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1. INTRODUCTION

In a pioneering article, White (1982) suggested the information matrix [IM) test

as a general test for model specification. In recent years, this test has received a lot of

attention. In particular, Chesher (1984) demonstrated that this test can be viewed as a

Lagrange multiplier (LM) test for specification error against the alternative of parameter

heterogeneity. As a byproduct of this analysis, Chesher (1983) and Lancaster (1984)

provided a unR2n version of the IM test. An application of the IM test to the linear

regression model by Hall (1987) led to a very interesting result that the test decomposed

asymptotically into three components, one testing heteroskedasticity and the other two

testing some forms of normality. Engle (1982), in an apparently unrelated influential

paper, introduced the autoregressive conditional heteroskedasticity (ARCH) model which

characterizes explicitly the conditional variance of the regression disturbances. He also

suggested an LM test for ARCH. The purpose of this paper is to establish a connection

among the IM test, parameter heterogeneity and ARCH.

An important finding by Hall (1987) was that the components of the IM test are in-

sensitive to serial correlation. Hall also commented " had our original specification included

first order autoregressive errors, then the IM test does not decompose asymptotically into

the sum of our original three component test . . . plus the LM test against first-order serial

correlation. In this more general framework the indicator vector no longer has a block

diagonal covariance matrix due to the inclusion of the autoregressive coefficient in the pa-

rameter vector." (p.262). In the next section, we start with a linear regression model with

autoregressive (AR) errors and apply the IM test to it. The indicator vector is found to

have a block diagonal covariance matrix. And as the null model now has more parameters,

naturally we get a few extra components in the IM test. From the additional components

of the statistic, we can also obtain the Engle's LM test for ARCH as a special case. The

implication of this result is discussed in detail in section 3. Given Chesher's interpretation

of the IM test as a test for parameter heterogeneity or random coefficient, it is now easy

to give a random coefficient interpretation to ARCH. This fact has been noted recently by



several authors [see, e.g., Tsay (1987)]. This provides us with a convenient framework to

extend ARCH so that interaction factor between past residuals could also be considered

and as a consequence we suggest an augmented ARCH (AARCH) model. In this section,

we also explore the connection between ARCH and overdispersion. The last section of the

paper contains some concluding remarks.

2. THE IM TEST FOR THE LINEAR REGRESSION MODEL WITH AR ERRORS

We consider the linear regression model

yt =x't
+ st (1)

where yt
is the t-th. observation on the dependent variable, x

t
is a k x 1 vector of fixed

regressors and the e t are assumed to follow a stationary AR(p) process

p

t = ^2<f>j£t-] +u t (2)

with u t
~ NIID(0,al). We will write this AR(p) process as et

= e^<j> + u
t
where ^ =

{et-i, •••,£t- p )' and <j> = [<f>ti • • • ,<j>p
)' • Assuming that e< is given, the log- likelihood

function for this model can be written as

L(0) = £«,(#) = -IW - \logal - -L £> - ^4>Y
t= 1

u t= 1

where 9 = (/?'

,

<f>' , ol)' is a (A: + p + 1) x 1 vector of parameters. Note that (e t
— £'

t
<jf>)

involves /? since et
- £<p = (yt - y'^) - (xt

- xJ0)'/?, where y = (yt _ l5 • • • ,yt _ p
)' and

£t — (^t- 1 J " ' " 5 ^t-p j •

Let 6 denote the maximum likelihood estimate (MLE) of 9. Then White's IM test

is constructed based on

1
n

d{9) = vech C{§) = - JJd, ((?) (say)
n

t= i



where

t= i

a2
/t (<9) f

3/
t (*n /a/,W = A(0) + £(0) (say)

A consistent estimator of the variance matrix of d(6) is [see White (1982, p. 11)]

vrt-if^M'Xrt (3)

t=l

whereof) = a\ (I) -Vd^Mf*)" 1 V/ t (0) with Vd(0) = J £t

n
= i ^^ and V/

* (') = ^-
Then White's /M test takes the form of

Tw =nd>(6)Va (9)-
1
d(6) (4)

When the model (1) is correct, Tw follows an asymptotic x
2 with ^ ? * ^ degrees of freedom.

Here it should be noted that White (1982) derived the IM test for IID observations.

However, as shown in White (1987), the IM equality holds under fairly general conditions.

For our autoregressive case, mixing conditions stated in White (1987) are satisfied, and

therefore the IM test remains valid.

After some algebra and rearranging the terms in d(0), we can write ( for algebraic

derivations, see the Appendices A and B), suppressing 6 such that d for d(d),

d = {d[,ct2 ,d'3J d'4 ,d'
!

.

1
d

,

6
)' (5)

where di is a
fc(fc+ i)

x 1 vector of the difference of two estimates of the variance of J3,

4 is a p
\
p * n x 1 vector of the difference of two estimates of the variance of 4>, d3 is a

scalar of the difference of two estimates of the variance of b\ , d4 is a kp x 1 vector of the

difference of two estimates of the covariance between /? and 0, d5 is a A; x 1 vector of the

difference of two estimates of the covariance between ft and a\ , d6 is a p x 1 vector of the

difference of two estimates of the covariance between
<f>
and b\ , and the typical elements

of di , i = 1, 2, • • • ,6, are given below

dx

*./ = 1,2, «<J



1

rttzlw -ft)**-**-*
t= i i,j=l,2, • ,p; i<j

And

d.

n

zrX^<
2 _a«)(x« -a£^)*«-i

t=

i

«=1,2, ••,*; y=l,2, ,p

1
"— ^u

t

3
(xt , -x'ti ^)

2n<76
t= i i= l,2,--,fc

4
1

n

—— > U, E t _i2 û t= i J t = 1,2, ,p

Our expressions for di,dz and dJ5 are identical to those of A
x , A 3 and A2 of Hall (1987,

pp. 259-260) if we put <f>
= 0. If it is desirable to test only in certain direction, we can

premultiply d by a selection matrix whose elements are either zero or unity [see White

(1982, pp.9-10) and Hall (1987, p.258)].

Now to obtain the IM test statistic, all we need is to derive the variance matrix of

d. We find that the variance matrix is block diagonal (for detailed derivation, see the

Appendix B). Denote the estimator of the variance of \/nd
i
as V(rf

i ) = V
{
,i = 1,2, •••,6.

To express the V^'s succinctly, we define the vectors whose typical elemens are described

as

X, :

s. :

r„ :

[x« - x'
tl
j>)(xt]

- £.j>) - - 2j(xt<
- o^i4>)(xtj

1
n

^t-i^t-j ~ ~ / &t - i^t- jn *—^
t-

L Ji=l,2,

-A**)

<=

i

t= i

«,y=i,2, -,p; «<y

J »,y=l,2, •-,*; \<j

»=1, 2. ••-.*; y=l,2, ,p



Then we have very concise forms of the V",s as follows

« 2i v—

%

* Z v—

>

* o
*l = TT y. X, X, > ^2 — T7 y. C. f , > ^3 — XTT

na.4 '^^ —*
—

*

no* *—^ -* _t 2o°u t= i
u t= i

u

" t=l u t=l " t= 1

Given the block diagonality of the variance matrix of <i, we can write the IM test as

6 6

that is, the derived IM test statistic is found to be decomposed as the sum of six quadratic

forms. In the next section, we analyze these components of Tw in detail.

3. INTERPRETATION OF THE COMPONENTS OF THE IM TEST

Using Chesher's analysis, we can say the statistic T{ is a test for randomness of the

regression parameters in the presence of autocorrelation. If we put <j> = 0, then this

reduces to the White (I980)'s test for heteroskedasticity [and Tln in Hall (1987, p. 261)].

Recently, there have been some robustness studies of various tests for heteroskedasticity in

the presence of autocorrelation [see, e.g., Epps and Epps (1977), Bera and Jarque (1982),

Godfrey and Wickens (1982), Bumb and Kelejian (1983), Bera and McKenzie (1986)]

and their general conclusion is that various tests for heteroskedasticity is sensitive to the

presence of autocorrelation. A byproduct of our analysis is that we have a simple test for

heteroskedasticity in the presence of autocorrelation. All we need to do is to modify the

White test slightly. Instead of regressing the squares of the least squares residuals on the

squares and cross products of x t 's, we should regress u\ on the squares and cross products

of (it
— x^<f>) after estimating the model with appropriate AR process. For example, if

there is AR(1) error, then the regressors should be the squares and cross products of

(i t
— 4> l xt . l ). Similarly, the modification of T2n in Hall (1987), which is our Tb , requires



that we should replace xt by (xt
— x!

t
4>). Our T3 is a (kurtosis) test for normality. Here all

we need is to use the conditional mean corrected residuals rather than the OLS residuals.

Let us now concentrate on the new test statistics we obtain by including
<f> in our

model. The statistic T2 tests the randomness of
<f>
= {<j>i ,(f>2 , , <£P )'- Suppose that the

parameters of autoregressive errors are varying around a mean value with finite variances.

This can be formulated as
<f>t
~ {<f>,Ct), where <f>t

= (<f>it,<f>2ti"' ,<f>P t)' Then T2 is the LM
statistic for testing H : CI = 0. Let us first consider a very special case in which =

and CI is diagonal. Under H : 4> x = <f>2 = • • • = 4>p = 0, u t _; = £t _< (t = 1,2, • • • ,p),

where the e t are the OLS residuals. Consequently, T2 reduces to

T2
=- £*?£-

,t= i

EU
t= i

- 1 r

E«t
A 2

-

1

Lt= l

(7)

whereu
t

2 = (u^_
x , u^_ 2 ,

• • • , u
t

2
_ )' and a typical element of $ is now (u2

_ . — ^ Ylt= i "t- » ) >

for t = 1,2, • • • ,p. This is identical to the Engle's (1982) LM statistic for testing the pth-

order linear ARCH disturbances, i.e., testing H '• ai = a2 = • • • = ap = in the

ARCH process specified as Var(u t \

u
t )

= o\ + a l u*_ l
+•••+ ap uf_ p , where u^ —

(u t _ ! ,u t _ 2 ,
• • • ,u t - p )'- An asymptotically equivalent form of this statistic is nR2 where

R2
is the coefficient of multiple determination from the regression of u2 on a unity and

(tt?-i>«?-2»*-*» fi?-p)-

From our representation of test for ARCH as a test for randomness of <t>
parameters

and its equivalence to one component of the IM test, the consequence of the presence of

ARCH is that the "usual" estimators for variance of <j> will be inconsistent if ARCH is

ignored. This is similar to the case that the standard variance estimator for is inconsis-

tent in the presence of unconditional heteroskedasticity. Therefore, the standard tests for

autocorrelation are not valid in the presence of ARCH [see, e.g., Diebold (1986)].

Now we relax the assumption of the diagonality of CI. The structure of the test statistic

will remain the same but that R2
will be obtained by regressing u 2 on a constant and the

squares and cross products of the lagged residuals. T2 will then be a LM statistic for



testing H : atJ
= 0(i > j = 1, 2, • • •

, p) in

p p

Var(ut 1 1^) = <rj +2^2jaiyut_ iut_ i *>j (8)

The above specification of conditional variance generalizes Engle's ARCH model. This will

be called the augmented ARCH (AARCH) process. Properties and testing of this model is

discussed in Bera and Lee (1988). Lastly, if we additionally relax the assumption of
<f>
= 0,

u t will no longer be equal to it and T2 will have to be calculated from the regression of u
t

2

on a constant and the squares and cross products of it _i (i = 1,2, • • •
, p). This will give

us the LM statistics for testing ARCH or AARCH in the presence of autocorrelation.

From the above discussion, it is clear that Engle's ARCH model can be viewed as a

special case of random coefficient autoregressive model (RCAR). To see this more clearly,

let us write equation (2) as et
= Y7=i 4>jt^t-j + u t . If it is assumed that

<f>it
~ (0,«y)

and cov(<j>j t ,<f>j' t ) = 0, for; ^ j', then the conditional variance is given by Var(et

ej = &l + Yl
P
=i a

]
£t-]- Here we observe that ARCH and the above RCAR models have

the same first two conditional moments as mentioned in Tsay (1987) where it is called as

second-order equivalence. If we further assume normality of (j>]t , then all the moments of

ARCH and RCAR processes will be the same, e.g., for p = 1, the first four moments are

H X = 0, fx2 = T^7 , M3 = and ^ =
(1 !?,')(!- 3a?) I

see En8 le
(
1982

> P-992 )]- Here we

should note that calculation of moments are much easier under the RCAR scheme.

Presence of ARCH can also be viewed as "overdispersion" in the following sense. For

simplicity, consider et
= <j>u £

t -i + u
t
where the u t 's are IID(0, 1). When <j>u is fixed at

/x, Var(e
t )
= (1 — /x

2 )" 1
. If 4> lt

~ {fj.,a y ) with °
'

a < 1 and is independent of et 's and

Ut's, then Var(et ) = (1 - fi? - ai)'
1 > (l - fJ,

2 )' 1
. It should be noted that

(1
"^

3)
< 1

is the stationarity condition for ARCH in the presence of AR as discussed in Bera and

Lee (1988). Cox (1983) suggested a test for a x
= 0, with overdispersion on the borderline

of detectability, i.e., with local alternatives like a x
= -p». Under the certain regularity

conditions, Cox expressed the density of u t in the overdispersed model as

£[/«(«;*)] -/.(us/*)
l\Jn n

7

(9)



where h
t
(u;/x) =

1 2
dlogf t {u\n)

On + O 7
logft(u\ii)

3m 1
which is the same as d

t
defined earlier. As

a test for overdispersion, Cox suggested to use Ylt ^t(u*iA)> where p. is the MLE of //

under o^ = 0. This is essentially the IM test [see also Chesher (1983, fn 4)].

By comparing TY
and T2 , we note that they test for unconditional and conditional

heteroskedasticity, respectively. Given the block diagonality of covariance matrix of the

IM test in our case, we can test for unconditional and conditional heteroskedasticity

simultaneously simply by adding up these two statistics. The statistic T4 is also related

to Tx and T2 . For obtaining TA , we run the regression of u2 on a constant and cross

products of lagged residuals and exogenous variables. This indicates that the form of

heteroskedasticity under the alternative hypothesis would be

p

Var(u t |

e
t )
= al + ^^ <5, y xti £:t _y (10)

.=i y=i

and we test H : <?»_, = 0. This can be viewed as a form of conditional heteroskedasticity

caused by the interaction between the disturbance term and the regressors. As a natural

consequence, a general test statistic for heteroskedasticity would be Tx +T2 +T4 which under

the null hypothesis will have an asymptotic x
2 distribution with (A; + p)(A; + p+l)/2 degrees

of freedom. To get reasonable power, we will have to make a judicious selection of the

regressors from the set of squares and cross products of {xt ,,, t' = 1 , 2, • • • , k and it _ _, , j =

1,2, • • • ,p} or make some adjustment to the test statistic [see Bera (1986)].

The last two statistics T5 and T6 can be viewed as the statistics for testing variation

in the third moment of u t . In T5 , the variation is assumed to depend on the exogenous

variables x t and in T6 , on the lagged innovation process. In some sense, we could say that

Ts and T6 test for unconditional and conditional "heteroskewcity", respectively. As noted

in Hall (1987), the test for normality (skewness part) proposed by Bowman and Shenton

(1975) and Jarque and Bera (1987) is a special case of Tb while T3 which tests for the

variation of o2
u is a pure test for kurtosis. In this connection, we conjecture that if the IM

test is applied to an ARCH model, that will lead to a test for "heterokurtosicity".

8



Here we should note that all the components of T are related to tests for the second,

third and fourth moments of u t . Therefore, using the standard IM test, we cannot test

for the specification of the first moment of u t , e.g., E(et \
e^) = 0. By construction, the

IM test is based on the difference of two estimated covariance matrices and implicitly, it

tests for some parametric variation. In the context of specification tests for latent models,

Gourieroux, et al (1987, p.28) noted that the IM test implicitly checks whether the model

is "second-order" well specified according to the analysis of variance equation. Obviously,

it is not possible to express a hypothesis regarding the mean part of the model such as

H : 4> x
=

<f>2 = - • • = 4>p
= in equation (2) in terms of parameter variation. That is why

the IM test fails to detect autocorrelation.

Lastly, we should mention that using his dynamic information matrix (DIM) test

White (1987) obtained a test for ARCH and Durb in-Watson type test for autocorrelation.

The DIM test is based on the idea that under correct specification the derivatives of the

conditional log-likelihood of the observation at each time period are martingale difference

sequences. This test is not based explicitly on the difference of two variance-covariance

matrix estimators. Also, it is not clear whether the DIM test could be given a test for

parameter variation interpretation. Also it is not based explicitly on the difference of two

variance-covariance matrix estimators.

4. CONCLUSION

Our application of the White's IM test to the linear regression model with autore-

gressive errors provides many interesting results. The most important result is that a

special case of one component of this test is identical to the Engle's LM test for ARCH.

Chesher's interpretation of the IM test as the test for parameter heterogeneity leads us

naturally to specify the ARCH processes as a random coefficient autoregressive (RCAR)

model. From both theoretical and practical points of view, this representation of ARCH
is convenient and useful. As discussed in Bera and Lee (1988), we can now easily verify the

stationarity condition for ARCH as a special case of RCAR model, study the robustness



of test for AR process in the presence of ARCH and vice versa and generalize the ARCH
process to take account of interaction between the disturbance terms.

The difference between the unconditional and conditional heteroskedasticity is now

clear. The former is related to the variation of the regression coefficients while the latter

to the variation of the autoregressive parameters. A mixture of them is possible when the

heteroskedasticity is caused by the interaction between exogenous variables and distur-

bances. We can now talk about the conditional and unconditional variation in skewness.

As discussed in the last section, the standard IM test cannot test for the first moment

part of the model, such as the presence of autocorrelation. However, it is worth noting

that the power of the IM test lies in testing for higher order conditional and uncondi-

tional moments. Since economic theory, in most cases, provides information concerning

the first moment only, the problem of testing for higher order moments is an important

issue in econometric modeling. In that context, the IM test is a very useful tool for model

specification.

10



APPENDIX

A: The Derivatives of the Log-likelihood Function. For our model, the vector of

parameters is 6 = (/?',7',c^)' and the log-likelihood function for the t-th observation

conditional on the information set ^t-i, in which £, = (et -i,- • ,et - p
)' is contained,

is given by lt (0) = -\log2n - \logo\ - £r(et
- e'

t <£)
2

. Note that u
t
= et

— gt <f>
=

[Vt ~}/
t
4>)-{xt -£<f>)'P where ^ = (yt _ l5 • • • ,yt _ p

)' and x, = (xt _ x ,
• • • ,xt _ p

)'. Then the

first partial derivatives of l t (9) with respect to 6 are easily obtained.The first derivatives

are^ = £«.(*« - 4*).^ = £««& a"d^ = -37T + rfl<- And the second

derivatives are §^ = -£(«, -x^)(x
( -£*)•, £# = -^jj, f^ff = ^-^,

gj«l = -ifc - x»e;, 1^ = -iU,(x, - &)• and |^ = -J,«
tS;.

B: A Consistent Covariance Matrix Estimator for the Information Matrix Test. A

consistent covariance estimator for the IM test proposed by White (1982) is stated as

*•(*) = i£>(J) a,[ly
n *

—

*

t= i

(B.l)

where at (§) = dt (0) - Vd{6)A(0)- l Vl
t (§). Each component of a

t (§) will be defined and

derived one by one. Let us begin with the indicator vector d(6) which is defined as

d(S) = vech[C{0)\ = vech\A{6) + B(9)\

where

1= 1

--t
t= i

Je = e

d 2
l
t {9)

dddd'

-jru t (xt
- x!

t
4>)'

±f(xt -3£ (t>)e'
t

-jr(xt
- xj <£)u

t

-^ wt£'t

-^ u «

-J —

u

2

9=9

11



and

t= i

dl t (6) \ fdl t {0)\

10-0

1 -

t= i

de J \ dd

jj=«

From ,4(0) and £(0), C(0) is easily derived as

C(0) = ,4(0) + B(i)

it
t= i

jr{ul -al)(xt
- £4>){x

t
- xtf)' ^ (u2 - <r

2
)
(xt

- x>)^ ^-(xt
- x»(u3 - 3oJu t )

2<r'

Now it is straightforward to obtain d{6). For analytical convenience, we rearrange d{6) as

described in the paper. Then the first component of a^ (6) defined from d(6) = - Yl"= l
d^ (6)

can be written as

dtW = Kn^a.^aX^^Xe)' (
B -2

)

where i, = [<7;<(u 2 -^)(itx -x^) 2
,

• • • ,a;<(u
t

2 -a2 )(xtfc -x^) 2
,<7;< (u 2 -a2 )(xtl

-

^ 1 4>){^t2-^t 2 i)r--,K
i {^-al){xt(k-i)- t̂{k -i

)

4>){xtk- t̂k i)}' is a *i*±ii x 1 vector of

the difference of two estimates of the variance^f /?, dt 2 = \o~ * (u2 — a2 )e2_ x ,
• • • , a~ 4 (u2 —

^uR2
_ p

,£~ 4 (u2 -^)^t-i^- 3 , •••,a- 4 (uj -a2
)et _ p+1 £t _ p ]' is a p(p

2

>
' 1) x 1 vector of the

differences of two estimates of the variance of <£, dt 3 = (4<7*)
_1

(u 4 — 6a 2 u2 + 3<7
4

) is a

scalar of the difference of two estimates of the variance of <7
2

, <fj 4 = [^7*("2 — ^«)(x<
—

xj0)'et _ !,- ••
,
<7~ 4 (u

t

2 — <7
2
)(xt

— xj</>)'ft _ p
]' is a fcp x 1 vector of the difference of two

estimates of the covariance between J3 and <f>, dt S = (2<7„)
-1

(u 3 — 3<7
2 u t )(xt

— xj<£) is a

12



A; x 1 vector of the difference of two estimates of the covariance between /? and a\ and

finally, £ 6 = [(2^)" l (u
t

3 - 3olu t )it . , , • •
, (2^)" ' {u3

t
- 3ajtt t )et _ p ]' is a p x 1 vector of

the difference of two estimates of the covariance between <$> and b\

.

To simplify a consistent estimator, say g{6) which takes the form of - ^"=i 9t{0)i it

is convenient to consider the alternative form g(Q ) = lim,,-^ - Yl"=i E{gt {B )) which is

asymptotically equivalent to g(0), where 6Q is the true parameter vector. Following this

line of argument, we now consider

W(0 O ) = lim -J^E
n — oo Tl

'
«= 1

d#

Using the normality assumption of the u
t
and taking expectation conditional on the in-

formation set ^ t _ ! iteratively, after some algebra we can get the following simple form of

W(0O )

Vd(0o )
=

where V<f13 = (mxy 1 ,
• • • , mxkk ,

mx i2 ,

W13 1W23

fc(fc+i)
i
rnx(k-i)k)' is a

*

'

*2
l

' x 1 vector with mx^ =

-^limn^oo
J- J3T« x (xt*

— a^< 0o ) («cy
—^y ^o ) > t , j = 1,2, • • • , k : i < /, andW23 = (men ,

•••,mePp,me13 ,"',me(p_ 1)p )' is a p(p
2

+1) x 1 vector with meij - -^-lim^oo J Y?t =\
£t -i£t-j,i,j — 1,2, — -,k : i < j. This implies that W(0 O ) can be estimated consistently

by the matrix Vd(0) which is given below

Vd(B) =

w 13

Vd23

(B.3)

where W 13 = (milh • • • ,mxkk ,mx l2 ,- • • ,mz
(fc _ 1)fc

)' is a
k{k + l

) x 1 vector with mx{j
=

~^JT Er=i(xt» -£i$)(xtj -35/0)i*\j = 1,2, •
, A; : i < j, and Vd23 = (rne^1 , • • •

,

me p̂ ,
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me12 ,-",me(p_ 1)p )' is a p(r
2

+1) x 1 vector with me\ y = -^Etlit.eVj.U
l,2,---,p:t<j.

By the same argument, we can simplify A(6) as follows:

•irE;=1 (^-^)K-^)'
-lir^tfa(*) =

o 1

2«t J

(B.4)

Finally, V/,(0) = dlf

a [

9
^

is easily given from the Appendix A by

V/,(0) = JTUtEt (B.5)

For the following discussion, recall the definitions of x >f , 1, and r
t ,

provided in the

main text. From (B.2)-(B.5), o,(0), which is described below, can be easily derived as

0,(0) = dt (§) - Vd($)A(e)- l Vl t {9) = (on, o, 2> 0,3, 0,4, 0,5,0,6)' (B.6)

where 0,1 = tt(u2 - £2)x ,o« 2 = tt(u2 - £2
)£ ,0,3 = i 3 ,o, 4 = 0^4,0,5 = d, 5 , and

u """"* u

0,6 = dte-

Now we establish the block diagonality of the covariance matrix of the IM test, say

V(6 ). It is assumed that all conditions stated in White (1982) are satisfied. Given (B.2)-

(B.6) with the normality assumption of the u
t , then V(6 ) takes the form of

V(6 )= lim -YE
n—' 00 n *—^

t= 1

<r*% K t *;
* 2

-&£
3

2<7 t

-2-s 5'

-i- r Ej

*0
2oi^tU J 0=0,

and its diagonal elements are consistently estimated by V
{
,i = 1,2, •••,6, stated in the

main text. To prove this result, we consider

V{$ )= lim iy>[a,(0oX(0e

n —> 00 n ^~^
t= 1

(B.7)
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In the first stage, we evaluate E[at(9 o )a'
t (0o )] conditional on the information set ^

t _i by

using the normality assumption of the u t and taking expectation iteratively. In the next

stage, we use the facts that at 9 = 9 , Efa) = 0,E(s
t )

= and E(£ )
= for all t.

Then we have the result. Furthermore, it is worth noting that E{£ £') which is related

to ARCH specification test can be simplified as a diagonal matrix and E(£
t
e[) becomes
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