maps

Gλ,ν′ : M1 → R indexed over λ ∈ Cb(X ) and ν′ ∈ M1 which

takes ν ∈ M1 to Eν

[

mlog
ν′
y|x

py|x
+mλ

]

. Then for any empirical

Lm ∈ Γ(i) corresponding to a sample of m points, we have

that Gλ,ν′Lm ≥ inf
ν∈Γ(i)

Gλ,ν′ν for all λ, ν′. Thus the probability

that Lm is in Γ(i) is bounded above by the probability that

Gλ,ν′Lm − inf
ν∈Γ(i)

Gλ,ν′ν ≥ 0. Then by Chernoff’s inequality,

we have that 1
m
log Pm (Lm ∈ Γ(i)) is bounded above by:

1

m
log E

[

e
mELm

[

log
ν′
y|x

py|x
+λ

]
]

− inf
ν∈Γ(i)

Eν

[

log
ν′
y|x

py|x
+ λ

]

(38)

where the first expectation is taken over Pm.

The first term can be reduced to log Ep(x)

[

eλ
]

. Optimizing

over λ yields a bound of

−sup
λ

inf
ν∈Γ(i)

Eν

[

log
ν′y|x
py|x

]

+ Eν [λ]− log(Ep(x)

[

eλ
]

) (39)

We will denote as Γi
y|x the set of conditional probability func-

tions νy|x such that there exists ν ∈ Γ(i) with disintegration

given by νy|x. We will also denote a function gν′(νy|x, µx) de-

fined on Γi
y|x ×M1(X ) which yields Eµxνy|x

[

log
ν′
y|x

py|x

]

when

the support of the latter argument is equal to the domain of

the former, and is infinite otherwise. Note that g is convex and

lower-semicontinuous in µx for fixed νy|x since it is linear in

the convex subset {µx ∈ M1(X ) : supp(µx) = Dom(νy|x)}
and infinite outside of this subset. Finally, we will

define the function h : M1(X )× Cb(X ) → R given by

h(µx, λ) = Eµx
[λ]− log(Ep(x)

[

eλ
]

). This function is con-

cave in λ, convex in µx, and lower semicontinuous in µx [13].

Then (39) is upper bounded by:

− sup
λ∈Cb

inf
νy|x∈Γi

y|x

inf
µx∈M1(X )

gν′(νy|x, µx) + h(µx, λ) (40)

Note also that the the objective function of this expression

is decoupled for νy|x and λ. We can thus swap the supremum

with the first infinum. But then inside the first infinum, we are

left with an objective function in which a minimax theorem

applies [15] because M1(X ) is compact and convex in the



8

weak topology when X is compact, and so we can swap

the supremum with the second infinum as well. Since the

first term does not depend on λ, we can then consider for

each fixed µx the expression sup
λ

h(µx, λ). But the supremum

of this function over λ ∈ Cb(X ) is none other than the KL
divergence between µx and p(x) [16]. We are thus left with a

full upper bound of (now optimizing over ν′
y|x ∈ Cν′′

x
R

ν′′
x

1 ):

−sup
ν′

f
ν∈G(i)

(νy|x, ν
′
y|x) (41)

We would be able to swap the supremum and infinum if our

feasible set were convex and compact. This is true for our

search space over ν′, but not for G(i). Our goal is to then

transform G(i) into F (i), which is convex, with corresponding

error terms included. This can be done by tightening G(i)
to G(i) ∩ E and then relaxing that set to F (i), this will

incur some error, but if we end up choosing ν′
y|x to be the

disintegration of a(i), then this error will be bounded by
k(m′)√

m′ .

With our feasible set now being F (i), we can swap the

supremum and infinum, and then pick ν′
y|x to be equal to νy|x

on the support of ν, and arbitrary elsewhere. The objective

function is then just the minimum KL divergence over F (i),
which we know how to deal with due to the proof of Theorem

3. Minimizing then gives us νy|x = ν′
y|x both given by the

disintegration of a(i), and with the objective function bounded

by inf
ν∈F (i)

2Ep(x) [δν ]
2 − 4ζ. If we again add the constraint E to

the feasible region (with another error of at most
k(m′)√

m′ added

on), then this is bounded above by 2(ǫ− 2k(m′)√
m′ )

2. Union

bounding over i yields the result.

G. Some Insights

We have established that, with probability at least (1 − ν),
the following holds:

δ̄(Pf )− ζ . inf
m′∈Z+

√

log 1
ν
+m′|Y|log(2)

2m
+ δ′ + 2δ′ (42)

where δ′ = k(m′)√
m′ and we can usually take ζ ≈ 0 (as we can

make this arbitrarily small with a large enough network, due to

[17] and lemma 4 if we train on cross-entropy errors). k(m′)
is trivially less than or equal to m′, but it is generally going

to be quite small since it is dependent on a statement only

requiring the existence of functions satisfying an empirical

deviation bound. This is in contrast to classical statistical

learning theory bounds which instead require for all functions

statements of the same sort. Furthermore, k(m′) is not strictly

increasing with model complexity. On the contrary, k(m′)
can decrease as the hypothesis space grows (given that we

maintain W continuity), since having more functions will

increase the probability of such existences. By Theorem 3, we

can also assume that
k(m′)
m′ → 0 as m′ → 0. These intuitions

tell us that the decomposition in Theorem 1 has successfully

extracted a good amount of the problem’s complexity into

the term I(X ;Z). The primary complexity term in δ̄(Pf ) -

given a sufficiently complex hypothesis space - arises from

the complexity of the class variable itself.
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Fig. 3: (left) New bounds on a low entropy feature space (right) Old
bounds on the same space. (Bottom) New bounds on a high entropy
feature space.

V. EXPERIMENTS

A. How These Bounds Solve Experimental Discrepancy

We argue that the bounds presented in this paper explain the

experimental discrepancy that we’ve alluded to a few times in

this paper. These tightened, less sensitive bounds imply that,

in many cases, it is simply not optimal in terms of information

losses to compress a neural network’s input. This can be

seen visually in Figure 3. Here we have set up a toy clas-

sification problem with H(Y ) = log2(10), H(X) = 21, and

I(Y ;Z∗) = H(Y )
(

1− e−
I(X;Z∗)

2

)

. The information quanti-

ties in this toy example are thus similar to MNIST [18]. We

have plotted I(Y ;Z∗) along with the bounds of this paper

(assuming ζ ≈ 0, k(m′) ≈ 0) for m = 10, 000, 5, 000, and

2, 000 data points. We see that very little to nothing can be

gained by compression in the m = 10, 000 and m = 5, 000
cases. Serious gains can only be obtained in the m = 2, 000
case. On the right side of this figure, we plot the old bounds,

which predicts a peak at around 5 bits even for 10, 000 data

points. Thus the lack of compression found experimentally on

smaller datasets is explained by our new bounds, but not by

the old ones.

But if the entropy of the feature space becomes large, as

we’ve made it for the third plot in this figure, compression

becomes important even with our new bounds. This helps to

explain why neural networks seem to yield compression on

‘harder’ datasets, but do not on ‘easier’ ones.

B. Tightness of Bounds

For these experiments, we have used the MINE-f [19]

estimator of mutual information for I(X ;Z) quantities. We

assume that Î(Y ; Ẑ) is equal to H(Y ), and estimate I(Y ; Ẑ)
via validation error probability and Fano’s inequality. To make

the classifier representation stochastic, we used permanent

dropout with a rate of 0.7. All classifiers are trained for 10, 000
epochs, and all information estimations are performed for

2000 epochs. All neural networks are trained with the Adam

optimizer. All models used a learning rate of 5× 10−4.
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Fig. 4: (δ̄(Pf )− ζ) for several datasets. (Blue) True confidence
interval, (Red) bound [Theorem 4].
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Fig. 5: I
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Loss over varying architectures. (Blue) True confidence

interval, (Red) Information bound [Theorem 1].

We first tested the non-asymptotic bound of Theorem 4

on four of the datasets provided by OpenML [20] across

several training data sizes (dependent on the overall size of

the dataset in question). Our classifier consisted of a neural

network with a single hidden layer of 1000 units. The results

are plotted in figure 4. We took a confidence interval ν = 0.5
for the plot of the bound, and plotted the mean value of ten

experiments for the ‘true’ 50% confidence interval (assuming

a symmetric distribution). We estimated k(m′) via kcm
′r with

r < 1
2 . In each case, we estimated kc and r in sample for the

smallest tested training data size. This, of course, only gives

us a ‘functional behavior’ experiment, but we do see that this

behavior is consistent with the true values.

We then tested the bound of Theorem 1 for MNIST and

Cifar-10 using the true value of δ̄(Pf ) in each case. The results

are shown in Figure 5. Each dataset is experimented on with a

classifier given by a fully connected neural network with single

hidden layer, with varying hidden layer sizes. The deviations

here are to show that the bound is decent across differing

architectures. The bound is quite close to the true confidence

interval in each case.

VI. CONCLUSION

This paper presented new bounds on information losses

from finite data. This began in the form of a relationship

between these losses, the expected total variation of the neural

model, and the information held in the hidden representation

of the feature space. Then, by bounding the total variation term

without invoking any more dependence on model complexity,

we obtained bounds that are much tighter and less sensitive

to I(X ;Z) than previous theory. The paper provided appli-

cations of this theoretical framework, focusing primarily on

relevant contradictory experimental work that previously went

unexplained. It concluded with experiments showing that the

bound presented in this paper corresponds well to experiment.

APPENDIX

A. Proof of Lemma 1

Proof.

I(Y ;Z∗
ǫ )− I(Y ; Ẑǫ) = I(Y ;Z∗

ǫ )− Î(Y ;Z∗
ǫ )

+ Î(Y ;Z∗
ǫ )− I(Y ; Ẑǫ)

≤ K(·) + Î(Y ;Z∗
ǫ )− I(Y ; Ẑǫ)

≤ K(·) + Î(Y ; Ẑǫ) + ǫ− I(Y ; Ẑǫ)

≤ 2K(·) + ǫ (43)

B. Proof of Lemma 2

Proof. We first check that the defined variables J, U, V and

W have valid distributions. For J to be valid, we need only

check that ρ < 1. Indeed by replacing the min operation in

ml(x, y) with pY |X(y|x), we have

ρ =

∫

(

∑

y

ml(x, y)

)

dPX ≤
∫

dPXY = 1 (44)

The variable U is similarly valid as can be seen as follows:

∫

dPU =
1

ρ

∫

(

∑

y

ml(u1, u2)

)

dPX =
ρ

ρ
= 1 (45)

And the variables V and W follow similarly

with
∫

dPV = 1
1−ρ

(∫

dPXY − ρ
)

= 1, and
∫

dPW = 1
1−ρ

(

∫

dP̂XY − ρ
)

= 1.

We then need to show that the marginals of the cou-

pling satisfy γX̃,Ỹ ,Z̃ = PXY Z and γ
X̂,Ŷ ,Ẑ

= P̂XY Z . To be-

gin, we first show that γX̃,Ỹ (x, y) = pX,Y (x, y) and that

γ
X̂,Ŷ (x, y) = p̂X,Y (x, y) as follows:

γX̃,Ỹ (x, y) = ρ
p(x)ml(x, y)

ρ

+ (1 − ρ)
p(x)p(y|x) − p(x)ml(x, y)

1− ρ

= p(x, y) (46)
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γ
X̂,Ŷ (x, y) = ρ

p(x)ml(x, y)

ρ

+ (1− ρ)
p(x)p̂(y|x)− p(x)ml(x, y)

1− ρ

= p̂(x, y). (47)

Finally, since we defined Z̃ and Ẑ through the distributions

γZ̃|X̃(z|x) = γ
Ẑ|X̂(z|x) = p(z|x), we have

γX̃,Ỹ ,Z̃(x, y, z) = γX̃,Ỹ (x, y)γZ̃|X̃(z|x) = p(x, y)p(z|x)
(48)

γ
X̂,Ŷ ,Ẑ(x, y, z) = γ

X̂,Ŷ (x, y)γẐ|X̂(z|x) = p̂(x, y)p̂(z|x)
(49)

C. Proof of Lemma 3

Proof. To prove the first equality, define the following subsets

of Y .

A(x) := {y : p(y|x) ≤ p̂(y|x)} (50)

Then for any coupling of these two models,

P(Ỹ = Ŷ |X = x) ≤ P(Ỹ ∈ A(x)|X = x)

+ P(Ŷ ∈ Ac(x)|X = x)

=
∑

y∈A(x)

p(y|x) +
∑

y∈Ac(x)

p̂(y|x)

=
∑

y

min{p(y|x), p̂(y|x)} =
∑

y

ml(x, y)

(51)

It follows that:

P(Ỹ = Ŷ |X̃ = X̂) =

∫

X

P(Ỹ = Ŷ |X = x)dPX ≤ ρ (52)

But we also have for this particular coupling, that

P(Ỹ = Ŷ |X̃ = X̂) ≥ PJ (1) = ρ. Thus we must have equality.

To prove the second equality, we will use the fact that

min{a, b} = a+b−|a−b|
2 . Then

∑

y

ml(x, y) =
1

2

∑

y

(p(y|x) + p̂(y|x)− |p(y|x)− p̂(y|x)|)

= 1− 1

2

∑

y

|p(y|x)− p̂(y|x)|

(53)

Thus ρ = 1− EPX

[

1
2

∑

y |p(y|x)− p̂(y|x)|
]

D. Proof of Lemma 4

Proof.

δ̄(P̂) =

∫

δTV (PY |X , P̂Y |X)dPX

≤
∫

√

1

2
DKL

[

PY |X || P̂Y |X
]

dPX

≤
√

∫

1

2
DKL

[

PY |X || P̂Y |X
]

dPX

=

√

1

2
H

P,P̂
(Y |X) (54)

E. Proof of Lemma 5

Proof. This infinum can be found by the following Lagrangian:

L = E [g · (h+ log g)] + λ (E [g]− 1) (we will see that we

don’t need to worry about the g(ω) ≥ 0 constraints because the

solution to the lagrangian we just wrote will yield a function g
in which those constraints are not tight). The functional deriva-

tive of this Lagrangian is h(ω) + log g(ω) + 1 + λ. Fixing

this to zero yields g(ω) = e−λe−(h(ω)+1). Setting λ through

normalization then yields g(ω) = 1
W
e−(h(ω)+1) where W =

E
[

e−(h(ω)+1)
]

. Plugging this solution into our objective yields

−1− log W = −log E
[

e−(h(ω)+1)
]

− 1. Since our objective

function was a strictly convex functional with a positive second

variation given by 1
g(ω) , this is a minimizer.

F. Proof of Lemma 6

Proof. This follows from reference [21] (Theorem

1) with φ = −log(·) while replacing h(x;µ) with

φ′′(x)/2 = 1
2x2 . Denote Y = e−2f2

. The range of Y
is a subset of [e−2, 1]. On this set, the supremum of

φ′′(x)/2 is 1
2 . Thus log (E [Y ]) ≤ E [log(Y )] + 1

2V ar [Y ].

But V ar
[

e−2f2
]

≤ 4V ar[f2] ≤ 4V ar[f ] (because

f has range bounded by [0, 1]). We thus have

log
(

E

[

e−2f2
])

≤ −2E
[

f2
]

+ 2V ar [f ]. This completes

the proof since V ar [f ] = E[f2]− E[f ]2.
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