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Abstract For a general class of hidden Markov models
that may include time-varying covariates, we illustrate how
to compute the observed information matrix, which may be
used to obtain standard errors for the parameter estimates and
check model identifiability. The proposed method is based on
the Oakes’ identity and, as such, it allows for the exact com-
putation of the information matrix on the basis of the output
of the expectation-maximization (EM) algorithm for max-
imum likelihood estimation. In addition to this output, the
method requires the first derivative of the posterior proba-
bilities computed by the forward-backward recursions intro-
duced by Baum and Welch. Alternative methods for comput-
ing exactly the observed information matrix require, instead,
to differentiate twice the forward recursion used to compute
the model likelihood, with a greater additional effort with
respect to the EM algorithm. The proposed method is illus-
trated by a series of simulations and an application based on
a longitudinal dataset in Health Economics.

Keywords EM algorithm · Forward-backward recursions ·
Oakes’ identity · Standard errors

F. Bartolucci (B)
Department of Economics, University of Perugia,
Via A. Pascoli, 20, 06123 Perugia, Italy
e-mail: bart@stat.unipg.it

A. Farcomeni
Department of Public Health and Infectious Diseases,
Sapienza - University of Rome,
Piazzale Aldo Moro, 5,
00185 Roma, Italy
e-mail: alessio.farcomeni@uniroma1.it

1 Introduction

Hidden Markov (HM) models have been initially developed
in the literature on stochastic processes as extensions for mea-
surement errors of the standard Markov chain model; for
one of the oldest contributions about these models see Baum
and Petrie (1966). Then, these models have received con-
siderable attention in the time-series literature, due to their
wide applicability and ease of interpretation (for an up-to-
date review see Zucchini and MacDonald 2009). HM models
have also found an increasing popularity for the analysis of
multiple series of data (e.g., Turner et al. 1998), and in the
related context of longitudinal data (Bartolucci et al. 2013b),
in which short series of repeated observations are available
for many sample units.

Though algorithms for the direct maximization of the
model likelihood have attracted recent interest in the HM
literature, see Turner (2008) and references therein, the main
tool for maximum likelihood (ML) estimation of the para-
meters of an HM model is the expectation-maximization
(EM) algorithm, which is based on certain forward-backward
recursions. These are commonly known as Baum–Welch
recursions (Baum et al. 1970; Welch 2003). The EM algo-
rithm may be implemented with a reasonable effort and
is very stable to reach convergence, whereas direct maxi-
mization algorithms are in general less stable for HM mod-
els. However, the EM algorithm does not provide, as a by-
result, the standard errors for the parameter estimates. This is
because it uses neither the observed nor the expected infor-
mation matrix. The information matrix is also important to
check local identifiability of the model through its rank; see
McHugh (1956) and Goodman (1974) among others.

In the statistical literature, different techniques have been
proposed to compute the information matrix, at least approx-
imately, on the basis of the output of the EM algorithm; for

123



Stat Comput

a review see McLachlan and Krishnan (2008). In particular,
the Louis (1982)’s method is based on the missing informa-
tion principle as defined by Orchard and Woodbury (1972).
According to this principle, the observed information matrix
can be expressed as the difference between two matrices
corresponding to the complete information and the missing
information due to the unobserved variables. Another decom-
position was proposed by Oakes (1999) and is based on an
explicit formula for the second derivative matrix of the model
log-likelihood. This formula involves the first derivative of
the conditional expectation of the score of the complete data
log-likelihood, given the observed data.

In the literature on HM models, the decomposition pro-
posed by Louis (1982) has been applied by different authors
to compute the information matrix; see, in particular, Hughes
(1997) and Turner et al. (1998). See also Bartolucci and Far-
comeni (2009) for a related method based on the numerical
derivative of the score. However, at least to our knowledge,
the decomposition of Oakes (1999) has not yet been applied
to obtain the observed information matrix in the present con-
text.

In this article, we show how to use the Oakes’ identity
for a general class of HM models that include time-varying
covariates. The proposed method uses the incomplete data
information matrix, which is produced by the EM algorithm,
and a correction matrix computed on the basis of the first
derivative of the posterior probabilities obtained from the
Baum–Welch recursions. There are two clear advantages: on
one hand, the method is exact; on the other hand, little compu-
tational effort is needed beyond the usual EM computations.

We have to clarify that methods for exactly obtaining the
information matrix already exist in the HM literature (Khan
2003; Lystig and Hughes 2002; Cappé et al. 2005; Turner
2008). They are based on the first and second derivatives of
the forward recursion to obtain the model likelihood (Baum et
al. 1970), or on similar approaches. However, these methods
do not employ the output of the EM algorithm and are a
more natural choice in connection with direct maximization
of the model likelihood. Furthermore, computing the second
derivatives of each element of the recursion in the presence
of covariates, especially when they are continuous, may be a
daunting task.

The method proposed in this article does not require
to differentiate twice the forward recursion, with a certain
computational advantage. It is also rather obvious that, in
order to obtain standard errors for the parameter estimates,
we can alternatively use a parametric bootstrap method, as
described in Zucchini and MacDonald (2009), or a non-
parametric bootstrap method (Efron and Tibshirani 1993).
However, bootstrapping may be computationally heavy and,
in any case, does not allow us to check for local identifiability
directly.

The remainder of the paper is organized as follows. In the
next section we review some preliminary notions. The pro-
posed method to compute the observed information matrix
of the model on the basis of Oakes’ identity is illustrated in
Sect. 3. Finally, in Sect. 4 we illustrate the approach through
a series of simulations and an application based on a longi-
tudinal dataset about Health Economics.

All the methods proposed in this article have been imple-
mented in a series of R functions, which rely on a Fortran
code to speed up the execution and are available upon request.

2 Preliminaries about hidden Markov models

In the following, we briefly review the class of HM mod-
els with possible time-varying covariates that are of interest
for the proposed developments. We also describe the Baum–
Welch recursions to compute the manifest distribution of the
data and the posterior distribution of the latent variables and
we outline maximum likelihood estimation by the EM algo-
rithm. Note that we initially discuss in more detail the case of
a single series of data and we show how this formulation can
be used to deal with multiple series and longitudinal data. The
adopted notation is rather similar to that used in Bartolucci
et al. (2013b), to which we refer the reader for details.

2.1 Model formulation

With a single series of data, let T denote the number of occa-
sions of observation and suppose that, for t = 1, . . . , T ,
we observe a vector of r response variables, denoted by
Y (t) = (Y (t)

1 , . . . , Y (t)
r ), and vectors of covariates W (t) and

X(t) entering in the so-called measurement component and
latent component of the model, respectively. All these vari-
ables are collected in the vectors W̃ , X̃ , and Ỹ . The HM
model with covariates is formulated by assuming a latent
process U = (U (1), . . . , U (T )) that follows a first-order
Markov chain with state space {1, . . . , k} and initial and tran-
sition probabilities possibly depending on the covariates in
X̃ . Under the assumption of local independence, the observed
random vectors Y (1), . . . , Y (T ) are conditionally indepen-
dent given the underlying latent process and the covariates
in W̃ . This assumption leads to a strong simplification of the
model, and it can be relaxed by assuming that each Y (t) also
depends on Y (t−1). These assumptions are illustrated by the
path diagram in Fig. 1.

Let f A(·) denote the probability (or density) for the distri-
bution of a random variable A, and fB|A(·|·) its conditional
counterpart for two random variables A and B; this notation
extends to random vectors in a natural way. With reference
to the HM framework introduced above, we let
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Fig. 1 Path diagram for the
HM model with covariates

φ(t)( y|u,w) = fY (t)|U (t),W (t) ( y|u,w), t = 1, . . . , T,

u = 1, . . . , k,

π(u|x) = fU (1)|X(1) (u|x), u = 1, . . . , k,

π(t)(u|ū, x) = fU (t)|U (t−1),X(t) (u|ū, x), t = 2, . . . , T,

ū, u = 1, . . . , k.

In the above expressions, by u and ū we denote possi-
ble realizations of the latent variables, by w we denote
a realization of W (t), by x a realization of X(t), and by
y = (y1, . . . , yr ) a realization of Y (t). In practice, formulat-
ing assumptions on the measurement component amounts to
express φ(t)( y|u,w) as a function of the covariates depend-
ing on suitable parameters to be estimated. Accordingly, for-
mulating assumptions on the latent component amounts to
suitably parametrize the initial probabilities π(u|x) and the
transition probabilities π(t)(u|ū, x).

Concerning the measurement component, the model is
specified by a parametrization of φ(t)( y|u,w) of canonical
GLM type (McCullagh and Nelder 1989), so that the model
may be used with continuous, binary, or count response vari-
ables. In particular, in the univariate case in which there
is a single response variable Y (t) for each time occasion
(r = 1), with η(t)(u,w) being a transformation of the mean
μ(t)(u,w) = E(Y (t)|U (t) = u, W (t) = w) based on a suit-
able link function, we assume that

η(t)(u,w) = (a(t)
uw)′α. (1)

In the previous expression, a(t)
uw is a column vector depend-

ing on the value of U (t) and that of W (t) and α is the corre-
sponding vector of regression parameters. Just to clarify, if
we assume that each variable Y (t) has a Poisson conditional
distribution, then the link function is based on the logarithm
and we may assume that

η(t)(u,w) = log μ(t)(u,w) = α1u + w′α2,

that may be reformulated as in (1).
To cover the case of categorical variables with more than

two categories, we also consider a multinomial logit para-

meterization (Agresti 2002). In particular denoting by c the
number of response categories, labelled from 0 to c − 1, we
consider the vector η(t)(u,w), with elements equal to the
logits

η(t)(y|u,w) = log
φ(t)(y|u,w)

φ(t)(0|u,w)
, y = 1, . . . , c − 1,

and then we assume that

η(t)(u,w) = A(t)
uwα, (2)

where A(t)
uw is a design matrix depending on u and w. This

link function may be simply inverted as follows

φ(t)(u,w) = exp[G1cη
(t)(u,w)]

1′
c exp[G1cη(t)(u,w)] ,

where φ(t)(u,w) is a column vector with elements φ(t)

(y|u,w), y = 0, . . . , c − 1, Ghc is obtained by removing
the h-th column from the matrix Ic, the identity matrix
of dimension c, and 1c is a column vector of c ones. It is
also important to note that, with categorical variables (also
binary), the model may be formulated using as parameters the
conditional response probabilities φ(y|u) = φ(t)(y|u,w),
t = 1, . . . , T, u = 1, . . . , k, y = 0, . . . , c − 1, which are
collected in the vector φ in a suitable order. We consider
this formulation for the application discussed in Sect. 4.2. In
this way, the covariates are ruled out from the measurement
model, but it is still convenient to adopt a parametrization
of the type above, which is based on logits and in which
α substitutes φ, in order to avoid certain constraints on the
parameter space. In this case, the above design vectors and
matrices have elements only equal to 0 or 1.

In the multivariate case (r > 1), it is common to assume
that the response variables Y (t)

1 , . . . , Y (t)
r collected in Y (t) are

conditionally independent given U (t) and W (t), so that

φ(t)( y|u,w) =
r∏

j=1

φ
(t)
j (y j |u,w), (3)
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where φ
(t)
j (y j |u,w) is referred to the conditional distribution

of Y (t)
j given U (t) and W (t). Then, the same parametrization

as above may be used for each of these conditional distrib-
utions. These parametrizations rely on a GLM formulation
of type (1), based on vectors a(t)

juw
, or on a formulation of

type (2), based on design matrices A(t)
juw

, for the case of cat-
egorical response variables. In both cases, a common vector
α of regression parameters is used. Moreover, in the case
of categorical response variables, the vector of the condi-
tional probabilities of Y (t)

j given U (t) and W (t) is denoted by

φ
(t)
j (u,w).
In the multivariate case, it may be also reasonable to

assume that the response variables in Y (t) are not condition-
ally independent given U (t) and W (t), allowing then for a
form of contemporary dependence. For this aim, we may
adopt a single link function for the entire multivariate dis-
tribution φ(t)( y|u,w) depending on a single vector of para-
meters η(t)(u,w). Such an approach has been proposed for
categorical response variables by Bartolucci and Farcomeni
(2009). However, this approach may be difficult to adopt
when outcomes are of mixed nature, and therefore it is in
general assumed that (3) holds. Finally, it is interesting to
note that, by including in each vector of covariates W (t) the
lagged response variables, that is the vector Y (t−1), we can
easily relax the hypothesis of local independence allowing
for serial dependence; see Bartolucci and Farcomeni (2009)
for details.

Regarding the latent component, we can parameterize the
initial and transition probabilities of the latent Markov chain
depending on the covariates in X̃ . For the initial probabilities
we assume that

λ(x) = Bxβ, (4)

where Bx is an appropriate design matrix depending on the
covariates in X(1),β is a vector of parameters, and λ(x) is
the vector of multinomial logits having the first as reference
categories, that is,

λ(u|x) = log
π(u|x)

π(1|x)
, u = 2, . . . , k.

The typical assumption formulated in this way is

λ(u|x) = β1u + x′β2u, (5)

which may be reformulated as in (4). For the transition prob-
abilities, we assume that

ρ(t)(ū, x) = C(t)
ūxγ , (6)

where ρ(t)(ū, x) contains the multinomial logits

ρ(t)(u|ū, x) = log
π(t)(u|ū, x)

π(t)(ū|ū, x)
, u = 1, . . . , k, u �= ū,

C(t)
ūx depends on the covariates in X(t) and γ is a vector of

logistic regression parameters. A natural parametrization that
may be assumed in this case is

ρ(t)(u|ū, x) = γ1ūu + x′γ 2ūu . (7)

However, the model complexity may be strongly reduced by
assuming that the regression parameters do not depend on
the current latent state, so that γ 2ūu = γ 2u, ū = 1, . . . , k.
Both parametrizations may be formulated as in (6) with the
parameters γ1ūu and γ 2ūu (or γ 2u) included in γ and the
corresponding design matrix structured accordingly.

As mentioned at the beginning of this section, in certain
contexts we observe n “parallel” sequences of data which
are assumed to be independent. This case is of main interest
for the models here illustrated and is typical of longitudinal
studies in which n is much larger than T . On the other hand,
the case of multiple time series governed by a common latent
process may be casted in the theory illustrated above, with
Y (t)

j referred to the observation at occasion t for time series j .
In order to clarify the above arguments, suppose that we

repeatedly observe n sample units at T time occasions. Then,
for i = 1, . . . , n and t = 1, . . . , T , we denote the vec-
tor of the r response variables by Y (t)

i = (Y (t)
i1 , . . . , Y (t)

ir )

and the vectors of covariates by W (t)
i and X (t)

i . All these
variables are collected in the individual vectors W̃ i , X̃ i ,
and Ỹ i , i = 1, . . . , n. In this context, the HM model with
covariates, which is also called latent Markov model (Bar-
tolucci et al. 2013b), is formulated by assuming n individual
latent processes. The latent process assumed for sample unit
i = 1, . . . , n is denoted by U i = (U (1)

i , . . . , U (T )
i ) and, on

the basis of this process, the same assumptions as for a single
series of data are formulated. In particular, the assumption of
local independence is formulated by requiring that the vec-
tors Y (1)

i , . . . , Y (T )
i are conditionally independent given U i

and W̃ i . Obviously, the assumption that every latent process
U i follows a Markov chain distribution of first order is also
replicated. Finally, in the case of longitudinal data, the mea-
surement component and the latent component are expressed
for each sample unit i in the same way as illustrated above.
We only need to specify design matrices in (2), (4), and (6)
which are individual specific, but nothing changes in terms of
model formulation and the same vectors of parameters α,β,
and γ are common to all units.

2.2 Manifest and posterior distributions

Regardless of the specific model formulation, the assump-
tion of local independence implies that for the conditional
distribution of Ỹ , given U and W̃ , we have

fỸ |U,W̃ ( ỹ|u, w̃) =
T∏

t=1

φ(t)( y(t)|u(t),w(t)),
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for any realization ỹ of Ỹ (with subvectors y(t)), w̃ of W̃ (with
subvectors w(t)), and u of U (with elements u(t)). Moreover,
since we assume that the latent process follows a first-order
Markov chain, we have that

fU|X̃(u|x̃) = π(u(1)|x(1))

T∏

t=2

π(t)(u(t)|u(t−1), x(t)),

for any realization x̃ of X̃ (with subvectors x(t)).
Now let f ( ỹ| z̃) = fỸ |Z̃( ỹ| z̃) denote the probability mass

(or density) function for the manifest distribution of Ỹ given
Z̃, where Z̃ denotes the vector of the covariates obtained by
the union of the vectors W̃ and X̃ , so that redundant ele-
ments are avoided, and z̃ is a corresponding realization (with
subvectors z̃(t) made of the union of w(t) and x(t)). We have
that

f ( ỹ| z̃) =
∑

u

fỸ |U,W̃ ( ỹ|u, w̃) fU|X̃(u|x̃),

where the sum
∑

u is extended to all possible kT con-
figurations u of the latent process. The posterior distribu-
tion of the latent process, which corresponds to the con-
ditional distribution of U given Z̃ and Ỹ , is denoted by
q(u| ỹ, z̃) = fU|Ỹ,Z̃(u| ỹ, z̃) and has expression

q(u| ỹ, z̃) = fỸ |U,W̃ ( ỹ|u, w̃) fU|X̃(u|x̃)

f ( ỹ| z̃) .

In order to compute efficiently the above densities and prob-
abilities, we employ the Baum–Welch recursions. Let

l(t)(u, ỹ| z̃) = fU (t),Y (1),...,Y (t)|Z(1),...,Z(t)

(u, y(1), . . . , y(t)|z(1), . . . , z(t)),

t = 1, . . . , T .

The forward recursion is initialized with l(1)(u, ỹ| z̃) =
π(u|x(1))φ(1)( y(1)|u,w(1)), and it is based on the follow-
ing step

l(t)(u, ỹ| z̃) =
k∑

ū=1

l(t)(ū, u, ỹ| z̃), u = 1, . . . , k, (8)

to be performed for t = 2, . . . , T , where

l(t)(ū, u, ỹ| z̃) = l(t−1)(ū, ỹ| z̃)π(t)(u|ū, x(t))φ(t)( y(t)|u,w(t)).

At the end of the forward recursion, the manifest distribution
is simply obtained as

f ( ỹ| z̃) =
k∑

u=1

l(T )(u, ỹ| z̃).

The other recursion introduced by Baum and Welch is a back-
ward recursion, which allows us to obtain the posterior dis-
tribution of every latent state and of every pair of consecutive

latent states. Let

m(t)( ỹ|ū, z̃) = fY (t+1),...,Y (T )|U (t),Z(t+1),...,Z(T )

( y(t+1), . . . , y(T )|ū, z(t+1), . . . , z(T )),

for t = 1, . . . , T − 1 and ū = 1, . . . , k. This recursion
is initialized with m(T )( ỹ|ū, z̃) = 1 and it is based on the
following steps:

m(t)( ỹ|ū, z̃) =
k∑

u=1

m(t)(u, ỹ|ū, z̃), u = 1, . . . , k,

to be performed in reverse order (i.e., from t = T − 1 to
t = 1), where

m(t)(u, ỹ|ū, z̃) = m(t+1)( ỹ|u, z̃)π(t+1)(u|ū, x(t+1))

φ(t+1)( y(t+1)|u,w(t+1)).

From the results above, and also using the results from the
forward recursion, we obtain the following posterior proba-
bilities:

q(t)(u| ỹ, z̃) = fU (t)|Ỹ,Z̃(u| ỹ, z̃)

= l(t)(u, ỹ| z̃)m(t)( ỹ|u, z̃)
f ( ỹ| z̃) , u =1, . . . , k, (9)

for t = 1, . . . , T , and

q(t)(ū, u| ỹ, z̃) = fU (t−1),U (t)|Ỹ,Z̃(ū, u| ỹ, z̃)

= l(t)(ū, u, ỹ| z̃)m(t)( ỹ|u, z̃)
f ( ỹ| z̃) , ū, u = 1, . . . , k, (10)

for t = 2, . . . , T .
The developments proposed in the present article require

to compute the first derivative of the logarithm of the above
posterior probabilities with respect to the overall parameter
vector θ , which collects α (involved in the measurement com-
ponent) and β and γ (involved in the latent component). In
fact, following Oakes (1999), these derivatives are required
for the adjustment of the information matrix corresponding
to the expected value of the complete data log-likelihood,
coming from the EM algorithm, so as to obtain the observed
information matrix. We simply have that

∂ log q(t)(u| ỹ, z̃)
∂θ

= ∂ log l(t)(u, ỹ| z̃)
∂θ

+ ∂ log m(t)( ỹ|u, z̃)
∂θ

− ∂ log f ( ỹ| z̃)
∂θ

,

∂ log q(t)(ū, u| ỹ, z̃)
∂θ

= ∂ log l(t)(ū, u, ỹ| z̃)
∂θ

+ ∂ log m(t)( ỹ|u, z̃)
∂θ

− ∂ log f ( ỹ| z̃)
∂θ

,

where the derivatives of log l(t)(u, ỹ| z̃), log l(t)(ū, u, ỹ| z̃),
log m(t)( ỹ|u, z̃), and log f ( ỹ| z̃) may be computed as clari-
fied in Appendix 1.
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Finally, it is useful to recall that, in order to avoid numer-
ical instability that may occur with large values of T , it may
be necessary to implement suitable normalizations; see Scott
(2002). This also motivated Lystig and Hughes (2002) to use
a recursion for computing the model likelihood that is similar
to the Baum–Welch forward recursion, but it does not suffer
from numerical instability. See also Khreich et al. (2010) and
Bartolucci and Pandolfi (2014) for an up to date review of
alternatives to the Baum–Welch recursions, and Farcomeni
(2012) for a different strategy based on logarithm summation.

2.3 Maximum likelihood estimation

For the sake of generality we consider the case of n indepen-
dent series of multivariate data, so that we suppose to observe
the vectors of responses ỹi , with elements y(t)

i j , and the corre-

sponding vectors of covariates z̃i with subvectors z(t)
i given

by the union of w
(t)
i and x(t)

i . The model log-likelihood is

�(θ) =
n∑

i=1

�i (θ), �i (θ) = log fi ( ỹi | z̃i ),

where fi ( ỹi | z̃i ) is the manifest distribution of ỹi , which is
computed by the forward recursion illustrated above.

In order to maximize �(θ), the EM algorithm employs the
complete data log-likelihood, which has expression:

�∗(θ) =
n∑

i=1

�∗
i (θ),

�∗
i (θ) =

T∑

t=1

k∑

u=1

d(t)
iu

r∑

j=1

log φ
(t)
j (y(t)

i j |u,w
(t)
i )

+
k∑

u=1

d(1)
iu log π(u|x(1)

i )

+
T∑

t=2

k∑

ū=1

k∑

u=1

d(t)
i ūu log π(t)(u|ū, x(t)

i ), (11)

where d(t)
iu and d(t)

i ūu are unit-specific indicator variables. In

particular, d(t)
iu is equal to 1 if unit i is in latent state u at

occasion t and to 0 otherwise, whereas d(t)
i ūu is equal to 1 if

this unit moves from latent state ū to state u at occasion t and
to 0 otherwise.

Starting from a point in the parameter space, the EM algo-
rithm maximizes the model log-likelihood by alternating two
steps until convergence. At the E-step, we compute the con-
ditional expected value of each indicator variable involved
in the complete log-likelihood given the observed data ỹi ,
the covariates z̃i , and the current value of the parameter vec-
tor, denoted by θ̄ . This simply amounts to compute the pos-
terior probabilities of every latent variable U (t)

i and every

pair (U (t−1)
i , U (t)

i ). These posterior probabilities are com-

puted as in (9) and (10) and are denoted by q(t)(u| ỹi , z̃i ; θ̄)

and q(t)(ū, u| ỹi , z̃i ; θ̄), respectively, where the argument θ̄

recalls that they depend on the parameter vector obtained at
the previous iteration of the algorithm.

By substituting these quantities in (11) we obtain the con-
ditional expected value of the complete data log-likelihood,
which may be decomposed as

Q(θ |θ̄) = Q1(α|θ̄) + Q2(β|θ̄) + Q3(γ |θ̄).

At the M-step, θ is updated by separately maximizing each
component of Q(θ |θ̄). A Newton-Raphson algorithm is used
for this aim; hence we need the first and second derivatives of
each component. About the first component Q1(α|θ̄), these
derivatives may be expressed as follows:

∂ Q1(α|θ̄)

∂α
=

n∑

i=1

T∑

t=1

k∑

u=1

q(t)(u| ỹi , z̃i ; θ̄)

×
r∑

j=1

∂ log φ
(t)
j (y(t)

i j |u,w
(t)
i )

∂α
,

∂2 Q1(α|θ̄)

∂α∂α′ =
n∑

i=1

T∑

t=1

k∑

u=1

q(t)(u| ỹi , z̃i ; θ̄)

×
r∑

j=1

∂2 log φ
(t)
j (y(t)

i j |u,w
(t)
i )

∂α∂α′ ,

where the derivatives of log φ
(t)
j (y(t)

i j |u,w
(t)
i ) are defined in

Appendix 2. In a similar way we can express the first and sec-
ond derivatives of Q2(β|θ̄) with respect to β and of Q3(γ |θ̄)

with respect to γ . In this case we need the derivatives of
log π(u|x(1)) and log π(u|ū, x(t)) which are again given in
Appendix 2.

As typically happens for latent variable and mixture mod-
els, the likelihood function may be multimodal. In particular,
the EM algorithm could converge to a mode of the likeli-
hood which does not correspond to the global maximum. In
order to increase the chance of reaching the global maximum,
the EM must be initialized properly. In particular, we sug-
gest to use a deterministic starting solution and to compare
the value of the log-likelihood at convergence with values
obtained starting from randomly chosen initial values. For a
related multi-start strategy for mixture models see Berchtold
(2004). We refer the reader to Bartolucci et al. (2013b) for
additional details.

3 Observed information matrix

In this section, we illustrate how to implement Oakes’ iden-
tity to obtain the observed information matrix under the mod-
eling assumptions formulated in Sect. 2.1. This can be done
with a reduced effort using the output of the EM algorithm
and the recursions described above.
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First of all, recall that the score vector and the observed
information matrix for the log-likelihood �(θ) are defined as

s(θ) = ∂�(θ)

∂θ
and J(θ) = −∂2�(θ)

∂θ∂θ ′ ,

respectively. Moreover, with reference to a general latent
variable model that is estimated on the basis of an EM algo-
rithm of the type illustrated in Sect. 2.3, we have

s(θ) = ∂ Q(θ |θ̄)

∂θ

∣∣∣∣∣
θ̄=θ

.

Based on this result, Oakes (1999) derived the following iden-
tity that involves two components:

J(θ) = −
{

∂2 Q(θ |θ̄)

∂θ∂θ ′

∣∣∣∣∣
θ̄=θ

+ ∂2 Q(θ |θ̄)

∂ θ̄∂θ ′

∣∣∣∣∣
θ̄=θ

}
. (12)

The first component is the second derivative of the condi-
tional expected value of the complete data log-likelihood
given the observed data. This component is directly provided
by the EM algorithm. The second component involved in (12)
is the first derivative of the score, for the same expected log-
likelihood, with respect to the current value of the parameters.

It is straightforward to see that the first component in (12)
is a block-diagonal matrix defined as follows:

∂2 Q(θ |θ̄)

∂θ∂θ ′ = diag

(
∂2 Q1(α|θ̄)

∂α∂α
,
∂2 Q2(β|θ̄)

∂β∂β
,
∂2 Q3(γ |θ̄)

∂γ ∂γ

)
.

In order to compute the second component in (12) we need
the first derivatives of the expected values in (9) and (10)
with respect to θ̄ , so as to obtain

∂2 Q(θ |θ̄)

∂ θ̄∂θ ′ =
(

∂2 Q1(α|θ̄)

∂ θ̄∂α′ ,
∂2 Q2(β|θ̄)

∂ θ̄∂β ′ ,
∂2 Q3(γ |θ̄)

∂ θ̄∂γ ′

)
.

In this regard we have to consider that

∂q(t)(u| ỹi , z̃i ; θ̄)

∂ θ̄
= q(t)(u| ỹi , z̃i ; θ̄)

∂ log q(t)(u| ỹi , z̃i ; θ̄)

∂ θ̄

and the derivative of q(t)(ū, u| ỹi , z̃i ; θ̄) with respect to θ̄ may
be defined in a similar way.

The derivatives of log q(t)(u| ỹi , z̃i ; θ̄) and log q(t)

(ū, u| ỹi , z̃i ; θ̄) may be computed as clarified in Sect. 2.2.
We therefore have that

∂2 Q1(α|θ̄)

∂ θ̄∂α′ =
n∑

i=1

T∑

t=1

k∑

u=1

q(t)(u| ỹi , z̃i ; θ̄)

× ∂ log q(t)(u| ỹi , z̃i ; θ̄)

∂ θ̄

r∑

j=1

∂ log φ
(t)
j (y(t)

i j |u,w
(t)
i )

∂α′ ,

∂2 Q2(β|θ̄)

∂ θ̄∂β ′ =
n∑

i=1

k∑

u=1

q(1)(u| ỹi , z̃i ; θ̄)

× ∂ log q(1)(u| ỹi , z̃i ; θ̄)

∂ θ̄

∂ log π(u|x(1)
i )

∂β ′ ,

∂2 Q3(γ |θ̄)

∂ θ̄∂γ ′ =
n∑

i=1

T∑

t=2

k∑

ū=1

k∑

u=1

q(t)(ū, u| ỹi , z̃i ; θ̄)

× ∂ log q(t)(ū, u| ỹi , z̃i ; θ̄)

∂ θ̄

∂ log π(t)(u|ū, x(t)
i )

∂γ ′ .

The observed information at the ML estimate θ̂ can be used to
obtain the standard errors and check model identifiability. In
particular, the standard errors are obtained by computing the
square root of the elements in the main diagonal of J(θ̂)−1.
Local identifiability is checked through the rank of J(θ̂);
that this matrix is of full rank is of course required in order
to compute its inverse.

Note that the standard errors obtained as above are referred
to the ML estimate of the parameter vector θ . However, we
can simply express the standard errors for the estimate of a
transformation of these parameters by the delta method. For
instance, consider the case in which, as in the application
described in Sect. 4.2, the covariates do not directly affect
the conditional distribution of the response variables and
these are categorical. Then it may be interesting to compute
the standard errors for the conditional probabilities φ(y|u)

collected in the vector φ. In order to obtain standard errors
for those quantities, we simply need to compute the deriv-
atives of θ , with respect to φ,α, and β, as we show in
Appendix 2. Once the derivatives above have been com-
puted, they are used to build a block diagonal matrix (the
last two blocks correspond to an identity matrix). Accord-
ing to the delta method, this matrix pre and post multi-
plies J(θ̂)−1. The square root of the elements in the main
diagonal of the resulting matrix contains the standard errors
for φ̂(y|u).

4 Empirical illustration

In this section we illustrate the proposed approach by a brief
simulation study and an application in the context of Health
Economics, which is based on the Health and Retirement
Study (HRS) dataset described below.
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Table 1 Simulation results in terms of length and coverage of Wald
confidence intervals (at 95 % level) computed on the basis of the stan-
dard errors obtained by the proposed method under scenarios in which

covariates do not affect (no cov.) or affect (cov.) the initial and/or the
transition probabilities

Initial prob. Transition prob. T n φ β γ

Length Coverage Length Coverage Length Coverage

No cov. No cov. 5 2,000 0.4100 0.9468 0.0434 0.9449 1.0124 0.9595

No cov. No cov. 5 4,000 0.2879 0.9487 0.0305 0.9509 0.6493 0.9547

No cov. No cov. 10 2,000 0.3305 0.9530 0.0259 0.9500 0.4701 0.9467

No cov. No cov. 10 4,000 0.2331 0.9519 0.0183 0.9463 0.3291 0.9423

Cov. No cov. 5 2,000 0.5025 0.9520 0.0350 0.9474 0.7492 0.9500

Cov. No cov. 5 4,000 0.3524 0.9547 0.0247 0.9471 0.5170 0.9513

Cov. No cov. 10 2,000 0.4563 0.9533 0.0239 0.9474 0.4343 0.9478

Cov. No cov. 10 4,000 0.3211 0.9544 0.0169 0.9538 0.3039 0.9528

No cov. Cov. 5 2,000 0.4252 0.9477 0.0447 0.9437 1.0636 0.9413

No cov. Cov. 5 4,000 0.2992 0.9513 0.0314 0.9478 0.7248 0.9548

No cov. Cov. 10 2,000 0.3466 0.9447 0.0273 0.9438 0.5379 0.9548

No cov. Cov. 10 4,000 0.2443 0.9545 0.0193 0.9458 0.3772 0.9448

Cov. Cov. 5 2,000 0.5248 0.9527 0.0363 0.9468 0.8221 0.9523

Cov. Cov. 5 4,000 0.3674 0.9533 0.0256 0.9427 0.5700 0.9450

Cov. Cov. 10 2,000 0.4767 0.9517 0.0252 0.9518 0.4891 0.9542

Cov. Cov. 10 4,000 0.3355 0.9462 0.0178 0.9572 0.3432 0.9498

4.1 Simulation study

We considered a simulation setting that recalls that of the
application based on the HRS data. In particular, we assumed
a single response variable with c = 5 categories, labeled
from zero to four, that is observed at T = 5, 10 occasions
for a sample of size n = 2000, 4000. Moreover, for every
sample unit and time occasion we considered two covari-
ates that are independently generated from a standard normal
distribution.

As in the application, we assumed an HM model with
covariates not affecting the conditional response probabili-
ties, k = 2 latent states, and conditional response probabili-
ties chosen as follows:

φ(y|1) = (5 − y)/15, φ(y|2) = (y + 1)/15,

y = 0, . . . , 4,

so that the first latent state corresponds to a higher tendency
to respond by one of the first categories, and the second state
corresponds to a higher tendency to respond by one of the
last categories. We also considered different data generat-
ing mechanisms, in which the covariates may or not affect
the initial probabilities of the latent process and its transi-
tion probabilities according to the logit parametrizations in
(5) and (7). In particular, when the covariates do not affect
the initial probabilities we let β22 = (0, 0)′ and when the
covariates affect these probabilities we let β22 = (1,−1)′;

in both cases we fixed β12 = 0. In a similar way, when the
covariates do not affect the transition probabilities, we let
γ 212 = γ 221 = (0, 0)′ and when the covariates affect these
probabilities we let γ 212 = γ 221 = (1,−1)′; in both cases
we fixed γ112 = γ121 = − log 9, so as to include a high level
of persistence in the latent Markov chain.

Overall, we then considered 16 different possible simu-
lation scenarios. For each of these scenarios we computed a
Wald 95 % confidence interval based on the ML estimates
and exact estimates for the standard error. In Table 1 we report
the empirical coverage and length of the confidence intervals
obtained as averages over 1,000 replicates. These values are
also averaged over all parameters in each single block. For
instance, since the assumed model includes 10 parameters in
φ, then the table reports the mean of the coverage and interval
length for each of these parameters.

It shall be noted that the actual coverage is very close to 95
% in all cases, with around 50 % of the values below and 50
% above the nominal level on the overall simulation study.
We also have checked the results for each single parameter,
and the same conclusions apply. It shall also be noted that the
inclusion of the covariates does not affect the actual coverage
level. The length of the confidence intervals approximately
decreases at the rate of

√
n and slightly slower with T . The

use of the covariates tends to increase the average interval
length, with a stronger effect of this inclusion for the transi-
tion than those for the initial probabilities.
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4.2 Application

We considered a large dataset concerning retirement and
health among elderly individuals in the United States. Data
are collected by the University of Michigan and provided,
after some processing, by the RAND Corporation. We used
the complete cases of Version I of Health and Retirement
Study (HRS) data, downloadable from http://hrsonline.isr.
umich.edu. The same data were analyzed in Bartolucci et
al. (2013a) by a model based on a different formulation, in
which there is an additional effect of the latent process on
the response variable with respect to that of the individual
covariates.

The analyzed data are referred to a sample of n = 7, 074
individuals who were asked to express opinions on their
health status at T = 8 occasions between 1992 and 2006.
The outcome is the self-reported health status, measured on
an ordinal scale divided in five categories: “poor” (coded as
0), “fair” (1), “good” (2), “very good” (3), and “excellent”
(4). For every subject we also have information on age, gen-
der (1 for females), race (1 for non-white), and education.
The educational level is represented by three categories, and
coded with two dummy variables, one for subjects with a col-
lege degree and the other for subjects with higher than college
degree. Table 2 shows some descriptive statistics about these
covariates. A more detailed description of the data can be
found in Bartolucci et al. (2013a).

The research question of interest regards the relationship
between the self-reported health status and the covariates.
This could be useful in order to assess specific needs of dif-
ferent types of individual and to assess the evolution of their
health status over time. For this end, we included the covari-
ates only in the latent model component, so as to obtain sepa-
rate initial and transition probabilities for each configuration
of the covariates.

In order to easily illustrate the results we fixed k = 2.
In this way we are assuming two distinct classes of subjects
with a different behavior in terms of tendency to rate their
health status. However, if the number of such classes has
to be chosen only on the basis of the data, different criteria

Table 2 Distribution of the covariates for the HRS data

Variable Category % Mean St.dev.

Gender Male 41.9 – –

Female 58.1 – –

Race White 82.9 – –

Non white 17.1 – –

Education Less than college 60.9 – –

College or above 39.1 – –

Age (in 1992) – 54.8 5.5

Table 3 Estimates of the parameters in φ for HRS data and corre-
sponding standard errors obtained using the proposed method and the
parametric bootstrap method

y Est. S.e. Boot. s.e.

u = 1 u = 2 u = 1 u = 2 u = 1 u = 2

0 0.1273 0.0002 0.0023 0.0002 0.0021 0.0001

1 0.3364 0.0058 0.0038 0.0007 0.0028 0.0005

2 0.4551 0.1738 0.0035 0.0038 0.0031 0.0023

3 0.0761 0.5249 0.0028 0.0033 0.0021 0.0031

4 0.0051 0.2954 0.0007 0.0032 0.0006 0.0028

can be adopted, such as the Bayesian Information Criterion
(Schwarz 1978).

The adopted model has a log-likelihood of −70,865.53
with 29 free parameters, which is considerably higher than
that of the independence model, equal to −83,703.21 with 4
parameters, and of the proportional odds model (McCullagh
1980), equal to −80,623.52 with 10 parameters.

With k = 2 we obtained the estimates of the conditional
response probabilities in φ which are displayed in Table 3.
In this table, we also report the standard errors based on the
information matrix obtained by the proposed method and
a parametric bootstrap method based on 199 replications.
Moreover, in Tables 4, 5, and 6 we report the estimates of
parameters in β affecting the initial probabilities and the
parameters inγ affecting the transition probabilities, together
with the corresponding standard errors obtained in the two
different ways.

The results in Table 3, concerning the conditional distri-
bution of the outcome, allow us to characterize two clearly
separate groups: for the first (u = 1) a large probability of a
“poor”, “good” or “fair” health status is observed; subjects
in the second group (u = 2) tend to have a better opinion,
with around 80 % probability for categories “very good” and
“excellent”. Overall, the second class includes subjects with
a better opinion about their health status with respect to the
first class.

Concerning the initial probabilities, for u = 1 we have an
estimate equal to 36 % overall, indicating that at the begin-
ning of the observation period about one third of the subjects
are not very satisfied of their health status. This percentage
is obtained by averaging the subject-specific initial probabil-
ities corresponding to the parameter estimates in Table 4 for
all the sample. These estimates indicate that non-whites are
more likely to enter the study in the first latent class given
the negative parameter estimate of about −0.96, and with
a similar reasoning it can be shown that a higher education
is associated with a larger probability of being in the second
class. Furthermore, younger subjects are more likely to report
a better health status initially. As age increases, satisfaction
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Table 4 Estimates of the
parameters β, corresponding
standard errors obtained using
the proposed method and the
parametric bootstrap method, t
statistics and related p values

Est. S.e. t test p value Boot. s.e.

Intercept 0.5115 0.0696 7.3543 0.0000 0.0641

Gender (F) −0.0693 0.0643 −1.0770 0.2815 0.0594

Race (non-white) −0.9554 0.0794 −12.0344 0.0000 0.0779

Education (college) 0.8778 0.0810 10.8370 0.0000 0.0732

Education (>college) 1.6290 0.1000 16.2932 0.0000 0.0983

(Age-50) −0.0266 0.0071 −3.7246 0.0002 0.0064

(Age-50)2/100 0.0098 0.0537 0.1821 0.8555 0.0498

Table 5 Estimates of the
parameters γ 2, corresponding
standard errors obtained using
the proposed method and the
parametric bootstrap method, t
statistics and related p values

Est. S.e. t test p value Boot s.e.

Intercept −4.2840 0.5452 −7.8575 0.0000 0.4229

Gender (F) −0.6317 0.1943 −3.2515 0.0011 0.1789

Race (non-white) 0.6528 0.1985 3.2880 0.0010 0.1611

Education (college) −0.1827 0.3054 −0.5981 0.5498 0.2600

Education (>college) −1.8642 1.0524 −1.7714 0.0765 3.5398

(Age-50) 0.0564 0.0750 0.7520 0.4521 0.0580

(Age-50)2/100 −0.2061 0.2497 −0.8255 0.4091 0.2101

Table 6 Estimates of the
parameters γ 1, corresponding
standard errors obtained using
the proposed method and the
parametric bootstrap method, t
statistics and related p values

Est. S.e. t test p value Boot. s.e.

Intercept −2.6025 0.1012 −25.7039 0.0000 0.1044

Gender (F) −0.3076 0.0671 −4.5834 0.0000 0.0638

Race (non-white) 0.7374 0.0855 8.6220 0.0000 0.0769

Education (college) −0.3376 0.0826 −4.0894 0.0000 0.0741

Education (>college) −0.6914 0.0847 −8.1585 0.0000 0.0803

(Age-50) 0.0011 0.0108 0.0986 0.9214 0.0118

(Age-50)2/100 0.0942 0.0418 2.2536 0.0242 0.0421

with one’s own health status gets worse, and the effect seems
to be linear given that the quadratic effect of age is not sig-
nificant, with a p value of about 0.86 for the hypothesis that
the corresponding parameter is equal to 0.

Concerning the model for the transition probabilities, we
report in Table 5 the estimates of the parameters γ 2, that is,
the parameters associated with the transition from ū = 1
to u = 2, and in Table 6 the estimates of γ 1, that is, the
parameters associated with the transition from ū = 2 to
u = 1.

From Tables 5 and 6 we conclude that being non-white
decreases the probability of persistence in ū = 1 and ū = 2,
that is, non-whites tend to move between latent states more
than whites. On the other hand, there seems to be no signifi-
cant effects of education and age on transitions from ū = 1.
As far as a worsening of the opinion regarding one’s health
status, similar effects are obtained: whites are more likely to
persist in the latent state corresponding to a higher satisfac-
tion, a higher degree is associated with persistence as well,

and there seems to be a quadratic effect of age increasing the
probability of transition. In fact, as age increases, even sub-
jects presently satisfied of their health status tend to move to
a less satisfactory situation. A final note regards gender, as a
negative log-odds is seen for females both in Tables 5 and 6.
We conclude that females are less likely than males to move
from one state to another, regardless of the present opinion.

In order to help the interpretation of the results, we also
report the average latent transition matrix for the overall sam-
ple (Table 7, first panel), which shows a high persistence
in the current latent state, with a certain tendency towards
a worse health status over time. The number of transitions
linked to a worsening in the perceived health status are about
seven times those expected in connection with an improve-
ment. In Table 7 we also report the transition matrix estimated
for a white woman with a degree above college (second panel)
and that estimated for a black man with a lower than college
degree (third panel). The results are averaged over all the
other covariates. It can be seen that the estimated probabil-
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Table 7 Average marginal (first panel) and conditional (second and
third panel) latent transition matrices; the second transition matrix is
for a white woman with a degree above college; the third is for a black
man with a degree below college

u u u

1 2 1 2 1 2

ū = 1 0.9877 0.0123 0.9985 0.0015 0.9685 0.0348

ū = 2 0.0721 0.9279 0.0316 0.9684 0.1681 0.8319

ity of a general worsening of the perceived health status is
much larger in the second case than in the first, confirming
the effect of the covariate race already commented above.

In conclusion, we note that, for every parameter estimate,
the standard error obtained using the information matrix com-
puted by the proposed method is close enough to that obtained
by the parametric bootstrap, with few exceptions. One of such
exceptions is for some of the parameters in γ 2, in particu-
lar the parameter associated to the highest educational level.
However, we checked that this parameter estimate is rather
unstable due to the reduced number of subjects with this level
of education that are included in the first latent state. We
expect that by increasing the number of bootstrap replicates
we can obtain more similar results between the proposed
method and the bootstrap method. However, this would take
a very long computing time in contrast with the immediacy
of our method. Therefore, we conclude that through the pro-
posed method we easily obtain reliable standard errors for
the parameter estimates even with a very reduced computing
time, even when the sample size is relatively large.
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Appendix

Appendix 1: derivatives of the forward-backward recursions

First of all we have that

∂ log l(1)(u, ỹ| z̃)
∂θ

= ∂ log π(u|x(1))

∂θ

+ ∂ log φ(1)( y(1)|u,w(1))

∂θ

and

∂ log l(t)(ū, u, ỹ| z̃)
∂θ

= ∂ log l(t−1)(ū, ỹ| z̃)
∂θ

+ ∂ log π(t)(u|ū, x(t))

∂θ
+ ∂ log φ(t)( y(t)|u,w(t))

∂θ
.

Now considering Eq. (8) we have that

∂ log l(t)(u, ỹ| z̃)
∂θ

=
k∑

ū=1

l(t)(ū, u, ỹ| z̃)
l(t)(u, ỹ| z̃)

∂ log l(t)(ū, u, ỹ| z̃)
∂θ

,

which may be recursively computed for t = 2, . . . , T also
taking into account the results in Appendix 2 and that

∂ log φ(t)( y|u,w)

∂α
=

r∑

j=1

∂ log φ
(t)
j (y j |u,w)

∂α
.

In the end we obtain

∂ log f ( ỹ| z̃)
∂θ

=
k∑

u=1

l(T )(u, ỹ| z̃)
f ( ỹ| z̃)

∂ log l(T )(u, ỹ| z̃)
∂θ

.

In a similar way we have that

∂ log m(T )( ỹ|ū, z̃)
∂θ

= 0

and

∂ log m(t)( ỹ|ū, z̃)
∂θ

=
k∑

u=1

m(t)(u, ỹ|ū, z̃)
m(t)( ỹ|ū, z̃)

∂ log m(t)(u, ỹ|ū, z̃)
∂θ

for t = 2, . . . , T − 1, where

∂ log m(t)(u, ỹ|ū, z̃)
∂θ

= ∂ log m(t+1)( ỹ|u, z̃)
∂θ

+ ∂ log π(t+1)(u|ū, x(t+1))

∂θ

+ ∂ log φ(t+1)( y(t+1)|u,w(t+1))

∂θ
.

Then these derivatives may be computed by a backward
recursion.

Appendix 2: derivatives of the density and probability mass
functions

In the case of a canonical GLM parametrization, and consid-
ering the general situation of multivariate outcomes, for the
measurement component we have

∂ log φ
(t)
j (y|u,w)

∂α
= y − μ(t)(u,w)

g(τ )
a(t)

juw,

∂2 log φ
(t)
j (y|u,w)

∂α∂α′ = −V (Y (t)|U (t) = u, W (t) = w)a(t)
juw(a(t)

juw)′,

where τ denotes the dispersion parameter and g(τ ) denotes
the function involving this parameter in the typical expression
for an exponential family distribution (McCullagh and
Nelder 1989). In the case of categorical data where a multino-
mial logit parametrization is adopted, we have

∂ log φ
(t)
j (y|u,w)

∂α
= (A(t)

juw
)′G′

1c j
(e j (y+1) − φ

(t)
j (u,w)),
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where ec(y + 1) is a vector of c zeros with element y + 1
equal to 1 (because the first category is labelled as 0) and

∂2 log φ
(t)
j (y|u,w)

∂α∂α′ =(A(t)
juw

)′G′
1c j



(
φ

(t)
j (u,w)

)
G1c j A(t)

juw
,

where, for a generic probability vector f , we have 
( f ) =
diag( f ) − f f ′.

Regarding, the other derivatives, we have

∂ log π(u|x)

∂β
= B′

x G′
1k(ek(u) − π(x)),

∂2 log π(u|x)

∂β∂β ′ = −B′
x G′

1k
(π(x))G1k Bx,

and, finally,

∂ log π(t)(u|ū, x)

∂γ
= (

C(t)
ūx

)′
G ′̄

uk

(
ek(u) − π (t)(ū, x)

)
,

∂2 log π(t)(u|ū, x)

∂γ ∂γ ′ = −(
C(t)

ūx

)′
G ′̄

uk

(
π (t)(ū, x)

)
Gūk C(t)

ūx ,

where π(x) is the column vector of the initial probabilities
π(u|x) and π (t)(ū, x) is that of the transition probabilities
π(t)(u|ū, x), with u = 1, . . . , k.
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