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Information Needs for

Software Development Analytics
Raymond P.L. Buse and Thomas Zimmermann

Abstract—Software development is a data rich activity with
many sophisticated metrics. Yet engineers often lack the tools
and techniques necessary to leverage these potentially pow-
erful information resources toward decision making. In this
paper, we present the data and analysis needs of professional
software engineers, which we identified among 110 developers
and managers in a survey. We asked about their decision
making process, their needs for artifacts and indicators, and
scenarios in which they would use analytics.

The survey responses lead us to propose several guide-
lines for analytics tools in software development including:
Engineers do not necessarily have much expertise in data
analysis; thus tools should be easy to use, fast, and produce
concise output. Engineers have diverse analysis needs and
consider most indicators to be important; thus tools should
at the same time support many different types of artifacts and
many indicators. In addition, engineers want to drill down
into data based on time, organizational structure, and system
architecture. We validated our guidelines with a proof-of-
concept implementation of an analytics tool, which we used
to solicit additional feedback from engineers on how future
analytics tools should be designed.

I. INTRODUCTION

Software engineering is a data rich activity. Many as-

pects of development, from code repositories to testing

frameworks to bug databases, can be measured with a high

degree of automation, efficiency, and granularity. Projects

can be measured throughout their life-cycle: from specifi-

cation to maintenance. Numerous metrics and models for

complexity, maintainability, readability, failure propensity

and many other important aspects of software quality and

development process health (e.g., [15], [37]) have been

proposed.

Despite this abundance of data and metrics, development

continues to be difficult to predict and risky to conduct.

It is not unusual for major software projects to fail or

be delayed [1]. Moreover, software defects cost the US

economy many billions of dollars each year [43]. Together,

these observations imply that there continues to be a

substantial disconnect between the information needed by

project managers to make good decisions and the informa-

tion currently delivered by existing tools.

When information needs are not met, either because tools

are unavailable, too difficult to use, too difficult to interpret,
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or they simply do not present useful or actionable informa-

tion, managers must primarily rely on past experience and

intuition for critical decision making. Such intuition-based

decisions can sometimes work out well, but often they

are unnecessarily suboptimal or even destructive [54]. As

software projects continue to grow in size and complexity,

decision making will likely only become more difficult.

Analytics describes application of analysis, data, and

systematic reasoning to make decisions. Analytics is espe-

cially useful for helping users move from only answering

questions of information like “What happened?” to also

answering questions of insight like “How did it happen and

why?” Instead of just considering data or metrics directly,

one can gather more complete insights by layering different

kinds of analyses that allow for summarizing, filtering,

modeling, and experimenting; typically with the help of

automated tools.

The key to applying analytics to a new domain is under-

standing the link between available data and the information

needed to make good decisions, as well as the analyses

that are appropriate to facilitate decision making. While

there has been significant research into information needs

of developers (e.g., [7], [31], [51]), the needs of project

managers, those who make the important decisions about

the future of projects, are not well understood.

In this paper, we present a quantitative and qualitative

study of the information needs of 110 developers and

managers at Microsoft. We discuss the decision scenarios

they face, the metrics and artifacts they find important,

and the analyses they would most like to employ. We

distill from our study a set of key guidelines that should

be considered when designing an analytics tool. We find

for example that managers must be able to “drill-down”

from high level summaries all the way to the artifacts

being measured (e.g., change records). This is essential to

permit both discovery of the insights as well as a concrete

basis for action. To validate our guidelines we additionally

present a proof-of-concept analytics tool which exercises

many of the key findings of our study with a number of

novel features including drill-down, summarization based

on topic analysis, and anomaly detection. We present both

the tool itself and feedback we solicited from managers at

Microsoft.

A. Contributions

The main contributions of this paper are:

• A study of the information needs of 110 professional

software engineers and managers. In particular, our
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study focuses on analytical decision making (Sec-

tion V).

• A set of guidelines for software analytics. We present

a characterization of analytics problems in software

development based on our study (Section VI).

• A proof-of-concept analytics tool. We present a tool

with novel features based on multi-dimensional filter-

ing, latent Dirichlet allocation (LDA) topic analysis

of commit messages, and anomaly detection (Sec-

tion VII). Our tool serves as a validation of our

guidelines and means of soliciting additional feedback

on analytics which we present in Section VII-B.

We begin by discussing previous research related to

project management (Section II) and measurement (Sec-

tion III).

II. PROJECT MANAGEMENT

Software project management is a complex and broadly

defined position. Project managers monitor and guide the

work of designers, developers and testers of software

while sometimes participating in these activities them-

selves. Where engineers focus on code, architecture, and

performance, managers focus on high level concerns: the

direction of the project, allocation of resources, the feature

set, and the user experience. Managers work to simultane-

ously satisfy (potentially conflicting) constraints imposted

by customers, developers, testers, maintainers, and manage-

ment. Steven Sinofsky, a manager at Microsoft, notes that

“it is almost impossible to document a complete list of the

responsibilities of program managers” [53].

The complexity of the job of a manager contributes

to the difficulty of designing and evaluating tools by the

research community. In particular, the information needs

of managers are not well understood. Boehm and Ross

proposed a theory of project management which included

the “top 10 primary sources of software project risk and the

most effective approaches for resolving them” [12]. While

top ten lists like this can be instructive, the problem is that

the management techniques presented (e.g., benchmarking,

organization analysis, technical analysis, etc.) aren’t spe-

cific enough to be directly applied. Many critical questions

remain unanswered: Which of these can be performed

automatically? Which are most important? How should the

results be presented? What decisions can they lead to? How

does one evaluate success?

More recently, in an effort to begin answering some

of these questions, Wallace et al. conducted a survey of

507 project managers [58]. Cluster analysis was used in

an attempt to identify risk factors in projects. That study

found, for example, that “even low risk projects have a

high level of complexity.” The study did not produce a

practical answer to the question of what software indicators

managers should be concerned with.

Some studies exists that identified information needs

for managers for specific decision-making tasks. Jedl-

itschka [26] identified the needs of managers when as-

sessing alternative technologies. He empirically showed the

importance and impact on costs, quality, and schedule, and

limitations of the technology for a manager’s decision.

Vegas et al. [57] identified questions that decision makers

have when choosing among different testing techniques.

Punter [47] investigated what information software man-

agers would expect from a software engineering portal and

found that all the information he included in his study was

expected to be found by most of the respondents. Similarly,

we found in our study that most indicators are important

for engineers, however some indicators are more important

than others (such as failure information and bug reports).

Komi-Sirvio et al. noted that software managers are typ-

ically too busy with their day-to-day duties to spend much

time performing measurement activities [32]. Typically

data-driven tasks are relegated to secondary work. Rainer

et al. [48] found that software managers prefer information

from colleagues and do not consider empirical evidence

as comparably relevant. We believe that this should be

changed and results from our study actually suggest that

managers do recognize the importance of data for decision-

making (Section V-B).

Goal-oriented approaches use goals, objectives, strate-

gies, and other mechanisms to guide the choice of data to be

collected and analyzed. For example, the Goal/Question/-

Metric (GQM) paradigm [4] proposes a top-down approach

to define measurement: goals lead to questions, which are

then answered by metrics. Other well-known approaches

are GQM+ which adds business alignment to GQM [5],

Balanced Scorecard (BSC) [28], and Practical Software

Measurement [45]. We believe that software development

analytics complements existing goal-oriented approaches

well. The availability of dedicated analysis tools will give

managers more flexibility to follow the goal-oriented ap-

proaches in their decision making. The design of such tools

is informed by the study in this paper, which identified

frequent goals, questions, and metrics in decision making.

Also we want to emphasize that analytics is not just limited

to measurement; qualitative analysis is equally important in

analytics (see Figure 1) and can be the key to “solving the

’Why’ puzzle” [29].

Basili et al. [3] proposed the Experience Factory, which

is an organization to support a software development in

collecting experiences from their projects, packaging those

experiences (for example in models), and in validating and

reusing experiences in future projects. Software develop-

ment analytics builds on this idea and has similar goals.

However, rather than having a separate organization, we

ultimately want to empower software development teams

to independently gain and share insight from their data

without relying on a separate entity.

In a previous technical report we summarized some of

our early ideas on software development analytics [16].

With this paper we make several novel contributions that

are not in the technical report: a study of the information

needs of software engineers and managers (Section V),

guidelines for software analytics (Section VI), which have

been validated through a prototype tool and supplemented

with feedback from software engineers (Section VII).
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III. EXISTING TOOLS

There are a number of existing tools designed to

support management. For example, PROM [52] and

Hackystat [27] are both capable of monitoring and

reporting a great number of software project statistics. How-

ever, after seven and ten years of development respectively,

neither have seen significant levels of adoption outside of

academia [23]. One explanation might be that these tools

simply do not answer the right questions [19]. Each of

these tools focus primarily on data collection, which while

a challenging problem in of itself is probably no longer the

most critical concern.

More recent tools, which have focused on data presen-

tation rather than collection have met with some adop-

tion. Microsoft’s Team Foundation Server [39] and

IBM’s Jazz developer environment [25], for example,

provide dashboard views designed to keep developers up-

to-date on the status of various events like modifications,

bugs, and build results. Ohloh.Net is an open-source

community with the goal to connect people through the

software they use and create. The web-site shows in

dashboard-like views how the software was developed in

terms of lines of code, contributors, and commits. However,

a recent study concluded that while integrated tooling of

this type could help support the development process, “the

distinction between high-level and low-level awareness is

often unclear” [55].

While modern tools can present a large amount of data

from varied sources, most either focus on data collection

or on developer awareness; because they don’t have a

good model for the needs of real product managers, real

product managers do not generally use them. Furthermore,

managers may be too busy or may simply lack the quanti-

tative skills or analytic expertise to fully leverage advanced

analytical applications which may range from trend analy-

sis, classification algorithms, predictive modeling, statistical

modeling, optimization and simulation, and data- and text-

mining [20].

IV. SOFTWARE ANALYTICS

Analytics has revolutionized decision making across

many fields [20]. Web analytics, for example, leverages

large volumes of click-stream data to help website man-

agers make informed decisions about many aspects of their

business from advertising to content layout to investment.

Today, large websites not only thoroughly test all proposed

changes in the traditional sense, but they also undertake

detailed analytic experiments aimed to precisely quantify

the net benefit of any proposed change [29]. Analytics

has had a profound effect on businesses ranging from

technology to retail to finance.

In the context of software engineering we hypothesize

that analytics can help answer important questions mangers

ask about their projects. The goal of analytics to assist

decision makers in extracting important information and

insights that would otherwise be hidden.

Measurements

Metrics

Exploratory Analysis

Quantitative Analysis

Qualitative Analysis

Experiments

Insights
Insights

Why?

Measurements

What?

How much?

What if?

Goal

Fig. 1. Paradigm of Analytics (adapted from [29]): Analytics is based
on the composition of many types analyses to formulate more complete
insights.

When using flat measurements only, it’s difficult for

managers to glean more than sparse insights. Figure 1,

which we adapt from Kaushik [29], illustrates how layering

many types of analyses can greatly increase the net yield

of useful information. For example, measuring the defect

rate of a project to be 10% doesn’t provide much insight.

However, if this measurement is 2% higher than a month

ago, or higher than other similar projects at this phase of

the release cycle, it might be cause for concern. To act on

that information it is the important to “Drill-down” further:

Why is the defect rate high? Which areas of the project are

most prone to defects? Did they appear over time or all at

once? Which authors are responsible? Do the defect rates

correlate with complexity? with some other metric? What

would happen if we increased test coverage?

The overarching goal of analytics is to help managers

move beyond information and toward insight. However,

such a transition isn’t easy. Insight necessarily requires

knowledge of the domain coupled with the ability to

identify patterns involving multiple indicators. Analytical

techniques can help managers quickly find important nee-

dles in massive haystacks of data.

Software engineering has many qualities that suggest a

business process that lends itself well to analytics:

• Data-rich. Analytics operates best when large

amounts of data are available for analysis.

• Labor intensive. Analytics enable leverage of exper-

tise especially where talent supply is short, demand is

cyclical, and training times are lengthy [20]. Software

engineering is especially labor intensive. Furthermore,

numerous studies have found an order of magnitude

productivity gap between developers [11], [56].

• Timing dependent. Analytics can be helpful in cases

where business products must meet specific schedules;

analytics enable decision makers to look both upstream

and downstream.

• Dependent on consistency and control. Analytics

help enable consistent decision making even under

unusual circumstances [20].

• Dependent on distributed decision making. Analyt-
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ics can help decision makers understand the collec-

tive state of projects even in the face of geographic

distribution. Many software projects, especially open

source, exhibit highly distributed development activity.

• Low average success rate. Domains with a high fail-

ure rate are the most likely to benefit from analytics.

Software projects fail as much as 33% of the time [1].

There are many potential advantages to the applica-

tion of analytics to software project management (inspired

by [20]). Analytics can help mangers:

• Monitor a project. Analytics provides tools to help

managers understand the dynamics of a complex

project.

• Know what’s really working. Analytics can help

evaluate the effectiveness of a change to the devel-

opment process. For example, it can measure whether

some effect is statistically significant.

• Improve efficiency. Techniques based on analytics can

help mangers allocate resources and talent to where it

is most needed and recognize when under utilization

occurs.

• Manage risk. The effectiveness of risk models can be

improved with increases in the quantity and precision

of data. Analytics can provide both a data channel into

risk models and a vehicle for delivering the output of

such models in an intuitive way.

• Anticipate changes. Analytics can help managers to

detect and forecast trends in data.

• Evaluate past decisions. Logical and consistent deci-

sion making based on data is much more amenable to

later review and assessment than decisions based on

intuition.

Analytics helps describe a reasoning framework which

we’ve observed has the potential to fit well with software

engineering. However, to realize that potential it is obvious

that studies of the information needs of decision makers

are needed. In the next section we discuss our study of

managers and developers at Microsoft.

V. ANALYTICS STUDY

In order to adapt analytical techniques to software engi-

neering, by prescribing process changes or building tools,

it is important to first understand the information needs of

managers, those who make decisions about the direction of

a project. In this section we present a study of a large group

of managers and, for comparison, developers who work at

Microsoft. We describe the administration of the study as

well as analyze the results. In Section VI we characterize

the results of the study in terms of an information needs

spectrum and describe corresponding analytical solutions.

A. Methodology

We advertised a survey consisting of 28 questions over

email to a number of software engineers at Microsoft.

We sampled randomly from equal-sized pools of engineers

and lead engineers. A lead engineer at Microsoft directly

Fig. 2. Reported importance of factors to decision making amongst
developers and managers.

manages a development team. He or she has responsibilities

including defining scheduling commitments, establishing

priorities (especially in consideration of customers), and

developing effective metrics. The lead engineers we sur-

veyed do not spend all of their time working in a strictly

management capacity. On the contrary, they typically spend

about 60% of their time working on engineering and

testing tasks, and the other 40% managing. Clearly, there

is not always a clear distinction between managers and

developers. However, for simplicity, in this paper we refer

to engineers as developers and lead engineers as managers.

A total of 110 individuals participated in the survey, 57

managers and 53 developers. The participants work in a

diverse set of project domains; they include entertainment,

on-line services, business applications, and systems. De-

spite this variety of participation less than 4% of responders

felt the survey was not relevant to them. Over 20% thought

the survey was “very relevant” including 52% managers.

B. Analytical Questions

What factors most influence your

decision making process?1

Analytics is about forming insights and making decisions

based on data. Nonetheless, data is not the only reasonable

basis for decision making. Managers and developers make

use of their own experience and intuition as well as the

input of others when making decisions related to their

work. We asked survey participants to rate the importance

of a number of such factors on a 4-point scale {Not

Important=0; Somewhat Important=1; Important=2; Very

Important=3}. The average importance score assigned to

each factor is presented in Figure 2.

Interesting to note is that managers rated Data and

Metrics as the most important factor to their decision

making. Developers, on the other hand, rated their personal

experience as most important; this, despite the fact that

they have about 6 years less experience to draw from on

average. In absolute terms, both pools agreed that data is an

important factor, however managers felt it is more important

(T-test significance level ¡ 0.02). One possible implication is

that managers have learned to rely less on their experience

1The questions in the paper are edited for brevity. The original questions
are more specific and listed in Appendix B.
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What Happened?
What is happening 

now?
What will happen?

How and why did it 

happen?

What is the next 

best action?

What is the best/

worst that can 

happen?

Past Present Future

Information

Insight

Difficulty 0.43

Importance 0.98

Difficulty 0.51

Importance 0.88

Difficulty 1

Importance 0.84

Difficulty 0.8

Importance 1

Difficulty 0.84

Importance 0.9

Difficulty 0.88

Importance 0.8

M
ore Difficult

More DifficultMore Important

Fig. 3. Analytical Questions (adapted from [20]): We distinguish between
questions of information which can be directly measured, from questions
of insight which arise from a careful analytic analysis and provide
managers with a basis for action.

Fig. 4. Reported importance of measuring the given types of artifacts
amongst developers and managers.

over the course of their career. In any case, the great

interest in data as compared to powerful factors like product

vision, planning, and management suggests that many in

the software development field, and particularly managers,

would be open to more analytical tools and techniques if

they could be made to fit their needs.

What questions are important or difficult to answer?

Analytics can help distinguish questions of information

which are available through a number of existing tools (e.g.,

how many bugs are in the bug database?), from questions

of insight which provide managers with an understanding

of a project’s dynamics and a basis on which to make

decisions (e.g., why is the project delayed?). Davenport et

al. [20] identify six question areas analytics can help answer

organized by time-frame and by information vs. insight.

We asked survey participants to rate both the importance

and difficulty of answering questions in each domain on

the same 4-point scale we used earlier. We average and

normalize the results to facilitate comparison in Figure 3.

Unsurprisingly, participants noted that questions of in-

sight are generally more difficult to answer than of informa-

tion, and furthermore that they become even more difficult

if they pertain to the future as compared to the past or

the present. Surprisingly, questions about the future were

rated as progressively less important (though still important

in absolute terms). In other words, both developers and

managers find it more important to understand the past than

try to predict the future; echoing George Santayana, “those

who cannot remember the past are condemned to repeat it.”

One potential explanation is that managers sometimes

distrust predictive models. Such models lack transparency,

so to make a decision based on one is to make a decision

without fully understanding why the decision needs to be

made. When it comes to critical decisions, transparency is

important.

Furthermore, this finding was alluded to by a number of

responders in a free-form response field. Consider hypoth-

esis testing: for example, a manager might suspect that a

feature is prone to bugs because it lacks clear ownership. In

that case the manager might attempt to test that hypothesis

by inspecting some amount of relevant data. If the hypoth-

esis is supported, the manager might then insist that in

the future all features have well-defined ownership. In this

way, the analysis question relates primarily to the past and

present, but the effect is felt in the future. New analytical

tools, like those which we describe in Section VI might

assist managers not only in formulating hypotheses, but also

in conducting more principled analyses and experiments.

C. Indicators and Artifacts

What artifacts are important to measure?

In the context of software engineering, there exists a

wide variety of artifacts suitable for analysis. For a given

indicator, complexity for example, one can evaluate it on

individual function, a class, all code associated with a given

feature, written by a certain author, touched by a test suite,

or even for an entire product provided these mappings can

be established. We asked those who participated in our

survey to rate the importance of a number of artifacts on

a 4 point scale, Figure 4 shows how they responded on

average.

Overall, it is clear that many artifacts provide unique and

valuable information. Analyzing the individual features of

a project, however, was deemed most important by both de-

velopers and managers. This makes sense considering that

many important decisions relate directly to features (e.g.,

release planning). We discuss the importance of features

in more depth in Section VII-B. Other important artifacts

include components, entire products, and bug reports; each

of these high-level artifacts are most important to managers.

On the other hand, lower level constructs like classes,

functions, and test cases are most important to developers.

We conclude that not only are each of these artifacts

important, but they are important simultaneously. While

a manager may wish to measure say, code churn for the

project, it is just as important to “drill down” and determine

which individual classes, functions, or teams are connected

to that churn in order to take action as needed. We elaborate

on this idea in Section VII-B.

What indicators do you currently use?

What would you like to use?
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Fig. 5. Percent of managers and developers who reported that they either use or would use (if available) each of the given indicators in making
decisions relevant to their engineering process.

In addition to artifacts, we asked study participants about

a number of popular indicators (metrics); we asked whether

each indicator was available and whether they currently

use it, or if they would use it if it was made available.

In Figure 5 we show, for each indicator, the fraction

of respondents who reported they use or would use the

indicator.

Failure information was ranked most important and bug

reports second most overall. While failure information

refers to crash reports or other information from end

users, bug reports are most often created by developers

and testers within the development team. Both develop-

ers and managers make extensive use of both types of

information. However, the next several metrics in order

of importance are much less common. Readability, code

clones, and dependencies are infrequently used, but 90%

of survey participants responded that they would use such

indicators if they were available. Furthermore, except for

test coverage, change type, and engineering activity, all of

the indicators could be used by twice as many developers

and managers if they were made available.

Comparing the responses of developers to managers, sev-

eral indicators suggest important differences in concerns.

Managers, for example, are more likely to use indicators

related to failures, telemetry, and testing which reveals

a stronger focus on customers. Developers, on the other

hand, are more interested in code metrics like velocity,

churn, readability, and complexity. However, as was the

case with artifacts, few indicators would seem to be wholly

unimportant to either group; every indicator would be used

by at least half of the respondents if available.

While strong interest clearly exists, the difficulty of

incorporating such metrics in practice remains. We con-

jecture that at least part of this difficultly is rooted in

disconnect between available tools and real-world decision

making. In an effort to understand and ultimately bridge

this disconnect, in the next section we develop taxonomy

of decision scenarios: circumstances under which these and

other indicators might be used in a real development setting.

D. Decision Scenarios

What decisions could analytics help with?

The landscape of artifacts and indicators in software

engineering is well known, but the concrete decisions they

might support are not. We conjecture that understanding

how managers and developers can make use of information

is critical to understanding what information should be

delivered to them. To our the best of our knowledge, no

previous study has produced a broad-based taxonomy of

decision scenarios sufficient for guiding tool design or other

research in this area.

Because no preexisting classification exists, we asked

each participant to describe up to three scenarios illustrating

the actual or potential effect of analytics on their decisions;

highlighting the questions analytics could answer and de-

cisions it could support. Survey participants described a

total of 102 total scenarios. For each scenario we identified

which subset of the past, present, or future it related to. We

enumerated each type of artifact and indicator mentioned,

and we categorized the types of decisions each analytical
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question was said to assist with. Some common themes

emerged:

Targeting Testing. Allocating testing resources is one of

the most powerful tools at the disposal of project managers

for responding to a variety of conditions. Testing is the go-

to solution when it comes to essentially all software cor-

rectness issues; it’s straightforward to deploy, measurable,

and generally effective. Several managers commented on

the information needs for test allocation:

“Targeting testing of a product needs information on

the code that changed from build to build and as

a result of bug fixes so we could more easily map

out what features and what other code requires re-

examination.”

“More information about the code dependency and

churn due to a change or a set of changes also affects

the decision made. It goes back to the tradeoff of

making the change versus what it means to both the

testing team in terms of churn and coverage plus any

potential breaks or failures or performance effects

the change might have on unforseen components and

features.”

Much research exists into software testing, especially into

automated tool support (e.g., [17], [22]). Comparatively

little is known, however, about how testing effort should

be deployed over the life-cycle of a large project. It is

not clear whether re-targeting testing based on indicators

like code churn, readability, and others is truly effective.

In a future where project data is detailed, complete, and

ubiquitous an opportunity exists for testing effort to become

highly-targeted (e.g., test bug fixes contributed by a given

developer and relating to specific feature). More research is

needed before the implications of these trends can be fully

understood.

Targeting Refactoring. While testing is the primary

means for revealing functional defects, refactoring refers to

the modification of code that does not impact external func-

tional behavior. Rather, the goals is to improve attributes re-

lating to readability, maintainability, extensibility, and other

important non-functional software attributes. Refactoring

can be thought of as investment [30]: spending resources

now to avoid larger costs in the future. Often indicators

related to architectural complexity and code clones are often

cited as relevant to targeting refactoring effort [38].

“The number of bug reports for a certain feature area

helps us decide whether that feature area is mature

for a refactoring.”

“Telemetry allows us to prioritize investment for code

cleanup and bug fixing in a way that has substantial

customer impact.”

Release Planning. Commercial software projects are

under constant pressure to be released quickly. Managers

told us that among the most important reasons to monitor

a project is to plan such releases and to anticipate risks.

Planning consists of determining what features should be

included in upcoming releases and when those releases

should actually occur [49]. Relevant factors include testing

and development progress for each feature, feature depen-

dencies, outstanding defects, as well as external factors like

market conditions. Several managers noted the importance

of release planning.

“Identify features that put ship date and quality at risk

to develop mitigation plans.”

Yet, effective release planning involves more than just

understanding the progress of a project, it also demands

that developers understand their customers.

Understanding Customers. In any business endeavor,

understanding customers is important; software develop-

ment is no exception. Many technologies exist for collecting

data from customers: from crash reports [21] to telemetry

to surveys [13], [33], [35]. Several decision scenarios

described the importance of leveraging information about

customer behavior when making decisions about the direc-

tion of a project.

“Analytics help us understand how a user is using our

product. Are they performing tasks we expect? Per-

forming tasks we didn’t anticipate? We can determine

effectiveness of features, as well.”

Making customer data actionable implies directly relating

it to development effort. Not only must we know which

features are valuable or problematic, it must also be pos-

sible to identify these features in the source code, to track

their progress, and to employ customer feedback to guide

specific aspects of development and maintenance.

Judging Stability. Stability is a key concept in software

development. Many modern software projects are long-

lived as evidenced by the observation that maintenance

(defined as change subsequent to release) will typically

consume as much as 90% of the total life-cycle budget of

a project [46], [50]. Yet, not all parts of a project change

together or in the same way. Many managers and developers

indicated that monitoring the stability of various parts of

a project is important. Understanding stability can help

managers anticipate future change and can ultimately lead

to key decisions about the fate of a system or one of it’s

components; form the observation that it’s time to release

to the decision that it must be abandoned.

“Using bug / fix / regression metrics over time to

understand what areas are not yet stable and how long

it might take to make them stable.”

Targeting Training. Despite its technical nature, soft-

ware development remains primarily a human endeavor.

Many aspects of a project can benefit from explicitly

considering it as a human artifact, the result of a potentially

large-scale collaboration of individuals or teams. Through-

out a project’s life-cycle some developers leave a project

and new ones are added. Managing the intellectual capitol

associated with labor turnover is a key concern [40], yet

monitoring this resource can be very difficult.

We believe that much data exists in software repositories

that can help managers to precisely characterize these
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intellectual resources. Suppose a certain developer is about

to leave the project. With the proper analytical tools a

manager should be able to understand which parts of

the projects (features, files, other artifacts, certain skills)

may be compromised. Suppose, for example, the leaving

developer has found most of the security bugs in the

past. The manager can use this information to ensure

proper knowledge transfer, recruiting, or institute necessary

training so that future security bugs do not go unaddressed.

Targeting Inspection. Finally, it is not uncommon for or-

ganizations to make use of code reviews or inspections [18].

Yet such inspection are invariably expensive, involving

several developers and often a great deal of time. While

under some development regimes changes to certain system

components must always be inspected (e.g., mission critical

sections), several survey participants discussed how it is

often difficult to decide when inspection are needed in the

rest of the project.

“For our checkin process, if I had decent metrics for

software readability, dependency changes, component-

level changes, etc., I could help drive decisions on

what levels of code review we would force. I’d also

like to make comparisons between the results of the

analytics and the actual number of issues found during

code review (in order to tune the analytics).”

Analytics techniques and tools hold out the promise of

identifying such situations. For one development team, for

example, the occurrence of code clones may indicate the

need for inspections, while for another reports of security

defects may be the most important consideration. Such

techniques could even be used to evaluate the success of

different types of inspection strategies.

E. Frequency of Decision Scenarios

Figure 6 shows the percentage of scenarios mentioning

each decision type. Many managers and developers de-

scribed how various combinations of metrics and artifacts

could be useful for targeting testing effort. Developers were

also in particular agreement over the relevance of analyt-

ics to targeting refactoring, while managers mentioned a

somewhat wider variety of decision types.

Approximately 89% of the scenarios described concern

either the past or present, a finding which underscores

our earlier observation that participants believe questions

pertaining to the past are the most important to answer.

The artifacts most often mentioned were features, code

artifacts, and change records. Managers discussed features

more often than any other artifact: approximately 35% of

the scenarios they described implied a mapping between

features and code (about twice as often as developers).

Similarly, developers described scenarios pertaining to mea-

suring code about twice as often as managers. As for indica-

tors, managers most frequently mentioned bugs, telemetry,

test coverage, regressions and churn. Developers mentioned

complexity and dependencies more often. This confirms

similar findings on the importance of features presented

in Section V-C.

Fig. 6. Percent of scenarios described in study that pertain to each type
of decision.

F. Threats to Validity

We now consider briefly whether the results of our study

are likely to be valid and generally applicable.

A potential threat to generality is that this study was con-

ducted exclusively with engineers at Microsoft. We believe

this threat is mitigated by a number of factors. First, our

study is broad in the sense that the participants’ work spans

many product areas including systems, mobile devices,

web applications, and games. Some Microsoft projects

are large (as many as 2,000+ engineers) and others are

significantly smaller. Specific development methodologies

also vary throughout the company. Second, our study is

large (involving 110 participants) and diverse (participants

worked for companies other than Microsoft in the past for

five years on average).

Another consideration is survey bias. To mitigate this

threat, our survey was conducted on a random sample of

engineers and all responses were kept anonymous. Further-

more, we confirmed many of the survey findings during

later face-to-face meetings with managers (Section VII-B).

VI. SOFTWARE ANALYTICS GUIDELINES

A large majority of survey participants agreed or strongly

agreed with the statement “The difficulty of interpreting

data is a significant barrier to the use of analytics today.”

This implies a need for a new class of tools that specifically

target the information needs of managers. Another intrigu-

ing possibility is the addition of an analytic professional

to the software development team, we discuss this in

Section VI-D.

A. Tool Guidelines

Here we employ the insights gathered from our survey

to characterize a set of important characteristics for any

analytics tool. Furthermore we enumerate a set of analyses

targeted to real-world management needs.

First, analytics tool should . . .

• Be easy to use. Managers who don’t necessarily have

expertise in analysis.

• Be fast and produce concise or summary output.

Managers have significant time constraints.
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Past Present Future

Quantifies how an artifact is changing. 
Useful for understanding the direction 
of a project.

Regression analysis.

Reports unusual changes in artifacts 
when they happen.
Helps users respond quickly to events. 

Anomaly detection.

Predicts events based on current 
trends. Helps users make pro-active 
decisions.

Extrapolation.

Succinctly characterizes key aspects of 
artifacts or groups of artifacts. 
Quickly maps artifacts to development 
activities or other project dimensions.

Topic analysis.

Compares artifacts or development 
histories interactively.
Helps establish guidelines.

Correlation.

Discovers how artifacts are changing 
with respect to goals. 
Provides assistance for planning. 

Root-cause analysis.

Characterizes normal development
behavior. 
Facilitates learning from previous work.

Machine learning.

Compares artifacts to established best 
practices.
Helps with evaluation.

Significance testing.

Tests decisions before making them.
Helps when choosing between 
decision alternatives.

What-if? analysis.

Fig. 7. A spectrum of analyses suitable for comprising the core of an analytics tool for development activities. We describe each technique and the
insights it primarily pertains to. Additionally we bullet a related technique for each.

• Measure many artifacts using many indicators. Many

are important, and combining them can yield more

complete insights.

• Be current and interactive. Managers want to view the

most current data available, at many levels of detail,

not static reports.

• Map indicators to features and dates to milestones.

• Focus on characterizing the past and present over

predicting the future.

• Recognize that managers and developers have different

needs and focus on information relevant to the target

audience.

B. Common Analysis Types

Additionally, we identify a set of analysis types that fit

well with information needs described by our study. In

Figure 7 we organize these analyses by what time frame

they pertains to (i.e., Past, Present, Future) and their general

category of technique (i.e., Exploration, Analysis, and Ex-

perimentation). For each analysis, we briefly describe what

it does and what insights it can help with. We also give an

example of a related technique which might underlie such

an analysis. These analyses can be instantiated with any

number of metrics; whichever are most appropriate for the

target scenario, and can be layered as in Figure 1.

Trends. The nominal value of an indicator is often less

important than how it is changing or “trending.” Many de-

cision scenarios describe intervening when negative trends

are detected. An analytics tool should have the capacity to

differentiate significant trends from spurious ones.

Alerts. During the course of a project’s life-cycle, it’s not

unusual for certain events to occur suddenly which should

be addressed a quickly as possible; influxes of crash reports,

sudden and rapid changes in key indicators, large changes

to sensitive system components are all rare but important to

address when discovered. The size and complexity of many

projects make it important that managers have automated

support for detecting these events.

Forecasting. As significant trends and correlations are

identified, it can often be useful to project them into the

future. Such a tool can help engineers predict when tasks

will reach important thresholds (e.g., number of known

defects is no longer decreasing). A good analytics tool

should help the user understand potential sources of error

and confidence bounds for any such projections.

Summarization. Software engineering artifacts can be

numerous and complex; inspecting hundreds of change

records to discover what they have in common, for example,

isn’t practical. Summarization techniques like topic analysis

can be employed to automate these tasks and help managers

and developers focus on gathering high-level insights.

Overlays. The idea of overlays is to present multiple

views of a dataset simultaneously, typically with a strong

component of interactivity. Overlaying architecture with

code clones, for example, might reveal hidden insights

about why and how the clones originate. Overlays can also

be used across development histories (e.g., overlaying bug

reports from last year’s release with the current history

could help a manager decide if bug triage is more or less

effective then it used to be).

Goals. Analytics tools often explicitly represent impor-

tant goals. By encoding project milestones and other goals

managers and team members can explore how actions they

take can influence high-level goals in the short an long term.

Modeling. Managers must maintain awareness of how

the development is functioning and where it can be im-

proved. In this context, modeling refers to the task of

building a representation of the project history or of the

development team itself for the purpose of comparison or

assessment.
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Benchmarking. Managers often expressed the impor-

tance of comparing to best practices, the idea of bench-

marking is to characterize such practices so that can be

referenced automatically. An analytics tool can help find

any significant divergence from benchmarks.

Simulation. Managers often perform contingency plan-

ning (often cast as “What-if?” decisions), for example:

“What if we release in three months?” “What if we abandon

feature X?” Simulation can be used to show the eventual

real effects of alternative conditions and courses of action.

C. Implications for Research

We would now like to emphasize several implications for

research based on the findings from the survey.

• Diverse information needs. Both engineers and man-

agers revealed a wide spectrum of information needs

in the survey. The needs also change over the lifetime

and maturity of the project, i.e., close to a release the

needs are different from the needs in the beginning of

a project.

• Many stakeholders. There are many different stake-

holders interested in data with very different needs.

For example, a manager wants to see different data

than a developer or tester. A direct consequence is

that tools should support different views for managers,

developers, testers, etc. Probably no tool fits all.

• One tool is not enough. Stakeholders will likely need

multiple tools. Analytics is more than just measure-

ment and often multiple methods are needed to fully

understand data (see Figure 1).

Often teams have very unique questions, which are

impossible to anticipate and require experience with data

analysis. In the next section, we argue for a dedicated

software analyst who is responsible to support data-driven

decision making within a project—similar like a build

manager is responsible for a successful build process.

D. Software Analysts

An analyst is an expert in data creation, collection,

interpretation and use, but is also trained in the workings of

the business process in question. The role of the analyst is

to use quantitative skill and domain knowledge to combine

many types of quantitative and qualitative information and

form the most complete insights.

Software analysts could be enlisted to perform studies

too involved for managers or even for sophisticated tools.

For example, Bird et al. found that distributed develop-

ment did not appreciably effect software quality in the

implementation of Windows Vista [9]. Another study by

Mockus et al. enumerated a set of metrics which may be

highly predictive of defects [41]. An analyst could carry out

similar studies and prescribe corrective action based on the

results. Furthermore, many findings in software engineering

research depend on large numbers of context variables [6].

As such, these findings may not generalize [42], [59]. A

software analyst is critical for determining which important

results offered by the research community apply to a

specific project.

We believe that analysts could be trained as part of a

Software Engineering curriculum modified to emphasize

quantitative skills, or through a Master of Analytics pro-

gram like the one recently launched at North Carolina State

University.2

In the next section, we return focus on the guidelines

established in Section VI by presenting an analytics tool

based on those guidelines. A fully fledged software analyst

would likely require a different set of tools entirely which

is beyond the scope of our study.

VII. PROOF-OF-CONCEPT ANALYTICS TOOL

In this section we describe a proof-of-concept analytics

tool which we use to (a) validate the application of the

guidelines from Section VI, and (b) demonstrate our ideas

to candidate users for the purpose of soliciting additional

feedback. The tool was built to concisely explain software

development activity over some explicit time window. The

tool can be instantiated in the context of whatever indicators

or artifacts are available. We would like to emphasize that

the purpose of the tool is to solicit additional feedback on

information needs for software development analytics.

The successful execution of many management responsi-

bilities, from resource allocation to release planning hinges

on the ability of a manager to maintain a detailed and

complete understanding of the state and direction of their

project.

A. Description

An annotated screen shot of our tool is shown in Figure 8.

At the core of the tool is an interactive chart view which

displays the value of the selected indicator for each date in

the current time window. By clicking in the chart the user

can zoom in on a particular time frame of interest. The

main features of the tool are (1) Drill-Down which allows

the user to target the analysis across many dimensions, (2)

Summarization based on latent Dirichlet allocation (LDA)

topic analysis of commit messages, and (3) Anomaly Detec-

tion which identifies artifacts that exhibit unusual behavior

during the selected time period. In this subsection we

discuss each feature by describing a typical use scenario;

technical details are given in Appendix A.

• Drill-down. A manager is planning the next release

and wants to know which features should be included.

She first uses the tool to filter the project history to

consider only the part of the project she is responsible

for: changes by her direct and indirect reports. The tool

then allows her to quickly inspect progress on several

features undergoing active development, looking at the

chart she can tell which ones have become stable, as

they only show a small amount of churn recently. One

feature in particular shows several recent peaks. These

peaks lead her to believe that this feature may not

2http://analytics.ncsu.edu
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Drill-down. Several filters allow engineers 

to drill down based on the organizational 

structure (authors, reports), architecture 

(areas, subareas), keywords from commit 

messages, and by time.

Summarization. Commit messages are 

clustered summarized in topics. In 

addition, the most frequent committer 

and most frequently changed areas, 

subareas and files are reported.

Anomaly Detection. “Surprising” people 
and artifacts are reported.  In the context 

of churn this refers to people who 

committed an unusual amount of code or 

artifacts which were changed more than 

normal during the selected period.

�

�

�

Fig. 8. Our proof of concept analytics tool which features Drill-down, Summarization, and Anomaly Detection.

be very stable. Not only should this feature not be

included she decides to focus some additional testing

effort on this feature and a few other features that show

a similar history.

• Summarization. A manager is interested in the

progress of a new team member. She begins by fil-

tering changes to that author only. Looking at the

analysis generated by the tool she notices that although

the new team member has been working in only one

area of the product, his work is associated with a very

wide variety of topics which suggests to her that this

developer needs to have a more focused assignment.

• Anomaly Detection. A developer is concerned about

development progress relating to a certain feature, he

uses the tool to filter changes to this feature only.

He then notices that the amount of churn has been

increasing in recent weeks and wants to know why.

To do that he clicks on the chart and zooms into the

time period exhibiting the greatest increase. The tool

then shows that changes to a particular sub-area are

unusually high and a variety of topics are generated.

Clicking on this sub-areas allows him to discover that

several files in particular seem to be changing very

often. This leads him to target refactoring effort in

these files.

B. Feedback

Over the course of two weeks we demoed our tool, and

presented our survey results to several Microsoft project

managers. We asked them to discuss their information

needs and thoughts on tool support. Our study results and

interactive tool demo severed the purpose of stimulating

discussion on both topics. In this section we present some

of the key ideas.

1) Information Needs / Metrics: A number of partic-

ipants confirmed our finding that, while some metrics

are probably more valuable than others on average (Sec-

tion V-C), most every common metric can be quite useful.

Their key observation, however, is that utility hinges on

context; information needs can vary quite widely depending

on time, schedule, project, and other factors but especially

on the user’s position within the organizational hierarchy.

While developers and their direct managers can make

a great use of detailed metrics, managers higher in the

hierarchy may find the same metrics to be significantly

less actionable. In general, higher level managers prefer

more aggregated metrics with opportunities for comparison

across development teams and projects.

Furthermore, the value of a metric is determined not just

by how often it can inform critical decisions directly, but

also by how often it can be used for tracking projects.

Code velocity, which is typically used as a proxy for

productivity, for example, was described as a metric that

doesn’t typically trigger decisions, but is of great use for

assessing development effort over relatively long periods.

This observation alludes to overlays and benchmarking.

Participants described to us a typical use case for some

metrics: establish suggested parameters based on past ex-

perience (e.g., outstanding bugs should be generally de-

creasing 3 months before release and should fall within a

given range) and then take steps to ensure the project stays

on that course.

Finally, participants confirmed our observation on the

importance of measuring features. They offered the obser-
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vation that features span many parts of a project: they are

a focus not only of developers but also managers and even

customers. A number of managers noted that our notion of

topics could serve a similar role. Next we discuss another

observation that apply to analytics tools.

2) Analytics Tools: After viewing the tool, many man-

agers reacted positively to our notion of anomaly detection.

Some noted that one of the most basic tasks of analytics

is simply to identify any metrics for which a given team

“sticks out” in comparison to other teams. One reason

for this may be that metrics are difficult to interpret

in part because it’s often unclear what ranges of values

for a particular metric are good, and which should be

concerning. This is particularly true when a long running

project changes direction in some way. When this happens

managers often don’t know how to evaluate metrics when

past experience is not longer applicable. Furthermore, this

emphasizes the importance of normalizing metrics (e.g.,

diving by size of team or size of project) in order to allow

the best comparison possible.

Also in relation to anomaly detection, managers asserted

a need for detecting “unexpected behavior.” An example of

this is an author who commits a large change in an area

where he or she does not normally work. Managers sug-

gested it would be most useful if such an event generated an

immediate alert that could be delivered to key individuals

responsible for the feature. Additional customization of

such reports might be possible as well, for example, a

performance engineer might want to be notified of any

change to a particular module that is especially performance

sensitive.

Finally, managers told us that in order to best support

decision making a good tool should not only summarize

or otherwise explain behavior, it should also, on command,

produce the actual change records or other artifact descrip-

tions that are often necessary to take action on the analytic

findings.

VIII. CONCLUSION

We believe that analytics holds out great promise for

enhancing the ability of software engineers and their man-

agers to make informed decisions. Analytics is a data-driven

decision making paradigm that emphasizes the layering of

multiple types of analyses on top of existing information

resources, typically with the help of automated tools. In

this paper we explained why software engineering is a good

candidate for this approach. For example, software projects

are highly measurable, but often unpredictable.

Realizing analytics for software development demands

understanding the information needs of development man-

agers; what their needs are, what decisions they influence,

and how those needs map to analyses. Toward that end, we

presented a study of the information needs of managers

and developers. We then distilled from the study a set

of guidelines for constructing analytics tools which we

validated with a proof-of-concept implementation. Finally,

we discussed feedback on the tool from managers.

We hope this paper serves as a first step toward impor-

tant new tools which will support software development.

Our guidelines may influence new tools, and our proof-

of-concept tool can be evaluated with user studies and

developed into a production tool. We also hope that inspired

by our work other researchers will do additional studies to

better understand information needs in software develop-

ment analytics. To facilitate replication, we provide the full

text of the survey in Appendix B.

Future work in the area of software development analyt-

ics should fall into the following categories.

• Data collection. We need to rethink how we collect

data. So far, mining software repositories has had a

data-focused approach (i.e., take some data and come

up with great tools and insights). However, it will be

important to also think in a user-focused way: start

with the user and decide what data we need to collect

to provide her with solutions to her problems.

• Data quality. To make decisions based on data, the

quality of the data has to be high [8], [2], [44]. But it is

important to notice that not all data needs to be perfect.

The collection of high-quality data costs money; if data

is not used for decisions, its quality matters less—why

collect it in the first place.

• Data privacy. Data can be very dangerous when used

inappropriately. It is important to put in place mecha-

nisms that ensure only proper uses of data are possible.

• Understanding user needs. This paper is a first step

towards understanding the data needs of software engi-

neers and managers. A next step will be to understand

how data is used in their communication. Often people

justify decisions to their peers, managers, and reports.

• User experience. The user experience of any tool for

software development analytics will be critical, e.g.,

what are the best ways to surface and interact with

software development data and analysis.

• Education. Finally, as today’s society and businesses

become more data-driven [36], it will be important

to prepare software engineers for data analysis and

educate them how to use basic analysis techniques.

We are at the crossroads to become more data-driven in

software development. With Web services and the Cloud the

amount of data will explode, but also the opportunities gain

insight. To make the right decisions during this transition

it is important for us to better understand the data and

analytics needs. This paper is a first step into this direction.

Acknowledgments: We thank Sunghun Kim, Daniel

Liebling, Robin Moeur, Brendan Murphy, Nachi Nagappan,

Dongmei Zhang, and the many managers and developers at

Microsoft who volunteered their time to participate in our

study, meet with us, and provide their valuable insights and

feedback.

REFERENCES

[1] T. Addison and S. Vallabh. Controlling software project risks: an
empirical study of methods used by experienced project managers.
In SAICSIT ’02, pages 128–140, 2002.

12



Microsoft Research. Technical Report MSR-TR-2011-8 c© 2011 Microsoft Corporation. All rights reserved.

[2] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein.
The missing links: Bugs and bug-fix commits. In SIGSOFT’10/FSE-

18: Proceedings of the 16th ACM SIGSOFT Symposium on Founda-

tions of Software Engineering. ACM, 2010.

[3] V. R. Basili. The experience factory and its relationship to other
improvement paradigms. In ESEC’93: Proceedings of the 4th

European Software Engineering Conference, volume 717 of Lecture

Notes in Computer Science, pages 68–83. Springer, 1993.

[4] V. R. Basili, G. Caldiera, and H. D. Rombach. Goal, question,
metric paradigm. In J. J. Marciniak, editor, Encyclopedia of Software

Engineering Volume 1, pages 528–532. John Wiley & Sons, 1994.

[5] V. R. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich,
J. Münch, D. Rombach, and A. Trendowicz. Linking software
development and business strategy through measurement. IEEE

Computer, 43:57–65, 2010.

[6] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Transactions on Software

Engineering, 25:456–473, 1999.

[7] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. Fastdash:
a visual dashboard for fostering awareness in software teams. In CHI

’07, pages 1313–1322, 2007.

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu. Fair and balanced? bias in bug-fix datasets. In
ESEC/FSE’09: Proceedings of the the Seventh joint meeting of the

European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering, 2009.

[9] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
distributed development affect software quality?: an empirical case
study of windows vista. Commun. ACM, 52(8):85–93, 2009.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022, 2003.

[11] B. Boehm. Software Cost Estimation with Cocomo II. Addison
Wesley, Boston, MA, 2000.

[12] B. Boehm and R. Ross. Theory-w software project management
principles and examples. IEEE TSE, 15(7):902 –916, jul 1989.

[13] T. Briggs. How does usage data improve the office user ex-
perience? http://blogs.technet.com/b/office2010/archive/2010/02/09/
how-does-usage-data-improve-the-office-user-experience.aspx, Feb
2010.

[14] R. P. L. Buse and W. Weimer. Automatically documenting program
changes. In ASE ’10: Proceedings of the twenty-fifth IEEE/ACM

international conference on Automated software engineering, 2010.

[15] R. P. L. Buse and W. R. Weimer. A metric for software readability.
In International Symposium on Software Testing and Analysis, pages
121–130, 2008.

[16] R. P. L. Buse and T. Zimmermann. Analytics for software develop-
ment. Technical Report MSR-TR-2010-111, Microsoft Research,
2010. 4 pages. Under submission to FSE/SDP Workshop on
the Future of Software Engineering. Available at http://research.
microsoft.com/apps/pubs/default.aspx?id=136301.

[17] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. ACM Trans. Inf. Syst.

Secur., 12:10:1–10:38, December 2008.

[18] J. Cohen, editor. Best Kept Secrets of Peer Code Review. Smart Bear
Inc., Austin, TX, 2006.

[19] I. D. Coman, A. Sillitti, and G. Succi. A case-study on using
an automated in-process software engineering measurement and
analysis system in an industrial environment. In ICSE ’09, pages
89–99, 2009.

[20] T. Davenport, J. Harris, and R. Morison. Analytics at Work. Harvard
Business School Publishing Corporation, Boston, MA, 2010.

[21] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the
(very) large: ten years of implementation and experience. In SOSP

’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating

systems principles, pages 103–116. ACM, 2009.

[22] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated
random testing. SIGPLAN Not., 40:213–223, June 2005.

[23] G. Gousios and D. Spinellis. Alitheia core: An extensible software
quality monitoring platform. In ICSE ’09, pages 579–582, 2009.

[24] A. Hindle, M. W. Godfrey, and R. C. Holt. What’s hot and what’s
not: Windowed developer topic analysis. In ICSM, pages 339–348,
2009.

[25] IBM Corporation. Jazz. http://www.ibm.com/software/rational/jazz/.

[26] A. Jedlitschka. Evaluation a model of software managers’ infor-
mation needs – an experiment. In ESEM’10: Proceedings of the

Symposium on Empirical Software Engineering and Measurement,
September 2010.

[27] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and
T. Yamashita. Improving software development management through
software project telemetry. IEEE Software, 22(4):76 – 85, july-aug.
2005.

[28] R. Kaplan and D. Norton. The balanced scorecard—measures
that drive performance. Harvard Business Review, page 71, Jan-
uary/February 1992.

[29] A. Kaushik. Web Analytics 2.0. Wiley Publishing, 2010.
[30] M. Kim, D. Cai, and S. Kim. An empirical investigation into the role

of refactorings during software evolution. In ICSE ’11: Proceedings

of the 33th international conference on Software engineering, 2011.
To appear.

[31] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In ICSE’07: Proceedings of the

International Conference on Software Engineering, pages 344–353,
2007.

[32] S. Komi-Sirvi, P. Parviainen, and J. Ronkainen. Measurement
automation: Methodological background and practical solutions-a
multiple case study. In IEEE International Symposium on Software

Metrics, page 306, 2001.
[33] P. Koss-Nobel. Data driven engineering: Tracking usage to make

decisions. http://blogs.technet.com/b/office2010/archive/2009/11/
03/data-driven-engineering-tracking-usage-to-make-decisions.aspx,
Nov 2009.

[34] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.
Mining concepts from code with probabilistic topic models. In
ASE ’07: Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, pages 461–464,
2007.

[35] S. Lipstein. Designing with customers in mind.
http://blogs.technet.com/b/office2010/archive/2009/10/06/
designing-with-customers-in-mind.aspx, Oct 2009.

[36] T. May. The New Know: Innovation Powered by Analytics. Wiley,
2009.

[37] T. J. McCabe. A complexity measure. IEEE Trans. Software Eng.,
2(4):308–320, 1976.
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APPENDIX A

IMPLEMENTATION DETAILS

This subsection describes some of technical details of the
proof-of-concept tool that we used to solicit additional feedback
on information needs and guidelines for software development
analytics in Section VII.

As input for the tool we used data from the version control
system and bug database of a large Microsoft project.

A. Drill-down

In addition to narrowing the time window, the tool allows the
user to narrow the analysis by authors, areas, sub-areas, files,
and topics. Authors refers to the individual responsible for the
commit, but is additionally parametrized by Reports allowing the
user to quickly identify all authors below a certain author in
an organization hierarchy. A manager, for example, can quickly
narrow analysis to exactly those individuals who report to him or
her. Areas and Subareas refer to project domains which roughly
correspond to product features; we obtain the information on areas
and subareas from the bug reports linked to a commit. Files simply
refer to source code files. Topics are terms in commit messages
and correspond to LDA topic analysis which we discuss next.

B. Summarization

As a most basic, but important, form of summarization the
tool displays the “Top” (i.e., most active) artifacts in the sample.
However, this only shows what artifacts are changing, and not
what about them is being changed. Latent Dirichlet allocation
(LDA) is an existing statistical technique for clustering documents
and extracting sets of common words [10], in effect describing
sets of documents by displaying the most common “topics.” LDA
was applied to commit messages by Linstead et al. [34], and later
the technique was refined by consider specific change windows by
Hindle et al. [24] which is similar to our application. In these cases
LDA was used to generate static reports, whereas our approach is
interactive. We also incorporate word stemming and a stop word
list consisting of a number of generic software engineering terms.

C. Anomaly Detection

The problem of anomaly detection here is equivalent to the
question of whether some sample of change records is likely
to be drawn from a particular distribution which we refer to as
the context distribution. For example, if the sample consists of
changes made on August 1st through 5th, the context might be
all changes this year except those between August 1st and 5th.

Intuitively, if the context has a high variance, then a sample is
not likely to be surprising. On the other hand, if the context has
a low variance (i.e., development activity is consistent in some
dimension) then a sample distribution with a significantly different
mean may be “surprising” and worth inspection.

To estimate this probability we use the standard probability
density function which returns the probability that a random
variable x occurs at a given point in a distribution parametrized
by µ and σ. In this case, µ = context mean, σ = context standard
deviation and x is the mean of the sample.

Z(x) =
1

σ

√
2π

e
−(x−µ)2/2σ2

(1)

Surprise(x) =
|Z(x)− Z(µ)|

Z(µ)
(2)

Equation 1 assumes the context data is normally distributed
which may not be true in many cases (e.g., many software
artifacts typically exhibit long-tailed power law distributions [14]).
However, we are able to use it as a reasonable characterization
because the final value is not used directly but instead normalized
(Equation 2) and used as a ranking criteria which is not sensitive
to absolute differences, only relative ones.

APPENDIX B

SURVEY

To enable replication, we provide the complete questionnaire in
this section. We will be happy to share non-confidential responses
on a per request basis.

This survey is anonymous.

Background Information. Analytics refers to the use of analysis,
data, and systematic reasoning to make decisions. The purpose of
this survey is to help us understand your needs in the context of
analytics.

1) How many years have you worked in the software industry?
Not Required - (Min Number: 0 - Max Number: 100)

2) How many years have you worked at Microsoft?
Not Required - (Min Number: 0 - Max Number: 100)

3) Which best describes your work area? Not Required

• DEV - Development
• TEST - Test
• PM - Program Management
• Build
• Design and UX
• Documentation and Localization
• Other

4) Which best describes your work role? Not Required

• Individual Contributor
• Lead
• Manager
• Other

5) About how many hours per week do you work on engineer-
ing activities?
Not Required - (Min Number: 0 - Max Number: 168)

6) About how many hours per week do you work on testing
activities? Not Required - (Min Number: 0 - Max Number: 168)

7) About how many hours per week do you work in a man-
agement capacity?
Not Required - (Min Number: 0 - Max Number: 168)

8) How many people do you directly or indirectly manage?
Not Required - (Min Number: 1 - Max Number: 100000)

9) In general, how important are these factors to your work
related decision making process?
Not Required - (Very important; Important; Somewhat important;

Not important; Unsure)
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• Data / Metrics
• Personal experience
• Intuition
• Customer input
• Product vision or value propositions
• Team planning
• One-on-one’s with managers
• Opinions of others

Software Indicators. Software indicators include metrics that
may be useful for analytical decision making.

10) Which of the following indicators do you currently use or
would use, if available? (Part 1)
Not Required - (Available / Use Currently; Available / Do not use;

Not Available / Would Use; Not Available / Would not use; Not Sure)

• Churn - Amount of code changed between builds
• Velocity - Time between software written and integrated

into main build.
• Engineering Activity - Engineers currently contributing.
• Change Type - Bug fixes / refactoring / feature addi-

tions.
• Ownership - Distribution of changes by author.
• Expertise - Maps engineers to the tasks they are best

at.

11) Which of the following indicators do you currently use or
would use, if available? (Part 2)
Not Required - (Available / Use Currently; Available / Do not use;

Not Available / Would Use; Not Available / Would not use; Not Sure)

• Documentation - Amount and completeness of docu-
mentation.

• Readability - Understandability of code.
• Dependencies - Modularity of code.
• Architecture - Structure of code.
• Code Clones - Density of similar or identical code

fragments.
• Complexity - Density of branching structure.

12) Which of the following indicators do you currently use or
would use, if available? (Part 3)
Not Required - (Available / Use Currently; Available / Do not use;

Not Available / Would Use; Not Available / Would not use; Not Sure)

• Bug Reports - Reports opened, closed, etc.
• Test Coverage - Arc and Block coverage of test cases.
• Failure Information - Report of crashes or other prob-

lems.
• Predicted Defect Density - Failure models.
• Telemetry - User benchmarks (e.g., SQM, RAC, OCA,

Watson).

13) What other indicators do you currently use or would you
like to use? Not Required - (Max Characters: 2000)

14) Software analytics can be performed at many levels of
granularity. How important is it for you to use analytics at
each of the following artifact levels?
Not Required - (Very Important; Important; Somewhat Important;

Not Important; Not Sure)

• Function level
• Class level
• Binary level
• Feature level
• Bug Report level
• Test Case level
• Author level
• Team level
• Component level
• Product level

Scenarios for Analytics. In the boxes provided, please briefly
describe up to three scenarios illustrating the actual or potential
effect of analytics on your decisions. Please be as specific as

possible with respect to questions analytics can help you answer
and decisions analytics can support.

15) Scenario 1
Not Required - (Max Characters: 2000)

16) Scenario 2
Not Required - (Max Characters: 2000)

17) Scenario 3
Not Required - (Max Characters: 2000)

Questions in Analytics Analytics distinguishes between questions
of information and of insight.

We’re interested in how you perceive the importance and the
difficulty of answering the following set of general questions for
your work; some are of information and some are of insight.

18) In the context of software projects that you work on, how
important are the following questions to answer?
Not Required - (Very Important; Important; Somewhat Important;

Not Important; Not Sure)

• What happened?
• Why did it happen?
• What is happening now?
• What’s the next best action?
• What will happen?
• What’s the best / worst that could happen?

19) In the context of software projects that you work on, how
difficult are the following questions to answer?
Not Required - (Very Difficult; Difficult; Somewhat Difficult; Not

Difficult; Not Sure)

• What happened?
• Why did it happen?
• What is happening now?
• What’s the next best action?
• What will happen?
• What’s the best / worst that could happen?

Analytic Tool Features. Please consider the follwoing four
analytic tool features (questions XX - YY). Each feature presents
a data view parameterized by indicators, artifacts, and models.
Some examples are given.

Which features would be useful to you? Please judge the utility
generally, and not just the specific examples shown.

20) Trends - Characterize changes in indicators over time.
Example: “The maintainability index of a.sys is decreasing
5% per week.” Example: “The test coverage of module M
is increasing 10% per day.” Not Required

• Very Useful
• Useful
• Somewhat Useful
• Not Useful
• Not Sure

21) Forecasting - Extrapolate indicator values into the future.
Example: “In 3 months, 100% of code changes to the project
will be bug fixes.” Example: “In 1 week, feature F will be
50% complete.” Not Required

• Very Useful
• Useful
• Somewhat Useful
• Not Useful
• Not Sure

22) Benchmarking - Compare indicators across artifacts.
Example: “Development Team A commits 500 lines of code
per day on average; 30% more than the average team.”
Example: “a.sys has increased in size by 1500 lines since
the last release; 150% more than the median file.”
Not Required

• Very Useful
• Useful
• Somewhat Useful
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• Not Useful
• Not Sure

23) Alerts - Get automatic notifications of unusual indicator
values or trends.
Example: “The number of open bugs increased by 10% this
week; 80% more than normal.” Example: “Author A writes
code with a 15% rate of code clones; 10% more than the
average contributor to component C.” Not Required

• Very Useful
• Useful
• Somewhat Useful
• Not Useful
• Not Sure

24) Are there other features you would find useful? (Please be
descriptive) Not Required - (Max Characters: 2000)

25) Do you agree with the following statement: “The difficulty of
interpreting data is a significant barrier to the use of analytics
today”? Not Required

• Strongly Agree
• Agree
• Neutral
• Disagree
• Strongly Disagree
• Not Sure

Conclusion

26) Do you have any final comments about this survey or about
the topic of analytics? Not Required - (Max Characters: 2000)

27) Overall, how relevant was this survey to you? Not Required

• Very Relevant
• Relevant
• Somewhat Relevant
• Not Relevant
• Not Sure
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