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Abstract 

We analyze the "query by committee" algorithm, a method for fil­
tering informative queries from a random stream of inputs. We 
show that if the two-member committee algorithm achieves infor­
mation gain with positive lower bound, then the prediction error 

decreases exponentially with the number of queries. We show that, 
in particular, this exponential decrease holds for query learning of 
thresholded smooth functions. 

1 Introduction 

For the most part, research on supervised learning has utilized a random input 

paradigm, in which the learner is both trained and tested on examples drawn at 
random from the same distribution. In contrast, in the query paradigm, the learner 
is given the power to ask questions, rather than just passively accept examples. 
What does the learner gain from this additional power? Can it attain the same 
prediction performance with fewer examples? 

Most work on query learning has been in the constructive paradigm, in which the 
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learner constructs inputs on which to query the teacher. For some classes of boolean 
functions and finite automata that are not PAC learnable from random inputs, there 
are algorithms that can successfully PAC learn using "membership queries" [VaI84, 
Ang88]. Query algorithms are also known for neural network learning[Bau91]. The 
general relevance of these positive results is unclear, since each is specific to the 
learning of a particular concept class. Moreover, as shown by Eisenberg and Rivest 
in [ER90], constructed membership queries cannot be used to reduce the number of 
examples required for PAC learning. That is because random examples provide the 
learner with information not only about the correct mapping, but also about the 
distribution of future test inputs. This information is lacking if the learner must 
construct inputs. 

In the statistical literature, some attempt has been made towards a more fun­
damental understanding of query learning, there called "sequential design of 
experiments." 1. It has been suggested that the optimal experiment (query) is the 

one with maximal Shannon information[Lin56, Fed72, Mac92]. Similar suggestions 
have been made in the perceptron learning literature[KR90]. Although the use of an 
entropic measure seems sensible, its relationship with prediction error has remained 

unclear. 

Understanding this relationship is a main goal of the present work, and enables us 

to prove a positive result about the power of queries. Our work is derived within the 
query filtering paradigm, rather than the constructive paradigm. In this paradigm, 
proposed by [CAL90], the learner is given access to a stream of inputs drawn at 
random from a distribution. The learner sees every input, but chooses whether or 

not to query the teacher for the label. This paradigm is realistic in contexts where 
it is cheap to get unlabeled examples, but expensive to label them. It avoids the 
problems with the constructive paradigm described in [ER90] because it gives the 
learner free access to the input distribution. 

In [CAL90] there are several suggestions for query filters together with some em­

pirical tests of their performance on simple problems. Seung et al.[SOS92] have 
suggested a filter called "query by committee," and analytically calculated its per­

formance for some perceptron-type learning problems. For these problems, they 
found that the prediction error decreases exponentially fast in the number of queries. 
In this work we present a more complete and general analysis of query by commit­
tee, and show that such an exponential decrease is guaranteed for a general class of 

learning problems. 

We work in a Bayesian model of concept learning[HKS91] in which the target con­
cept I is chosen from a concept class C according to some prior distribution P. 
The concept class consists of boolean-valued functions defined on some input space 
X. An example is an input x E X along with its label I = I( x). For any set of 
examples, we define the version space to be the set of all hypotheses in C that are 
consistent with the examples. As each example arrives, it eliminates inconsistent 
hypotheses, and the probability of the version space (with respect to P) is reduced. 
The instantaneous information gain (i.i.g.) is defined as the logarithm of the ratio 

IThe paradigm of (non-sequential) experimental design is analogous to what might be 

called "batch query learning," in which all of the inputs are chosen by the learner before 

a single label is received from the teacher 
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of version space probabilities before and after receiving the example. In this work, 
we study a particular kind oflearner, the Gibbs learner, which chooses a hypothesis 
at random from the version space. In Bayesian terms, it chooses from the posterior 
distribution on the concept class, which is the restriction of the prior distribution 
to the version space. 

If an unlabeled input x is provided, the expected i.i.g. of its label can be defined by 
taking the expectation with respect to the probabilities of the unknown label. The 
input x divides the version space into two parts, those hypotheses that label it as 
a positive example, and those that label it negative. Let the probability ratios of 
these two parts to the whole be X anti 1 - X. Then the expected i.i.g. is 

1i(X) = -X logX - (1 - X) log(1- X) . (1) 

The goal of the learner is to minimize its prediction error, its probability of error 
on an input drawn from the input distribution V. In the ease of random input 
learning, every input x is drawn independently from V. Since the expected i.i.g. 

tends to zero (see [HKS91]), it seems that random input learning is inefficient. We 
will analyze query construction and filtering algorithms that are designed to achieve 
high information gain. 

The rest of the paper is organized as follows. In section 2 we exhibit query con­
struction algorithms for the high-low game. The bisection algorithm for high-low 
illustrates that constructing queries with high information gain can improve pre­
diction performance. But the failure of bisection for multi-dimensional high-low 
exposes a deficiency of the query construction paradigm. In section 3 we define 

the query filtering paradigm, and discuss the relation between information gain and 
prediction error for queries filtered by a committee of Gibbs learners. In section 

4 lower bounds for information gain are proved for the learning of some nontrivial 
concept classes. Section 5 is a summary and discussion of open problems. 

2 Query construction and the high-low game 

In this section, we give examples of query construction algorithms for the high-low 
game and its generalizations. In the high-low game, the concept class C consists of 

functions of the form 

{ I w < x 
fw(x) = 0: w > x (2) 

where 0 ~ w, x ~ 1. Thus both X and C are naturally mapped to the interval [0,1]. 
Both P, the prior distribution for the parameter w, and V, the input distribution for 
x, are assumed to be uniform on [0,1]. Given any sequence of examples, the version 

space is [XL, XR] where XL is the largest negative example and XR is the smallest 
positive example. The posterior distribution is uniform in the interval [XL, XR] and 
vanishes outside. 

The prediction error of a Gibbs learner is Pr(fv(x) I- fw(x)) where x is chosen 
from V, and v and w from the posterior distribution. It is easy to show that 

Pr(fv (x) I- fw (x)) = (XR - xL)/3. Since the prediction error is proportional to the 
version space volume, always querying on the midpoint (XR + xL)/2 causes the 
prediction error after m queries to decrease like 2- m . This is in contrast to the case 

of random input learning, for which the prediction error decreases like l/m. 
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The strategy of bisection is clearly maximally informative, since it achieves 
1i(lj2) = 1 bit per query, and can be applied to the learning of any concept class. 
Naive intuition suggests that it should lead to rapidly decreasing prediction error, 
but this is not necessarily so. Generalizing the high-low game to d dimensions 

provides a simple counterexample. The target concepts are functions of the form 

fw(i, x) = {6: Wi < X 

Wi> X 
(3) 

The prior distribution of 'Iii is uniform on the concept class C = [0, l]d. The inputs 
are pairs (i, x), where i takes on the values 1, ... , d with equal probability, and x is 
uniformly distributed on [0, 1]. Since this is basically d concurrent high-low games 
(one for each component of 'Iii), the version space is a product of subintervals of 

[0,1]. For d = 2, the concept class is the unit square, and the version space is a 
rectangle. The prediction error is proportional to the perimeter of the rectangle. A 
sequence of queries with i = 1 can bisect the rectangle along one dimension, yielding 
1 bit per query, while the perimeter tends to a finite constant. Hence the prediction 
error tends to a finite constant, in spite of the maximal information gain. 

3 The committee filter: information and prediction 

The dilemma of the previous section was that constructing queries with high infor­
mation gain does not necessarily lead to rapidly decreasing prediction error. This is 
because the constructed query distribution may have nothing to do with the input 
distribution V. This deficiency can be avoided in a different paradigm in which 
the query distribution is created by filtering V. Suppose that the learner receives 
a stream of unlabeled inputs Xl, x2, ... drawn independently from the distribution 
V. After seeing each input Xi, the learner has the choice of whether or not to query 
the teacher for the correct label Ii = f( Xi). 

In [50592] it was suggested to filter queries that cause disagreement in a committee 
of Gibbs learners. In this paper we concentrate on committees with two members. 
The algorithm is: 

Query by a committee of two 
Repeat the following until n queries have been accepted 

1. Draw an unlabeled input x E X at random from V. 

2. Select two hypotheses hl' h2 from the posterior distribution. In other words, 
pick two hypotheses that are consistent with the labeled examples seen so 
far. 

3. If hl(x) -:j:. h2(X) then query the teacher for the label of x, and add it to 
the training set. 

The committee filter tends to select examples that split the version space into two 
parts of comparable size, because if one of the parts contains most of the version 
space, then the probability that the two hypotheses will disagree is very small. 

More precisely, if x cuts the version space into parts of size X and 1 - X, then the 
probability of accepting x is 2x(1 - X). One can show that the i.i.g. of the queries 
is lower bounded by that obtained from random inputs. 
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In this section, we assume something stronger: that the expected i.i.g. of the com­
mittee has positive lower bound. Conditions under which this assumption holds will 
be discussed in the next section. The bound implies that the cumulative information 
gain increases linearly with the number of queries n. But the version space resulting 
from the queries alone must be larger than the version space that would result if 
the learner knew all of the labels. Hence the cumulative information gain from the 
queries is upper bounded by the cumulative information gain which would be ob­
tained from the labels of all m inputs, which behaves like O(dlog r;;) for a concept 

class C with finite VC dimension d ([HKS91]). These O(n) and O(log m) behaviors 
are consistent only if the gap between consecutive queries increases exponentially 

fast. This argument is depicted in Fi!~ure 1. 

Cumulative 
Information 
Gain 

Cumulative 
Information 
of Queries 

Expected 

~~;~~ r------- _r------------
Random 
Examples 

r ----Gap between example: 
_ _ accepted as queries 

x x x x 

Number of 

Random Examples 

Figure 1: Each tag on the x axis denotes a random example in a specific typical 
sequence. The symbol X under a tag denotes the fact that the example was chosen 
as a query. 

Recall that an input is accepted if it provokes disagreement between the two Gibbs 
learners that constitute the committee. Thus a large gap between consecutive 

queries is equivalent to a small probability of disagreement. But in our Bayesian 

framework the probability of disagreement between two Gibbs learners is equal to 
the probability of disagreement between a Gibbs learner and the teacher, which is 
the expected prediction error. Thus the prediction error is exponentially small as a 

function of the number of queries. The exact statement of the result is given below, 
a detailed proof of which will be published elsewhere. 

Theorem 1 Suppose that a concept class C has VC-dimension d < 00 and the 

expected information gained by the two member committee algorithm is bounded by 

c > 0, independent of the query number and of the previous queries. Then the 

probability that one of the two committee members makes a mistake on a randomly 

chosen example with respect to a randomly chosen fEe is bounded by 

(3+0(e-Cln»~exp (-2(d~ l)n) (4) 

for some constant Cl > 0, where n is the number of queries asked so far. 
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4 Lower bounds on the information gain 

Theorem 1 is applicable to learning problems for which the committee achieves i.i.g. 
with positive lower bound. A simple case of this is the d-dimensional high-low game 
of section 2, for which the i.i.g. is 7 /(121n 2) R: 0.84, independent of dimension. This 
exact result is simple to derive because the high-low game is geometrically trivial: 
all version spaces are similar to each other. In general, the shape of the version space 
is more complex, and depends on the randomness of the examples. Nevertheless, 

the expected i.i.g. can be lower bounded even for some learning problems with 

nontrivial version space geometry. 

4.1 The information gain for convex version spaces 

Define a class of functions f w by 

fw(x, t) = { ~: 
... ... t w·x> , 
tij·x<t. 

(5) 

The vector tij E Rd is drawn at random from a prior distribution P, which is 

uniform over some convex body contained in the unit ball. The distribution of 
inputs (x, t) E Bd x [-1,1], is a product of any distribution over Bd (the unit 
ball centered at the origin) and the uniform distribution over [-1, +1]. Since each 
example defines a plane in the concept space, all version spaces for this problem are 
convex. We show that there is a uniform lower bound on the expected i.i.g. for any 
convex version space when a two member committee filters inputs drawn from V. 
In the next paragraphs we sketch our proof, the full details of which shall appear 
elsewhere. 

In fact, we prove a stronger statement, a bound on the expected i.i.g. for any fixed X. 
Fix x and define x( t) as the fraction of the version space volume for which x· w < t. 
Since the probability of filtering a query at t is proportional to 2X(t)[1 - X(t)], the 

expected i.i.g. is given by 

J~l 2X(t)[1 - X(t)]1i(X(t))dt 
I[X(t)] = (6) 

J~l 2X(t)[1 - X(t)]dt 

In the following, it is more convenient to define the expected i.i.g. as a functional 

of r(t) = d-VdX/dt, which is the radius function of the body of revolution with 
equivalent cross sectional area dX/dt. Using the Brunn-Minkowski inequality, it can 
be shown that any convex body has a concave radius function r(t). 

We have found a set of four transformations of r(t) which decrease I[r]. The only 
concave function that is a fixed point of these transformations is (up to volume 
preserving rescaling transformations): 

r*(t) = d-{/df2 (1 - It I) . 

This corresponds to the body constructed by placing two cones base to base with 
their axes pointing along x. We can calculate I[r*] explicitly for each dimension 
d. As the dimension of the space increases to infinity this value converges from 
above to a strictly positive value which is 1/9 + 7/(181n2) R: 0.672 bits, which is 
surprisingly close to the upper bound of 1 bit. 
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4.2 The information gain for thresholded continuous functions 

Consider a concept class consisting of functions of the form 

fw(x) = { ~: F(w,x)~O, 

F(w, i) <0 , 
(7) 

where i E R', w E Rd and F is a smooth function of both x and W. Random 

input learning of this type of concept class has been studied within the annealed 
approximation by [AFS92]. We assume that both V and P are described by density 
functions that are smooth and nonvanishing almost everywhere. Let the target 
concept be denoted by fwo(i). We now argue that in the small version space limit 
(reached in the limit of a large number of examples), the expected i.i.g. for query 
learning of this concept class has the same lower bound that was derived in section 

4.1. 

This is because a linear expansion of F becomes a good approximation in the version 
space, 

F(w, X) = F(wa, i) + (w - wa) . 'V wF(wa, x) . (8) 

Consequently, the version space is a convex body containing wa, each boundary of 
which is a hyperplane perpendicular to 'VwF(wa, x) for some x in the training set. 
Because the prior density P is smooth and nonvanishing, the posterior becomes 
uniform on the version space. 

From Eq. (8) it follows that a small version space is only cut by hyperplanes corre­
sponding to inputs i for which F(wa, X) is small. Such inputs can be parametrized 
by using coordinates on the decision boundary (the manifold in x space determined 

by F( wa, i) = 0), plus an additional coordinate for the direction normal to the 
decision boundary. Varying the normal coordinate of x changes the distance of 
the corresponding hyperplane from wa, but does not change its direction (to lowest 
order). Hence each normal average is governed by the lower bound of 0.672 bits 
that was derived in section 4.1 for planar cuts along a fixed axis of a convex version 
space. The expected i.i.g. is obtained by integrating the normal average over the 
rest of the coordinates, and therefore is governed by the same lower bound. 

5 Summary and open questions 

In this work we have shown that the number of examples required for query learn­
ing behaves like the logarithm of the number required for random input learning. 
This result on the power of query filtering applies generally to concept classes for 
which the committee filter achieves information gain with positive lower bound, 
and in particular to concept classes consisting of thresholded smooth functions. 
A wide variety of learning architectures in common use fall in this group, includ­

ing radial basis function networks and layered feedforward neural networks with 
smooth transfer functions. Our main unrealistic assumption is that the learned rule 
is assumed to be realizable and noiseless. Understanding how to filter queries for 
learning unrealizable or noisy concepts remains an important open problem. 
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