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Abstract. Within model-driven software development, model transfor-
mation has become a key activity. It refers to a variety of operations
modifying a model for various purposes such as analysis, optimization,
and code generation. Most of these transformations need to be bidirec-
tional to e.g. report analysis results, or keep coherence between models.
In several application-oriented papers it has been shown that triple graph
grammars are a promising approach to bidirectional model transforma-
tions. But up to now, there is no formal result showing under which
condition corresponding forward and backward transformations are in-
verse to each other in the sense of information preservation. This problem
is solved in this paper based on general results for the theory of algebraic
graph transformations. The results are illustrated by a transformation of
class models to relational data base models which has become a quasi-
standard example for model transformation.

1 Introduction

Model transformation is a central activity in model-driven software development
as it is used thoroughly for model optimization and other forms of model evolu-
tion. Moreover, model transformation is used to map models between different
domains for analyzing them or for automatically generating code from them. Of-
ten a model transformation is required to be reversible to translate information
back to source models. For example, a transformation of a domain-specific model
to some formal model for the purpose of validation should be reversible to trans-
form back analysis results stemming from the formal model. Reversible model
transformations also play an important role in the presence of system evolution.
Having usually a variety of different models around in the engineering process,
the evolution of one model depends on the evolution of other models. To keep
models coherent to each other, model transformations have to be reversible.
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Model transformations have been classified by Czarnecki, Mens et.al. [CH03,
MG06]. Mens et.al. distinguish two main classes: endogenous and exogenous
model transformations. While the former run within one modeling language,
e.g. are used to model refactorings or other kinds of optimizations, the latter
are used to translate models between different languages. In the context of this
paper we concentrate on exogenous model transformations. A promising ap-
proach to reversible transformation is bi-directional model transformation, since
only one transformation description is needed to deduce forward and backward
transformations automatically.

A bi-directional model transformation can be well described by triple graph
transformations as introduced by Schürr et.al. [KS06, Sch94]. The main idea is
to relate a source and a target graph by some correspondence graph in between
which is mapped to both graphs. In this way, source and target graphs are cou-
pled and a basic structure for consistent co-evolution of the model graphs is es-
tablished. Triple rules are used to formulate conditions for consistent co-evolution
describing the simultaneous transformation of source and target graphs. It is of-
ten the case though that these graphs do not develop simultaneously: i.e. one
graph evolves and the other one has to be updated accordingly. To capture this
situation, Königs and Schürr showed that each triple rule can be split into a
so-called source rule which changes the source graph only and a forward rule
which updates the target accordingly. Furthermore, they lifted this result to
transformation sequences in [KS06]. This means that we obtain for each triple
transformation sequence a corresponding forward transformation and dually also
a corresponding backward transformation sequence.

But up to now, there is no formal result showing under which conditions
a given forward transformation sequence has an inverse backward sequence in
the sense that both together are information preserving concerning the source
graphs. The main result of this paper solves this problem under the condition

that a given forward transformation sequence G1 =
tr∗

F==⇒ G2 is source consistent.
Roughly speaking, that means G1 can be generated by source rules only. This
result is based on an extension of the result in [KS06] cited above, which allows
to state a bijective correspondence between triple transformation sequences and
combined match consistent source and forward transformation sequences. The
proof of this extended result is based on the well-known Local Church–Rosser
and Concurrency Theorem for graph transformations (see [EEPT06]) which are
shown to be valid also for triple graph grammars.

All main concepts and results are illustrated at a running example, which
is a model transformation from class models to relational data base models.
This quasi-standard model transformation has been originally defined in the
specification for QVT [OMG05] by the Object Management Group. Due to space
limitations, we present a triple graph grammar for a restricted form of this model
transformation.

In Section 2 we start with a review of triple graph grammar for graphs and
introduce the running example in Section 3. Section 4 presents the main results
concerning information preserving forward and backward transformations. In
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Section 5 we discuss how to obtain a general theory for triple graph transforma-
tions which can be based also on typed and attributed graphs.

2 Review of Triple Rules and Triple Graph Grammars

Triple graph grammars [Sch94] have been shown to be a promising approach to
consistently co-develop two related structures. They provide bidirectional trans-
formation between a pair of graphs representing these structures which are con-
nected using a third so-called correspondence graph together with its embeddings
into the source and target graph. In [KS06], Königs and Schürr formalize the
basic concepts of triple graph grammars in a set-theoretical way. In this section,
we take up this formalization and present further steps of a theory of triple
graph grammars in the following sections. We first base this formalization on
simple graphs and will discuss the extension to typed, attributed graphs based
on concepts from category theory in Section 5.

Definition 1 (Graph and Graph Morphism). A graph G = (V, E, s, t)
consists of a set V of nodes (also called vertices), E of edges and two func-
tions src, tar : E → V , the source and target functions. Given graphs G1, G2

with Gi = (Vi, Ei, srci, tari) for i = 1, 2, a graph morphisms f : G1 → G2,
f = (fV , fE), consists of two functions fV : V1 → V2 and fE : E1 → E2

that preserve the source and target functions, i.e. fV ◦ src1 = src2 ◦ fE and
fV ◦ tar1 = tar2 ◦ fE.

Definition 2 (Triple Graph and Triple Graph Morphism). Three graphs
SG, CG, and TG, called source, connection, and target graphs, together with
two graph morphisms sG : CG → SG and tG : CG → TG form a triple graph

G = (SG
sG← CG

tG→ TG). G is called empty, if SG, CG, and TG are empty
graphs.

A triple graph morphism m = (s, c, t) : G → H between two triple graphs

G = (SG
sG← CG

tG→ TG) and H = (SH
sH← CH

tH→ TH) consists of three
graph morphisms s : SG → SH, c : CG → CH and t : TG → TH such that
s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if morphisms s, c and t are
injective.

A triple rule is used to build up source and target graphs as well as their connec-
tion graph, i.e. to build up triple graphs. Structure filtering which deletes parts
of triple graphs, are performed by projection operations only, i.e. structure dele-
tion is not done by rule applications. Thus, we can concentrate our investigations
on non-deleting triple rules without any restriction.

Definition 3 (Triple Rule tr and Triple Transformation Step).
A triple rule tr consists of triple graphs
L and R, called left-hand and right-hand
sides, and an injective triple graph mor-
phism tr = (s, c, t) : L → R.

L = (SL

tr
��

s
��

CL
sL��

c
��

tL �� TL)

t
��

R = (SR CRsR

��
tR

�� TR)
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Given a triple rule tr = (s, c, t) :
L → R, a triple graph G and
a triple graph morphism m =
(sm, cm, tm) : L → G, called
triple match m, a triple graph
transformation step (TGT-step)

G =
tr,m
==⇒ H from G to a triple

SL

��

sm
������ CL�� ��

��

cm
����

�
TL

��

tm
�����

G = (SG

tr

�� s′

��

CG�� ��

c′

��

TG)

t′

��
SR

sn��
CR�� ��

cn��

TR
tn�����

H = (SH CHsH

��
tH

�� TH)

graph H is given by three pushouts (SH, s′, sn), (CH, c′, cn) and (TH, t′, tn) in
category Graph with induced morphisms sH : CH → SH and tH : CH → TH.

Moreover, we obtain a triple graph morphism d : G → H with d = (s′, c′, t′)
called transformation morphism. A sequence of triple graph transformation steps
is called triple (graph) transformation sequence, short: TGT-sequence. Further-
more, a triple graph grammar TGG = (S, TR) consists of a triple start graph S

and a set TR of triple rules.

Remark 1 (gluing construction). Each of the pushout objects SH, CH, TH in
Def. 3 can be constructed as a gluing construction, e.g. SH = SG +SL SR,
where the S-components SG of G and SR of R are glued together via SL

(see [EEPT06] Chapter 2 for more details).

3 Case Study: CD2RDBM Model Transformation

This case study presents a model transformation problem (see [BRST05,OMG05])
which occurs in several variants. It contains the transformation of class models
to relational database models. We will use it in this paper to illustrate the
triple graph grammar approach and especially, the conditions for information
preserving bidirectional transformations. In contrast to [BRST05], we present a
slightly restricted variant where the different treatment of persistent and non-
persistent classes is omitted, due to space limitations.

The source language consists of class diagrams, while the target language
consists of schemes for database tables. A reference structure is established as
helper structure for the model transformation which relates classes with tables
and subclasses or attributes with columns. Associations are translated to foreign
keys. The relationship between the elements of the source and the target language
is documented in the TGG type graph in Fig. 1 where dashed edges represent
the morphisms s and t connecting the the source and the target graph via a
connection graph.

Please note that this case study is given in the framework of triple graphs over
typed attributed graphs which is briefly discussed in Section 5. In that section,
we also show how to extend the basic theory presented in Sections 2 and 4, to
typed attributed graphs.

Fig. 2 shows four of the triple rules for the CD2RDBM model transformation.
Triple rule Class2Table simultaneously creates a class and a table which are
related to each other. Since all triple rules are non-deleting, they are depicted in
a compact notation not separating the left from the right-hand side. All graph
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Fig. 1. TGG type graph for CD2RDBM model transformation

items which are newly created, are annotated by ”{ new}”. Those items occur in
the right-hand side of a rule only. Triple rule PrimaryAttribute2Column creates
columns and attributes. Given that a class is already related to some table, an
attribute of this class is related to a column of the related table. By triple rule
SetKey, the corresponding column for each primary attribute is set as primary
key . A newly created subclass is related to the same table as its given superclass
by triple rule Subclass2Table.

:Class {new}

name = n

:Table {new}

name = n
:ClassTableRel

{new}

:Class :Table

:attrs {new}
:ClassTableRel 

:Attribute {new}
name = an

primary = true

:PrimitiveDataType {new}
name = t 

:Column {new}
type = t

name = an:AttrColRel 

{new}

:cols {new}

:type {new}

:Class :Table 

:attrs

:ClassTableRel

:Attribute

is_primary = true
:Column:AttrColRel 

:cols:pkey {new}

:Class :Table

:parent {new}

:ClassTableRel

:ClassTableRel  {new} 
:Class {new} 

Class2Table

SetKey

PrimaryAttribute2Column

Subclass2Table

Fig. 2. TGG rules for CD2RDBM model transformation

Fig. 3 shows triple rule Association2FKey which creates associations re-
lated to foreign keys (FKey) pointing to columns of other tables. A similar
triple rule Attribute2FKey (not depicted) creates class-typed attributes which
are also related to foreign keys. Instead of the :Association{new} node in rule
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Association2FKey, rule Attribute2FKey has an :Attribute{new} node, con-
nected by an :attrs{new} edge to the upper class and a :type{new} edge to the
lower class.

Fig. 3. TGG rule Association2FKey

4 Information Preserving Forward and Backward

Transformations

The power of bi-directional model transformations is its potential to invert
a forward transformation without specifying a new transformation. Deriving
rules for forward and backward transformations automatically, we investigate
the requirements for such a reversal to be fulfilled by triple graph transfor-
mations. A sufficient requirement for reversal is based on the notion of source
transformation which is the projection of a triple graph transformation to its
source component. It is sufficient to show that a source structure can be con-
structed by source transformations only. In this case, the forward transformation
is called source consistent and we can show that it can be inverted, i.e. there
is a backward transformation leading back to the same source structure as the
original one.

For updating the changes of the source to the target graph and vice versa
forward as well as backward rules are needed and they can be derived from a
triple rule. In addition we can deduce a source rule trS and a target rule trT

with empty connection and target or source component from a triple rule tr.

Definition 4 (Derived Triple Rules). Given a triple rule tr as in Def. 3, a
source rule trS , a target rule trT , a forward rule trF and a backward rule trB

can be constructed as shown below:

LS = (SL

trS
��

s
��

∅��

��

�� ∅)

��

RS = (SR ∅�� �� ∅)

source rule trS

LF = (SR

trF
��

id
��

CL
s◦sL��

c
��

tL �� TL)

t
��

RF = (SR CR
sR�� tR �� TR)

forward rule trF
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LT = (∅

trT
�� ��

∅��

��

�� TL)

t
��

RT = (∅ ∅�� �� TR)

target rule trT

LB = (SL

trF
��

s
��

CL
t◦tL

��

c
��

sL

�� TR)

id
��

RB = (SR CR
sR��

tR �� TR)

backward rule trB

Example 1 (derived forward and backward rules for triple rule Class2Table)
Fig. 4 shows the forward and backward rules derived from triple rule Class2Table

in Fig. 2 (a). In the forward rule a new table is created for an existing class. Vice
versa, in the backward rule a table exists already and the corresponding class is
created.

:Class {new}

name = n

:Table 

name = n
:ClassTableRel {new}

:Class

name = n

:Table {new}

name = n
:ClassTableRel {new}

derived

forward rule trF

derived

backward rule trB

Fig. 4. derived forward and backward rules for triple rule Class2Table

Note that the source rule trS and the target rule trT can be obtained by projec-
tion of tr to source and target, respectively.

Definition 5 (Projection). Given a triple graph G = (SG
sG← CG

tG→ TG), the

projection projT (G) to the target is triple graph GT = (∅
∅
← ∅

∅
→ TG) and the

projection projS(G) to the source is triple graph GS = (SG
∅
← ∅

∅
→ ∅).

A first important result shows that each TGT-sequence can be decomposed in
transformation sequences by corresponding source and forward rules and vice
versa, provided that their matches are consistent. Roughly spoken, match con-
sistency means that the co-matches of source rule applications determine the
matches of corresponding forward rule applications.

The following Theorem 1 is partly given as Theorem 4.7 in [KS06] where
especially the bijective correspondence between decomposition and composition
is missing which however, is most important in this paper. Essential for this
bijective correspondence is the notion of match consistency for specific TGT-
sequences applying source and forward rules triS and triF of the same triple
rule tri for i = 1, . . . , n.

Definition 6 (Match Consistency). A TGT-sequence G00
tr1S=⇒ G10 ⇒ . . .

trnS=⇒

Gn0
tr1F=⇒ Gn1 ⇒ · · ·

trnF=⇒ Gnn is called match consistent, if the S-component of

the match m1F of Gn0
tr1F=⇒ Gn1 is completely determined by the co-match n1S of

G00
tr1S=⇒ G10 and the transformation morphism d1 : G10 → Gn0, i.e. (m1F )S =

d1S ◦ (n1S)S and similar for all matches of the forward transformations triF
(i > 1). For n = 1 this means (m1F )S = (n1S)S.



Information Preserving Bidirectional Model Transformations 79

Theorem 1 (Decomposition and Composition of TGT-Sequences)

1. Decomposition: For each TGT-sequence

(1) G0 =
tr1=⇒ G1 =⇒ . . . =

trn==⇒ Gn

there is a corresponding match consistent TGT-sequence

(2) G0 = G00
tr1S=⇒ G10 ⇒ · · ·

trnS=⇒ Gn0
tr1F=⇒ Gn1 ⇒ · · ·

trnF=⇒ Gnn = Gn.

2. Composition: For each match consistent transformation sequence (2) there
is a canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse
to each other.

The proof is given in Section 5.2.

Remark 2. Moreover, we have projT (G00) =
projT (Gn0) and projS(Gn0) = projS(Gnn)
in (2), due to the special form of triple rules
tr1S , .., trnS and tr1F , .., trnF , respectively.
Dual results hold for target rules trT and
backward rules trB (see the lower triangle in
the figure on the right).

G00
tr1S��

tr1T

��
tr1

������

		
������

G10 . . .
trnS �� Gn0

tr1F

��. . .

trnT ��

. . .
trn

		
�������

������� . . .

trnF��
G0n

tr1B �� . . . trnB �� Gnn

Theorem 1 and its dual version lead to the following equivalence of forward and
backward TGT-sequences which can be derived from the same general TGT-
sequence.

Theorem 2 (Equivalence of Forward and Backward TGT-sequences).
Each of the following TGT-sequences implies the other ones assumed that the
matches are uniquely determined by each other.

1. G0
tr1=⇒ G1

tr2=⇒ G2 =⇒ ...
trn=⇒ Gn

2. G0 = G00
tr1S=⇒ G10 =⇒ ...

trnS=⇒ Gn0
tr1F=⇒ Gn1 =⇒ ...

trnF=⇒ Gnn = Gn,
which is match consistent. In this case we have: projT (G00) = projT (Gn0),
projS(Gn0) = projS(Gnn)

3. G0 = G00
tr1T=⇒ G01 =⇒ ...

trnT=⇒ G0n
tr1B=⇒ G1n =⇒ ...

trnB=⇒ Gnn = Gn,
which is match consistent. In this case we have: projS(G00) = projS(G0n),
projT (G0n) = projT (Gnn)

Proof. Theorem 2 is a direct consequence of Theorem 1 concerning decomposi-
tion and composition of forward TGT-sequences and its dual version for target
rules triT and backward rules triB where match consistency in Part 3 is defined
by the T-components of the matches. The projection properties follow from
Remark 2.2.

In the following we use the short notations for TGT-sequences introduced in
Theorem 2:

1. F =
tr∗

=⇒ H , with F = G0, H = Gn for sequence (1),
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2. F =
tr∗

S==⇒ G =
tr∗

F==⇒ H , with F = G0, G = Gn0, H = Gn for sequence (2), and

3. F =
tr∗

T==⇒ K =
tr∗

B==⇒ H , with F = G0, K = G0n, H = Gn for sequence (3).

Now we are able to address the main topic of this paper. We want to analyse

under which conditions a forward TGT-sequence G =
tr∗

F==⇒ H is information pre-
serving in the sense that there is a backward TGT-sequence starting from HT =
projT (H) and leading to H ′ such that the source graphs of G and H ′ are equal,

i.e. projS(G) = projS(H ′). That means sequence G =
tr∗

F==⇒ H −projT−−−→ HT =
tr∗

B==⇒ H ′

is information preserving concerning the source component. In this case we say

that G =
tr∗

F==⇒ H is backward information preserving.
The condition under which we obtain backward information preservation is

source consistency of G =
tr∗

F==⇒ H , i.e. G is generated by corresponding source

rules tr∗S such that ∅ =
tr∗

S==⇒ G =
tr∗

F==⇒ H is match consistent.

Definition 7 (Information Preserving Forward Transformation)

A forward TGT -sequence G =
tr∗

F==⇒ H is

(1) backward information preserving, if for HT = projT (H) there is a

backward TGT-sequence HT =
tr∗

B==⇒ H ′ with GS = projS(G) = projS(H ′).

G
tr∗

F ��

projS 

������������ H
projT �� HT

tr∗

B �� H ′

projS���������������

GS

(2) source consistent, if there is a source TGT-sequence ∅ =
tr∗

S==⇒ G such that

∅ =
tr∗

S==⇒ G =
tr∗

F==⇒ H is match consistent.

Remark 3. For backward transformations the terms forward information pre-
serving and target consistency are defined dually.

Theorem 3 (Information Preserving Forward Transformation)

A forward TGT-sequence G =
tr∗

F==⇒ H is backward information preserving, if it is
source consistent.

Proof. G =
tr∗

F==⇒ H is source consistent which implies the existence of (2) ∅ =
tr∗

S==⇒

G =
tr∗

F==⇒ H with projS(G) = projS(H) being match consistent. By Theorem

2 with G0 = ∅, Gn0 = G, G0n = K and Gn = H we obtain (3) ∅ =
tr∗

T==⇒

K =
tr∗

B==⇒ H ′ = H with projT (K) = projT (H) being match consistent. Moreover,
projS(K) = projS(∅) = ∅ and the C-component of K is ∅ which implies K =

projT (H) = HT leading to the diagram in Def. 7(1). Hence, G =
tr∗

F==⇒ H is
backward information preserving.

Remark 4. If G =
tr∗

F==⇒ H is source consistent, then there is already a canoni-

cal backward transformation HT =
tr∗

B==⇒ H ′ with H ′ = H and HT = projT (H)
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which is target consistent, i.e. ∅ =
tr∗

T==⇒ HT =
tr∗

B==⇒ H ′ is match consistent. Vice
versa, given a target consistent backward transformation there is a source con-
sistent forward transformation according to Theorem 2. Similar results hold for

backward TGT -sequences K =
tr∗

B==⇒ H .

Example 2 (backward information preserving CD2RDBM model transformation
sequence). We consider a concrete forward transformation G =⇒ H from a given
class model G to its extension H by the corresponding data base model (Fig. 5).
The small class model in G (left part of Fig. 5) consists of two classes Company

and Person with an association in between, and a third class Customer in-
heriting from class Person. Class Customer is equipped with an attribute.
The transformation is performed by applying first the forward rules of rule
Class2Table twice (1, 2), and afterwards the forward rules of SubClass2Table

(3), PrimaryAttribute2Column (4), SetKey (5), and Association2FKey (6)
each once. In Fig. 5, the corresponding matches (1..6) of this sequence are indi-
cated by contours.

Fig. 5. Result graph of C2RDBM forward transformation

This forward transformation is source consistent, since there is a transforma-
tion sequence ∅ =⇒ G. The co-matches of this source transformation sequence
correspond to the matches of the forward transformation in Fig. 5, restricted
to the source elements. It is easy to check that both transformation sequences
are match consistent, i.e. the co-match of each source transformation step is
not altered by forthcoming steps and is used again in its corresponding for-
ward transformation step. Thus we can conclude from Theorem 3 that transfor-
mation G =⇒ H is backward information preserving, i.e. there is a backward
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transformation from projT (H) =⇒ H ′ and the source graph of H ′ is equal to G.
The backward transformation with the matches of the corresponding backward
rules is shown in Fig. 6 where projT (H) is given in the right part of Fig. 6, and
H ′ is the complete result graph in Fig. 6.

Fig. 6. Result graph of C2RDBM backward transformation

5 General Theory of Triple Graph Transformations

In Section 2 we have introduced triple graphs and triple graph transformations
based on simple graphs and graph morphisms (see Definition 1 - 3). In this
section, we extend the concept to triple graphs based on typed, attributed and
typed attributed graphs in the sense of [EEPT06]. WE can show that he cor-
responding categories are adhesive HLR categories. Thus, the general theory of
adhesive HLR-systems in [EEPT06] can be instantiated by all these variants
of triple graph transformations. That fact allows to obtain the well-known Lo-
cal Church–Rosser and Concurrency Theorem for triple graph transformations
which are used in a special case in the proof of Theorem 1. Further concepts
and results which are presented in [EEPT06] and can be instantiated by triple
graph transformation, include negative application conditions and critical pair
analysis.

5.1 Triple Graph Transformations as Instantiation of Adhesive
HLR Categories

Adhesive HLR categories and systems which are based on adhesive categories
presented in [LS05], are a general categorical framework for several variants
of graphs and graph transformation systems. One important instantiation of
this framework are graph transformations based on simple graphs and graph
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morphisms (as in Section 2) leading to the category Graphs. Another impor-
tant instantiation are attributed graphs and attributed graph morphisms (as
in [EPT04]) leading to the category AGraphs. Roughly speaking, attributed
graphs AG = (G, D) are pairs of graphs G and data type algebras D where
some of the domains of D are carrying the attributes of graphs G. Rule graphs
are attributed by a common term algebra such that left and right hand side
graph items may have arbitrary terms as attributes. Category TripleGraphs
consisting of triple graphs and triple graph morphisms (as in Section 2), can be
constructed as a diagram category over Graphs and also becomes an adhesive
HLR category (see Fact 4.18 in [EEPT06]).

Analogously, category TripleAGraphs of attributed triple graphs is a
diagram category over AGraphs. Moreover, given type graphs TG in
TripleGraphs (resp. ATG in TripleAGraphs) we obtain category
TripleGraphsTG consisting of typed triple graphs (resp. TripleAGraphsATG

consisting of typed attributed triple graphs) as slice categories over
TripleGraphs (resp. TripleAGraphs) leading again to adhesive
HLR-categories.

Theorem 4 (Adhesive HLR Categories for Triple Graph Transforma-
tions). Categories TripleGraphs, TripleGraphsTG, TripleAGraphs, and
TripleAGraphsATG together with suitable classes M of monomorphisms are
adhesive HLR categories.

Proof. According to Theorem 4.15 in [EEPT06], diagram and slice categories
over adhesive HLR categories Graphs and AGraphs are again adhesive HLR
categories.

This result implies that the general theory of adhesive HLR systems can be
applied to triple graph transformations based on categories TripleGraphs,
TripleGraphsTG, TripleAGraphs, and TripleAGraphsATG. In the follow-
ing, we use the abbreviation Triple, if we mean one of these categories.

5.2 Proof of Theorem 1

Before proving Parts 1-3 of Theorem 1, we draw some conclusions from Theo-
rem 4 above. From Theorem 5.12 in [EEPT06] for adhesive HRL-categories and
Theorem 4 above we can conclude that the Local Church-Rosser Theorem is
valid for each category Triple. We will use this result to show that “sequen-

tially independent” steps G1 =
tr1,m1

====⇒ G2 =
tr2,m2

====⇒ G3 can be commuted leading

to G1 =
tr2,m′

2====⇒ G′
2 =

tr1,m′

1====⇒ G3. Sequential independence means that there is a
triple morphism d : L2 → G1 with g1 ◦ d = m2.

L1

m1

��

tr1 �� R1

���
��

��
��

L2

m2

		
		

		
	

tr2 ��
d

��
 
 
 
 
 
 
 
 
 R2

��
G1 g1

�� G2 g2

�� G3

Sequential independence

L1

l1

��

tr1 ��

(1)

R1

e1

���
��

��
��

L2

e2

����
��

��
�

tr2 ��

(2)

R2

r2

��
L

l
�� E r

�� R

E − concurrent rule
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From Theorem 5.23 in [EEPT06] and Theorem 4 above we can conclude that
the Concurrency Theorem is valid. This result is used for the construction of
E-concurrent rule tr = tr1 ∗E tr2 for triple rules tr1 and tr2 given. Triple graph
E with triple graph morphisms e1 and e2 is constructed by pushouts (1) and (2)
above and tr = r ◦ l.

We will use the following construction: Given triple rule tr : L → R with
source rule trS : L1 → R1, forward rule trF : L2 → R2, E = L2, e1 = (id, ∅, ∅)
and e2 = id, we obtain trS ∗E trF = tr, because diagrams (3) and (4) below are
pushouts in Triple and trF ◦ trS = tr. Hence, tr is equal to the E-concurrent
rule trS ∗E trF .

(SL ← ∅ → ∅)

(id,∅,∅)

��

trS ��

(3)

(SR ← ∅ → ∅)

(id,∅,∅)




(SR ← CL → TL)

id
�����������������

trF ��

(4)

(SR ← CR → TR)

id

��

(SL ← CL → TL)
trS=(s,id,id)

�� (SR ← CL → TL)
trF =(id,c,t)

�� (SR ← CR → TR)

Proof of Theorem 1

1. Decomposition: Given TGT-sequence (1) G0 =
tr1=⇒ G1 =⇒ . . . =

trn==⇒ Gn we

first consider case n = 1. TGT-step G0 =
tr1=⇒ G1 can be decomposed uniquely

into a match consistent TGT-sequence G0 = G00 =
tr1S==⇒ G10 =

tr1F==⇒ G11 = G1.
In fact we have shown above that tr1 can be represented as E-concurrent rule

tr1 = tr1S ∗E tr1F . Using the Concurrency Theorem the TGT-step G0 =
tr1=⇒ G1

can be decomposed uniquely into an E-related sequence as given above. In this
special case an E-relation is equivalent to the fact that the S-components of the

co-match of G00 =
tr1S==⇒ G10 and the match of G10 =

tr1F==⇒ G11 coincide which
corresponds exactly to match consistency.

Using this construction for i = 1, . . . , n the transformation sequence (1) can be
decomposed canonically to an intermediate version between (1) and (2) called

(1.5): G0 = G00 =
tr1S==⇒ G10 =

tr1F==⇒ G11 =
tr2S==⇒ G21 =

tr2F==⇒ G22 ⇒ . . . =
trnS==⇒

Gn(n−1) =
trnF===⇒ Gnn where each subsequence G(i−1)(i−1) =

triS==⇒ Gi(i−1) =
triF==⇒ Gii

G00
tr1S ��

tr1
����

��
����

G10
tr2S��

tr1F

��

G20 . . .
trnS ��

tr1F

��

Gn0

tr1F

��
G11

tr2S��

tr2
��

�������

�������
G21 . . .

trnS �� Gn1

tr2F

��. . .
trn

		
�������

������� . . .

trnF��
Gnn

is match consistent. Moreover,

G10 =
tr1F==⇒ G11 =

tr2S==⇒ G21 is sequen-
tially independent, because we have
a morphism d : L2 → G10, with
L2 = (SL2 ← ∅ → ∅) and d =
(m2S , ∅, ∅). Morphism m2 : L2 → G11

is the match of G11 =
tr2S==⇒ G21, be-

cause the S-components of G10 and
G11 are equal according to forward rule tr1F .

Now, the Local Church–Rosser Theorem mentioned above leads to an equiv-

alent sequentially independent sequence G10 =
tr2S==⇒ G20 =

tr1F==⇒ G21 such that

G00 =
tr1S==⇒ G10 =

tr2S==⇒ G20 =
tr1F==⇒ G21 =

tr2F==⇒ G22 is match consistent. The itera-
tion of this shift between triF and trjS leads to a shift-equivalent transformation

sequence (2) G0 = G00
tr1S=⇒ G10 ⇒ · · ·

trnS=⇒ Gn0
tr1F=⇒ Gn1 ⇒ · · ·

trnF=⇒ Gnn = Gn,
which is still match consistent.
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2. Composition: Vice versa, each match consistent transformation sequence (2)
leads to a canonical sequence (1.5) by inverse shift equivalence where each sub-
sequence as above is match consistent. In fact, match consistency of (2) implies
that the corresponding subsequences are sequentially independent in order to
allow inverse shifts in an order opposite to that in Part 1 using again the Local
Church-Rosser Theorem. Match consistent subsequences of (1.5) are E-related
as discussed in Part 1 which allows to apply the Concurrency Theorem to obtain
the TGT-sequence (1).
3. Bijective Correspondence: The bijective correspondence of composition and
decomposition is a direct consequence of the bijective correspondence in the
Local Church–Rosser and the Concurrency Theorem where the bijective corre-
spondence for the Local Church–Rosser Theorem is not explicitly formulated in
Theorem 5.12 of [EEPT06], but is a direct consequence of the proof in analogy
to Theorem 5.18. ⊓⊔

6 Related Work and Conclusion

In this paper we dealt with bi-directional model transformations, a promising
technique in model-driven software development to keep related models consis-
tent or to evolve them into other models or executable code. Bi-directional trans-
formations can be defined using triple graph grammars which were introduced
by Schürr [Sch94]. In [KS06], Königs and Schürr considered a set-theoretical for-
malization of triple graph transformations. We took up this formalization and
extended it on the basis of category theory. To cope with the situation that
tools do not necessarily keep object identifiers while changing models, we con-
sider projections to source and target graphs in between. This makes the reversal
of transformations more complex, but also more flexible due to less requirements
on tools. We have shown that forward transformations are backward information
preserving, if their source graph can be created by corresponding source rules.

In [KS06], a comprehensive comparison with related model transformation
approaches, especially with bi-directional ones, is given. For example, BOTL
[MB03] and QVT [OMG05] are discussed and compared to triple graph gram-
mars. Although offering the concept of bi-directional transformation, sufficient
conditions for the existence of information preserving transformations have not
been given for these approaches.

In Section 5, we considered the extension of triple graph grammars to types
and attributes. While these extensions are straightforward, the addition of appli-
cation conditions to triple rules requires future investigations. From the practical
point of view, there is also a request for multiple source and target models, con-
sidering activities like multi-model requirement engineering and the creation of
a platform independent design model. The idea of triple graphs can be extended
in a straightforward way by replacing the span by some arbitrary network of
graphs. This approach has already been followed for defining viewpoint-oriented
specifications on the basis of distributed graph transformation in [GEMT00].
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