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Abstract

Background: High content live cell imaging experiments are able to track the cellular localisation

of labelled proteins in multiple live cells over a time course. Experiments using high content live cell

imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders

identification of previously gathered data that may be relevant to current analyses. Whilst solutions

exist for managing image data, they are primarily concerned with storage and retrieval of the images

themselves and not the data derived from the images. There is therefore a requirement for an

information management solution that facilitates the indexing of experimental metadata and results

of high content live cell imaging experiments.

Results: We have designed and implemented a data model and information management solution

for the data gathered through high content live cell imaging experiments. Many of the experiments

to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to

nucleus in individual cells. The functionality of this database has been enhanced by the addition of

an algorithm that automatically annotates results of these experiments with the timings of

translocations and periods of any oscillatory translocations as they are uploaded to the repository.

Testing has shown the algorithm to perform well with a variety of previously unseen data.

Conclusion: Our repository is a fully functional example of how high throughput imaging data may

be effectively indexed and managed to address the requirements of end users. By implementing the

automated analysis of experimental results, we have provided a clear impetus for individuals to

ensure that their data forms part of that which is stored in the repository. Although focused on

imaging, the solution provided is sufficiently generic to be applied to other functional proteomics

and genomics experiments. The software is available from: fhttp://code.google.com/p/livecellim/
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Background
Introduction

Recent advances in biological experimental techniques
have often been geared towards increasing throughput of
data. In microscopy, the combination of fluorescently
labelled proteins, combined with automated focus and
image capture, has led to a large increase in "high content
screening" of cells, for phenotype and protein localisation
in response to a variety of environmental perturbations
(e.g. [1-4]). The majority of these assays deal with cells at
single time points, but more challenging, and potentially
more useful for a systems biology approach involving
mathematical modelling, is being able to track cellular
functions in a number of individual live cells over a
period of time.

We have been using high content cell imaging techniques
to explore the NF-κB signalling system. NF-κB proteins are
a family of transcription factors involved in the regulation
of cell division, apoptosis and inflammation [5,6]. NF-κB
is released from inhibitor kappa-B (IκB) in the cytosol and
translocates into the nucleus where it activates transcrip-
tion of target genes, including that of its inhibitor IκB. IκB
binds to NF-κB and transports the active complex back
into a dormant cytoplasmic localisation [5,7]. The rela-
tionship between NF-κB and IκB leads to delayed negative
feedback, which generates oscillatory behaviour in NF-κB
localisation [5]. These oscillations can be studied effec-
tively using fluorescently tagged NF-κB and IκB proteins
(Figure 1). However, the pathway is complex, and high
throughput screening of samples is proving to be essential
for investigation of the mechanisms that regulate these
dynamic processes [5]. Additionally, an important part of
our work concerns the construction of an accurate
dynamic mathematical model of the NF-κB pathway
which must be fitted and verified using experimental data.

Traditionally, experimental details and results are
recorded in lab books. This enables an experimentalist to

quickly return to an experiment that they have performed;
providing they can remember which book they recorded
the information in. Whilst this may be sufficient for small
self-contained experiments in small research groups, it
does not, even at that scale, provide any facility to corre-
late seemingly disparate results and experiments between
experimentalists unless links are drawn through discus-
sions or by diligent project management. As the number
of experiments performed and the number of measure-
ments taken in each experiment increase, it becomes less
likely that relevant associations will be identified, and
more likely that important links will be overlooked, or at
worst, experiments will be needlessly repeated.

Imaging experiments, such as those described, present
additional problems, in that they generate large primary
data sets with associated results that cannot be written
into lab books. These may be stored on computer hard
drives or DVDs, where typically only the experimentalist
understands the precise system of nomenclature that they
have used for their generated files, and experience suggests
that even they may have some difficulty in discovering
and interpreting datasets produced over an extended
period.

In our specific environment, there is a requirement to
archive in the region of 120 experiments per week, each
one of which may be analysing up to 20 individual loca-
tions containing multiple cells over variable time courses.
The image data are stored on RAID arrays providing a rea-
sonable level of integrity for the data, but the amount of
data generated presents a number of significant challenges
for both information management and data analysis.

Systematic analysis of the time-series data gathered has
been facilitated through the use of CellTracker [8,9],
which allows fluorescent intensity in the cytoplasm and
nucleus of individual cells to be quantified and recorded
automatically. This is performed by allowing the experi-
mentalist to define nuclear and cytoplasmic boundaries
for cells of interest, and then using a particle filter algo-
rithm to track those boundaries as they move within the
captured image field from frame to frame. The software
measures the fluorescent intensities within each boundary
for each captured frame, and then calculates the ratio
between them.

However, the requirement for effective information stor-
age and indexing has necessitated the design and imple-
mentation of an experimental metadata repository. A
repository for high throughput imaging data in the con-
text described above:

1. Enables associations to be identified between exper-
imental details, results and subsequent analyses.

Time course observing movement of fluorescently labelled protein involved in the NF-κB signalling systemFigure 1
Time course observing movement of fluorescently 
labelled protein involved in the NF-κB signalling sys-
tem. Scale bar represents 10 μm. SK-N-AS cells transfected 
with p53dsredXP and EGFP.



BMC Bioinformatics 2009, 10:226 http://www.biomedcentral.com/1471-2105/10/226

Page 3 of 17

(page number not for citation purposes)

2. Avoids repetition of experiments, as previous work
is recorded.

3. Supports identification of relevant experiments;
these may be from the same microscope, similar
experimental conditions or have produced similar
results.

Requirements & Contribution

To address the problem outlined and provide the benefits
described, requirements for the information management
system were identified through an iterative series of meet-
ings with both experimentalists and modellers. Initially
these comprised of examining how data were manually
gathered, recorded, and used, followed by discussions of
what desirable attributes an information management
system for these data would possess. The requirements
identified were:

R1. Representation of experimental metadata and
associated results.

R2. Efficient mechanisms for data capture.

R3. Efficient search mechanisms to identify experi-
ments from metadata.

R4. Automated annotation of data derived from the
images to allow identification of experiments whose
results met certain criteria.

This paper presents an information management solution
for high throughput cell imaging experiments, illustrated
in the context of the NF-κB pathway, that addresses the
above requirements by:

R1. Developing a new model that can capture both
experiment descriptions and associated results, specif-
ically descriptions of experimentalists, materials, pro-
tocols and microscope settings, as well as the output
from the CellTracker software.

R2. Deploying the model using the Pedro data capture
tool [10] to capture data that is then stored in a native
XML database. The data capture tool utilises specially
written plugins that allow the automatic import of
microscope settings from microscope output files, as
well as the re-use of previously described protocols
and materials by importing them directly from the
database.

R3. Providing a web-based search interface that uses
canned (pre-defined) queries to retrieve details and
results of experiments of interest. This provides the
means to search over both experimental metadata and
results.

R4. Computing summaries of the key features of time
series image data (the change in fluorescence intensity
of different cellular compartments over time and oscil-
lations between these compartments) using a specifi-
cally developed algorithm, which are stored using the
database from (R2) and accessed by way of the inter-
face of (R3).

Related Work

Our requirements centre on the effective management of
experimental metadata and results. Such solutions exist
for local storage of other types of functional genomic
experiments (e.g. maxd [11] for genomic expression data)
and a variety of repositories cater for public storage and
dissemination of experimental results (e.g. ArrayExpress
[12], PRIDE [13]). Here we discuss available infrastruc-
tures for the management of microscopy image data, and
note that at present no available solution provides for the
local management of experimental metadata and results
from high content imaging experiments.

Individual microscope manufacturers produce file for-
mats specific to their own hardware and software (e.g.
[14]). The associated software infrastructures typically do
not provide complex search facilities across multiple
experiments, and metadata associated with images is gen-
erally limited to details of imaging settings, omitting
experimental context. In general the emphasis in vendor
software is on experimental analysis rather than archiving
and retrieval.

The Carl Zeiss LSM (Laser Scanning Microscope) format is
a good example of a vendor microscope output. It is gen-
erated by Carl Zeiss confocal microscopes and the result-
ing files may be viewed with the LSM Image Browser [14].
The format consists of two parts, a Microsoft Access for-
mat MDB (Microsoft Access Database) file which
describes microscope settings and references the image
file for each location observed, and a series of .lsm (Laser
Scanning Microscope) files that contain the imaging data
for the observed locations. This records much of the data
relevant to an imaging experiment, but does not record
information relating to sample preparation and experi-
mental design. Additionally, as there is a single image
database for each experiment conducted, it is not straight-
forward to search across multiple experiments.

The Open Microscopy Environment (OME) is a fully fea-
tured repository for image data and associated metadata
[15] designed to be utilised as a local archive. It is able to
read image data from a wide variety of microscope for-
mats, and is becoming ever more widely used. Once
images are imported into the database, the user may
annotate them using either pre-defined or custom tags.
Additionally, external modules may be deployed that can
interface with and use the data stored in OME, for exam-
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ple FindSpots [16]. OME is dependant upon the Bio-For-
mats library [17] for reading and writing to different
microscopy image formats, and as such is limited in the
metadata it can extract directly from the image files. For
example, it is unable to extract the microscope settings
from Zeiss LSM files. OME's emphasis is, however, on the
management of images from microscopy experiments,
rather than on the use of high throughput imaging as a
functional genomics technique, as in this paper.

The Cell Centred Database (CCDB) is an online reposi-
tory for managing and sharing image data [18]. Whilst
originally geared to storing electron micrographs [19], it
has been extended to encompass a wide range of micros-
copy techniques. All submitted data must be accompa-
nied by project, experimental and protocol metadata.
Along with original image data, CCDB stores analysis
products derived from these, such as segmentations into
substructures and reconstructions into three-dimensional
objects. Submission to CCDB and subsequent annotation
of images and input of instrument parameters is per-
formed manually through a series of web-forms. CCDB is
a solution for presenting and disseminating analysed
datasets to a wider community, however recently it has
started to be evolved to support work within an experi-
mental environment, with the introduction of MyCCDB
[18]. MyCCDB provides a personalised login allowing
individuals or groups to upload data and assign privileges
for others to view and manipulate the data without it
being published on the public site.

The Centre for Bio-Image Informatics at Santa Barbara
have produced Bisque (Bio-Image Semantic Query User
Environment) [20]. It is centred around the storage of bio-
logical images and associated metadata. Personalised
logins may be registered and individuals may upload
images that may then be kept private or made public.
Uploaded images may be directly annotated with drawing
objects or else via associated meta-data tags. Images may
also be analysed with a number of tools specifically tai-
lored for analysis of retinal tissues (e.g. segmentation of
layers, counting of nuclei) and microtubules (e.g. dynam-
ics analysis and segmentation). Results of certain analyses
are stored directly in the database, but there is no facility
to search across them.

Over the last 15 years there has been a considerable
amount of work on Content Based Image Retrieval
(CBIR). CBIR aims to identify images or sequences of
images based on the visual content of the images. This
content is reduced to a set of features – perhaps colour,
textures or shapes – that may then be compared to the fea-
tures extracted from other images either by measuring
some "distance" between them or applying some sort of
probabilistic model to suggest how relevant an image may

be [21]. The precise nature of the features extracted
depends on the problem being addressed by the CBIR sys-
tem.

CBIR has been applied experimentally to many fields of
medical and biological imaging, e.g. asymmetry in brain
MRI scans [22], features in X-rays [23], RNAi induced phe-
notypes of cells [24]. However, each system generated is
optimized for a particular task and there are no general-
ised products available that are able to perform automatic
feature extraction on the type of data that we gather other
than CellTracker which we currently use.

CellTracker's feature extraction could be considered the
first step in a CBIR system, however there is no require-
ment to identify specific images based on these extracted
features, just a requirement to identify similar sets of
extracted features. If a need were to be identified for iden-
tification of particular result sets based on aspects cellular
morphology or another aspect of the captured images that
are not explicitly extracted by CellTracker then some fur-
ther form of CBIR may be an appropriate addition to our
requirements list.

MyCCDB, OME and Bisque are strongly focused on image
storage and retrieval, and address many of the problems
which are faced by those who are generating large quanti-
ties of image data from disparate sources and those who
need to make their image data available to a wider audi-
ence. Whilst our needs overlap with some of the features
provided by these solutions, we differ in that there is no
requirement to manage image data itself, but there is a
specific requirement to record and manage the details of
the context in which the images were acquired, and subse-
quently the numerical data derived from CellTracker anal-
yses performed on them.

Implementation
Data Requirements

In addressing R1 it is important to understand the nature
of the experiments undertaken, the data generated and the
requirements for access. Figure 2 is a workflow diagram
describes a generic microscopy experiment and data that
is output from or required to describe each stage.

The requirement for the model is that it must represent
the output from experiments and results along with
descriptive metadata. The metadata should, in keeping
with guidelines devised for other experimental metadata
[25,26], provide enough detail to validate the experimen-
tal methods used, minimise unnecessary repetition of
experiments, and provide enough detail to repeat the
experiment. There is no explicit requirement for the
images to be archived along with the metadata, and as
such it is reasonable to maintain a reference to the loca-
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tion of the image data, rather than storing the raw data in
the database.

The Model

The microscopy experiments conform to the set-up illus-
trated in Figure 3. Cells are observed in multiple locations
on a dish. Cells may be transfected with one or more plas-
mids and treated with one or more compounds. The plas-
mids and compounds may be identical at every location
across the dish or, in the case of high throughput screen-
ings, may vary by location. Each experiment performed
may have more than one dish. Associated with the dish, or
locations on the dish, are additional treatments and
potential environmental perturbations. These in turn

have protocols associated with them. This arrangement of
entities forms the core of a model that can be used to
describe an experiment and its associated results. Beyond
that, on a more abstract level, is a description of the con-
text within which it was created.

Figure 4 shows a UML diagram describing the relation-
ships between the main objects that are associated with
the Experiment class. Experiments are performed by people
who belong to research groups. Experiments have a
hypothesis, may be of various types (e.g., FISH (Fluores-
cence In Situ Hybridisation), FRET (Förster Resonance
Energy Transfer) or Fluorescence), and may be performed
using various techniques (e.g., confocal or wide field
microscopy). Experiments can have many Dishes that
were observed with a Microscope, as described above. The
Experiment may be a spotted experiment, in which case
cells treated in different ways may be applied to particular
locations on the dish. Images are produced of Locations on
the Dish, which once analysed, yield results that are
directly related to that Location.

The model represents the physical and conceptual rela-
tionships between the elements that go to make up the
experiment, but it must also capture the additional infor-
mation provided by the microscope data files. The micro-
scope records a large amount of information about its
settings alongside the images it captures, such as laser
intensities, filters, objectives, time points and tracks. This
information is useful for validating procedures and repli-
cating experimental configurations. Figure 5 shows the
elements of the model that directly relate to the informa-
tion provided in the Microscope data file and their relation-
ship to the Dish, LocationReading and Results objects.

Workflow diagram illustrating the process of conducting a microscopy experimentFigure 2
Workflow diagram illustrating the process of conducting a microscopy experiment. White boxes indicate the out-
puts from each stage that are required to describe the experiment.

Elements that form an experimental dish unitFigure 3
Elements that form an experimental dish unit.

Compound(s)

Dish

Locations

Cells

Plasmid(s)
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The remainder of the model is populated from Cell-
Tracker output and subsequent analysis performed on
this. As CellTracker outputs XML (see additional files 1, 2,
3, 4, 5 and 6), the model represents the CellTracker output
format where a ResultTimeSeries has a sequence of Result-
States. CellTracker records the fluorescence in the nucleus
and cytoplasm (CellularCompartments) of each Cell. Both
Cells and CellularCompartments have fluorescence data
captured about them (CellProperty) on one or more Chan-
nels. These Channels have a name that can be related back
to the wavelength of light (and hence tagged protein of
interest) which was being recorded on that channel, and
intensity of the fluorescence recorded. Additionally, we use
this results section of the model to hold information
derived from an automated analysis of the CellTracker
output (described in "Summarisation of Results" below).

For each recorded Result for a location on a dish, we gen-
erate AnalysisResults. The AnalysisResults consist of one or
more AnalysedCells for that dish location, and for each of
these we generate AnalysedChannels corresponding to the
Channels that were recorded for that particular cell. The
AnalysedChannels contain the details (Time, ratio value) of
any Peaks relating to the movement of fluorescence
between cytoplasm and nucleus. The content of this sec-
tion of the model is shown in Figure 6.

Implementation of the Model

The data model is implemented as an XML Schema Defi-
nition (XSD), and thus the associated data are captured as
XML. This is advantageous for two reasons. Firstly, XML is
a de-facto standard for the transfer of biological data. Sec-
ondly, we are able to make use of existing software infra-

UML Diagram illustrating relationships between metadata elements and experimentally generated elementsFigure 4
UML Diagram illustrating relationships between metadata elements and experimentally generated elements.
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structure for capturing, managing and accessing XML data.
The full XSD, along with example data files, are available
in the additional files.

Data Capture

The data capture workflow is illustrated in Figure 7. The
data are captured using Pedro [27]. Pedro is a flexible
model-driven data capture tool that is used to populate
XML documents that adhere to a predefined schema. The
use of Pedro as a data capture tool for cell imaging data is
discussed elsewhere [10]. To fulfil R2, data capture for the
repository must capture the information specified by the
model but minimise the amount of form-filling which
must be performed by the experimentalist. This is
achieved in two ways:

1. Making use of smaller repositories that store model
fragments relating to commonly used items, such as
Researchers, Protocols, Plasmids and Compounds.
These can be selectively added to the main document
being edited in Pedro.

2. Extracting metadata and experimental structure
from the microscope generated data files and the Cell-
Tracker output files.

The extraction of metadata from the microscope data ini-
tially populates a Dish document element with the correct
number of LocationReading elements. These in turn are
automatically annotated with the correct image data file
names and microscope settings.

For each LocationReading an analysis file is produced by
CellTracker, which populates the result elements with the
relevant time series data. After capturing the data, it may
be saved as an XML document, or directly submitted to
the database.

Once stored documents may be imported directly from
the database back into Pedro for further editing and
updating – results may be added or removed,

Classes derived from Microscope data filesFigure 5
Classes derived from Microscope data files.
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Data Storage

The Tamino [28] or eXist [29] native XML DBMS can be
used to implement the repository, which allows us to
directly store the XML documents generated by Pedro dur-
ing data capture. Additionally, as discussed below, the use
of native XML storage provides for convenient generation
of web pages using XSLT (XSL Transformation).

Data Access

Requirement 3 is for efficient searching over the archived
metadata. Data needs to be accessed for two reasons,
either updating, or searching and viewing. For updating,
the data may be directly loaded back into Pedro from the
database. For searching and browsing we have produced a
web-accessible front end.

The front end is implemented as a series of Java Server
Pages that send XQuery queries to the database and then

transform the returned XML into HTML using XSLT docu-
ments.

After discussions with the experimentalists and modellers,
initially ascertaining how data were currently consumed
and subsequently examining what other questions may be
asked of the data once stored in a database, the following
requirements for querying the data were identified:

• List experiments by specific Experimentalist

• List experiments using a specific cell line

• List experiments performed on a specific date

• List experiments performed using a specific cell line
and a specific plasmid

How the Result data structure relates to Location ReadingFigure 6
How the Result data structure relates to Location Reading.
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• List experiments performed using a specific com-
pound treatment

• List experiments performed using a specific com-
pound and specific plasmid

• List experiments performed using two specific plas-
mids

As such, the emphasis of the search interface is on finding
specific experiments rather than on more complex tasks
such as comparison of experiments. As a result, the data-
base is performing the role of an experimental catalogue.

Additionally, requirements were identified for retrieval of
experiments, the results of which have certain characteris-
tics:

• Show results where an oscillation of a specific period
(give or take a certain amount) has taken place.

• Show results where a change in whole cell lumines-
cence has taken place at a specific rate (give or take a
certain amount).

All of these queries have been implemented, but as new
requirements are identified, it is generally straightforward
to add new queries.

The results of queries that return experimental lists are
represented as a table of experiment titles. Clicking
through provides a summary of the experiment and pro-
tocols used (Figure 8). From there it is possible to click
through to the results of that experiment.

Queries interrogating the results yield a table of experi-
ment titles, and selecting one takes the user directly to the
results, highlighting any locations that fulfilled the query
request. In order to allow querying over the experimental
results we have implemented a summarisation algorithm
that is run when CellTracker analyses are imported into
Pedro.

Summarisation of Results

The facility to search the database for experiments whose
results fit certain parameters, specified as R4, is important
for modellers and experimentalists alike. We identified
the following questions as being relevant for searching
over experimental results:

Q1. Is there a movement of a measured fluorescent
protein between the cytoplasm and nucleus, and if so
when does this occur?

Q2. Are there subsequent movements resulting in an
oscillation, and if so what is its period?

Q3. Is there a general trend in the overall level of
measured fluorescence in a cell over time?

To meet these requirements, summaries are generated
from the results of CellTracker analyses, which are stored
in the database.

Algorithm

CellTracker generates a series of nuclear and cytoplasmic
fluorescence intensities over time. By calculating and plot-
ting the ratio between these intensities the translocation
of a labelled protein from cytoplasm to nucleus may be
observed as a peak (Figure 9). An algorithm has been
developed to automate the detection of these peaks in the
CellTracker output. This enables us to annotate the data as
it is imported into the database with the times of Nuclear-
Cytoplasmic translocations and the period of any oscilla-
tion, which in turn allows us to answer questions Q1 and
Q2. Q3 is addressed by calculating a regression line
through the whole cell fluorescence over time.

The peak detection algorithm takes as its input nuclear
and cytoplasmic fluorescence intensity values over time. It

Workflow diagram illustrating the process of annotating and uploading an experiment to the database using PedroFigure 7
Workflow diagram illustrating the process of anno-
tating and uploading an experiment to the database 
using Pedro.
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returns peaks identified by time and nuclear:cytoplasmic
(N:C) ratio and the period of any identifiable oscillation.
The algorithm is implemented in Java and based upon the
Tom O'Haver's PeakFinder function for MatLab [30]. This
was chosen as it had been specifically designed to identify
positive peaks in noisy time-series data, and provided sev-
eral parameters that could be adjusted to fit the data gath-
ered from cell imaging.

The function accepts the data to be analysed along with
parameters specifying the width of peaks to spot, a height
threshold they must pass beyond (in our case this is a
nuclear:cytoplasmic ratio), the width of the window to be
used in the sliding average smoothing applied to the data,
and a threshold gradient for the slope of the peak. The
pseudocode for the algorithm is shown in Figure 10.

The algorithm has the following stages:

1. Detect prestimulation. Some experiments start when
a chemical stimulus is added to the cells, others are
run with a pre-stimulation period providing a base

level for the N:C ratio. Adding the stimulus takes at
least 30 seconds and hence an increase in the spacing
of timepoints by at least this amount is indicative of a
prestimulation period having been undertaken.

2. Calculate detection threshold. If a prestimulation has
been undertaken, the detection threshold should be
twice the standard deviation of the N:C ratios in the
prestimulation period (the criteria used by the experi-
mentalists). Otherwise set the threshold to be 1.75
times the minimum recorded N:C ratio – there is some
tolerance with this value, however setting it much
lower (1.5) or higher (2) increases the false positive
and negative rates respectively.

3. Extrapolate values. If no prestimulation has occurred,
the peak detection function is unlikely to identify the
first peak, so a run-in of 10 timepoints with the N:C
ratio at 0.1 below the starting value is prepended to
the data. The peak detection function is also unlikely
to a final peak that does not finish below the calcu-
lated detection threshold, hence if the final ratio val-

Experimental details from the metadata stored in the databaseFigure 8
Experimental details from the metadata stored in the database. Canned search queries are in the list on the left hand 
side of the screen.



BMC Bioinformatics 2009, 10:226 http://www.biomedcentral.com/1471-2105/10/226

Page 11 of 17

(page number not for citation purposes)

ues in the time series are a downward slope, the slope
is extrapolated until it falls below the detection thresh-
old. This is illustrated in Figure 7.

4. Optimise detection width. The detection width (that is
the width of peak, in numbers of time points, to be
detected) to be used is determined by repeatedly call-
ing the peak detection function with increasing detec-
tion widths. When the optimal detection width is
encountered, there is a jump in the detected location
of the first peak (Figure 11).

5. Detection of peaks. Derivatives of the data are
smoothed using an average sliding window of 10 time
points in width (Lower values introduced extra false
positives within available data, higher values
increased false negatives). If a maxima in the data is
encountered and the ratio value is above the detection
threshold then a peak is recorded. If the detection
width is less than 7 time points (as implemented in
the original algorithm [30]), the location and height
of that local maximum is recorded. For larger detec-
tion widths, a second order polynomial is fitted to the
data and the location and height of its maximum is
recorded.

Results
Algorithm evaluation

Data sets from two experimenters comprising noisy and
smooth data (a subjective observation of how easily real
peaks are visually identified, generally a product of the
protein being observed and the amount of stimulation
applied to the cell) from three different cell lines were
used to parameterise the algorithm (Table 1, also see addi-
tional files 7 and 8). Experiments involved inducing the
NF-κB pathway with TNF-α and then observing the local-

isation of tagged proteins involved in that pathway. Three
groups of unseen data were made available for testing the
algorithm, which involved different experimenters and
observed proteins (Table 2, also see additional files 7 and
9). The experimental protocol may be found in additional
file 7.

Method of evaluation

The algorithm analyses Nuclear:Cytoplasmic ratios from
individual cells. As any subsequent analysis of protein
movement is based upon the accurate detection of peaks
in this data, the presence and absence of peaks in auto-
matically and manually annotated results form a suitable
metric by which to measure the effectiveness of the algo-
rithm.

For each cell analysed a list of peaks detected by the algo-
rithm is generated. This list comprises of the peak location
(Time) and peak height (N:C ratio). These are then scored
against manually observed peaks in the same data. The
possible outcomes are:

• True positive (TP): the peak is detected by the algo-
rithm and also observed as significant.

• False positive (FP): the peak is detected by the algo-
rithm but not observed as significant.

• False negative (FN): no peak is detected by the algo-
rithm but one is observed as significant.

Observations are subjective, in that they are performed by
individuals who may have a preconceived idea of what
their results should look like and also dependant on the
particular parameters of an experiment. For example,
depending on the treatment applied to them, some cell
lines generally do not show any oscillations of the protein
being observed between cytoplasm and nucleus, and
hence an observer may be less likely to identify a small
secondary peak as real.

The expected results from the test data sets were known in
advance; the algorithm results for the test data were scored
by the experimentalists.

Results

The effectiveness of the algorithm is illustrated by Recall
(TP/(TP+FN)) and Precision (TP/(TP+FP)). TP, FP and FN
are True Positives, False Positives and False Negatives
respectively. A precision score of 1.00 would mean that
every peak identified was a true peak, but would not give
an indication of how many true peaks were missed. A
recall score of 1.00 would mean that all the peaks present
in the data were correctly identified as peaks, but would
not give an indication of how many non-peaks were iden-

A peak in Nuclear:Cytoplasmic ratio of labelled protein, denoting a translocation between cellular compartmentsFigure 9
A peak in Nuclear:Cytoplasmic ratio of labelled pro-
tein, denoting a translocation between cellular com-
partments. Also indicated are calculated detection thresholds 
and data points extrapolated by the peak detection algorithm.
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Pseudocode for the peak detection algorithmFigure 10
Pseudocode for the peak detection algorithm. fitpoly is a Java implementation of the MatLab Polyfit function which 
finds the coefficients of a polynomial which fits the specified data – fitpoly(x,y,n) where x and y are vectors of the x 
and y values and n is the order of the polynomial to be fitted.

//Global Constants 

SET half_minute=0.5   //Value for half a minute 

SET threshold_multiplier=1.75  //Level of intensity considered a peak 

    //when no pre-stimulation.

SET extrapolation_size=10  //Number of timepoints to add when extrapolating 

    //data. 

SET smooth_width=10   //Width of the smoothing window 

SET runin_modifier=0.1  //How far below intensity at time 0 to set 

    //values for an artificial run-in.

SET max_detection_width=40  //Maximum peak width to detect. 

SET fitpoly_width=7   //Peak width beyond which a polynomial is 

    //fitted. 

DEFINE AnalysePeaks(timepoints, ratios) RETURNS peaklist, oscilation period 

 // Detect prestimulation period 

 SET timepoint_gap = timpoint[1] – timepoint[0]  

 FOR each timepoint 

  IF current timepoint - previous timepoint > (timepoint_gap + half_minute) THEN 

   SET prestimulation_end = current timepoint 

  END IF

 ENDFOR 

 // Calculate detection threshold 

 IF prestimulation_end is not 0 THEN 

  SET detection_threshold = mean(prestimulation ratios) + 2*stddev(prestim ratios) 

 ELSE 

  SET minimum_ratio = lowest ratio value 

  SET detection_threshold = minimum_ratio * threshold_multiplier 

 END IF

 // Extrapolate values 

 IF prestimulation_end is 0 THEN 

  SET all timepoints = timepoint + extrapolation_size*timepoint_gap 

  FOR count = 0 to extrapolation_size-1 

   create new timepoint at timepoint_gap*count  

   SET ratio for new timepoint to ratio at timepoint[0] – runin_modifier 

  ENDFOR 

 ENDIF 

 IF derivative of ratios at final two timepoints is negative THEN 

  REPEAT 

   create new timepoint

   extrapolate new ratio using gradient as measured between previous two timepoints 

   append new timepoint and ratio to the timepoints 

  UNTIL ratio at final timepoint < detection_threshold 

 END IF

 // Optimise detection width 

 FOR width = 1 to max_detection_width 

  CALL detectPeaks(timepoints, ratios, threshold, width) 

  STORE firstPeakPosition in FirstPeaks[width] 

  IF varience(FirstPeaks) > 1 THEN 

   SET detection_width = width

  ENDIF 

 ENDFOR 

 SET peaks = CALL detectPeaks(timepoints, ratios, threshold, detection_width) 

 IF number of peaks > 1 THEN 

  FOR each peak

   STORE current peak position - previous peak position in peakDistances 

  ENDFOR 

  SET oscillation period = mean (peakDistances) 

 ENDIF 

RETURN peaks, oscillation period 

DEFINE detectPeaks(timepoints, ratios, threshold, detection_width) RETURNS peaklist 

 SET ratios = CALL smooth(ratios, smoothwidth) 

 FOR each ratio value 

  IF slope direction between ratio values has changed from positive to flat or negative THEN 

   IF ratio value > threshold THEN 

    CALL fitpoly(time[current to current+detection_width],

log(ratios[current to current+detection_width]), 2) 

   ENDIF 

   IF detection_width > fitpoly_width THEN 

    SET peakHeight = height from fitpoly 

    SET peakPosition = position from fitpoly 

   ELSE 

    SET peakHeight = max(ratios[current to current+detection_width]) 

    SET peakPosition = time of peakHeight 

   ENDIF 

   STORE peakHeight, peakPosition in peaks 

  ENDIF 

 ENDFOR 

RETURN peaks 
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tified as peaks. Taken together, these metrics give a good
indication of the effectiveness of the algorithm. The train-
ing results (Table 3 and additional file 10) show an overall
precision of 0.84 and a recall of 0.93. Results from test
data, representative of the data that is stored in the data-
base, are shown in Table 4 (also see additional file 10).
Here the overall precision is shown to be 0.71 and recall
is 0.83.

Discussion of Algorithm Performance

With the training data, the algorithm performs well, suc-
cessfully identifying over 90% of peaks in the data pre-
sented to it with a precision of 0.84. These were the data
used to optimise the parameters of the algorithm and our
approach to handling the data; as such, we expect good
performance. This result also shows that our optimization
has not been so strict as to yield a 100% score on the train-
ing data. Such a situation would be undesirable, indicat-
ing that the algorithm had little capacity to generalize

beyond the training data. The true indicator of perform-
ance is through the analysis of unseen test data. With the
test data the performance is less robust (identifying 83%
of peaks with a precision of 0.71). However, almost half
of the test data (45%) were rated as noisy by the experi-
mentalists as opposed to 16% in the training data.

The automatically generated data summaries aim to facil-
itate the identification of experiments in the database that
may have yielded results of interest. Although we do not
successfully identify every peak in the data, given that
experiments invariably measure multiple cells in multiple
locations, we can expect that a search over the results (of
the nature Q1, Q2 or Q3) will return an experiment of
interest unless the numbers of cells showing nuclear-cyto-
plasmic translocations are low. Figure 12 shows the
results of a sample search over stored data for experiments
where an oscillation was observed with a period of 100
(+/- 5) minutes.

Whilst the peak detection threshold and smoothing width
values have performed well with the peaks generated by
protein translocations within our experimental system, it
is likely that they would require adjustment for data gath-
ered in different circumstances. Further analysis of the
data we are acquiring may lead us to be able to define fea-
tures within the data (such as that described in Figure 9)
that will allow us to dynamically assign these parameter
values whilst the algorithm is running. Future develop-
ment of the algorithm and associated infrastructure will
allow stored data to be re-analysed using different param-
eters.

Discussion
The success of the work can be measured by how well it
meets the requirements:

Detected position of first peak with increasing peak detec-tion widthFigure 11
Detected position of first peak with increasing peak 
detection width.

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Peak Width

F
ir

s
t 

P
e
a
k
 P

o
s
it

io
n

Table 1: Training data used.

Data Set Experimenter Cell Line Data type Pre-stimulation for baseline? Cell Count Tracks

T1 1 SK-N-AS Noisy Yes 16 16

T2 1 SK-N-AS Noisy Yes 26 26

T3 1 SK-N-AS Smooth Yes 22 22

T4 1 SK-N-AS Smooth Yes 26 26

T5 2 SK-N-AS Intermediate No 25 32

T6 2 HeLa Intermediate No 51 97

T7 2 MEF Intermediate No 26 41

Where Tracks is larger than Number of Cells, multiple tagged proteins were being monitored in each cell.
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R1. Logical and appropriate representation of experimental
metadata and associated results. The data model is gen-
eral enough to describe a variety of microscopy exper-
iments (fluorescence, luminescence, FISH and FRET)
in both high and low content screening configura-
tions, but it is specific enough to ensure effective vali-
dation of captured data. The model also represents the
results generated by CellTracker. This may be con-
trasted with other data models for microscopy data
(e.g. [15]) which focus on the context of an image
rather than the details of the experiment and its result.

R2. Efficient mechanisms for data capture. Pedro has
proved to be an adaptable and efficient data capture
tool. By extracting details of microscope settings, loca-
tions observed under the microscope and data chan-
nels recorded from files generated by the equipment,
and analysis results from the output of CellTracker, the

time taken to submit a fully annotated experiment to
the repository is roughly 10–15 minutes. This is very
rapid when compared to the length of time it can take
to annotate other functional genomics type experi-
ments (e.g., microarrays [31]) using standard tools.

R3. Efficient search mechanisms to identify experiments
from metadata. The model represents both the meta-
data and acquired/analysed data for each experiment
over which XQuery is used to implement canned que-
ries that return results as XML documents. These doc-
uments are then formatted into appropriate reports
using XSLT. As the reports are generally of similar for-
mat, implementing new queries is simply a matter of
writing a new XQuery to retrieve data meeting the
desired parameters.

Table 2: Test data used.

Data Set Experimenter Cell Line Data type Pre-stimulation for baseline? Cell Count Tracks

1 1 SK-N-AS Intermediate Yes 21 21

2 1 SK-N-AS Smooth Yes 21 21

3 1 SK-N-AS Noisy Yes 23 23

4 3 HeLa Noisy No 10 20

5 3 HeLa Noisy No 12 24

6 3 SK-N-AS Noisy No 12 24

7 3 SK-N-AS Noisy No 12 24

8 4 HeLa Intermediate No 102 102

Table 3: Training data algorithm effectiveness.

Data Set Recall (TPR) Precision

T1 1.00 0.58

T2 0.89 0.84

T3 0.93 0.76

T4 0.94 0.97

T5 1.00 0.58

T6 0.89 0.93

T7 0.94 0.86

Overall: 0.93 0.84

TPR is True Positive Rate – TP/(TP+FN). Precision is TP/(TP+FP).

Table 4: Test data, algorithm effectiveness.

Data Set Recall (TPR) Precision

1 0.80 0.85

2 0.85 0.90

3 0.84 0.89

4 0.73 0.29

5 0.77 0.40

6 0.44 0.17

7 1.00 0.54

8 0.87 0.87

Overall 0.83 0.71
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R4. Automated annotation of results to allow searching by
result. This has been successfully implemented and
performs well with currently available data. As this fea-
ture facilitates the identification of features within
data it also adds impetus for experimentalists to sub-
mit their data to the database.

The effective modelling and storage of high throughput
imaging data will remain an issue as technology improves
and throughput rates increase. Our repository is a fully
functional example of how these data may be effectively
indexed and managed to address the requirements of end
users. Particularly we move away from simply providing
an index of contextual information about experiments
and allow this to be complemented by indexing and
describing the content of data gathered in these different
contexts.

The system is currently in use by a group of 10 users who
are all based in the same location. However, the reposi-
tory is currently housed on a central server that is accessi-
ble from any authorised (this is dependant on server
configuration) computer on the internet. The client Pedro
software for submitting data to the database may also be
run from any machine connected to the internet. This
wide accessibility enables all individuals within a group to

have their own client on their own machine for data sub-
mission without having to rely on access to a specific
machine and would also lend itself to situations where
collaborations require individuals from multiple institu-
tions to have access to the repository.

The novelty of our system, and a key factor in its uptake by
experimentalists, has been the inclusion of the peak spot-
ting algorithm enabling the correlation of results across
disparate experiments. With many biological repositories,
data entry can be time consuming and, understandably,
many individuals are disinclined to partake in this activ-
ity. By adding extra value to what would otherwise be sim-
ply a metadata and results repository, there is a clear
benefit for individuals to ensure that their data forms part
of the searchable corpus.

Whilst other solutions currently available address the
management and analysis of image data, the database pre-
sented here demonstrates a solution and model for the
effective management of experimental data gathered from
high content live cell imaging. Despite the system being
tailored to a specific arrangement and set of techniques,
the approach and model are generic enough to be appli-
cable to other functional proteomics/genomics experi-
mental set ups.

Searching stored experiments using a specific period of oscillationFigure 12
Searching stored experiments using a specific period of oscillation.
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Availability and Requirements
• Project name: livecellim

• Project home page: http://code.google.com/p/live
cellim/

• Operating system(s): Windows XP, Mac OS X 1.5.4
or later.

• Programming language: Java

• Other requirements: Minimum 2 GB RAM. JRE 6.0,
Apache Tomcat 6.0, eXist-DB 1.2.4 or later.

• License: BSD
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