
Information Obfuscation of Graph Neural Networks

Peiyuan Liao * 1 Han Zhao * 2 Keyulu Xu * 3

Tommi Jaakkola 3 Geoffrey Gordon 1 Stefanie Jegelka 3 Ruslan Salakhutdinov 1

Abstract

While the advent of Graph Neural Networks

(GNNs) has greatly improved node and graph

representation learning in many applications, the

neighborhood aggregation scheme exposes addi-

tional vulnerabilities to adversaries seeking to ex-

tract node-level information about sensitive at-

tributes. In this paper, we study the problem of

protecting sensitive attributes by information ob-

fuscation when learning with graph structured

data. We propose a framework to locally filter out

pre-determined sensitive attributes via adversarial

training with the total variation and the Wasser-

stein distance. Our method creates a strong de-

fense against inference attacks, while only suffer-

ing small loss in task performance. Theoretically,

we analyze the effectiveness of our framework

against a worst-case adversary, and characterize

an inherent trade-off between maximizing predic-

tive accuracy and minimizing information leakage.

Experiments across multiple datasets from recom-

mender systems, knowledge graphs and quantum

chemistry demonstrate that the proposed approach

provides a robust defense across various graph

structures and tasks, while producing competitive

GNN encoders for downstream tasks.

1. Introduction

Graph neural networks (GNNs) have brought about per-

formance gains in various tasks involving graph-structured

data (Scarselli et al., 2009; Xu et al., 2019b). A typical

example includes movie recommendation on social net-

works (Ying et al., 2018). Ideally, the recommender system

makes a recommendation not just based on the description

of an end user herself, but also those of her close friends in
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the social network. By taking the structured information of

friendship in social network into consideration, more accu-

rate prediction is often achieved (Xu et al., 2018; Hamilton

et al., 2017). However, with better utility comes more vul-

nerability to potential information leakage. For example,

to gain sensitive information about a specific user in the

network, malicious adversaries could try to infer sensitive

information not just only based on the information of the

user of interest, but also information of her friends in the net-

work. Such scenarios are increasingly ubiquitous with the

rapid growth of users in common social network platforms,

especially in the distributed/federated setting where data

are transmitted from local nodes to centralized servers and

the goal of malicious adversaries is to reveal users’ sensi-

tive data by eavesdropping during the transmission process.

Hence, the above problem poses the following challenge:

How could we protect sensitive information of

users in the network from malicious inference at-

tacks while maintaining the utility of service? Fur-

thermore, can we quantify the potential trade-off

between these two goals?

In this paper, we provide answers to both questions. We pro-

pose a simple yet effective algorithm to achieve the first goal

through adversarial training of GNNs, a general framework

which we term as Graph AdversariaL Networks (GAL). In a

nutshell, the proposed algorithm learns node representations

in a graph by simultaneously preserving rich information

about the target task and filtering information from the rep-

resentations that is related to the sensitive attribute via a

minimax game (Figure 1). While the minimax formulation

is not new and has been applied broadly in image genera-

tion, domain adaptation and robustness (Goh & Sim, 2010;

Goodfellow et al., 2014; Madry et al., 2017; Zhao et al.,

2018), we are the first to formulate this problem on graphs

for information obfuscation, and to demonstrate that min-

imax optimization is effective for GNNs in these settings,

both theoretically and empirically.

At a high level, for the purpose of information obfuscation of

certain sensitive attributes, we propose a method to locally

filter out these attributes by learning GNN encoders that

could confuse a strong malicious adversary. In particular,

the learned GNN encoders will generate node representa-
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(a) Information Leakage in Client-Server Threat Model

(b) Information Obfuscation with GAL

Figure 1: Graph Adversarial Networks (GAL). Above represents a common challenge of inference attack present in

graph learning algorithms (a) and our proposed solution (b). For the figure above, starting from left to right, we present a

way for adversaries to obtain sensitive information from graph neural networks: after training via neighborhood aggregation

(1), by running neural networks on produced embedding of nodes (2) and their neighbors (3) in graphs, they are able to

recover sensitive information about them. GAL, on the other hand, defends node and neighborhood inference attacks via

a minimax game between the task decoder (blue) and a simulated worst-case adversary (yellow) on both the embedding

(descent) and the attributes (ascent). Malicious adversaries will have difficulties extracting sensitive attributes at inference

time from GNN embeddings trained with our framework.

tions from which even a worst-case adversary cannot reveal

the sensitive attributes. Technically, we use the total vari-

ation and the dual formulation of the Wasserstein distance

to form a minimax game between the GNN encoder and

the adversary, and train it until convergence. We provide

theoretical guarantees for our algorithm, and quantify the

potential trade-off between GNN predictive accuracy and

information leakage. First, we prove a lower bound for the

inference error over the sensitive attribute that any worst-

case adversary has to incur under our algorithm. Second,

we quantify how much one has to pay in terms of predic-

tive accuracy for information obfuscation. Specifically, we

prove that the loss in terms of predictive accuracy is propor-

tional to how the target task is correlated with the sensitive

attribute in input node features.

Empirically, we corroborate our theory and the effectiveness

of the proposed framework on 6 graph benchmark datasets.

We show that our framework can both train a competitive

GNN encoder and perform effective information obfusca-

tion. For instance, our algorithm successfully decreases the

AUC of a gender attacker by 10% on the Movielens dataset

while only suffering 3% in task performance. Furthermore,

our framework is robust against a new set of attacks we

term “neighborhood attacks” or “n-hop attacks”, where the

adversary can infer node-level sensitive attributes from em-

beddings of 1- and n-distant neighbors. We verify that in

these new settings, our algorithm remains effective. Finally,

our theoretical bounds on the trade-off between accuracy

and defense also agree with experimental results. 1

In summary, we formulate the information obfuscation prob-

lem on GNNs. In this new setting, we show that GNNs

trained with GAL achieve both good predictive power and

information obfuscation, theoretically (Theorem 3) and em-

pirically (Table 3). Our theory also quantifies the trade-off

between accuracy and information leakage (Theorem 1),

and is supported by experiments (Figure 6).

2. Preliminaries

We begin by introducing our notation. Let D be a distri-

bution over a sample space X . For an event E ⊆ X , we

use D(E) to denote the probability of E under D. Given

a feature transformation function g : X → Z that maps

instances from the input space X to feature space Z , we

define g♯D := D ◦ g−1 to be the pushforward of D un-

der g, i.e., for any event E′ ⊆ Z , g♯D(E′) := D({x ∈
X | g(x) ∈ E′}). Throughout the paper we assume that

the feature space is bounded, i.e., supz∈Z ‖z‖ ≤ R. For

two distributions D and D′ over the same sample space

1Code at: https://github.com/liaopeiyuan/GAL

https://github.com/liaopeiyuan/GAL
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Ω, let dTV(D,D′) be the total variation (TV) distance be-

tween them: dTV(D,D′) := supE⊆Ω |D(E) − D′(E)|.
The Wasserstein distance between D and D′ is defined

as W1(D,D′) := sup‖f‖L≤1

∣

∣

∫

Ω
fdD −

∫

Ω
fdD′

∣

∣, where

‖ · ‖L is the Lipschitz semi-norm of a real-valued function.

Graph Neural Networks. GNNs learn node and graph

representations for predictions on nodes, relations, or

graphs (Scarselli et al., 2009). The input is a graph G =
(V,E). Each node u ∈ V has a feature vector Xu, and

each edge (u, v) ∈ E has a feature vector X(u,v). GNNs

iteratively compute a representation for each node. Initially,

the node representations are the node features: X
(0)
u = Xu.

In iteration k = 1, . . . ,K, a GNN updates the node rep-

resentations X
(k)
u by aggregating the neighboring nodes’

representations (Gilmer et al., 2017): ∀k ∈ [K], u ∈ N (v),

X(k)
v = AGGREGATE

(k)
({(

X(k−1)
u , X(k−1)

v , X(u,v)

)})

.

We can compute a graph representation XG by pooling the

final node representations. Many GNNs, with different

aggregation and graph pooling functions, have been pro-

posed (Defferrard et al., 2016; Duvenaud et al., 2015; Kipf

& Welling, 2017; Hamilton et al., 2017; Du et al., 2019; Fey,

2019; Xu et al., 2020; 2021; Velickovic et al., 2018; Cai

et al., 2020).

Threat Model. While being a powerful paradigm for learn-

ing node and graph representations for downstream tasks,

GNNs also expose huge vulnerability to adversaries whose

goal is to infer sensitive attributes from individual node

representations. In light of this, throughout the paper we

assume a black-box attack setting, where the adversary does

not have direct access to the GNN encoder or knowledge

of its parameters. Instead, it can obtain the node repre-

sentations produced by the GNN encoder, with the goal to

reconstruct a sensitive attribute Av of node v by looking at

its node representation X
(K)
v . Here, Av ∈ {0, 1}2 could

be the user’s age, gender, or income etc. The above set-

ting is ubiquitous in server-client paradigm where machine

learning is provided as a service (Ribeiro et al., 2015). For

example, in the distributed setting, when users’ data is trans-

mitted from local nodes to a centralized server, a malicious

adversary could try to reveal users’ sensitive attributes by

eavesdropping the transmitted data. We emphasize that sim-

ply removing the sensitive attribute Av from the embedding

Xv is not sufficient, because Av may be inferred from some

different but correlated features.

Information Obfuscation. We study the problem above

from an information-theoretic perspective. Let FA := {f :
R

dK → {0, 1}} denote the set of adversaries who have

access to the node representations as input, and then output

2We assume binary attributes for ease of exposition. Extension
to categorical attributes is straightforward.

a guess of the sensitive attribute. Let D be a joint distribution

over the node input X , the sensitive attribute A, as well as

the target variable Y . Let Da be the conditional distribution

of A = a. We define the advantage (Goldwasser & Bellare,

1996) of the adversary as

AdvD(FA) := sup
f∈FA

∣

∣

∣

∣

Pr
D1

(f(Z) = 1)− Pr
D0

(f(Z) = 1)

∣

∣

∣

∣

, (1)

where Z is the random variable that denotes node represen-

tations after applying the GNN encoder to input X . Here,

f represents a particular adversary and the supresum in (1)

corresponds to the worst-case adversary from a class FA.

If AdvD(FA) = 1, then there exists an adversary who can

almost surely guess the sensitive attribute A by looking

at the GNN representations Z. Hence, our goal is to de-

sign an algorithm that learns GNN representations Z such

that AdvD(FA) is small, which implies successful defense

against adversaries. Throughout the paper, we assume that

FA is symmetric, i.e., if f ∈ FA, then 1− f ∈ FA as well.

3. Information Obfuscation via Adversarial

Training

In this section, we first relate the aforementioned advantage

of the adversaries to a quantity that measures the ability of

adversaries in predicting a sensitive attribute A by looking

at the node representations Z = X(K). Inspired by this

relationship, we proceed to introduce a minimax game be-

tween the GNN encoder and the worst-case adversary. We

then extend this approach by considering adversaries that

use score functions induced by the Wasserstein distance.

To conclude this section, we analyze the trade-off between

accuracy and information leakage, and provide theoretical

guarantees for our algorithm.

Given a symmetric set of adversaries FA, we observe that

1− AdvD(FA) corresponds to the sum of best Type-I and

Type-II inference error any adversary from FA could attain:

1−AdvD(FA) = inf
f∈FA

(

Pr
D0

(f(Z) = 1) + Pr
D1

(f(Z) = 0)

)

.

Hence, to minimize AdvD(FA), a natural strategy is to

learn parameters of the GNN encoder so that it filters out

the sensitive information in the node representation while

still tries to preserve relevant information w.r.t. the target

task of inferring Y . In more detail, let Z = X(K) =
g(X) be the node representations given by a GNN encoder.

We then propose the following unconstrained optimization

problem with a trade-off parameter λ > 0 for information

obfuscation:

min
h,Z=g(X)

max
f∈FA

εY (h(Z))− λ · εA(f(Z)) (2)

Here we use εY (·) and εA(·) to denote the cross-entropy

error on predicting target task Y and sensitive attribute A
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respectively. In (2), h is a parametrized network over the

node representations X(K) for downstream task, and f is

the adversary. Note that the above formulation is different

from the poisoning attacks on graphs literature (Zügner &

Günnemann, 2019), where their goal is to learn a robust

classifier under graph perturbation. It is also worth point-

ing out that the optimization formulation in (2) admits an

interesting game-theoretic interpretation, where two agents

f and g play a game whose score is defined by the objective

function in (2). Intuitively, f could be understood as a sim-

ulated adversary seeking to minimize the sum of Type-I and

Type-II inference error while the encoder g plays against f
by learning features to remove information about the sensi-

tive attribute A. Clearly, the hyperparameter λ controls the

trade-off between accuracy and information leakage. On

one hand, if λ → 0, we barely care about the defense of

A and devote all the focus to minimize the predictive error.

On the other extreme, if λ → ∞, we are only interested in

defending against the potential attacks.

Wasserstein Variant In practice, one notable drawback of

the optimization formulation in (2) is that the training of the

adversary is unstable (cf. Fig. 4), due to the fact that the TV

distance is not continuous w.r.t. the model parameters of the

encoder (Arjovsky et al., 2017). Inspired by the Wasserstein

GAN (Arjovsky et al., 2017), we also propose a method

for information obfuscation on GNNs with the Wasserstein

distance, using its dual formulation.

min
h,Z=g(X)

max
‖f‖L≤1

εY (h(Z)) + λ

∣

∣

∣

∣

∫

f(Z) dD0 −

∫

f(Z) dD1

∣

∣

∣

∣

The connection between (2) and the above Wasserstein for-

mulation lies in choice of the adversaries, as can be observed

from the comparison between AdvD(FA) (advantage) and

W1(·, ·) (Wasserstein distance). In the latter case, the adver-

saries are constrained to be Lipschitz continuous. In both

cases, we present the pseudocode in Fig. 2 and Alg. 1, which

also includes extensions to neighborhood and n-hop attacks

(cf. Section 4.3).

3.1. Trade-off between Predictive Accuracy and

Information Obfuscation

The first term in the objective function of (2) acts as an in-

centive to encourage GNN encoders to preserve task-related

information. But will this incentive lead to the leakage of the

sensitive attribute A? As an extreme case if the target vari-

able Y and the sensitive attribute A are perfectly correlated,

then it should be clear that there is a trade-off in achieving

accuracy and preventing information leakage. Next, we

provide an analysis to quantify this inherent trade-off. The-

orem 1 characterizes a trade-off between the cross-entropy

error of task predictor and the advantage of the adversaries:

Theorem 1. Let Z be the node representations produced by

a GNN g and FA be the set of all binary predictors. Define

1 z = encoder(graph)

2 z_rev = grad_reverse(z)

3 task_pred, adv_pred = decoder(z),

attacker(z_rev)

4 loss_task = task_loss_f(task_pred,

task_gt)

5 loss_adv = adv_loss_f(adv_pred, adv_gt)

6 if t % n == 0

7 optimizer_adv.zero_grad()

8 loss_adv.backward()

9 optimizer_adv.step()

10 else:

11 optimizer_task.zero_grad()

12 loss_task.backward()

13 optimizer_task.step()

Figure 2: Pseudocode for the core implementation of GAL

(TV distance, node attack). Complete version is in Alg. 1.

δY |A := |PrD0
(Y = 1) − PrD1

(Y = 1)|. Then for a

classifier h such that ‖h‖L ≤ C,

εY |A=0(h ◦ g) + εY |A=1(h ◦ g)

≥ δY |A − C ·W1(g♯D0, g♯D1)

≥ δY |A − 2RC · AdvD(FA). (3)

Remark. Recall that R is a bound of the radius of the

feature space, i.e., supz∈Z ‖z‖ ≤ R. First, εY |A=a(h ◦ g)
denotes the conditional cross-entropy error of predicting

Y given A = a ∈ {0, 1}. Hence the above theorem says

that, up to a certain threshold given by δY |A (which is a

task-specific constant), any target predictor based on the fea-

tures given by GNN g has to incur a large error on at least

one of the sensitive groups. Specifically, the smaller the ad-

versarial advantage AdvD(FA) or the Wasserstein distance

W1(g♯D0, g♯D1), the larger the error lower bound. The

lower bound in Theorem 1 is algorithm-independent, and

considers the strongest possible adversary, hence it reflects

an inherent trade-off between task utility and information

obfuscation. Moreover, Theorem 1 does not depend on the

marginal distribution of the sensitive attribute A. Instead,

all the terms in our result only depend on the conditional

distributions given A = 0 and A = 1. As a simple corollary,

the overall error also admits a lower bound:

Corollary 2. Assume the conditions in Theorem 1 hold.

Let α := PrD(A = 0), then

εY (h ◦ g) ≥ min{α, 1− α}
(

δY |A − C ·W1(g♯D0, g♯D1)
)

≥ min{α, 1− α}
(

δY |A − 2RC · AdvD(FA)
)

.

Our lower bounds in Theorem 1 and Corollary 2 capture the

price we have to pay for obfuscation.

3.2. Guarantees Against Information Leakage

Next, we provide guarantees for information obfuscation

using (2). The analysis on the optimization trajectory of a



Information Obfuscation of Graph Neural Networks

general non-convex-concave game (2) is still an active area

of research (Daskalakis & Panageas, 2018; Nouiehed et al.,

2019) and hence beyond the scope of this paper. Therefore,

we assume that we have access to the minimax stationary

point solution of (2), and focus on understanding how the

solution of (2) affects the effectiveness of our defense.

In what follows we analyze the true error that a worst-case

adversary has to incur in the limit, when both the task classi-

fier and the adversary have unlimited capacity, i.e., they can

be any randomized functions from Z to {0, 1}. To this end,

we also use the population loss rather than the empirical loss

in our objective function. Under such assumptions, given

any node embedding Z from a GNN g, the worst-case adver-

sary is the conditional mean: minf∈FA
εA(f ◦ g) = H(A |

Z), argminf∈FA
εA(f ◦ g) = Pr(A = 1 | Z). It fol-

lows from a symmetric argument that minh∈H εY (h ◦ g) =
H(Y | Z). Hence we can simplify the objective (2) to the

following form where the only variable is the embedding Z:

min
Z=g(X)

H(Y | Z)− λ ·H(A | Z) (4)

We can now analyze the error that has to be incurred by the

worst-case adversary:

Theorem 3. Let Z∗ be the optimal GNN node embedding

of (4). Define α := PrD(A = 0), H∗ := H(A | Z∗)
and W ∗

1 := W1(Z
∗ | A = 0, Z∗ | A = 1). Then 1).

For any adversary f : Z → {0, 1}, Pr(f(Z) 6= A) ≥
H∗/2 lg(6/H∗), 2). For any Lipschitz adversary f such that

‖f‖L ≤ C, Pr(f(Z) 6= A) ≥ min{α, 1−α}(1−CW ∗
1 ).

Theorem 3 shows that whenever the conditional entropy

H∗ = H(A | Z∗) is large or the Wasserstein distance W ∗
1

is small, the inference error incurred by any (randomized)

adversary has to be large. It is worth pointing out that when

W ∗
1 = 0, the second inference error lower bound reduces to

min{α, 1− α}, which is attained by an adversary that uses

constant prediction of the sensitive attribute A, i.e., this ad-

versary always guesses the majority value of A. Hence, The-

orem 3 justifies the use of GAL for information obfuscation.

As a final note, recall that the representations Z appearing

in the bounds above depend on the graph structure, and the

inference error in Theorem 3 is over the representations Z.

Together, this suggests that the defense could potentially be

applied against neighborhood attacks, which we provide

in-depth empirical validation in Section 4.3.

4. Experiments

In this section, we demonstrate the effectiveness of GAL for

information obfuscation on graphs. Specifically, we address

the following three questions:

➔ 4.1: Is GAL effective across different tasks, distances

and GNN encoder architectures? How do the TV and

Wasserstein variants compare during training?

Algorithm 1 Full description of GAL, TV distance and

Wasserstein distance. The node pairing policy Q decides

how the predicted node-level sensitive attributes Av matches

against the targets Aw for all nodes in the graph: in node-

level obfuscation, it is simply the identity transformation;

for neighborhood and N-Hop attack, pairing is done with

the proposed Monte-Carlo probabilistic algorithm on G.

Note that for the expository analysis above , Ladversary is

equivalent to εA.

Input: G = (V,E): input graph; Y : node-level target;

A: node-level sensitive attributes; g: GNN encoder; h:

task decoder; f : worst-case adversary; Ltask: task loss;

Ladversary: adversary loss; Q: node-pairing policy

Input: n: training iterations; α: learning rate; m: batch

size; na: adversary per task; λ: trade-off parameter

Input: θg, θh, θf : corresponding parameters for network

Input: (Required by Wasserstein) c: clipping parame-

ter; CA: classes in A
t = 0
repeat

z = g(V,E) {via AGGREGATE}

zrev = GradReverse(z) (Ganin et al., 2016)

Y ′ = h(z)
A′ = f(zrev)
if t mod na = 0 then

B = (Ap, A
′
p) = Q(A,A′)

(TV): l = Ladversary(Ap, A
′
p) ,

(Wasserstein): p = mean({(A
′(a)
p ) ⊙ 1Ap=a} :

a ∈ CA)
l = |maxa∈CA

(pa)−mina∈CA
(pa)|

gg, gf = ∇gl,∇f l
θg, θf = θg + λ · SGD(θg, gg), θf + λ · SGD(θf , gf )
(Wasserstein): θf = clip(θf ,−c, c)

else

gg, gh = ∇gLtask(Y, Y
′),∇hLtask(Y, Y

′)
θg, θh = θg +α ·SGD(θg, gg), θh +α ·SGD(θh, gh)

end if

t = t+ 1
until t >= n

➔ 4.2: What is the landscape of the tradeoff with respect

to the hyperparameter λ?

➔ 4.3: Can GAL also defend neighborhood and n-hop

attacks?

We empirically confirm all three questions. To stress test

the robustness of GAL, we consider a variety of tasks and

GNN encoder architectures. Specifically, we experiment on

5 link-prediction benchmarks (Movielens-1M, FB15k-237,

WN18RR, CiteSeer, Pubmed) and 1 graph regression bench-

mark (QM9), which covers both obfuscation of single and

multiple attributes. More importantly, our goal is not to chal-

lenge state-of-the-art training schemes, but to observe the
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Table 1: Performance of prediction and obfuscation on Movielens-1M. We first perform link prediction as the main task, then probe
with adversaries performing node classification tasks. The statistics are reported as {adversary performance, F1/AUC}/{task performance,
RMSE}. Best-performing methods and best obfuscation results are highlighted in bold in the first table. Since Bose & Hamilton (2019a)’s
method does not allow tradeoff tuning, incompatible fields are left unfilled.

Encoder λ Gender-F1/Task-RMSE Gender-AUC/Task-RMSE Age-F1/Task-RMSE Occupation-F1/Task-RMSE

ChebNet-TV 0.5 0.617 / 0.881 0.642 / 0.881 0.141 / 0.875 0.044 / 0.868

ChebNet-W 0.5 0.593 / 0.872 0.605 / 0.872 0.137 / 0.888 0.033 / 0.908

GraphSAGE-TV 0.5 0.679 / 0.866 0.680 / 0.866 0.236 / 0.869 0.055 / 0.871

GraphSAGE-W 0.5 0.691 / 0.893 0.715 / 0.893 0.226 / 0.901 0.050 / 0.916

Bose and Hamilton 0.667 / 0.874 0.678 / 0.874 0.188 / 0.874 0.051 / 0.874

ChebNet-TV 0 0.692 / 0.852 0.707 / 0.852 0.288 / 0.852 0.078 / 0.851

ChebNet-W 0 0.693 / 0.852 0.707 / 0.852 0.286 / 0.852 0.077 / 0.851

GraphSAGE-TV 0 0.728 / 0.849 0.735 / 0.849 0.293 / 0.849 0.080 / 0.851

GraphSAGE-W 0 0.724 / 0.849 0.734 / 0.849 0.293 / 0.849 0.081 / 0.851

ChebNet-TV 4 0.505 / 1.280 0.532 / 1.280 0.123 / 1.301 0.016 / 1.241

ChebNet-W 4 0.485 / 1.258 0.526 / 1.258 0.104 / 1.296 0.025 / 1.353

GraphSAGE-TV 4 0.675 / 0.900 0.683 / 0.900 0.200 / 0.904 0.050 / 0.898

GraphSAGE-W 4 0.471 / 0.970 0.516 / 0.970 0.074 / 1.080 0.010 / 1.117

Table 2: Summary of benchmark dataset statistics, including
number of nodes |V |, number of nodes with sensitive attributes |S|,
number of edges |E|, node-level non-sensitive features d, target
task and adversarial task, and whether the experiment concerns
with multi-set obfuscation.

DATASET |V | |S| |E| d Multi? METRICS ADVERSARY

CITESEER 3,327 3,327 4,552 3,703 ✗ AUC Macro-F1
PUBMED 19,717 19,717 44,324 500 ✗ AUC Macro-F1
QM9 2,383,055 2,383,055 2,461,144 13 ✗ MAE MAE
ML-1M 9,940 6,040 1,000,209 1 (id) ✗ RMSE Macro-F1/AUC
FB15K-237 14,940 14,940 168,618 1 (id) ✓ MRR Macro-F1
WN18RR 40,943 40,943 173,670 1 (id) ✗ MRR Macro-F1

effect in reducing adversaries’ accuracies while maintaining

good performance of the downstream task. Our experiments

can be classified into three major categories.

Robustness. We run GAL on all six datasets under a variety

of GNN architectures, random seeds, distances and trade-

off parameter λ. We report average performance over five

runs. We perform ablation study on widely used GNN

architectures (Velickovic et al., 2018; Kipf & Welling, 2017;

Vashishth et al., 2019; Defferrard et al., 2016; Gilmer et al.,

2017), and select the best-performing GNNs in the task:

CompGCN is specifically designed for knowledge-graph-

related applications.

Trade-off. We compare performance under a wide range

of λ on Movielens-1M. We show that GAL defends the

inference attacks to a great extent while only suffering minor

losses to downstream task performance. We also empirically

compare the training trajectories of the TV and Wasserstein

variants, and confirm that the Wasserstein variant often leads

to more stable training.

Neighborhood Attacks. In this setting, an adversary also

has access to the embeddings of neighbors of a node, e.g.

the adversary can infer sensitive attribute Av from X
(K)
w

(instead of X
(K)
v ) such that there is a path between v and w.

Since GNN’s neighborhood-aggregation paradigm may in-

troduce such information leakage, adversaries shall achieve

nontrivial performance. We further generalize this to an

n-hop scenario.

In all experiments, the adversaries only have access to

Figure 3: GAL effectively protects sensitive information. Both
panels show t-SNE of feature representations under different trade-
off parameters λ (0 vs. 1.3). Node colors represent node classes.

the training set labels along with embeddings from the

GNN, and the performance is measured on the held-out

test set. A summary of the datasets, including graph at-

tributes, task, and adversary metrics, is in Table 2. Detailed

experimental setups may be found in Appendix B. Overall,

our results have successfully addressed all three questions,

demonstrating that our framework is attractive for node- and

neighborhood-level attribute obfuscation across downstream

tasks, GNN architectures, and trade-off parameter λ.

(a) Adversary: Macro F-1 (b) Task: Binary cross-entropy

Figure 4: Performance of Wasserstein vs. TV for node-

level information obfuscation on Cora dataset under differ-

ent λ, with 95% confidence interval over five runs. Wasser-

stein offers a more stable task performance while producing

a better obfuscation compared to TV.
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Figure 5: Performance of neighborhood-level (top) and n-hop (bottom) attribute obfuscation on a 3-layer/2-layer ChebNet with
Movielens-1M dataset under different λ/“hop“ respectively. Band represents 95% confidence interval over five runs. For n-hop
experiments, λ is fixed to be 0.8, and distance is Total Variation.

Figure 6: Performance of node-level attribute obfusca-

tion on Movielens-1M dataset under different λ, with 95%
confidence interval over five runs.

4.1. Robust Node-level Information Obfuscation

We first demonstrate that our framework is effective across

a wide variety of GNN architectures, tasks and training

methods. Quantitatively, we report task performances Ti as

well as adversary performances Ai, ∀i ∈ [3] both specific

to respective datasets in Table 1 and Table 3, where we use

the subscript i to denote the i-th experimental setting. Note

that fixed-embedding (Bose & Hamilton, 2019b) results are

only reported for Movielens-1M dataset because on other

datasets, the experimental setups are not suitable for com-

parison. Across all datasets, we witness a significant drop

in adversary’s performance with a rather minor decrease in

the downstream task performance.

Qualitatively, the effect of adversarial training is also appar-

ent: in Figure 3, we visualized the t-SNE (van der Maaten &

Hinton, 2008)-transformed representations of graph embed-

dings under different regularization strengths on the Cora

dataset. We observe that under a high regularization strength,

node-level attributes are better mixed in the sense that nodes

belonging to different classes are harder to separate from

each other on a graph-structural level.

4.2. Fine-grained Trade-off Tuning with λ

We show that the hyper-parameter λ is indeed a good trade-

off hyper-parameter that well balances downstream task

performance and obfuscation effectiveness. We perform

experiments with ChebNet and the Movielens-1M dataset,

and test λ values ranging from 0 to 103. Our results in

Figure 6 show that as λ increases, it is indeed more difficult

for the adversary to extract sensitive information from GNN

embeddings; the downstream task performance decreases

steadily but with a small rate. When λ is larger than 10,

training destabilizes further due to inherent difficulties in

optimization, which is demonstrated by the higher variance

in task performance. However, this trade-off is less visible

for larger graphs like FB15k-237 and WN18RR, where the

effects of lambda tends to be less monotonic. The detailed

results are in Table 3 and Figure 4.

4.3. Neighborhood Attack and n-Hop Genrealization

Finally, we consider the scenario where the adversary seeks

to extract node-level information from embeddings of neigh-

bors. This is, in particular, a serious concern in GNNs where

the message passing layers incorporate neighborhood-level

information and hence the information leakage. Our results

in Figure 5 verify that, without any form of obfuscation

(λ = 0), the adversary indeed achieves nontrivial perfor-

mance by accessing the embeddings of neighbors on the

Movielens-1M dataset with a simple 2-layer ChebNet. We

further run comprehensive experiments where the obfus-

cation targets neighborhood-level embeddings, and we ob-

serve the degradation of the adversary’s performance (both

on the node- and neighbor-level embeddings) as λ increases.

The results demonstrate that under low values of λ, the

neighborhood-level obfuscation has more effects on neigh-

borhood adversaries than node adversaries, suggesting that
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Table 3: Performance of predictions and obfuscation on benchmark datasets. λi, Ti, Ai represents the tradeoff parameter, task
performance and adversary performance in the i-th experiment, respectively. Best-performing GNNs and best obfuscation results are
highlighted in bold. The “—“ mark stands for “same as above.“

GNN Encoder Method Adversary λ1 λ2 λ3 T1 T2 T3 A1 A2 A3

PUBMED GCN Total Variation Doc. Class 0.5 0.85 0.95 0.959 0.930 0.818 0.800 0.798 0.762
Wasserstein Doc. Class — — — 0.959 0.895 0.733 0.798 0.780 0.596

GAT Total Variation Doc. Class — — — 0.924 0.873 0.810 0.782 0.794 0.730
Wasserstein Doc. Class — — — 0.928 0.846 0.785 0.778 0.766 0.741

ChebNet Total Variation Doc. Class — — — 0.933 0.872 0.757 0.798 0.788 0.747
Wasserstein Doc. Class — — — 0.919 0.727 0.739 0.780 0.641 0.568

CITESEER GCN Total Variation Doc. Class 0.75 1 1.5 0.867 0.694 0.500 0.785 0.731 0.652
Wasserstein Doc. Class — — — 0.814 0.623 0.504 0.644 0.608 0.407

GAT Total Variation Doc. Class — — — 0.896 0.553 0.505 0.789 0.273 0.168
Wasserstein Doc. Class — — — 0.811 0.519 0.501 0.656 0.278 0.125

ChebNet Total Variation Doc. Class — — — 0.776 0.678 0.500 0.735 0.725 0.642
Wasserstein Doc. Class — — — 0.732 0.614 0.500 0.661 0.568 0.403

QM9 MPNN Total Variation Polarizability 0 0.05 0.5 0.121 0.132 0.641 1.054 1.359 3.100

WN18RR CompGCN Total Variation Word Sense 0 1.0 1.5 0.462 0.437 0.403 0.208 0.131 0.187
Total Variation POS tag — — — — 0.430 0.395 0.822 0.607 0.705

FB15K-237 CompGCN Total Variation Ent. Attr. 0 1.0 1.5 0.351 0.320 0.319 0.682 0.641 0.630

node-level embeddings are less protected. However, as λ
continues to increase, the degradation in the performance of

node adversaries is more visible. An extension of this setup

is to consider neighborhood-level attacks as “single-hop”,

where we can naturally define “n-hop” as adversaries hav-

ing accesses to only embeddings of nodes that are n-distant

away from the target node.

Since finding n-distant neighbors for arbitrary nodes in a

large graph on-the-fly is computationally inefficient during

training (in the sense that the complexity bound involves |E|
and |V |), we propose a Monte-Carlo algorithm that proba-

bilistically finds such neighbor in O(n2) time, the details

of which can be found in appendix. We report results un-

der different “hops“ with the same encoder-λ setting on

Movielens-1M, shown in Figure 5. In general, we observe

that as “hop“ increases, the retrieved embedding contains

less information about the target node. Therefore, adversar-

ial training’s effect will have less effect on the degradation

of the target task, which is demonstrated by the steady de-

crease of RMSE. The fluctuations in the trend of node- and

neighborhood-level adversaries are due to the probabilistic

nature of the Monte-Carlo algorithm used to sample neigh-

bors, where it may end up finding a much closer neighbor

than intended, destabilizing the training process. This is an-

other trade-off due to limited training time, yet the general

trend is still visible, certifying our assumptions.

5. Other Related Work

Adversarial Attack on Graphs. Our problem formulation,

i.e., information obfuscation, is significantly different from

adversarial attacks on graphs (Bojchevski & Günnemann,

2019; Ma et al., 2019; Xu et al., 2019a; Dai et al., 2018;

Chang et al., 2019). Works on adversarial attacks focus

on perturbations of a graph, e.g., by adding or removing

edges, that maximize the loss of “victim” nodes for GNNs.

In contrast, adversaries in our framework do not alter graph

structure; instead, they seek to extract critical information

from the GNN node embeddings.

Differential Privacy. A related but different notion of pri-

vacy is differential privacy (Dwork et al., 2014), which

aims at defending the so-called membership inference at-

tack (Shokri et al., 2017; Nasr et al., 2018). Their goal is to

design randomized algorithms so that an adversary cannot

guess whether an individual appears in the training data by

looking at the output of the algorithm. We instead tackle a

information obfuscation problem where the adversary’s goal

is to infer some attribute of a node in a graph, and our goal is

to find embedding of the data, so that the adversary cannot

accurately infer a sensitive attribute from the embedding.

Information Bottleneck. Our work is also related to but

different from the information bottleneck method, which

seeks to simultaneously compress data while preserving in-

formation for target tasks (Tishby et al., 2000; Alemi et al.,

2016; Tishby & Zaslavsky, 2015). The information bottle-

neck framework could be understood as maximizing the fol-

lowing objective: I(Y ;Z)− βI(X;Z). Specifically, there

is no sensitive attribute A in the formulation. In contrast,

the minimax framework in this work is about a trade-off

problem, and the original input X does not appear in our

formulation: I(Y ;Z) − βI(A;Z). Overall, despite their

surface similarity, our adversarial method is significantly

different from that of the information bottleneck method in

terms of both formulation and goals.
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6. Conclusion

In this work, we formulate and address the problem of infor-

mation obfuscation on graphs with GNNs. Our framework,

termed GAL, introduces a minimax game between the de-

sired GNN encoder and the worst-case adversary. GAL cre-

ates a strong defense against information leakage in terms

of a provable lower bound, while only suffering a marginal

loss in task performance. We also show an information-

theoretic bound for the inherent trade-off between accuracy

and obfuscation. Experiments show that GAL perfectly

complements existing algorithms deployed in downstream

tasks to address information security concerns on graphs.
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