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Information-preserving structures: A general framework for quantum zero-error information
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Quantum systems carry information. Quantum theory supports at least two distinct kinds of information
(classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A
system’s ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces
an operational framework, using information-preserving structures, to classify all the kinds of information that
can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved
code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also
classify distinct operational criteria for preservation (e.g., “noiseless,” “unitarily correctible,” etc.) and introduce
two natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these
operational criteria, we present efficient (polynomial in the state-space dimension) algorithms to find all of a
channel’s information-preserving structures.

DOI: 10.1103/PhysRevA.82.062306 PACS number(s): 03.67.Pp, 03.67.Lx, 03.65.Yz, 89.70.−a

I. INTRODUCTION

Physical systems can be used to store, transmit, and
transform information. Different systems can carry different
kinds of information; classical systems can carry classical
information, while quantum mechanical systems can carry
quantum information. The system’s dynamics also affect the
kind of information that it carries. For example, decoherence
[1] can restrict a quantum system to carry only classical
information (or none at all). This suggests that perhaps
a quantum system’s dynamics can select other kinds of
information, neither quantum nor classical, but something in
between. The central result of this paper is an exhaustive
classification of exactly what kinds of information can be
selected in this way.

Preservation of information in physical systems is impor-
tant in several contexts. In communication theory, information
originates with a sender (“Alice”) who actively conspires with
a receiver (“Bob”) to transfer it over a communication channel.
Computational devices require memory registers that can store
information in the face of repeated noise. Experimental and
observational sciences require, in a more or less explicit way,
the transmission of information from a passive system of
interest (perhaps a distant galaxy, or a nanoscale device),
through a chain of ancillary systems, to an observer. In each
case, achieving the desired transformation requires first that
the information be preserved by a noisy dynamical process
or “channel”—yet, each operational scenario poses a subtly
different notion of “preserved.”
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robin@blumekohout.com
†Present address: DSO National Laboratories, and Centre for

Quantum Technologies, National University of Singapore, Singapore;
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In this paper we develop a theory that covers all these
situations in a unified framework. We start by establishing a
general setting for information (and its preservation), using
codes (Sec. II). We state a minimal necessary condition for in-
formation preservation, then prove that it is also sufficient (in a
particular strong sense), deriving a powerful structure theorem
for preserved codes (Sec. III). On this foundation, we build
a hierarchy of different operational criteria for preservation
(Sec. IV). Stricter criteria correspond to additional operational
constraints—for example, that information persists for more
than one application of the noise. Some of these criteria
encompass previously studied approaches to information
preservation, including pointer states [1], decoherence-free
subspaces [2] and noiseless subsystems [3–5], and quantum
error-correcting codes [6]. Others—notably “measurement-
stabilized” and “unconditionally preserved” codes—have not,
as far as we know, been explored previously. Our main
contribution is to gather them all into a single framework using
information-preserving structures (IPSs). IPSs classify the
kinds of information that dynamical processes can preserve.
In particular, we focus here on perfect IPS, corresponding to
zero-error information. Finally, we consider how to find these
structures for a given noisy process (Sec. V). It is NP-hard
to find a channel’s largest correctible IPS, but for stricter
preservation criteria it can be much easier. We provide efficient
and exhaustive algorithms to find noiseless, unitarily noiseless,
and unconditionally preserved IPSs.

Our IPS framework establishes an explicit and rigorous
connection between perfectly preserved information and fixed
points of channels. By focusing on fixed points (see also
[7]), rather than on the noise commutant, it provides a first
step toward understanding approximate IPS, making contact
with stability results for decoherence-free encodings under
symmetry-breaking perturbations [8], and with approximate
quantum error correction (QEC) [9–12]. Our structure theorem
for the fixed points of completely positive maps extends
previous results that apply only to unital processes [13,14],
or processes with a full-rank fixed state [15]. Our algorithm
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for finding noiseless and unitarily noiseless codes improves on
algorithms that are inefficient (e.g., Refs. [16,17]), or restricted
to purely noiseless information [18] or unital channels [19].

Early aspects of this work appeared in Ref. [20]. Here, we
provide more results, full proofs, and detailed discussion.

II. PRESERVED INFORMATION

“What kinds of information can a quantum dynamical
process preserve?” is a technical question, but one that requires
a firm conceptual foundation. This section aims to provide one.
We begin with an operational definition of “information,” then
apply it to quantum theory. We use well-known results on
the accuracy with which quantum states can be distinguished
to establish a mathematical framework in which this central
question can be answered.

“Information” has a variety of meanings. Any crisp
definition will inevitably run afoul of some alternative usage.
Throughout this paper, we will follow this basic operational
definition:

Principle 1. Information is a resource, embodied in a
physical system, that can be used to answer a question.

A physical system S can carry information. If one party
(Alice) sends it to another (Bob), then the recipient can use it to
answer a question. More precisely, possession of S gives Bob
a higher probability of guessing the correct answer. However,
ifS evolves during transmission (i.e., it undergoes a dynamical
map E) then some information might be lost. As a result, E(S)
may be less useful than S. It is not yet clear how to determine
whether information is “preserved,” but two principles seem
self-evident:

Principle 2. If nothing happens to a system, then all the
information in it is preserved.

Principle 3. If a system evolves as S → E(S), and E(S) is
strictly less useful than S in answering some question, then
some information in S was not preserved.

These simple criteria bracket the (as-yet undefined) notion
of preservation—of all the information in a system. But
information can be encoded into one part of a system. Such
information may be preserved even if other parts are damaged
or destroyed. To properly represent this notion, we appeal to
another self-evident principle:

Principle 4. If some property or parameter of a system
is already known to all parties (e.g., Alice and Bob), then it
carries no useful information.

For example, if a quantum system S is known to be
in the state |ψ〉〈ψ |, by all parties, then nothing is gained
by transmitting it. Since a known property of S carries no
information, disturbing it has no effect on the information
embodied in the system. So, we can represent the encoding
of information in a very general way by stating a promise or
precondition, which guarantees certain properties of S. Those
properties, being already known, carry no useful information.
Information carried by S conditional on the promise can be
preserved, even if other properties (constrained by the promise)
are disturbed.

Mathematically, a precondition on S is a restriction of its
state, to some (arbitrary) subset. We call such a set a code.

Definition 1. A code C for a system S is an arbitrary subset
of the system’s state space.

A code need not be a finite set, and in fact all the codes
that interest us contain uncountably many states (because they
comprise convex, dense subregions of state space). However,
in many of our examples, we will mention or consider finite
codes of the form C = {ρk}, strictly for simplicity.

Codes carry information. Each system S has a natural
“maximum code” containing all its possible states. Smaller
codes for that system carry strictly less information, but may
be preserved even when the system’s maximum code is not.
A code that is a strict subset of another preserved code is
uninteresting, so we will focus on maximal preserved codes.

Definition 2. A preserved code C is maximal if and only if
there exists no preserved Cbig ⊃ C. That is, if adding any other
state would render C unpreserved.

We can narrow our focus even more. If S has two preserved
codes, Cbig and Csmall, where Cbig is strictly “bigger” than Csmall,
then we are not interested in Csmall. Cbig is “bigger” than Csmall

if it has a proper subset that is identical or isomorphic to Csmall.
We can make this rigorous, but only by borrowing a technical
definition from the next section (see Definition 4).

Definition 3. A preserved code C is maximum if and only
if there is no preserved Cbig such that C is isometric to a strict
subset Csmall ⊂ Cbig.

We will generally restrict our attention to maximum codes.1

We need a precise definition of a “preserved” code. We begin
by adapting Principles 2 and 3 to codes.

Principle 5. The information in a code C is preserved by a
dynamical map E if E leaves every state in C unchanged.

Principle 6. The information in a code C is preserved by a
dynamical map E only if E(C) is as useful as C for answering
any question.

These are sufficient and necessary (respectively) opera-
tional conditions for preservation. Principle 6 seems much
weaker than 5, but we will show that it is actually not. If
Principle 6 is satisfied; then there is a physically implementable
recovery operation that restores every code state. The ability
to perform this recovery is a resource—a reasonable one,
but a nontrivial one. We will also consider several weaker
resources (e.g., restrictions on what recovery operations can
be implemented), and the corresponding stronger notions of
preservation in Sec. IV.

This concludes the “philosophical” part of our framework,
and in what follows we will build on these foundations to
establish technical results. Two final points deserve mention,
however.

(i) Identifying “information” with codes (arbitrary sets of
states) is intended to be a very general paradigm. A system’s
state, by definition, specifies everything that can be known
about that system. Every question that can be answered
using S boils down to a question about the state of S, and
variations in that state (restricted to some particular code)
encode information. If there are exceptions to this rule—that

1Graph theorists may recognize this terminology. Maximal and
maximum codes have the same relationship as maximal and max-
imum cliques, or independent sets. Note, however, that unlike a
graph, a channel need not have a unique maximum code. If a
channel preserves either a quantum bit or a classical trit, they are
incomparable—neither is bigger than the other.
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is, notions of information, consistent with Principle 1, that
cannot be represented using codes—then we are not aware of
them.2 An extended discussion can be found in Appendix A2.

(ii) Our definition of “information” may not appear con-
gruent with Shannon’s theory of communication [21,22].
In fact, it is quite compatible. There are, however, some
subtle differences: As mentioned, we focus on zero-error
information; furthermore, we consider a single use of a
communication channel, rather than N uses with N → ∞.
An extended discussion can be found in Appendix A1.

A. Systems, states, codes, and channels in quantum theory

So far, we have used a language consistent with a broad
range of physical theories. Let us now specialize to quantum
theory. States of quantum systems are represented by density
operators ρ, which are positive trace-1 operators on the
system’s Hilbert space H. Quantum dynamical maps (also
known as channels) are described by completely positive (CP),
trace-preserving (TP) linear maps on density operators. A
CPTP map E can be represented in two equivalent ways. In
one formulation, the initial system SA comes into contact with
an uncorrelated environment E0, they evolve unitarily, and
then some part Ef of this joint system is discarded3, yielding
a reduced state for the final system SB :

ρB = E(ρA) = TrEf

[
U

(
ρA ⊗ ρE0

)
U †] . (1)

The other representation of a CP-map is called the operator-
sum representation:

ρB = E(ρA) =
∑

i

KiρAK
†
i , (2)

where the Kraus operators {Ki} satisfy
∑

i K
†
i Ki = 1l. This

representation is mathematically simpler but less physi-
cally intuitive (for a complete treatment of CP maps, see
Refs. [24,25]). Note that in either representation, SA and

2A simple and important example is entanglement between S and a
reference system R. Though not explicitly mentioned, entanglement
is easy to characterize in our setting. If S and R are maximally
entangled, then S can be postselectively prepared in any pure state
|ψ〉〈ψ | by projectingR into some |ψ ′〉〈ψ ′|. Entanglement is preserved
if and only if the code containing all of these conditional states is
preserved.

3A technical note is in order here. If the environment E0 is
initially correlated with the input system SA, then the resulting
dynamics is generally not CP, and so initial decorrelation is a
common assumption in the theory of open quantum systems. For
our purposes, it is more than just an assumption. If SA is initially
correlated with its environment, then the latter contains information
about SA. The system and its environment together may contain
more information about SA than does SA itself! In the course of the
ensuing interaction, that information may flow back into the system.
It is impossible (ill-defined, even) to say whether information in SA

has been preserved in such a case, for it may have been replaced
with information initially residing in E0. Such an interaction is not,
in any sense, “noise.” A contrary viewpoint is put forth in Ref. [23],
however, which proposes and analyzes error correction for non-CP
maps.

SB may be different systems, with different Hilbert spaces.
However, the special case where they are the same is very
important—for instance, all continuous-time processes are
described by such maps—and we will often implicitly assume
it, dropping A and B subscripts and relying on context to
illustrate whether “S” refers to the channel’s input or its output.

Codes for quantum systems are sets of quantum states. The
code C represents a promise that the system will be prepared
in some ρ ∈ C. Each distinct code represents a potentially
distinct kind of information. Note, however, that we are not
introducing an infinite proliferation of fundamentally different
“kinds” of information, nor are we suggesting that a qubit
carries fundamentally different information from a qutrit:
Systems with isomorphic state spaces carry the same kind
of information. N qutrits equal N log2 3 qubits, so they carry
the same kind of information, but more of it. The important
dividing line is between systems that have no asymptotic
equivalence, like a qubit and a classical bit.4

Now that we have a well-defined mathematical theory,
we need a mathematical definition of preservation. Principle
6 uses the very general idea of “questions.” A simple and
well-defined set of questions turns out to be sufficient: “Was
the system prepared in state ρ or state σ?” Here, ρ and σ

are states in the code C. In general, these questions cannot
be answered with certainty, for most pairs of states are not
perfectly distinguishable. But if Bob cannot distinguish them
as well as Alice, then information has been lost. Of course,
there may well be many other questions that could be asked,
but it turns out that if these well-defined questions are all
preserved, then the code can be corrected (and therefore every
question must be preserved!)

Example 1. Suppose that S is a quantum bit. If its dynamics
are noiseless, then every state passes unchanged through the
channel. We can describe the preserved information in terms
of a code Cqubit that contains all the possible states for a
qubit. Now, supposeS experiences a dephasing channel, which
transforms an arbitrary superposition of the computational
states |0〉 and |1〉 into a mixture,

E : α|0〉 + β|1〉 −→ |α|2|0〉〈0| + |β|2|1〉〈1|,
and which maps the Bloch sphere into itself as in Fig. 1.

The code Cqubit is no longer preserved. Because the two
states |±〉 = |0〉±|1〉√

2
are both mapped to ρB = 1

2 1l, Bob cannot
answer the question “WasS prepared in |+〉 or |−〉?” However,
the more restricted code Ccbit = {|0〉〈0|,|1〉〈1|} is preserved, for
Bob can distinguish between these states just as well as Alice.
The preserved code describes a different kind of information:
one classical bit.

Here are some familiar examples of preserved information,
represented as codes.

Example 2. A pointer basis comprises a set of mutually or-
thogonal “pointer states” {|ψ1〉, . . . ,|ψN 〉} that are unaffected

4Two systems SA and SB have an asymptotic equivalence if there
is a constant R such that for all ε > 0 and N → ∞, (i) N (R − ε)
copies of SA are strictly less powerful than N copies of SB , and
(ii) N (R + ε) copies of SA are strictly more powerful that N copies
of SB . Thus, any two finite nontrivial quantum systems have an
asymptotic equivalence in this sense.
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FIG. 1. (Color online) Image of the Bloch sphere under a
dephasing channel.

(or “least affected”) by noise—as originally introduced in the
study of quantum measurement and decoherence [1]. A pointer
basis can be described by the code containing all the pointer
states (PSs) |ψk〉〈ψk| and their convex combinations. Classical
information is stored in the index k, but not quantum informa-
tion, because superpositions are not preserved, and thus cannot
be included in the code. PSs are preserved in the strongest
possible sense: Every state in the code is a fixed point of E .

Example 3. A decoherence-free subspace (DFS) is an entire
subspace of the system’s Hilbert space, P ⊆ H, which is
invariant under the noise [2] (see also Zurek’s prior discussion
of “pointer subspaces” [26]). The corresponding code C
contains every density operator supported on P . Since C
includes superpositions of any given basis for P , a DFS
preserves quantum information, and can in principle support
encoded quantum computation. Like pointer bases, DFSs are
preserved in the strongest sense (although the definition is
commonly relaxed to allow unitary evolution, especially in the
case of Markovian dynamics; see also [27,28]).

Example 4. A noiseless subsystem (NS) is like a DFS in
that it can store quantum information. Unlike a DFS, an NS
can exist even if no pure state in H is invariant. According
to the original definition [3,4], it suffices that the noise has
a trivial action on a “factor” of H. That is, S supports an
NS if there exists a subspace HAB ⊆ H that can be factored
as HAB = HA ⊗ HB , so that for every pair of states ρA, ρB

supported on HA, HB , respectively,

E(ρA ⊗ ρB) = ρA ⊗ ρ ′
B, (3)

for some state ρ ′
B on HB . Thus, the restriction of E to HAB

obeys

E = 1lA ⊗ EB, (4)

for some CPTP map EB on HB . Since, for every state ρAB

supported on HAB ,

TrBE(ρAB) = TrBρAB, (5)

it is clear that quantum information is preserved in the reduced
state of subsystem A. However, it is not immediately obvious
that (as in Examples 2 and 3) there is a corresponding fixed
code for S. In fact, the existence of such a code follows from
Eq. (4) and the fact that every channel EB has at least one fixed
state τB [29]. Thus, the code CNS = {ρA ⊗ τB, ∀ ρA}, where
ρA is arbitrary on HA, but τB is a fixed point of EB , is invariant
under E .

Example 5. Information in a quantum error correcting code
(QECC) [6,30] is also preserved, but in a weaker sense than
the information in a NS, DFS, or pointer basis. A QECC is a
subspace P for which there exists a physical recovery opera-
tion R so that (R ◦ E)(|ψ〉〈ψ |) = |ψ〉〈ψ | for all |ψ〉 ∈ P . As
with a DFS, the corresponding “correctable code” contains all
states supported on P . Unlike the previous examples, this code
is not fixed under E . However, it is clearly preserved, because
P can be turned into a DFS by applying R. An “operator
QECC” [31] is an NS for R ◦ E . Another variant stipulates
active intervention before the noise occurs [3], in which case
the code is “protectable” rather than correctable [18]. While
protectable codes will not be further discussed in the present
work, the notions of protectability and correctability are not
fundamentally different and may, to a large extent, be viewed
as “dual” to one another, as elucidated in [11].

The previous examples are not exhaustive, but they illustrate
the diversity of criteria for “preserved” information. Each
example is specified by a different algebraic condition, dictated
either by operational constraints or by its relevance to the
task at hand. We hope that unifying them will bring clarity to
experimental implementations of these ideas [32–34].

The key point of our framework, though, is to explore
beyond these well-known examples. In particular, all the
situations illustrated above can be described intuitively as
“quantum information” or “classical information.” What we
would like to know is whether more exotic codes are
possible—whether some weird channel can preserve a form
of information that is entirely unlike a pointer basis, NS, or
QECC. We need a rigorous criterion for preservation of codes,
based on Principles 5 and 6. Principle 5 is straightforward, but
Principle 6 refers to any operational task. Our strategy will be
to identify one particular task—distinguishing between code
states. Because we focus on just one task, we will obtain a
necessary condition. Having done so, our next challenge will
be to unify the necessary condition implied by Principle 6 with
the sufficient condition implied by Principle 5.

B. Single-shot distinguishability, Helstrom’s theorem,
and the 1-norm

Suppose that Bob has access to a single copy of the system
S, and he wishes to guess whether it was prepared in state
ρ or state σ (both of which are in C). He seeks to maximize
the probability that his guess is correct, and he knows that the
prior probabilities of ρ and σ are (respectively) p and (1 − p).
He can measure S to help him decide, and his optimal course
of action is determined by Helstrom’s theorem [35].

Helstrom’s theorem. Suppose a quantum system S was
prepared either in state ρ or in state σ , with respective prob-
abilities p and (1 − p). The highest probability of guessing
correctly which was prepared is obtained by measuring the
Hermitian operator �p = pρ − (1 − p)σ , then guessing “ρ”
upon obtaining a result corresponding to a positive eigenvalue
and “σ” in the case of a negative eigenvalue. If a zero
eigenvalue is obtained, either guess is equally good. The
success probability is given by PH (ρ,σ ; p) = 1

2 (1 + ‖�p‖1),

where ‖ · ‖1 refers to the 1-norm, ‖A‖1 ≡ Tr|A| = Tr
√

A†A.
The success probability PH is a measure of the distinguisha-

bility between ρ and σ . It is nonincreasing under any CPTP
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map, because the 1-norm is contractive under CPTP maps [36].
So, in order for {E(ρ),E(σ )} to be as distinguishable as {ρ,σ },
we require that for every prior probability p, the Helstrom
strategy yields the same success probability for distinguishing
ρ from σ as for distinguishing E(ρ) from E(σ ):

PH [E(ρ),E(σ ); p] = PH (ρ,σ ; p).

If Bob needs to distinguish between two sets of states, {ρk}
and {σk}, he assigns prior probabilities {pk} and {sk} to the
{ρk} and {σk}, respectively. Then his task is to distinguish

ρ = 1∑
k pk

∑
k

pkρk

from

σ = 1∑
k sk

∑
k

skσk,

where the prior probabilities of ρ and σ are, respectively,
p = ∑

k pk and 1 − p = ∑
k sk .

This measure of distinguishability is, in fact, a metric on
the space of linear operators. Its preservation implies a kind of
rigid equivalence, which we make precise with the following
definition.

Definition 4. Two codes C1 and C2 are 1-isometric (or just
“isometric”) to each other if and only if there exists a linear
1:1 mapping f : C1 → C2 such that, for all ρ,σ in the convex
closure of C1 and all p ∈ [0,1],

‖pf (ρ) − (1 − p)f (σ )‖1 = ‖pρ − (1 − p)σ‖1.

Definition 5. A code C is 1-isometric (or just “isometric”)
for a CPTP process E only if C is isometric to E(C).

So, if C is isometric for a given map E , then ‖pE(ρ) −
(1 − p)E(σ )‖1 = ‖pρ − (1 − p)σ‖1 for all ρ,σ in the convex
closure of C and p ∈ [0,1]. A stronger characterization is given
by the following:

Definition 6. A code C is fixed by a CPTP channel E if and
only if E(ρ) = ρ for all ρ ∈ C.

C. Criteria for preservation

We are now in a position to state Principle 5 more precisely.
Strong condition for preservation. A sufficient condition

for C to be preserved by E is that C be fixed by E .
The strong condition is obviously sufficient, but (as

demonstrated by error-correcting codes) it is not necessary
for preservation. Principle 6 implies a host of necessary
conditions—one for every operational task. We choose one
in particular: We demand that E(ρ) and E(σ ) be just as
distinguishable5 as ρ and σ . We also require that questions
like “Was S prepared in one of the states {ρ1,ρ2,ρ3 . . .}, or in
one of the states {σ1,σ2,σ3 . . .}?” should be preserved as well,
so convex combinations of code states should maintain their
pairwise distinguishability. There is nothing inherently special

5Note that ρ and σ need not be perfectly distinguishable to start
with. A QECC contains nonorthogonal states that cannot be perfectly
distinguished, but they can be distinguished just as well after E as
before.

about this particular operational task, except that it produces a
useful and convenient mathematical condition:

Weak condition for preservation. A necessary condition for
C to be preserved by E is that C be isometric for E .

These two criteria form the foundation of our framework.
To illustrate their application, here are some examples both
simple and subtle.

Example 6. Suppose S is a classical system with four
states labeled {0,1,2,3}, each perfectly distinguishable from
the others. S passes through a channel that maps state k
randomly to k or k + 1 (mod 4), represented as a stochastic
map,

E =

⎛
⎜⎜⎜⎝

1
2 0 0 1

2
1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

⎞
⎟⎟⎟⎠ .

A stochastic map’s information-preserving properties can
conveniently be represented by an adjacency graph for the
input states, where state j is connected to state k if E(j ) overlaps
with E(k). This map’s adjacency graph is as follows:

The code C4 = {0,1,2,3} representing all information about
S is not preserved, because 0 and 1 are perfectly distinguish-
able, but E(0) and E(1) overlap. A smaller code C2 = {0,2} is
preserved, even though neither 0 nor 2 is a fixed point. The code
C ′

2 = {1,3} is also preserved, but the union of C2 and C ′
2 is not

preserved. This demonstrates that the set of preserved codes
is not convex; distinct preserved codes may rely on mutually
contradictory preconditions on S (e.g., “S was prepared in 0
or 2” and “S was prepared in 1 or 3”).

Example 7. Why must distinguishability be preserved, not
just between code states, but between convex combinations of
them?

Let E be a classical stochastic map on three states {0,1,2},
which fixes states 0 and 1, but maps 2 → 1. This map
“squashes” the classical 3-simplex onto one of its sides, as
in Fig. 2. Now, consider a code C comprising the states on the
thick (red) line in Fig. 2.

This code is not preserved by E , because the original code
has structure that is missing in its image: States not on the
line between “0” and “1” can be unambiguously discriminated
(with p > 0) from states lying on the line. However, there is
no way to recover this structure by applying another linear
map afterward! Still, if we ignore convex combinations, then
all the 1-norm distances ‖pρ − (1 − p)σ‖1, for ρ,σ ∈ C are
in fact preserved by E . This is because the best way to
distinguish any two states in C is to measure 0 versus {1,2},
and because the channel maps 2 → 1, it does not actually
affect this measurement. If we consider convex combinations,
however, we see that C is not isometric to E(C), resolving the
problem.
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FIG. 2. (Color online) Action of a “squashing” channel on a
classical trit, and a code (thick red line) that is not preserved even
though all 1-norm distances between code states remain fixed.

Example 8. Why must all the weighted 1-norm distances be
preserved, rather than just ‖ρ − σ‖1?

Consider a channel E acting on a qutrit Hilbert space
C3, which does nothing to the {|0〉,|1〉} subspace, but maps
|2〉〈2| → 1

2 (|0〉〈0| + |1〉〈1|). Now, consider a code C compris-
ing all the states of the form,

ρ = 1
2 (|ψ〉〈ψ |Span(|0〉,|1〉) + |2〉〈2|).

We can think of this code as the set of states that would
be prepared by a machine that is supposed to produce qubit
states in the {|0〉,|1〉} subspace, but fails 50% of the time and
produces |2〉〈2| instead.

As in Example 7, this code is not preserved by E . In this
case, the problem is that Alice can check to see whether
the preparation failed or not, but Bob cannot. As before,
this intuition is borne out by the fact that no recovery
operation exists. However, if we compute the unweighted
1-norm distances ‖ρ − σ‖1, both before and after E is applied,
then we find that they are unchanged. Only when we require
preservation of the weighted 1-norm distances (corresponding
to distinguishing states with the aid of prior information), do
we correctly derive that C is not preserved.

As Example 7 demonstrates, it is important that E preserves
distinguishability not just between states in C, but between
convex combinations of them. This means that we can (without
loss of generality) extend C to include all states in its convex
closure. From now on, we will simply assume that any
preserved code is convex in this sense, as in Ref. [20]. The weak
condition then has a simple geometric interpretation: E must
preserve the 1-norm distance between any two unnormalized
states pρ and (1 − p)σ . This means that the entire convex
cone of C—that is, the set C+ containing xρ for all x � 0
and ρ ∈ C—must be isometric to its image E(C+). Two sets
are isometric if there is a distance-preserving mapping (an
isometry) between them. Here, the relevant metric is the
1-norm distance,

D(A,B) ≡ ‖A − B‖1,

and E is the isometry that preserves it. Thus, preservation
requires that the convex cone C+ evolves rigidly, with respect
to the 1-norm distance, under E .

Our necessary and sufficient conditions bracket the as-yet-
vague notion of a code being preserved by a channel. Fixedness
seems too strong, isometry perhaps too weak. One of our main
goals in this paper is to derive a single, rigorously stated
condition for information to be “preserved” by a channel.

We will eventually do so by squeezing the strong and weak
conditions together as follows:

Proposition 1. If C is a maximum isometric code for E (i.e.,
it satisfies the weak condition, and there is no larger C that
satisfies the weak condition), then there exists a CPTP map R
such that R ◦ E(ρ) = ρ for all states ρ ∈ C.

By proving this proposition, we will demonstrate that the
strong and weak conditions for preservation are equivalent—
given the ability to apply a recovery operation. The proof is
somewhat involved. In the next section, we will derive a struc-
ture theorem for preserved codes, explore its consequences,
and finally derive Proposition 1 as a corollary (Corollary 7) of
Lemma 6, which follows from Theorem 1. Anticipating this
sequence of derivations, we proffer the following definition of
“preserved” now, with the understanding that it will only be
justified by what follows:

Definition 7. A code is preserved by a CPTP E if and only
if it satisfies the weak condition, that is,

‖E[pρ − (1 − p)σ ]‖1 = ‖pρ − (1 − p)σ‖1,

for all ρ,σ ∈ C and p ∈ [0,1].

III. THE STRUCTURE OF PRESERVED INFORMATION

In Sec. II, we stated plausible necessary and sufficient
conditions for a code to be “preserved,” and suggested a formal
definition of preservation (conditional on some technical
results to be proved in what follows). Next, we shall build upon
this foundation, elucidating the structures that follow from it.
First, we will prove a series of theorems about preserved codes,
culminating in a structure theorem showing that preserved
codes have the same “shape” as matrix algebras. This indicates
that preserved codes are related to algebras, but provides no
real context for how they are related, nor what role the algebra
is playing. So, our second task is to analyze the underlying
IPS.

Except where explicitly noted, all the proofs of theorems
and lemmas in this section have been deferred to Appendix B.

A. The shape of a preserved code

Suppose that C is a preserved code for E . Starting from
Definition 7, what can we derive about C? Quite a lot, as it
turns out. The following two definitions from Ref. [20] will be
needed.

Definition 8. A code C is noiseless for a CPTP map E if and
only if it is preserved by any convex combination of powers
of E ,

∑
n qnEn, with qn � 0 and

∑
n qn = 1.

Noiselessness is stricter than preservation (every noiseless
code is preserved, but many preserved codes are not noiseless),
but weaker than fixedness (every fixed code is noiseless, but
some noiseless codes are not fixed). Noiseless codes are special
because their states remain distinguishable no matter how
many times E is applied (note that only channels whose output
space is the same as their input space can have noiseless codes).
This captures the operational significance of fixedness—and as
we will show below (Lemma 2), there is a close mathematical
connection between noiseless and fixed codes.

Definition 9. A code C is correctable for E if and only if
there exists a CPTP R such that C is noiseless for R ◦ E .
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Correctable codes can be made noiseless, by applying a
suitable correction operation every time E happens. Readers
familiar with QEC may worry that our definition is slightly
different from the usual one, which requires that C be fixed
by R ◦ E , rather than just noiseless. It will turn out that our
(apparently weaker) condition implies the usual one, so we
obtain the same result with a weaker assumption.6 We are now
in a position to state a key theorem:

Theorem 1. A [convex] code C is correctable for E if and
only if it is preserved by E .

Although the full proof is rather technical (see Appendix B),
one aspect is especially useful and interesting. We prove the
theorem by explicitly constructing a correction operation for
an arbitrary code C. Moreover, the correction operation is
independent of C’s structure, and depends only on C’s support.
A code’s support is the subspaceP ⊆ H, comprising the union
of the supports of all ρ ∈ C. Since the correction only depends
on the code’s support, every code with the same support will be
corrected by the same operation. Remarkably, this operation
coincides with the transpose channel introduced in Ref. [37],
defined as

ÊP = 	 ◦ E† ◦ N , (6)

where P is the projector ontoP , 	(·) = P · P is the projection
onto P , E† is the adjoint map of E , and N is a normalization
map N (·) = E(P )−1/2(·)E(P )−1/2.

Theorem 1 has two consequences. First, it strongly suggests
that Definition 7 captures the critical notions of information
preservation. Second, it implies a simple corollary: Every
preserved code for E is noiseless for some other map R ◦ E .
This connection from preserved to noiseless codes is a step
toward proving Proposition 1. Even more importantly, it will
let us derive a structure theorem for preserved codes. To do so,
we need another result.

Lemma 2. Every noiseless code C for E is isometric to a set
of states that are fixed points of E .

This means that noiseless and fixed codes are geometrically
equivalent. A noiseless code does not have to be precisely
fixed, but it will always be isometric to a fixed code, that is, it
will have the same shape. A simple example may be in order.

Example 9. Let E be a channel on two qubits, labeled A and
B, that does nothing to A but depolarizes B:

E(ρAB) = TrB(ρAB) ⊗ 1lB
2

.

Qubit A clearly is an NS under E , whose fixed states are of
the form CNS = ρA ⊗ 1lB

2 . However, there are other noiseless
codes. For instance, let C comprise all states of the form
ρA ⊗ |0〉〈0|B . Qubit B carries no information, so E’s action
on it is irrelevant. None of C’s distinguishability properties
are affected by E , even though C is not actually fixed. Note,
however, that C’s image E(C) is a fixed code. Repeated
applications of E map its noiseless codes to fixed codes.

6In the terminology of Ref. [11], a code C which is fixed by R ◦ E is
referred to as “completely correctable.” That complete correctability
is, in fact, equivalent to correctability can be alternatively established
by exploiting the explicit form of 1-isometric encodings; see Theorem
4 therein.

Lemma 2 implies that a channel has a unique maximum
(largest) noiseless code, which is isometric to the set of all
fixed states:

Corollary 3. Every maximum noiseless code for a channel
E is isometric to the full fixed-point set of E .

A channel can have smaller noiseless codes—even maximal
ones. Consider the following example.

Example 10. Let E be a channel on two qubits, labeled A
and B, which acts as follows: It measures B in the {|0〉,|1〉}
basis; conditional on |0〉〈0| it does nothing; conditional on
|1〉〈1|, it dephases A and flips B to the |0〉〈0| state. Every state
of the form ρA ⊗ |0〉〈0|B is a fixed point, and so the largest
noiseless code encodes a single qubit in A, like in Example 9.
However, there is another maximal noiseless code comprising
all states of the form [p|0〉〈0| + (1 − p)|1〉〈1|]A ⊗ |1〉〈1|B . It
is isometric to a strict subset of the fixed points, so it is not a
maximum code.

Recall that any preserved code can be made noiseless, by ap-
plying a suitable recovery map (Theorem 1). By combining this
theorem with Corollary 3, we establish a direct connection be-
tween arbitrary preserved codes and fixed states of CPTP maps.

Theorem 4. Every maximum preserved code for a CPTP
map E is 1-isometric to the full set of fixed states for some
other CPTP map R ◦ E .

Proof. This follows from combining Lemma 2 with
Theorem 1 and Definition 9. �

This points the way to the structure theorem we are looking
for, provided that we can say something about the fixed points
of the unknown CPTP map R ◦ E . Quite a bit is known
about fixed points of CPTP maps. In particular, if H is finite
dimensional, and the map is unital (meaning that it preserves
the identity operator), then its fixed points form a matrix
algebra [13,14].

A matrix algebra (a.k.a. finite-dimensional C∗ algebra) is a
vector space of complex matrices, closed under multiplication
and Hermitian conjugation. It follows that

(1) The matrices must be square (otherwise they cannot be
multiplied);

(2) The set of all d × d complex matrices (i.e., operators on
a d-dimensional Hilbert space H) is an algebra, denoted Md

or MH henceforth;
(3) The set containing only the d × d identity matrix is an

algebra, denoted 1ld or 1lH.
Happily, these three simple facts are sufficient to describe any
matrix algebra. The structure theorem [38] for matrix algebras
states that any such matrix algebra A is unitarily equivalent to
the canonical form:

A �
⊕

k

MAk
⊗ 1lBk

, (7)

where Ak and Bk are complex vector spaces of dimension dk

and nk , respectively. We will refer to each of the subspaces
Ak ⊗ Bk in the direct sum labeled by k as a “k sector.”
Each k sector factors into a noiseless subsystem (with Hilbert
space Ak) and a noise-full subsystem (with Hilbert space Bk).7

Thus, every matrix algebra is built up out of the two simple

7Note that in the original definition of [3], a decomposition of the
form given in Eq. (7) is applied to the (associative) error algebra as
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components described in points 2 and 3 in the previous list
(the algebra of all d × d matrices, and the trivial algebra).

As remarked earlier, the fixed points of a unital map form an
algebra. Prior to this work (and the results anticipated in [20]),
no such result was known for arbitrary nonunital maps. Before
stating our main structure theorem, we need to define a couple
of terms.

Definition 10.ConsideramatrixalgebraA= ⊕
k MAk

⊗1lBk
,

which induces a Hilbert space decomposition H =⊕
k Ak ⊗ Bk . A distortion map for A is a CPTP map D such

that, for every X = ∑
k MAk

⊗ 1lBk
in A,

D(X) =
∑

k

MAk
⊗ τk,

where τk is a positive semidefinite matrix on Bk that does not
depend on MAk

. D(A) is a distortion of A. A vector space of
matrices Ã is a distorted algebra if it is a distortion of some
matrix algebra A.

A distorted algebra is simply an algebra in which each
identity factor has been replaced with an arbitrary (but
fixed) matrix τk in each k sector. A distorted algebra is
not an algebra under standard matrix multiplication (because
τ 2
k �= τk), although it is under a suitably redefined matrix

multiplication. More importantly, there exist CP distortion
maps that reversibly transform Ã ↔ A, simply by changing
the τk factors. Thus, Ã and A are isometric.

We can now characterize the fixed points of an arbitrary
CPTP map and its adjoint (that is, fixed states and observables).

Theorem 5. Let E be a CPTP map on B(H), and E† its
adjoint. Let Fix(E) be the fixed points of E , and Fix(E†) the
fixed points of E†. Then,

(i) Let P0 ⊆ H be the support of Fix(E). Then P0 is an
invariant subspace under E .

(ii) Let EP0 be the restriction of E to P0, so EP0 ≡ 	0 ◦ E ◦
	0, where 	0 projects onto P0. Then the fixed points of E†

P0

form a matrix algebra A.
(iii) Fix(E) is a distortion of A.
(iv) Fix(E†) is a 1:1 extension of A from P0 to H. That is,

for each X ∈ A, there exists precisely one X′ ∈ Fix(E†) so that
X = 	(X′) = P0X

′P0.
While Theorem 5 is somewhat intimidating (we shall use

all of its pieces in Sec. V), the payoff for its complexity is
that it consistently unifies the Schrödinger and Heisenberg
pictures of information preservation (see also Refs. [3,4,7]).
The Schrödinger approach involves looking at the fixed states
in Fix(E). The Heisenberg approach, on the other hand,
emphasizes observables of the system, which evolve according
to E† (since expectation values evolve as Tr{XE(ρ)} =
Tr{E†(X)ρ}). Fixed states of E in the Schrödinger picture
translate to fixed observables of E† in the Heisenberg picture.
Theorem 5 shows that both such fixed sets are isometric
to the same matrix algebra A. This algebra determines the
structure of preserved codes, so the two pictures (interpreted
correctly) yield equivalent characterizations of preserved
information.

opposed to states, which is why the noiseless factors are identified
with Bk .

Some of the results in Theorem 5 were proved previously,
in different (though related) contexts. Our characterization
of Fix(E†) [parts (ii) and (iv)] follows, in particular, from a
classic operator algebra paper by Choi and Effros [39]. Their
results are substantially more abstract and less constructive, but
Kuperberg subsequently applied them to quantum information
(see Ref. [40], Theorems 2.2 and 2.3). The proofs given
here are self-contained (and perhaps more accessible to
physicists).

The fact that an arbitrary CPTP map’s fixed points are
isometric to a matrix algebra, together with Theorem 4,
nails down the structure of every preserved code. If C is
a preserved code for a channel E , then it is isometric (i.e.,
rigidly equivalent) to a matrix algebra. Furthermore, E’s fixed
points are a subspace of matrices that looks very much like an
algebra—except that each of the identity factors 1lBk

has been
replaced by some fixed matrix τk .

While the domain of E contains all operators on H,
its physical significance comes from its action on positive
semidefinite states. Given any algebra A in the canonical form
of Eq. (7), we can easily identify the setA+ of positive states in
A: A+ contains states of the form

∑
k pkρk ⊗ 1lBk

nk
, where the

{pk} form a probability distribution, and the {ρk} are arbitrary
states on the noiseless factors.

E’s fixed states [Fix(E)+] form a very similar set, compris-
ing states of the form

∑
k pkρk ⊗ τk , where the {pk} and {ρk}

are probabilities and arbitrary states as above, and the τk are
fixed density matrices determined by E . Any set of fixed states
is a fixed code for E , and Fix(E)+ is the unique largest fixed
code. Lemma 2 implies a relationship between noiseless and
fixed codes, which in turn implies

Lemma 6. Let E : B(H) → B(H) be a CP map with a full-
rank fixed point, whose fixed points induce (see Theorem 5)
the decomposition

H =
⊕

k

Ak ⊗ Bk.

Then C is a [convex] maximum noiseless code for E if and
only if C comprises all states of the following form

ρ =
∑

k

pkρAk
⊗ µk, (8)

where the ρAk
are arbitrary states on Ak and each µk is a fixed

(i.e., the same for all ρ) state on Bk .
Note that the lemma is only proved for channels with a

full-rank fixed point. We believe that a similar result can be
proved for arbitrary channels, but there are some tricky details
that obscure the main point. We only need to apply this result to
channels of the form ÊP ◦ E , with ÊP defined in Eq. (6). Each
such channel, from B(P) → B(P), is actually unital [since
ÊP ◦ E(P ) = P ], so it has a full-rank fixed point, and Lemma
6 is sufficient to characterize its noiseless codes: They are
isometric to the channel’s fixed points, which form a distorted
algebra.

So while a channel E typically has a lot of noiseless codes,
they turn out to be trivial variations on a constant theme. The
variation is a gauge—a particular state µk for each of
the noise-full subsystems. The actual information is carried
by the variation in the code states, which differ only on the
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noiseless factors Ak , and in the weights pk assigned to the
different k sectors. This suggests an obvious way to turn
noiseless codes into fixed codes, simply by adjusting the state
of the noise-full subsystems. Doing so enables us to finally
justify Proposition 1 with the following corollary to Lemma 6.

Corollary 7. For every maximum preserved code C, there
exists a CPTP map R such that R ◦ E(ρ) = ρ for all states
ρ ∈ C.

We have finally proved the central proposition of the
previous section, justifying our definition of “preserved.”
If and only if a code satisfies Definition 7, there exists a
recovery operation that makes it into a fixed code, which is
clearly preserved in the strongest possible sense. However,
this depends on Bob’s ability to apply the necessary recovery
immediately after E happens! Section IV considers the effect
of placing operational restrictions on what Bob can do, and
how this can change the criteria for preservation.

We note in passing that the framework presented by Kuper-
berg in [40] is similar and uses much of the same mathematics.
However, it only addressed noiseless and unitarily noiseless
information (a.k.a. infinite-distance codes), not correctable
information, or the relationship between preservation and
correctability.

B. IPSs: The structures that underlie preserved codes

Taken together, the results we have presented thus far
indicate a rigid algebraic structure lurking within each CPTP
map E , which constrains the shape of its preserved and
noiseless codes. The codes themselves are not the structure,
however. There are many noiseless codes, all distortions of the
same algebra. What matters is their shared structure. In fact, all
these noiseless codes are manifestations of a unique noiseless
IPS underlying the channel, which we turn to explore next. We
begin with an example.

Example 11. Consider the two-qubit channel of Example 9,
which depolarizes qubit B. There is an infinite family of
maximum noiseless codes for this channel: If τB is a valid
state for B, then Cτ ≡ {ρA ⊗ τB ∀ ρA} is a noiseless code.
While distinct, these noiseless codes are all equivalent, and
share the same recovery operation, R = 1l. Thus, they are all
manifestations of the same noiseless IPS.

This example demonstrates a noiseless IPS, but a channel
can also have correctable codes that are not noiseless. However,
these codes are noiseless for the appropriate R ◦ E , so the
preserved codes with a common recovery R also share a
common structure. A channel can have multiple preserved
IPSs. In a way, each IPS is akin to a hole in the wall of
noise, through which information can (if properly aimed) pass
unscathed. The preserved codes reflect this structure, but their
diversity can also obscure it. If we can concisely describe a
channel’s IPSs, we have (for all practical purposes) completely
classified its preserved codes.

Let us define “information-preserving structure” more
precisely. Every maximum preserved code is isometric to
an algebra, and preserved codes isometric to the same
algebra are essentially trivial variations on a theme. They are
manifestations of the same underlying IPS.

Definition 11. An information-preserving structure (IPS)
for a CPTP map E is an equivalence class of maximum

preserved codes for E . Two codes are equivalent if they are
isometric to the same algebra, and are preserved according to
the same operational criterion (e.g., Definition 7, Definition 8,
or one of the other operational criteria in Sec. IV) with the
same recovery operation.

The IPS is not itself an algebra. Rather, an IPS is an abstract
structure (an equivalence class of codes), whose properties are
defined by an associated algebra. It is possible for a channel
to have two distinct IPS with the same (isomorphic) algebra.

By looking at the structure theorem for matrix algebras
[Eq. (7)], we can interpret any given IPS. It consists of one or
more k sectors, each of which contains a noiseless subsystem
supported on Ak and a noise-full subsystem supported on Bk .
Any information encoded into the Ak factors will be preserved
by E , whereas any information encoded into the Bk factors is
irreparably damaged. The information-carrying capability of
a code is determined entirely by its underlying IPS; distinct
codes that share an IPS are equivalent, carrying the same kind
and amount of information.

Example 12. Consider a classical stochastic map on four
symbols, {0,1,2,3}, which maps each input symbol to a
mixture of output symbols as follows:

0 → {0,1}, 1 → {2,3}, 2 → {0,2}, 3 → {1,3}.
There are exactly two maximal preserved codes for this

channel, both of which are actually noiseless: {0,1} and
{2,3}. They are equivalent, and both described by the same
(commutative) algebra—but this is merely a coincidence. The
two codes occupy disjoint subspaces of the input, they both
get mapped to output states which span the entire output space
in different ways, they have entirely different recovery maps,
and by changing the channel slightly, we can easily eliminate
either code without affecting the other. They are thus not
manifestations of the same IPS.

To make use of an IPS, Alice and Bob use any of the
equivalent codes associated with that IPS. Each of these codes
is isometric to the IPS’s algebra, so the structure of that algebra
tells us everything about its information-carrying capability.
Since the algebra can be decomposed according to Eq. (7),

A �
⊕

k

MAk
⊗ 1lBk

,

we can represent it concisely by its shape: the vector
{d1,d2, . . . ,dn} listing the dimensions of the information-
carrying factorsHAk

(the noise-full factors are irrelevant). This
is shown pictorially in Fig. 3.

The IPS shape characterizes the type and amount of
information an IPS can carry. A k sector with an HAk

factor of
dimension dk > 1 can carry quantum information. Classical
information is carried by the choice between the different k

sectors. Kuperberg, in Ref. [40], described such a noiseless
IPS as a hybrid quantum memory, capable of simultane-
ously storing or transmitting a certain amount of quantum
information and a certain amount of classical information.
The IPS shape provides a very concise way of describing
the noise-free degrees of freedom within a given system’s
Hilbert space—much more convenient than listing the d4

real parameters required to specify a quantum process on a
d-dimensional Hilbert space!
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FIG. 3. The block-diagonal shape of the matrices (states) com-
prising an IPS.

From a physical standpoint, algebraic structure imposes
a very strong constraint on the types of information that a
quantum process can preserve. A priori, we might suppose
that any subspace of B(H) could be “superselected” by some
process, however, the theorems proved previously rule out
most such possibilities.

Example 13. Consider a single qubit, with H = C2. Its
dynamics will be described by some CPTP map (or family
of them). These dynamics destroy some information while
preserving other information, a.k.a. dynamical superselection.
Although there are infinitely many different kinds of dynamics,
there are only three possible IPSs. The dynamics can preserve
the full qubit algebra M2; or a classical bit, represented (up
to unitaries) by the algebra M1 ⊕ M1 � span({1l,σz}); or
nothing, represented by the trivial algebra {1l}. In particular,
there are no CP maps that single out a rebit (a mythical physical
system described by a two-dimensional real Hilbert space).
This would correspond to preserving information on some
equatorial plane of the Bloch sphere, spanned by σx and σy ,
while annihilating information about σz, as shown in Fig. 4.

But span ({σx,σy}) is not a closed algebra, for σx and σy

generate the full qubit algebra. The fact that no CPTP map can
annihilate σz while preserving σx and σy is known, in quantum-
information folklore, as the “no-pancake theorem.” Our central
result might be thought of as a fully general no-pancake
theorem, since it rules out the dynamical superselection of
all such nonalgebraic IPS.

We can safely talk about “qudits” of information within the
code, specified by the IPS shape. Each qudit corresponds to a
logical subsystem—a d-dimensional Hilbert space within the
full Hilbert space, which need not correspond to a physical

FIG. 4. (Color online) Image of the Bloch sphere under the
nonphysical, non-CP “pancake map.”

subsystem but is nonetheless an independent quantum degree
of freedom. Multiple qudits in a direct sum represent a
classical degree of freedom, for while the different terms in
the direct sum correspond to perfectly distinguishable states,
superpositions across them are not preserved. We can use
these rules to exhaustively catalog all the possible degrees
of freedom (up to unitary rotations) within any given quantum
system.

C. Different kinds of IPS

We identified the weak condition as the weakest reasonable
condition for information to be preserved. It ensures that Bob
can in principle restore the system’s initial state—but, if Bob
has limited resources, then he may be unable to do so in
practice. Still, Bob’s resources may be sufficient to correct
a code that satisfies some stronger condition. Each operational
constraint on Bob defines some condition on C that is necessary
and sufficient for it to be “preserved” in this situation.

One important example has already appeared, noiseless
information (Definition 8). Noiseless codes require no cor-
rection at all, so noiselessness is a very strong condition. In
Sec. IV, we will consider several other conditions. Each such
condition defines a distinct class of IPSs. So amongst one or
more preserved IPSs a channel may support, one may also be
noiseless. A channel’s noiseless IPS is unique, because of its
relationship to the channel’s fixed points (see also Sec. V for
further discussion of this point).

Most of the commonly studied techniques for information
preservation correspond either to a noiseless IPS, or to
a preserved or correctable IPS. Three of the “canonical”
structures that we mentioned in Sec. II—pointer bases, DFSs,
and NSs—correspond to noiseless IPS. Pointer bases have
the shape {1,1,1, . . .}, describing a complete set of one-
dimensional k sectors (both Ak and Bk are trivial for all k).
A DFS has the shape {d}, describing a single k sector with a
trivial HBk

. An NS has the same shape {d}, but it corresponds
to the Ak factor of a single k sector with a nontrivial cofactor
Bk .

The relationship between an NS defined in the traditional
way as discussed in Example 4 and a noiseless IPS as defined
in [20] and in this paper, has some subtleties. A noiseless
IPS rests upon a family of noiseless codes, or sets of states,
whereas the traditional definition of an NS makes no direct
reference to sets of states. The correspondence between the
two frameworks arises because Eq. (5) is satisfied if and only
if there exist noiseless codes. This does not imply that Eq. (5)
has anything directly to do with noiseless codes! In particular,
a set of states {ρAB} satisfying Eq. (5) need not be a noiseless
code.

Example 14. Consider a bipartite system AB with Hilbert
space HAB = H ⊗ H, a channel E that depolarizes system B
but leaves A untouched, and the set of states given by C =
{|ψ〉〈ψ | ⊗ |ψ〉〈ψ |} for all |ψ〉 ∈ H. Since

E(|ψ〉〈ψ | ⊗ |ψ〉〈ψ |) = |ψ〉〈ψ | ⊗ 1l

dim(H)
,

C satisfies Eq. (5). [In fact, every state ρAB satisfies Eq. (5).]
Nonetheless,C is not noiseless. Equation (5) merely guarantees
that a noiseless code will exist.
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Error-correcting codes are built upon preserved IPSs. Most
QECCs are subspace codes, so a code with a recovery
operation R is a DFS of R ◦ E . While every subspace code is
associated to an NS of R ◦ E (as implied by Theorem 6 in [3]),
an operator code (OQECC) is also an NS ofR ◦ E , for the same
R. In each case, the code is built upon the noiseless IPS of
R ◦ E , not of E itself. In fact, E may have no noiseless IPS at
all. However, since these codes are correctable for E , they are
preserved by it, and so they are associated with preserved IPSs
of E .

Example 15. Consider a system of five qubits, and a
channel E that picks one qubit at random and depolarizes it.
This is precisely the error model for which the five-qubit QECC
was developed [41,42], so E has a one-qubit preserved IPS.
However, it has no noiseless codes at all, because repeatedly
applying E will eventually depolarize all five qubits with high
probability.

Example 12 demonstrates that a channel can have more than
one preserved IPS. Each is a noiseless IPS for some R ◦ E (a
consequence of Theorem 1), and may be associated with many
preserved codes, all of which are corrected by the same R. We
would like to have a procedure for listing, or at least counting,
all the IPS for a given channel—but unfortunately we do not
know how to do this.

What we can say (from Theorem 1) is that E’s IPSs
comprise all the noiseless IPSs of R ◦ E for all CPTP maps
R. A simpler and stronger characterization follows from the
structure of the proof. The correction operation for a code
depends only on the code’s support, so every code with
the same support will be corrected by the same operation.
This yields a simpler description: E’s IPSs comprise all the
noiseless IPSs of ÊP ◦ E for all subspaces P ⊆ H.

While this suggests a way of searching for IPSs (just
try every subspace, one at a time), there are uncountably
many subspaces to search (see [17]). It may be possible to
reduce this problem to searching a countable, even finite set.
Unfortunately, it is not possible to do so efficiently. Just finding
the largest classical code for an arbitrary channel is NP hard, so
listing all its preserved IPS is at least this hard. More precisely,
let the size of an IPS be measured by the total number of
perfectly distinguishable states in one of its preserved codes.
Then we have the following:

Lemma 8. The problem of finding the largest preserved
IPS for an arbitrary channel E : B(Hd ) → B(Hd2 ) that maps
a d-dimensional system to a d2-dimensional system is at least
as hard as the NP-complete problem MAX-CLIQUE.

IV. OPERATIONAL CONSTRAINTS AND
PRESERVED CODES

Our focus thus far has been on a single notion of
preservation. We assumed that Alice and Bob were unlimited
in their actions (within the laws of physics), and ended up
with a preservation condition that depended only on whether
E actually destroyed some of the information. In this section,
we will relax this focus, and consider the effect of restrictions
on the sender and receiver. Bob may not want to correct the
channel constantly, or he may not know how many times E has
been applied. Alice may have a faulty encoder—or perhaps
she is not even cooperative. Operational constraints of this

sort lead to alternative conditions for preservation. We shall
discuss some of the most useful and interesting operational
constraints, and the corresponding types of IPS.

A. Infinite-distance IPSs

Suppose we want to store information in a physical system
for a time T > 0, during which E will be applied n times.
Further, we cannot perform any active operations on the system
during this period. Then the information carried by a code C
remains intact only if C is preserved by the channel En. If T

(or n) is unknown in advance, C has to be preserved by all
possible powers of E . One example of a channel for which this
holds is a unitary channel:

E(·) = U (·)U †, (9)

for some unitary U . A unitary channel adds no noise at all; it
just rotates the code around, and the actual rotation depends on
how many times it is applied. As long as we know how many
times U has been applied, we can recover any initial state by
applying U−n.

This kind of behavior can be found even in channels that
are not purely unitary.

Example 16. Consider a channel on two qubits, labeled A
and B, which applies a unitary U to qubit A and depolarizes
qubit B. The channel is not unitary, for it adds entropy to
any pure state—but nonetheless, it acts unitarily on qubit A.
The code C = {ρA ⊗ 1lB

2 ∀ ρA} is preserved by any number of
applications of E .

We shall refer to a code that remains preserved no matter
how many times E is applied as unitarily noiseless under E .
Formally, we define a unitarily noiseless code as in Ref. [20].

Definition 12. A code C is unitarily noiseless under a CPTP
map E if and only if it is preserved by En for any n ∈ N.

Notice that to retrieve the information stored in a uni-
tarily noiseless code, we need to know the value of n (or,
equivalently, the length of time T ), in order to construct the
appropriate Helstrom measurement. In the previous example,
if we lose track of n, then qubit A will get dephased in the
diagonal basis of U . Ensuring that unitarily noiseless codes
are preserved indefinitely requires a good clock.

Are there codes for which we do not even need a clock?
Certainly—for instance, a code containing fixed states of E .
Such a code is fixed not only by E , but also by En for
any n, and by any convex combination

∑
n qnEn (where

{qn} is a probability distribution). So someone ignorant of
n can describe the process by a mixture of different En,
and information in a fixed code is still preserved! Moreover,
only the information-carrying part of the code needs to be
invariant under repeated applications, which is the operational
motivation for noiseless codes (Definition 8).

Noiseless and unitarily noiseless information are preserved
indefinitely. No matter how many times E is applied, we can
still distinguish code states. In classical information theory, the
number of errors (i.e., bit flips) required to transform one code
word into another is called the distance of the code. Under
the more general definition of distance introduced by Knill
et al. [3] (based on defining a single application of E as an
“error”), noiseless and unitarily noiseless codes are infinite-
distance codes, with respect to the noise model defined by E .
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Each infinite-distance code is a manifestation of an underlying
noiseless or unitarily noiseless IPS. Infinite-distance IPSs may
be viewed as degrees of freedom into which E introduces no
entropy at all, transforming them reversibly (if at all). We
do not have to pump entropy out of infinite-distance IPS, and
so no active error correction is required. For this reason, these
have also been called passive error-correcting codes.

B. Constraints on the recovery operation

Suppose that we can do something to the system in
between applications of E . This is crucial whenever the
channel preserves information, but maps it to a part of the
Hilbert space that is unprotected against further applications
of E . Now we must intervene, applying active correction to
move our precious information back into protected sectors,
and ensure its continued survival. If we can do absolutely
anything, then we can correct any preserved code (thanks to
Theorem 1). In practice, however, we may only be able to
do certain operations. Any CPTP map can be decomposed
into (i) a POVM measurement, followed by (ii) a conditional
unitary that depends on the outcome of the POVM. This
decomposition suggests two natural restrictions on R: It can
consist only of a measurement, or it can be completely unitary.

1. Measurement-stabilized codes

If unitary operations are costly or noisy, but measurements
can be performed relatively quickly, the only “corrections”
that we can perform effectively are pure measurements. For
our purposes,8 a measurement is a POVM defined by a set of
effects,

M = {Em}, where
∑
m

Em = 1l and Em � 0.

The outcome of such measurement is a particular value of m,
with probability Pr(m) = Tr(Emρ), and a postmeasurement
state,

ρ → E
1
2
mρE

1
2
m,

where E
1
2
m is the unique positive semidefinite square root of

Em.
Can we use measurements to correct noise? At first, it

seems implausible—after all, while a measurement provides
information, it actually does not do anything. However, the
existence of unitarily noiseless codes shows that passive
information gain, such as knowing how many times E has
been applied, can be useful. This motivates a definition of
measurement-stabilized codes, whose information is preserved
indefinitely provided that a measurement is performed after
every application of the channel.

8This careful definition may seem pedantic. However, “measure-
ments” are sometimes defined very generally, with an update rule
involving any square root of the effect Em. This trivializes our distinc-
tion between measurements and arbitrary CP maps. The convention
we adopt here is known as Lüder’s Rule, and defines the unique
minimally disturbing (and maximally repeatable) implementation of
a given measurement.

Definition 13. A code C is measurement stabilized for a
CPTP map E if there exists a measurement M = {Em} such
that, conditional on any outcome m, C is unitarily noiseless for
M ◦ E .

Stabilizer codes for Pauli channels [25] are an example of
measurement-stabilized codes. Stabilizer codes divide the sys-
tem into two degrees of freedom, the code and the syndrome.
Measuring the syndrome “collapses” the error, revealing which
Pauli unitary transformed the information-carrying subsystem.
In the usual paradigm, we would undo this unitary—but this is
not actually necessary, as long as we keep track of the current
“Pauli frame” [43] by recording the results of each syndrome
measurement as the system evolves.

The key to reconciling the behavior of stabilizer codes with
Definition 13 is conditioning on the syndrome measurements.
Since each syndrome measurement collapses the syndrome
subsystem into a particular basis state, we can see the overall
system’s dynamics, conditional on the measurement record,
as a rather strange time-dependent unitary evolution: At each
time step, the code subspace gets transformed by some Pauli
operator Pl , and the syndrome state jumps from |k〉 → |k + l〉.
Since the code evolves unitarily at every step, it is unitarily
noiseless, and the information in it can be recovered at any
time.

At first glance, this may seem trivial, for as we observed
above, any correction operation R can be written as a
measurement followed by a conditional unitary. So, given a
generic correctable code, couldn’t we just do the measurement,
skip the conditional unitary, and keep track of which unitary
we did not do? This does not work, in general, because E
may have moved the code to a different subspace which is not,
itself, a preserved code. Stabilizer codes for Pauli channels can
be measurement stabilized because they actually comprise a
large set of preserved codes, and (conditional on the syndrome
measurement) the channel merely permutes the codes while
transforming them unitarily. It is an open question whether all
measurement-stabilized codes are of this form (that is, a large
set of isomorphic codes, indexed by a syndrome), or if the
previous definition permits other structures.

2. Unitarily correctable codes

In some systems, we have the opposite situation: Measure-
ments are slow and/or hard, while unitary evolution is fast
and relatively easy (liquid-state NMR quantum computation
is an extreme example; most solid-state architectures also fall
into this category). Now we can only apply unitary gates after
each application of E . The authors of Ref. [31] considered
this situation, and demanded that there exist a unitary matrix
U on H = (HA ⊗ HB) ⊕ HC such that TrB{UE(ρAB)U †} =
TrBρAB for all ρAB ∈ B(HA ⊗ HB). The A subsystem is a
unitarily correctable9 subsystem (see also [19]).

Definition 14. A code C is unitarily correctable for a channel
E if there exists a unitary correction map U(·) = U · U †, for
some unitary operator U , so that C is noiseless for U ◦ E .

9The authors of [31] called this “unitarily noiseless,” but we believe
the term “unitarily correctable” is more appropriate.
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Unitarily correctable codes are interesting in part because
E does not inject entropy into the code states.10 If it did,
the error could not be corrected by a unitary operation.
Kribs and Spekkens considered unitarily correctable codes in
some detail in Ref. [19], and noted that while any preserved
code is “unitarily recoverable”—that is, there is a unitary
that puts the information back into the subsystem where it
originated—this need not suffice to correct the errors, and
cooling may be required to protect the information against
subsequent iterations of the noise. Sufficient conditions for
unitary correctability have likewise been directly derived from
the structure of 1-isometric encodings [11] (see, in particular,
Proposition 1 therein).

Example 17. Consider two qubits labeled A and B, and let
E act as follows: B is measured in the {|0〉,|1〉} basis; if the
result was “1”, then A is depolarized. Finally, B is depolarized.
The code C = {ρA ⊗ |0〉〈0|B ∀ ρA} is preserved. It is unitarily
recoverable—in fact, no recovery is necessary because the
information remains in the A subsystem. It is not unitarily
correctable, however, because unless B is cooled to the
|0〉 state, E’s next iteration may damage the information.

Kribs and Spekkens also pointed out that under certain
circumstances, unitarily correctable codes can be found effi-
ciently. This observation is closely related to our next topic.

C. Unconditionally preserved information

If a code C is preserved, then Bob can distinguish between
states in C (and their convex combinations) just as well as
Alice. So if we want to know “Was the system prepared in
|ψ〉 ∈ C?,” Bob can answer just as well as Alice could have, by
discriminating |ψ〉〈ψ | from a convex combination of all states
orthogonal to |ψ〉. What he cannot do is determine whether the
initial state was in C. Information is preserved conditional on
the system being prepared in C, as illustrated by the following
example.

Example 18. Let E be the following [effectively classical]
channel from a d-dimensional system to itself. On the subspace
Hd−1 spanned by {|0〉 . . . |d − 2〉}, E acts as the identity
channel. However, |d − 1〉 is decohered and mapped to the
maximally mixed state 1

d
1l.

The code comprising all states on Hd−1 is preserved, so
Bob can distinguish between |0〉 and any convex combination
of |1〉 . . . |d − 2〉. If the input state was supported on Hd−1,
Bob can determine whether |0〉 was prepared. Without this
promise, however, any measurement result on the output is
consistent with the input state |d − 1〉.

Sometimes, a channel preserves some properties of the
input state irrespective of what it is. For instance, if E is the
identity channel, then Bob can make any measurement that
Alice can. His conclusions from those measurements do not

10Actually, it is slightly more technical than this: Given any unitary
correctable code, there is another code associated with the same
unitarily correctable IPS, into which E does not inject any entropy.
This is directly related to the fact that a code can be noiseless without
being fixed—in both cases, repeated application of E , or U ◦ E ,
causes the code to converge toward a fixed code, whose entropy
does not increase thereafter.

outputinput

s1

s2

s3

s4 s4

s3

s2

s1

FIG. 5. (Color online) An input-output graph for a classical
channel on four states. Vertices on the left represent input states,
those on the right represent output states, and edges represent possible
mappings.

depend on any prior information about the input. The following
example is less trivial.

Example 19. Consider the classical channel whose action
is shown in Fig. 5, which corresponds to a stochastic map of
the form,

E =

⎛
⎜⎜⎜⎝

1 1 0 0

0 0 1
2 0

0 0 1
2

1
2

0 0 0 1
2

⎞
⎟⎟⎟⎠ .

Bob can measure {1′} versus {2′,3′,4′}, and from the
result infer exactly what Alice would have gotten had she
measured {1,2} versus {3,4}. So this property of the input
state is unconditionally preserved: No matter what the input
state was, Bob can determine whether it was in {1,2}
or not. Note that unconditional preservation need not be
related to noiselessness—applying this channel twice ruins the
information.

This illustrates unconditionally preserved information. The
most natural way to define unconditional preservation is not
in terms of states or codes, however, but rather in terms of
measurements (see also Ref. [7], in which closely related ideas
are developed).

Definition 15. Let E : B(H) → B(H′) be a channel, and
M = {P1, . . . ,Pn} a projective measurement on Hilbert space
H (so

∑
k Pk = 1l). Then M is unconditionally preserved by

E if and only if there exists another measurement M′ =
{Q1, . . . ,Qn} on H′ such that M′ simulates M: that is,
Tr[Pkρ] = Tr[QkE(ρ)] for all density matrices ρ on H.

This condition on measurements is based in the Heisenberg
picture of quantum mechanics, in which states stay fixed, but
measurements evolve according to E†. In order for M to be
unconditionally preserved, there must be some measurement
M′ that evolves into M. We can also define an equivalent
condition on states.

Definition 16. A code C is unconditionally preserved by a
channel E if and only if the Helstrom measurement for every
weighted pair of states {pρ, (1 − p)σ } in the convex closure
of C is unconditionally preserved.

062306-13



BLUME-KOHOUT, NG, POULIN, AND VIOLA PHYSICAL REVIEW A 82, 062306 (2010)

The second definition is strictly more general: Every
unconditionally preserved measurement M = {P1, . . . ,P2}
can be identified uniquely with a code,

C =
{

P1

Tr(P1)
, . . . ,

Pn

Tr(Pn)

}
,

which is unconditionally preserved if and only if M is. Every
classical code whose support is all of H defines a single
unconditionally preserved measurement. Quantum (or hybrid)
codes whose support is all of H define entire algebras of
unconditionally preserved measurements. Codes restricted to
a subspace do not generally correspond to unconditionally
preserved measurements.

The code associated with a given unconditionally preserved
measurement spans the entire Hilbert space. Therefore, fol-
lowing the proof of Theorem 1, it can be corrected using
a transpose map ÊP—where P is the entire Hilbert space!
Since this statement holds for every unconditionally preserved
measurement, we can correct every unconditionally preserved
code using a single unique recovery, which we denote Ê :

Ê(·) = E†(E(1l)−
1
2 (·)E(1l)−

1
2
)
. (10)

It follows that every unconditionally preserved measurement
consists of projectors Pk that are fixed points of Ê ◦ E . There
exists a unique unconditionally preserved IPS, which contains
all the unconditionally preserved codes. Moreover, we can find
its structure quite easily by constructing and diagonalizing
Ê ◦ E . Other codes are hard to find, precisely because we need
to know their support P .

Kribs and Spekkens observed that if E is unital [that is,
E(1l) = 1l], then its unitarily correctable codes are fixed points
of E†E . This is an interesting special case of unconditional
preservation. If C is unitarily correctable, then the channel does
not add any entropy to it—thus, every pure state in the code
remains pure. But if E is unital, it cannot map two orthogonal
subspaces to overlapping subspaces of the same size, because
this would cause a pile-up of probability on the overlapping
portion. So every unitarily correctable code for a unital channel
must be unconditionally preserved, because no other subspace
can be piled on top of it in the output space. Finally, for a
unital channel, Ê = E†, so E† corrects every unconditionally
preserved code.

V. APPLICATIONS

In this section, we present three applications of the IPS
framework that we have derived. First, we state a very simple
algorithm that efficiently finds all noiseless and unitarily
noiseless codes for a given map E . We then present a similar
algorithm to find all the unconditionally preserved codes.
Finally, we show how to address so-called “initialization-free”
DFSs and NSs within our framework.

A. Finding infinite-distance codes

Our discussion suggests a natural strategy for finding all
the preserved codes of a channel E : First, find all its preserved
IPSs; then build codes from the IPSs. Unfortunately, there
is a potential IPS for each and every subspace P ⊆ H. So,
searching for IPSs seems to require an exhaustive search over

all subspaces of H (see [17]). We can find some preserved
codes by picking particular subspaces, but we may not find the
largest IPS (or any of them). Since the problem is NP hard, an
efficient algorithm seems unlikely (though it should be noted
that we have only proven that finding the best classical code is
NP hard—other special cases, for instance, the largest quantum
code, might conceivably be easier).

Let us focus instead on noiseless codes. The noiseless IPS
of E is unique because all the maximum noiseless codes are
isometric to E’s fixed points. So, to find the unique noiseless
IPS, we need only determine the structure of E’s fixed points.
Theorem 5 defines this structure, and suggests an efficient
algorithm to find it.

Algorithm for finding noiseless IPS

(1) Write E as a d2 × d2 matrix, where d is the dimension
of the Hilbert space.

(2) Diagonalize the matrix, and extract its eigenvalue-1 right
and left eigenspaces [corresponding to Fix(E) and Fix(E†),
respectively].

(3) Compute P0, the support of Fix(E), and project Fix(E†)
onto P0 to obtain a basis for A.

(4) Find the shape of A.
In the last step, we need to find the canonical decomposition,

Eq. (7), of a finite-dimensional matrix algebra specified
as a linear span. This can be done efficiently using, for
example, the algorithm presented in Ref. [44]. This canonical
decomposition step is also present in existing algorithms for
finding NSs [17,18]. Our algorithm improves on previous
algorithms by providing a straightforward method of finding
A as a linear span. Its hardest step is diagonalizing a d2 × d2

matrix, which runs in time O(d6). As such, it is more efficient
than algorithms (such as [16,17]) that require exhaustive search
over states or subspaces inH, for these sets grow exponentially
in volume with d.

We can generalize this algorithm to find an arbitrary
channel’s unitarily noiseless IPS. Whereas the noiseless IPS
consists of E’s fixed points—operators X such that E(X) =
X—the unitarily noiseless IPS consists of rotating points,
operators X such that E(X) = eiφXX.

Definition 17. Let E : B(H) → B(H) be a CPTP map.
An operator X ∈ B(H) is a unitary eigenoperator of E if
and only if E(X) = eiφX for some φ ∈ R. The rotating
points of E comprise all operators in the span of its unitary
eigenoperators.

Note that a rotating point need not be an eigenoperator—for
instance, a linear combination of two unitary eigenoperators
with different phases is a rotating point, but not itself an
eigenoperator. As an example, consider the unitary qubit
channel E(ρ) = e−iφσzρeiφσz . The Pauli operators σx and σy

are not eigenoperators, but they are rotating points.
Lemma 9. If C is a maximum unitarily noiseless code for

a CP map E , then C is isometric to the set of all (positive
trace-1) states in the span of the rotating points of E . In other
words, there exists a map Einf such that ‖pEinf(ρ) − (1 − p)
Einf(σ )‖1 = ‖pρ − (1 − p)σ‖1 for any ρ,σ ∈ C, p ∈ [0,1],
andEinf(ρ) andEinf (σ ) are in the span of the rotating points ofE .

We adapt the algorithm for finding a noiseless IPS by
shifting its focus from fixed points to rotating points. It is
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useful to note that the support of the rotating points is the
same as the support P0 of the fixed points. Therefore, we just
need to replace step 2 previously mentioned by the following:
(2′). Diagonalize the matrix, and extract the right and left

eigenoperators with unit modulus eigenvalues. Let Fix(E)
[Fix(E†)] be the linear span of the unit-modulus right (left)
eigenoperators.

This again runs in time O(d6) as before. It is (to our
knowledge) the first efficient algorithm to find unitarily
noiseless codes for arbitrary channels. We note in passing that
both algorithms—for finding noiseless and unitarily noiseless
IPS—rely on the codes having infinite distance, so they are
unlikely to be adaptable to finding other kinds of IPS.

B. Finding the unconditionally preserved IPS

We know that preserved codes are in general hard to find,
but in the previous section we saw how to take advantage of
infinite-distance codes’ structure to find the unique noiseless
and unitarily noiseless IPSs. Unconditionally preserved IPSs
are another special case. A channel has a unique uncondition-
ally preserved IPS, and we can find it efficiently. The algorithm
is extremely simple: Construct

Ê(·) = E†(E(1l)−
1
2 (·)E(1l)−

1
2
)

(11)

as a matrix, diagonalize Ê ◦ E , and extract its fixed points (the
eigenspace with eigenvalue +1). These will form an algebra,
which defines the IPS we are looking for.

However, one might reasonably inquire why the uncon-
ditionally preserved IPS is interesting and useful. If we ask
“What information is preserved by a given channel E?” then
one possible answer consists of an exhaustive list of all the
channel’s preserved IPSs. This is somewhat unsatisfactory for
three reasons. First, we do not know how to find such a list
(though we know that it is generally hard). Second, it might be
very very long, even for channels on small systems. Third,
the preserved codes corresponding to these IPSs represent
information that could be preserved by the channel, depending
on what the sender chooses to do, and conditional upon prior
agreement between sender and receiver.

Unconditional preservation provides an alternative answer.
Every channel has a unique unconditionally preserved IPS,
comprising all the information that is definitely preserved
by E . In the important case where the “sender” is a natural
process, this IPS represents everything that the observer
can determine with certainty. Any further conclusions are
only valid conditional upon certain prior assertions about the
“distant” system (e.g., that its state lay in some subspace P).
This interpretation alone is sufficient reason to consider the
unconditionally preserved IPS—independent of the happy
accident that it is unique and easily calculable.

C. Initialization-free DFS and NS

As discussed in Sec. III C, DFSs and NSs are manifestations
of E’s noiseless IPS. Since a DFS is just an NS with a
trivial noise-full subsystem, we shall focus on the NS.11

11Ref. [27] actually discusses a more general case, allowing unitary
evolution of the NS. This is what we call a unitarily noiseless code.

We can demand further operational requirements on an NS.
One particular criterion is robustness against initialization
errors—that is, we demand not only that information encoded
in the NS be preserved indefinitely, but also that if Alice failed
to prepare a state within the NS, that this can be detected by
Bob. Such “initialization-free” (IF) NS were first studied in
Ref. [27], and have been further characterized in Ref. [28] in
the context of Markovian dynamics.

If we decompose the system’s Hilbert space as

H = (A ⊗ B) ⊕ C,

and A supports an NS, then we can write an arbitrary density
operator in the following block form:

ρ =
(

ρAB ρ̄

ρ̄† ρC

)
. (12)

The NS is said to be perfectly initialized whenever ρ̄ and
ρC are zero. If, in practice, it is not possible to guarantee
preparation within A ⊗ B, then we need a special kind of
NS that is insensitive to such initialization errors. The NS is
initialization-free if the (possibly subnormalized) state ρAB on
A ⊗ B satisfies the NS condition of Eq. (5), even when ρC is
not zero. In other words, an IF-NS is one that is immune to
interference coming in from orthogonal subspaces of H (i.e.,
states that would not have been prepared if the system had
been perfectly initialized).

Our framework, as it turns out, provides a simple and
elegant condition for initialization-free NSs: An NS is IF if
and only if it is noiseless and unconditionally preserved. So,
we can find a channel’s IF noiseless structures by intersecting
its noiseless IPS and its unconditionally preserved IPS. In
the remainder of this section, we will demonstrate this
equivalence.

Given a Hilbert space H and a channel E , the chan-
nel’s noiseless IPS defines a subspace decomposition H =
P0

⊕
P0. Subspace P0 is the support of the noiseless IPS.

The noiseless IPS also defines a canonical decomposition of
P0 into k sectors (Ak ⊗ Bk), so we write the Kraus operators
of E accordingly, as

Ki =
(∑

k 1lAk
⊗ κi,Bk

D′
i

0 C ′
i

)
. (13)

Each k sector is an invariant subspace. So each NS (Ak)
is automatically resilient to initialization errors that prepare
states in the wrong k sector (but still within P0).

However, if faulty initialization puts support on P0, then
this error may spill into the noiseless sector. Specifically, the
D′

i blocks in Eq. (13) map P0 into P0, which can interfere
with information stored in noiseless codes. Since every NS is
immune to interference from other k sectors within P0, let us
consider interference from P0.

To be consistent with the usual definition of NS, we use the “strict”
NS condition given in Eq. (5), but everything in this section can easily
be generalized by using a channel’s unitarily noiseless IPS instead of
its noiseless IPS.
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Consider, for the sake of simplicity, a noiseless IPS
containing a single k sector, so P0 = A ⊗ B [as in Eq. (12)].
Let P be the projector onto P0. The Kraus operators are

Ki =
(

Ai Di

0 Ci

)
, (14)

and if the initial state is ρ as given in Eq. (12), then the final
state on P0 = A ⊗ B is

PE(ρ)P =
∑

i

AiρABA
†
i +

∑
i

DiρCD
†
i

+
∑

i

(Aiρ̄D
†
i + Diρ̄

†A†
i ). (15)

For perfect initialization, only the first term is present. The re-
maining terms represent interference from faulty initialization
on P0. The NS is IF if and only if they vanish, which requires∑

i

DiρCD
†
i = −

∑
i

(Aiρ̄D
†
i + Diρ̄

†A†
i ). (16)

Since ρC is positive semidefinite, the left-hand side of Eq. (16)
is also positive semidefinite. But the right-hand side of Eq. (16)
must be traceless, because in order for E to be trace preserving,∑

i A
†
i Di = 0, and so

Tr

[∑
i

(Aiρ̄D
†
i + Diρ̄

†A†
i )

]
= 2ReTr

(∑
i

A
†
i Diρ̄

†

)
= 0.

(17)

So the left-hand side is positive semidefinite and traceless,
which means it vanishes—and so Eq. (16) holds if and only if∑

i DiρCD
†
i = 0 for all ρC—which implies Di = 0 for all i.

This means that in order for an NS whose support is Pk =
Ak ⊗ Bk to be IF, the channel must not map anything from P0

into Pk . That is, Pk is orthogonal to E(ρC) for every ρC � 0
on P0 (and, by Lemma 1.1 in Appendix B1, it is sufficient
to consider just one full-rank ρC on P0). But this is precisely
the condition for the corresponding code to be unconditionally
preserved: Bob must be able to determine whether the system
was correctly initialized, which means that the channel must
not map any part of P0 back into Pk .

VI. CONCLUSIONS AND OUTLOOK

We have presented a framework characterizing the informa-
tion preserved by a quantum process, described by an arbitrary
CPTP E map acting on a finite-dimensional quantum system.
Information is carried by codes; codes are preserved if their
associated information can be extracted after passing through
the channel; preservation implies correctability. Preserved
codes are built upon the channel’s information-preserving
structures (IPSs), which in turn inherit matrix algebra structure
from fixed point sets of CPTP maps. This allows for a
very elegant and concise description of the full information-
carrying capability of any code. We also discussed several
operational variations on preservation, with particular attention
to infinite-distance codes, and applied the theory to find all of

a channel’s noiseless, unitarily noiseless, and unconditionally
preserved codes.

A number of important open problems and directions
for further investigation remain. We have not explicitly
addressed continuous-time quantum processes. Such a process
is described by a one-parameter family {Et : t � 0} of CPTP
maps. A special subclass with particular physical significance
is Markovian noise, where E(t) = etL for some Liouville
semigroup generator L [45]. In principle, our definitions
of noiseless and unitarily noiseless codes extend to the
Markovian setting, suggesting connections to recent studies
of DFSs and NSs under Markovian noise (see in particular
Refs. [27,28,46,47]), and to earlier approaches such as “damp-
ing bases” developed in the context of quantum optics [48].
However, we believe it will be necessary to extend our notion of
correctability to address continuous-time QEC, as developed,
for instance, in [49].

Our analysis has focused on information preservation
under the uncontrolled (“free”) evolution of an open system.
The ability to control that system’s dynamics while it is
experiencing noise (rather than correcting the errors after
they occur) raises questions that are interesting for practical
quantum information processing and from a control-theoretic
perspective. It would be valuable to know how to synthesize
dynamics that support a given (desired) IPS, using externally
applied control, much as DFSs or NSs can be engineered using
open-loop unitary manipulations [50] or closed-loop feedback
protocols [28,46].

Our current framework does not address “postselec-
tive” preservation of information, where the information is
preserved conditional on a particular measurement outcome.
Another natural direction for generalization is to relax the
“zero-error” requirement, looking at imperfectly preserved
information under CPTP channels or more general noisy
dynamics. Preliminary investigations [10] indicate that partial
extensions of some of the structures present in the perfect case
carry over to the approximate case, but a variety of interesting
complications arise. A final question that deserves further
investigation arises when the information-carrying system
is not initially fully decoupled from its environment. This
particular kind of initialization error can produce noise which
cannot be described by CP maps, and its analysis must address
the influence of (weak) initial correlation with the environment
on the information (supposedly) stored within the system.
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APPENDIX A: OUR FRAMEWORK FOR ANALYZING
INFORMATION

1. Our notion of information: Relation to Shannon theory

The most common technical meaning of “information”
comes from Shannon’s theory of communication [21,22,51].
Here, Alice and Bob are connected by a communication
channel E (a dynamical map between input states and output
states), and also have:

(1) A code book that tells Bob which signals Alice might
send;

(2) The patience and ability to send signals requiring
arbitrarily many uses of the channel;

(3) A willingness to tolerate a very small probability of
failure;

(4) A guarantee that E will be applied exactly once.
Although this paradigm is the backbone of both classical

and quantum information theory, it is not unique. Any or all
of the above resources may be unavailable:

(1) Sometimes there is no code book restricting the possible
signals. In scientific applications, the source of information
is generally a natural phenomenon rather than a canny and
cooperative sender. This observational paradigm restricts the
questions whose answers the receiver can learn.

(2) In real-time applications, a signal has to be transmitted
within a strictly limited number (N ) of channel uses. This
eliminates the second resource (encoding over arbitrarily
many uses), and motivates single-shot capacity: What can we
accomplish with a single use of the channel E⊗N?

(3) Some applications demand perfect reliability. This elim-
inates the third resource (tolerance of arbitrarily small failure
probability), and yields zero-error information theory [52,53].

(4) Memory devices, which store information rather than
transmitting it, may violate the guarantee that E is applied
exactly once. We may wish our information to be preserved
for an arbitrary number of clock cycles, or E may be a snapshot
of a continuous process. When E may be applied many
times, we turn to error correction. Correctible information
requires active correction after each iteration of E ; noiseless
information persists through repeated iterations of E with no
intervention.

In this paper, we are concerned primarily with identifying
the kinds of information that can be preserved, rather than
the rate at which information can be sent or stored. So, we
focus on zero-error information and the single-shot paradigm.
This does not really affect the generality of our results: Since
they apply to arbitrary channels, we can discuss E⊗N for any
N . We do not know for certain, however, whether tolerating
an asymptotically small amount of error changes the kinds of
information that can be preserved by E⊗N .

The other two resources (a pre-existing code book, and
exact knowledge of E) are quite important. They yield
different preservation criteria, with substantially different
consequences, and we consider them separately.

2. On the usefulness and generality of codes

Our framework for analyzing preserved information relies
on codes to describe different kinds of information. A code
is an arbitrary set of preparations (states) for a physical
system S, representing the alternatives available to the sender.

Essentially, a code describes a very generalized “subsystem,”
in which information can be encoded. We settled on this for-
malism after quite a bit of thought and exploration, and expect
that some readers may seek a more extensive explanation of
why we believe it is useful, general, and powerful. The most
efficient way to do so might be to anticipate some potential
objections.

(1) Using “questions” to define information seems inher-
ently classical, and inadequate to describe quantum informa-
tion. The idea of a question, with a definite answer, is indeed
inherently classical. Human beings are unavoidably classical,
and as Bohr famously insisted [54], our descriptions and
perceptions of Nature are always classical. As such, we believe
that a precise and general definition of “information” must rely
on classical concepts. We can nonetheless describe quantum
information in this framework. The difference between a
classical bit and a quantum bit is that the bit admits just
one sharp question, “Is the bit 0 or 1?” whereas the qubit
supports an infinite continuum of inequivalent sharp questions,
“Is the qubit in state |ψ〉 or state |ψ⊥〉,” for every orthogonal
basis {|ψ〉,|ψ⊥〉}. By using classical questions as a common
denominator to define both classical and quantum information
in the same lingua franca, we have a framework that is open to
novel forms of information—rather than begging the question
of whether they exist.

(2) This definition does not seem to capture entanglement
as a form of information—that is, that E might preserve entan-
glement between S and a reference system R. Entanglement
is a peculiarly quantum form of correlation, wherein the state
of S is conditional upon observations on the reference system.
ProjectingR into a state |ψ〉 steers [55]S into a corresponding
ρψ . It is not difficult to show that E preserves this entanglement
if and only if it also preserves the code comprising all ρψ into
which S can be steered. Thus, the code paradigm does address
entanglement as a form of information.

(3) Preserved information should be addressed in the
Heisenberg picture, by considering preserved observables
rather than states. In fact, our analysis proceeds along these
lines; we demand that every measurement for distinguishing
between code states be reproducible on Bob’s end. However,
the code C is a crucial ingredient in defining a kind of
information, because it determines which measurements need
to be reproducible! Otherwise, it is easy to identify all
POVMs that can be reproduced on Bob’s end with “preserved
information” [7], an approach that we believe is subtly flawed.
A preserved measurement M represents perfectly preserved
information only if there is some circumstance under which
Alice would measure M in order to answer a question. If M
is inherently noisy and error-laden, then for any question Alice
might ask, there is always some M′ that would yield a better
answer. The fact thatM can be reproduced by Bob is irrelevant
if Alice would never choose to make that measurement.

(4) The whole idea of a code is appropriate only in the
communication-theoretic paradigm, not the observational one.
If the input to the channel is controlled by an oblivious system
(e.g., a distant star) rather than a cooperative sender, then
the receiver or observer cannot rely on preparation within
the code. This is correct—and yet the framework works
nonetheless. If any information is perfectly preserved by the
channel, then there must be at least two input states that
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remain distinguishable at the output. Conversely, if the channel
mixes up every pair of input states, then there is absolutely
no question that Bob can answer as well as Alice. It is true
that the semantic meaning of a “code” is inappropriate to
the observational paradigm, since an oblivious “sender” is
unlikely to cooperate by carefully preparing within a code.
Ultimately, this is why we focus not on codes, but on the
underlying IPS. The existence of a preserved code is merely
a symptom of the underlying structure; if a code exists, then
there is potentially an entire equivalence class of codes. This
is especially true in the case of unconditionally preserved
information (the only kind relevant to observation), where the
recovery map Ê [recall Eq. (11)] does not depend on any prior
information about the code (e.g., a subspace projector P ). An
unconditionally preserved IPS is isometric to a subalgebra that
spans the system’s entire Hilbert space (rather than a subspace
P). Every observable in this algebra can be observed faithfully
by the observer at the channel’s output. Thus, in this situation,
the code framework is ancillary to the real question—but it
works nonetheless.

APPENDIX B: PROOFS

In this section, we present complete proofs of the technical
results stated in the main text.

1. Preserved information is correctable

Theorem 1. A [convex] code C is correctable for E if and
only if it is preserved by E .

Proof 2. The “only if” direction is straightforward. For
any ρ,σ ∈ C, any p ∈ [0,1], define the weighted difference
� = pρ − (1 − p)σ . If C is correctable, then there exists a
CPTP R such that, for every such �, ‖�‖1 = ‖(R ◦ E)(�)‖1.
The 1-norm is contractive under CPTP maps [36], so

‖(R ◦ E)(�)‖1 � ‖E(�)‖1 � ‖�‖1.

Combining these two expressions yields ‖E(�)‖1 = ‖�‖1,
which means that C is preserved by E .

To prove that preservation implies correctability, we give
an explicit correction operation. This operation is known as
the transpose channel [37], defined as

ÊP = 	 ◦ E† ◦ N ,

where P is the joint support of all ρ ∈ C, 	 is the projection
onto P , P is the projector onto P , E† is the adjoint map of
E , and N is a normalization map given below. If the operator
sum representation (OSR) of E is

E(ρ) =
∑

i

EiρE
†
i ,

then the OSRs for these maps are

	(ρ) = PρP,

E†(ρ) =
∑

i

E
†
i ρEi,

N (ρ) = E(P )−
1
2 ρE(P )−

1
2 ,

ÊP (ρ) =
∑

i

(
PE

†
i E(P )−

1
2
)
ρ
(
E(P )−

1
2 EiP

)
.

Note that the inverse in E(P )−
1
2 is taken on the support of

E(P ). It is simple to verify that ÊP is a trace-preserving CP
map.

To prove that ÊP corrects the code C, we need a couple
of technical lemmas. The first makes rigorous the notion of a
channel’s action on a subspace.

Lemma 1.1. Let E : B(H) → B(H′) be a CP map, and X0

be a positive semidefinite operator on H. If X is an operator
on the support of X0, then E(X) is an operator on the support
of E(X0).

Proof. Both X0 and X are diagonalizable, so X0 has a
smallest eigenvalue, and X has a largest eigenvalue. Thus, for
some ε > 0, X0 > εX, which means that X0 − εX > 0. Since
E is CP,E(X0 − εX) � 0. Because it is linear,E(X0) � εE(X).
This implies that X is supported on the support of X0. �

Now, recall that discriminating between two code states
involves a binary (Helstrom) measurement that projects onto
one of two orthogonal subspaces. Our second lemma states
that if a channel E preserves a code C, it also preserves the
orthogonality of these subspaces.

Lemma 1.2. Let E be a CP map, ρ and σ be states in a
code C that is preserved by E , and p ∈ [0,1]. Let us write � =
pρ − (1 − p)σ in terms of its positive and negative parts, as
� = �+ − �−, where �± are positive operators with disjoint
supports. Then E(�+) and E(�−) have disjoint supports.

Proof. The triangle inequality for the 1-norm, together with
the fact that E is TP, gives

‖E(�)‖1 = ‖E(�+) − E(�−)‖1

� ‖E(�+)‖1 + ‖E(�−)‖1

= Tr(�+) + Tr(�−). (B1)

Because C is preserved, ‖E(�)‖1 = ‖�‖1 = Tr(�+) +
Tr(�−). This implies equality throughout Eq. (B1), that is,
‖E(�+) − E(�−)‖1 = ‖E(�+)‖1 + ‖E(�−)‖1. This is possi-
ble if and only if E(�+) and E(�−) have disjoint supports. �

Armed with these results, we wish to prove that C is
noiseless for ÊP ◦ E . To do so, we will show that for every
Helstrom measurement {P+,P−} that distinguishes between
two states in C, the subspaces P± are invariant under E . First,
we prove this for the special case where the measurement
forms a partition of P (that is, � is full rank).

Lemma 1.3. Define E and � as in Lemma 1.2. Define P± ≡
supp(�±) and P± as the projector onto P±. Then, if � is full
rank on P , then P+ and P− are invariant subspaces under
ÊP ◦ E .

Proof. ÊP is a composition of three CP maps, so ÊP ◦ E can
be written as a composition of four maps: ÊP ◦ E = 	 ◦ E† ◦
N ◦ E . Let us define the subspaces Q± ≡ supp[E(�±)], and
Q± as the projectors onto Q±. We will prove the lemma by
following the subspaces P± through each of the four maps.

By Lemma 1.1, E maps every operator on P+ to an
operator on Q+, and every operator on P− to one on Q−. By
Lemma 1.2, Q± are disjoint. Thus, E maps P± to disjoint
subspaces Q±.

Now we consider N . P± and �± have the same support,
so E(P±) is supported on Q±. Thus, E(P+) and E(P−) have
disjoint supports, and because P = P+ + P−,

E(P )−1/2 = E(P+)−1/2 + E(P−)−1/2,

and so N maps Q+ → Q+ and Q− → Q−.
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Now we consider E†. Using the cyclic property of
the trace, Tr[Q±E(P∓)] = 0 implies Tr[P∓E†(Q±)] = 0. By
Lemma 1.1, E† does not map Q± into P∓, which means that
E† maps Q± to P±.

Thus, E† ◦ N ◦ E maps P± → Q± → Q± → P±. The
final projection 	 has no effect on any operator in P , so
ÊP ◦ E maps P± → P±. �

Lemma 1.3 is the core of the proof for Theorem 1. To
complete the proof, we need to extend it to cases where � is
not full rank, and therefore {P+,P−} do not form a partition
of P .

Lemma 1.4. Lemma 1.3 holds even if � is not full rank
on P .

Proof. There exists a full-rank (on P) state ρ0 ∈ C. This
follows because P is the support of C, and C is convex. For
any ε ∈ (0, . . . ,1), (1 − ε)ρ + ερ0 is full rank. So we consider,
in place of ρ, a sequence of full-rank states {ρ ′

n}, where
ρ ′

n = (1 − εn)ρ + εnρ0, and {εn} converges to 0. Lemma 1.3,
applied to the sequence of full-rank weighted differences
�′(n) = pρ ′

n − (1 − p)σ , implies that the corresponding parti-
tions {P ′(n)

+ ,P ′(n)
+ } are invariant subspaces. As n → ∞, �

′(n)
−

converges to �−, and P ′(n)
− converges to P−, while P ′(n)

+
converges to the orthogonal complement of P− in P . Thus
P− is invariant under ÊP ◦ E . The same argument, but with σ

replaced by σ ′
n = (1 − εn)σ + εnρ0, shows thatP+ is invariant

under ÊP ◦ E . �
Armed with Lemmas 1.3 and 1.4, it is now easy to prove

that C is noiseless for ÊP ◦ E . Consider an arbitrary convex
combination of powers of E ,

F ≡
∑

n

pn(ÊP ◦ E)n,

where {pn} is a probability distribution over non-negative
integers. Let � be a weighted difference of code states. By
Lemmas 1.3 and 1.4, the supports of �+ and �− are invariant
and disjoint subspaces. Since F is trace preserving,

‖F(�)‖1 = Tr[F(�+)] + Tr[F(�−)]

= Tr(�+) + Tr(�−) = ‖�‖1. (B2)

This condition—satisfied for all �—is sufficient for C to be
noiseless. �

2. The structure of noiseless codes

Lemma 2. Every noiseless code C for E is isometric to a set
of states that are fixed points of E .

Proof. Consider the CPTP map,

E∞ = lim
N→∞

1

N + 1

N∑
n=0

En.

The limit is well defined for any map on a finite-dimensional
Hilbert space. Note that E ◦ E∞ = E∞, so E[E∞(ρ)] = E∞(ρ)
for any ρ ∈ C. That is, E∞ projects onto the fixed points
of E . Now, if C is noiseless for E , then it is preserved
by any convex combination of powers of E , and hence by
E∞. Since C is preserved by E∞, C is isometric to E∞(C)
(see Definition 7). As noted above, E∞(C) consists entirely of
fixed states, so C is isometric to a set of fixed states. �

Corollary 3. Every maximum noiseless code for a channel
E is isometric to the full fixed-point set of E .

Proof. Let C be a noiseless code for E . By Lemma 2, C
is isometric to a subset of the fixed states. The fixed states
themselves form a noiseless code Cmax. If C is isometric to a
proper subset of the fixed states, then C is strictly smaller than
Cmax, and is therefore not maximum. �

A similar result for preserved codes follows from the fact
that they can be made noiseless (Theorem 1).

Theorem 4. Every maximum preserved code for a CPTP
map E is 1-isometric to the full set of fixed states for some
other CPTP map R ◦ E .

Proof. This follows from combining Lemma 1 with
Theorem 2 and Definition 9. �

These results tell us that maximum preserved codes have
the same structure as fixed-state sets—but not what that
structure is. The following theorem fills that gap, defining
the structure of an arbitrary CPTP map’s fixed points. It also
characterizes the fixed points of the adjoint map E† [defined
so that if E(ρ) = ∑

i EiρE
†
i , then E†(ρ) = ∑

i E
†
i ρEi]. This

extra result is useful in Sec. V, in the algorithm for finding
noiseless codes of E .

Theorem 5. Let E be a CPTP map on B(H), and E† its
adjoint. Let Fix(E) be the fixed points of E , and Fix(E†) the
fixed points of E†. Then,

(i) Let P0 ⊆ H be the support of Fix(E). Then P0 is an
invariant subspace under E .

(ii) Let EP0 be the restriction of E to P0, so EP0 ≡ 	0 ◦ E ◦
	0, where 	0 projects onto P0. Then the fixed points of E†

P0

form a matrix algebra A.
(iii) Fix(E) is a distortion of A.
(iv) Fix(E†) is a 1:1 extension of A from P0 to H. That is,

for each X ∈ A, there exists precisely one X′ ∈ Fix(E†) so that
X = 	(X′) = P0X

′P0.
Proof. First, we will prove that P0 is an invariant subspace

under E , using the following lemma.
Lemma 5.1. Fix(E) contains a positive, full-rank (on P0)

operator. There exists ρ0 ∈ Fix(E), such that 〈ψ |ρ0|ψ〉 > 0
for all pure states |ψ〉 ∈ P0.

Proof. Let ρ0 ≡ E∞(1l), where 1l is the identity on H. Since
E∞ is CP and projects onto fixed points of E , ρ0 must be
a non-negative fixed point of E , and hence is in Fix(E). Let
Q ⊆ P0 be the support of ρ0. We want to show that Q = P0.
Suppose Q is a proper subspace of P0. Then, there exists |ψ〉
in P0\Q such that 〈ψ |ρ0|ψ〉 = 0, but there exists X ∈ Fix(E)
such that 〈ψ |X|ψ〉 �= 0. Let Y be one of the four possible
Hermitian operators: ±(X + X†), ±i(X − X†), chosen so that
〈ψ |Y |ψ〉 < 0 (this must be true for at least one of the four
possibilities). Since X†, −X, and iX are all in Fix(E) if
X ∈ Fix(E), Y is also in Fix(E), so E∞(Y ) = Y . Now consider
the operator ρ = 1l + δY , where δ > 0 is chosen small enough
so that ρ is non-negative. Then, E∞(ρ) = ρ0 + δY . However,
〈ψ |E∞(ρ)|ψ〉, which contradicts the CP property of E∞.
Therefore, Q = P0, and ρ0 is the desired positive, full-rank
fixed operator. �

Applying Lemma 1.1 to ρ0 implies that P0 is an invariant
subspace under E , which proves part (i) of the theorem.

Now, to prove part (ii), we consider EP0 ≡ 	0 ◦ E ◦ 	0, the
restriction ofE toP0. Its Kraus operators are {Ki} = {P0EiP0},
where P0 is the projector onto P0. Since P0 is an invariant
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subspace, EiP0 = P0EiP0 ∀ i, which means that EP0 is TP (i.e.,∑
i K

†
i Ki = P0). Furthermore, since all of E’s fixed points are

supported on P0, EP0 has the same fixed points as E .
We can now show that E†

P0
’s fixed points must commute

with its Kraus operators.
Lemma 5.2. For any X ∈ B(P0), E†

P0
(X) = X if and only if

[X,Ki] = 0 for all i.
Proof. If [X,Ki] = 0 ∀ i, then

E†
P0

(X) =
∑

i

K
†
i XKi =

( ∑
i

K
†
i Ki

)
X = P0X = X.

Conversely, suppose E†
P0

(X) = X. Consider the quantity,∑
i

[X,Ki]
†[X,Ki] = E†

P0
(X†X) − X†X,

after some algebra. By construction, this is non-negative. Now,
observe that

Tr
{
ρ0

[
E†
P0

(X†X) − X†X
]} = Tr

{
EP0 (ρ0)X†X

} − Tr{ρ0X
†X}

= 0,

since ρ0 is fixed under E (and hence EP0 ). Because
ρ0 is full rank and positive, for any positive operator
Y ∈ B(P0), Tr(ρ0Y ) = 0 ⇔ Y = 0. Therefore, E†

P0
(X†X) −

X†X = 0, and
∑

i[X,Ki]†[X,Ki] = 0. Since every term in
the sum is non-negative, we conclude that [X,Ki] = 0 ∀ i.
(Note: This proof is adapted from a result in [56].) �

Lemma 5.2 tells us that the fixed points of E†
P0

are
precisely the commutant in B(P0) of the Kraus operators {Ki}.
Commutants are closed under addition and multiplication, and
the fixed points of E†

P0
are closed under Hermitian conjugation.

Therefore, the fixed points of E†
P0

form a matrix algebra, which
completes the proof of part (ii) of the theorem.

Let us denote this matrix algebra A. The structure theorem
for matrix algebras (see Eq. (7) and Ref. [38]) states that, in
some basis, we can write A as

A ∼=
⊕

k

(
MAk

⊗ 1lBk

)
, (B3)

which induces a natural Hilbert space decomposition:

H = P0 ⊕ P0 =
[⊕

k

(Ak ⊗ Bk)

]
⊕ P0. (B4)

In this basis, we can say something about the Kraus
operators of E .

Lemma 5.3. Given a CPTP map E on B(H), let P0 be the
support of its fixed points, and A the algebra fixed by E†

P0

(as in Theorem 5). In the decomposition of H induced by A
[Eq. (B4)], the Kraus operators of E have the form:

Ei =
(⊕

k(1l ⊗ Ki,k) Di

0 Ci

)
, (B5)

for some operators Ki,k ∈ B(Bk), Ci ∈ B(P0), and Di ∈
B(P0,P0).

Proof. The Ei operators can always be written in the 2 × 2
block form given previously. Since Ci and Di are arbitrary,
we need only show that the upper left block is of the given

form, and that the lower left block must vanish. The upper left
block of each Ei is a Kraus operator Ki of EP0 . These are the
Hermitian conjugates of the Kraus operators for E†

P0
, which

(by Lemma 5.2) commute with A. Therefore, they must be of
the form,

Ki =
⊕

k

(
1lAk

⊗ Ki,Bk

)
,

which is the desired form for the upper left block. Finally,
we observe that the lower left block maps operators on P0 to
operators on P0. Since P0 is an invariant subspace, this block
must vanish. �

In light of the above, EP0 acts trivially on each of the
“noiseless” Ak factors, but does something nontrivial on each
of the “noisy” Bk factors. Furthermore, E acts identically to
EP0 on the P0 subspace, but may do anything at all to its
complement (including mapping states on P0 onto P0).

The next step of the proof is to show that Fix(E) is a
distortion of A. Recall that E and EP0 have the same fixed
points, so we need only characterize the fixed points of EP0 .
We will do so by constructing a vector space of fixed operators,
then showing that this exhausts the fixed points of EP0 .

Lemma 5.4. Following the notation in Theorem 5, let

A =
⊕

k

MAk
⊗ 1lBk

be the algebra fixed by E†
P0

. Then there exist positive semidef-
inite operators τk ∈ B(HBk

) such that the following distortion
of A,

Ã =
⊕

k

MAk
⊗ {

τBk

}
,

consists entirely of operators that are fixed by E .
Proof. Let X = ∑

k XAk
⊗ τBk

be an element of Ã. By
Lemma 5.3,

E(X) =
∑

i

KiXK
†
i

=
∑

k

XAk
⊗

( ∑
i

Ki,kτkK
†
i,k

)

=
∑

k

XAk
⊗ EBk

(τk),

where for each k, EBk
: B(HBk

) → B(HBk
) is a CPTP map with

Kraus operators {Ki,k}. Schauder’s fixed-point theorem [29]
states that every CPTP map has at least one fixed state. If we
let τk be a fixed state of EBk

, then E(X) = X. �
Now we need to show that Ã contains all the fixed points

of E .
Lemma 5.5. Following the notation in Theorem 5, let A

be defined as in Lemma 5.4. Then every fixed point of E is
in Ã.

Proof. Ã is closed under linear combination, so it is a vector
subspace of B(P0). Its dimension is easily calculated:

dim(Ã) = dim(A)
∑

k

dim(Ak)2.

Let us view EP0 and E†
P0

as matrices (L and L†, respectively)
that act on vectors in B(P0). Since each element of A is fixed

062306-20



INFORMATION-PRESERVING STRUCTURES: A GENERAL . . . PHYSICAL REVIEW A 82, 062306 (2010)

by E , and is therefore an eigenvector of EP0 with eigenvalue
+1, EP0 has a +1 eigenspace of dimension at least dim(A).
Furthermore, if E had another fixed point outside of A, then
EP0 ’s +1 eigenspace would be strictly larger than that.

Let {Oi} be an orthonormal basis (in the Hilbert-Schmidt
inner product) for B(P0). L has matrix elements Lij =
Tr{O†

i EP0 (Oj )}, and L† is its Hermitian conjugate. The
eigenvalues of a matrix and its Hermitian conjugate are
complex conjugates of each other. Thus, the dimensions of
the +1 eigenspaces of L and L† are equal, and Fix(E) and
Fix(E†

P0
) = A have the same dimension. So E has no fixed

points outside of Ã. �
These two lemmas prove that Fix(E) = Ã is a distortion

of A.
Finally, let us consider the fixed points of E†. We begin

by showing that they are in 1:1 correspondence with the fixed
points of E†

P0
, by showing that P0Fix(E†)P0 = A. The first step

is relatively straightforward.
Lemma 5.6. Following the notation in Theorem 5,

P0Fix(E†)P0 ⊆ A.
Proof. The Kraus operators of E† are [by Eq. (B5) in

Lemma 5.3]

E
†
i =

(⊕
k(1l ⊗ K

†
i,k) 0

D
†
i C

†
i

)
.

Let X be an element of Fix(E†). By writing X in block-diagonal
form with respect to the decomposition H = P0 ⊕ P0, and
noting that E†(X) = ∑

i E
†
i XEi , it is straightforward to show

that

E†
P0

(P0XP0) = P0E†(X)P0,

and since E†(X) = X, we conclude that P0XP0 is a fixed
point of E†

P0
, and therefore is an element of A. So

P0Fix(E†)P0 ⊆ A. �
Now we need to show that A ⊆ P0Fix(E†)P0. This is a bit

more difficult, and requires a technical lemma. Let us partition
the Hilbert-Schmidt space into subspaces as follows:

K ≡ B(H),

K0 ≡ B(P0),

K0 ≡ K/K0.

We can write the matrix representing E in block form as

L =
(

LEP0
LG

0 LF

)
. (B6)

Here, L corresponds to the map E , which acts on vectors in
K. LEP0

corresponds to the map EP0 and maps K0 back into

itself. LF maps K0 back into itself, while LG maps K0 to K0.
Because P0 is an invariant subspace, L does not map K0 to
K0. The matrix for E† is the Hermitian conjugate L

†
E .

Lemma 5.7. LF has no fixed points.
Proof. Suppose there exists X ∈ K0 such that LF (X) = X.

Define Y = LG(X). Then

L

(
0

X

)
=

(
Y

X

)
,

and the action of En on the operator corresponding to ( 0
X

) is
given by

Ln

(
0

X

)
=

(∑n−1
m=0 Lm

EP0
(Y )

X

)
.

If Y is orthogonal to the subspace Fix(E), then as n → ∞, the
sum converges to

lim
n→∞ Ln

(
0

X

)
=

((
1l − EP0

)−1
(Y )

X

)
.

This is a fixed point of E not contained in Fix(E), which
contradicts the definition of Fix(E). On the other hand, if Y is
not orthogonal to Fix(E), then the sum diverges as n → ∞.
This implies that E is noncontractive, which violates complete
positivity [36]. So, either way, we have a contradiction. �

Using Lemma 5.7, we can show that every fixed point of
E†
P0

has an extension to a fixed point of E†.

Lemma 5.8. Let X0 ∈ A be a fixed point of E†
P0

. Then there
exists a fixed point X ∈ B(H) of E† such that P0XP0 = X0.

Proof. Both X0 and X are vectors in the Hilbert-Schmidt
space K = B(H). Using the decomposition K = K0 ⊕ K0, we
can write X0 in block form:

X0 =
(

X0

0

)
.

In this block form, we choose

X =
(

X0(
1lK0

− L
†
F
)−1

L
†
GXK0

)
.

Note that LF has no fixed points (by Lemma 5.7), so 1lK0
− L†

F
is invertible, which means that X is well defined. Furthermore,
P0XP0 = X0 by construction. To show that X is a fixed point
of E†, we simply compute

L†(X) =
(

L
†
EP0

0

L
†
G L

†
F

)(
X0(

1lK0
− L

†
F
)−1

L
†
GX0

)

=
(

L
†
EP0

(X0)

(1l + L
†
F (1l − L

†
F )−1)L†

G(X0)

)

=
(

X0

(1l − L
†
F + L

†
F )(1l − L

†
F )−1L

†
G(X0)

)

=
(

X0(
1lK0

− L
†
F
)−1

L
†
GX0

)
= X. �

Lemma 5.8. implies thatA ⊆ P0Fix(E†)P0. Combining this
with Lemma 5.6, we conclude that A = P0Fix(E†)P0, which
completes the proof of Theorem 5. �

Now, we want to show that E’s noiseless codes have a rigid
structure dictated by the fixed points.

Lemma 6. Let E : B(H) → B(H) be a CP map with a full-
rank fixed point, whose fixed points induce (see Theorem 5)
the decomposition

H =
⊕

k

(Ak ⊗ Bk).
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Then C is a [convex] maximum noiseless code for E if and
only if C comprises all states of the following form

ρ =
∑

k

pkρAk
⊗ µk, (B7)

where the ρAk
are arbitrary states on Ak and each µk is a fixed

(i.e., the same for all ρ) state on Bk .
Proof. If C has the given structure, then

(1) It is maximum, since it is isometric to the full set of
fixed states of E .

(2) It is noiseless, because E leaves the states on subsystem
Ak intact, and every ρk state has the same noise-full state µk .
So E preserves all the weighted 1-norm distances between
code states.

To show the converse, we must show that if C is not of this
form, then it is not maximum noiseless. If C is not of this form,
then either

(1) it contains only a strict subset of the states given above;
or,

(2) it contains at least one state with correlations (off-
diagonal elements) between different k sectors; or

(3) it contains at least one state with correlations between
Ak and Bk; or

(4) it contains states that differ on Bk .
If C is a strict subset, then it is obviously not maximum.
The key to proving the converse is showing that the

condition for noiselessness (Definition 8) forbids correlations
between the k sectors as well as between Ak and Bk . The proof
relies both on convexity and on the code being maximum.
First, recall the map E∞ from Lemma 2, which projects onto
the fixed-point set Fix(E). Given the structure of Fix(E), the
CPTP E∞ must act on states on P0 as

E∞(ρ) =
⊕

k

(
TrBk

{PkρPk} ⊗ τk

)
, (B8)

where τk is the fixed state on Bk from Theorem 5, and Pk

projects onto the kth sector. From Lemma 2, we know that for
every fixed state of the form ρf ≡ ⊕

k(σAk
⊗ τk), there exists

exactly one code state ρ ∈ C such that E∞(ρ) = ρf . From
Eq. (B8), this demands TrBk

{PkρPk} = σAk
for all k.

Now, focus on the case with only two k sectors, labeled 1
and 2. Consider two fixed states in these sectors with block-
diagonal form:

ρf 1 =
(

ρ ′
f 1 0

0 0

)
, ρf 2 =

(
0 0

0 ρ ′
f 2

)
.

The two code states that are isometric to the fixed points must,
respectively, be of the form,

ρ1 =
(

ρ ′
1 0

0 0

)
, ρ2 =

(
0 0

0 ρ ′
2

)
.

By convexity of C, any convex combination of ρ1 and ρ2 must
also be in C. This excludes from C any state with on-diagonals
equal to this convex combination, but nonzero off-diagonals,
since the two different states will have the same image (and
hence indistinguishable) under E∞. Generalizing this to any
number of k sectors, we find that any code state in C must be
block diagonal: ρ = ⊕

k ρ ′
k .

Next, consider the state ρ ′
k for the kth sector. We need

to show that only product states of Ak ⊗ Bk are allowed.
We first consider a fixed state ρ ′

f on this sector of the form
|ψ〉〈ψ |Ak

⊗ τk . Since the state on Ak is pure, the corresponding
code state whose image under E∞ is ρ ′

f must also be pure on
Ak . It is hence a product state of the form |ψ〉〈ψ |Ak

⊗ µk .
Next, suppose ρ ′

f = σAk
⊗ τk , where σAk

is in general a mixed
state writable as σAk

= ∑
α qα|ψα〉〈ψα|Ak

. Now, each state
|ψα〉〈ψα|Ak

⊗ τk is a fixed state, with corresponding code state
ρ ′

k,α = |ψα〉〈ψα|Ak
⊗ µk,α . By convexity, the state

∑
α qαρ ′

k,α

is also in C and maps to ρf = σAk
⊗ τk under E∞. This

excludes from C any other state with nonzero correlations
between Ak and Bk , but with the reduced state on Ak equal
to σAk

. Furthermore, we must have that µk,α = µk ∀ α in
order for the (1-norm) distinguishability between the ρ ′

k,α’s
to remain unchanged under E∞. Therefore, ρ ′

k must be of the
form σAk

⊗ µk for some µk . �
We knew already that noiseless codes are isometric to fixed

states (Lemma 2) and that fixed states are isometric to algebras
(Theorem 5). Now we know explicitly what these codes look
like. The isometry is very similar to the one between the fixed
states [Fix(E)] and the underlying algebra A: A noiseless code
is obtained from Fix(E) just by changing the state of the noise-
full factors.12

Finally, it follows from this lemma that not only can we
make preserved codes noiseless, but we can also make them
fixed.

Corollary 7. For every maximum preserved code C, there
exists a CPTP map R such that R ◦ E(ρ) = ρ for all states
ρ ∈ C.

Proof. From Theorem 1, we know that every preserved
code C is correctable, so there exists a recovery map R0

such that C is noiseless for R0 ◦ E , and R0 ◦ E is unital. By
Lemma 6, C contains states all of the form ρ = ∑

k pkρAk
⊗

µk . Now let R = T ◦ R0, where T does nothing to the Ak

subsystems, but replaces the state of each Bk subsystem with
µk . (Constructing such a map is simple, and it is manifestly
CPTP.) Now, every ρ ∈ C is a fixed state of R ◦ E . �

3. Finding preserved IPS is hard

Lemma 8. The problem of finding the largest preserved
IPS for an arbitrary channel E : B(Hd ) → B(Hd2 ) that maps
a d-dimensional system to a d2-dimensional system is at least
as hard as the NP-complete problem MAX-CLIQUE.

Proof. The proof is straightforward, and proceeds in three
steps. First, we review a known result connecting classical
channels with graphs. Second, we show that finding the largest
code for a certain set of classical channels is equivalent to
MAX-CLIQUE. Third, we observe that the classical channels
can be embedded in quantum channels.

(1) A classical channel Ec maps a set of input symbols
{1, . . . ,N} into mixtures of a set of output symbols {1, . . . ,M}.
For each input symbol n, its image I(n) is the set of output

12Since C only contains states, we are really restricting to the positive
trace-1 operators in Mk within Fix(E) and A. This is what we mean
by “C is isometric to a matrix algebra.”
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symbols to which E maps it with nonzero probability. A set of
input symbols C = {n1, . . . ,nk} is a preserved zero-error code
for E if and only if the images of all the nj are disjoint—that
is, it is possible to unambiguously identify which of the input
symbols was sent. We can define the channel’s adjacency
graph G (see Example 6) as follows: The vertices are labeled
by input symbols {1, . . . ,N}, and two vertices {n,m} are
connected by an edge if and only if the images I(n) and
I(m) are overlapping. Now, a code C is a subgraph of G,
and it is preserved if and only if no two of its vertices are
connected—that is, if it is an independent set of G. The largest
code is a maximum independent set of G. An independent
set for G is a clique for its dual graph G′, and finding
the maximum clique for an arbitrary G′ is a well-known
NP-complete problem called MAX-CLIQUE.

(2) We have not yet shown that finding a classical channel’s
largest code is NP complete—perhaps all channel’s adjacency
graphs are easy instances of MAX-CLIQUE? This turns out
not to be the case; any graph H can be the adjacency graph of
a classical channel. Let H be a graph with vertices {1, . . . ,d},
and let E be a classical channel from {1, . . . ,d} → {1, . . . ,d2},
defined as follows:

(a) The d input symbols are denoted v ∈ {1, . . . ,d}, and
the d2 output symbols are denoted by ordered pairs u ∈
{1, . . . ,d} × {1, . . . ,d}.

(b) For each input symbol v ∈ {1, . . . ,d}, E maps v (with
nonzero probability) to each of the d output symbols {(v,x) :
x = 1, . . . ,d}.

(c) For each input symbol v, E maps each input symbol
v to output symbol (v′,v) if and only if H contains the edge
(v′,v).

Note that each output symbol (a,b) can be produced by at
most two input symbols (a and b). So, if two input symbols
v and v′ are connected in H , then E maps both of them to
the output symbol (v′,v), and so they are connected in the
adjacency graph G. But, if they are not connected in H , then
they are not mapped to the same output symbol, so they are not
connected in G. Ergo, G = H , and any graph can be produced
as the adjacency graph of a channel.

Finally, we need to show that for each such graph, we can
construct a quantum channel. This is rather easy. Let the input
space be Hd and the output space be Hd2 . Let {|1〉, . . . ,|d〉} be
a basis for Hd . Then the E we will consider acts as follows:
First, it dephases in the given basis (i.e., measures it); and then
it acts as the classical channel above. �

4. Unitarily noiseless codes

The analysis of unitarily noiseless codes follows closely
that of the noiseless codes. The rotating points of E replace its
fixed points, with a CPTP map that projects onto their span
playing the role that E∞ does for noiseless codes.

Lemma 9. If C is a maximum unitarily noiseless code for
a CP map E , then C is isometric to the set of all (positive
trace-1) states in the span of the rotating points of E . In other
words, there exists a map Einf such that ‖pEinf(ρ) − (1 − p)
Einf(σ )‖1 = ‖pρ − (1 − p)σ‖1 for any ρ,σ ∈ C, p ∈ [0,1],
andEinf(ρ) andEinf(σ ) are in the span of the rotating points ofE .

Proof. By Definition 17, a rotating point X of E is a linear
combination of operators Xk such that E(Xk) = eiφkXk . Let
Rot(E) be the complex span of all rotating points of E . It
is convenient to move to the Hilbert-Schmidt space, where
Rot(E) can be viewed as a subspace spanned by the vectors
corresponding to the rotating points. Clearly, Rot(E) is an
invariant subspace under the linear map E , in the sense that
any vector in Rot(E) gets mapped under E to another vector in
Rot(E). Let ER denote E restricted to Rot(E). We view E and
ER as matrices acting on vectors in the Hilbert-Schmidt space.

Even though E may not be a diagonalizable matrix, we can
still write it in the Jordan normal form [57]: There exists an
invertible matrix S such that E = SJS−1, where J is the matrix
J = diag[J1,J2, . . . ,JK ]. Each Jk is called a Jordan block, and
it is zero except on the diagonal and first-off-diagonal:

Jk =

⎛
⎜⎜⎜⎜⎝

λk 1

. . .
. . .

λk 1

λk

⎞
⎟⎟⎟⎟⎠ . (B9)

The Jordan form for E is unique up to permutation of the
Jordan blocks. Note that any vector |v〉 is an eigenvector of J

if and only if S|v〉 is an eigenvector of E .
Lemma 9.1. For any k, the support of Jk contains exactly

one unit eigenvector of E . The corresponding eigenvalue is λk .
Proof. Let {|v(k)

α 〉}mα=1 be the ordered basis for the support
of Jk in which Jk takes the form Eq. (B9). Clearly, Jk|v(k)

1 〉 =
λk|v(k)

1 〉, so S|v(k)
1 〉 is an eigenvector of E with eigenvalue λk .

To show that this is the only eigenvector in this Jordan block,
let |v〉 ≡ ∑

α µα|v(k)
α 〉 be a vector in the support of Jk . From

the form of Jk in Eq. (B9), it is easy to see that the coefficients
{µα} satisfy the equation Jk|v〉 = a|v〉 for some constant
a only if µα+1 = (a − λk)µα for α = 1, . . . ,m − 1, and
(a − λk)µm = 0. The only nontrivial solution is a = λk and
µ1 �= 0,µα>1 = 0. �

This lemma tells us that the rotating points of E are mutually
orthogonal, unless there are degenerate eigenspaces of rotating
points. In that case, we can still pick an orthonormal basis
for each degenerate eigenspace (already done in the Jordan
normal form), and these bases, together with the nondegenerate
rotating points, form an orthonormal basis of rotating points
for Rot(E). We denote this basis as {Xl}. ER is diagonal in this
basis, with entries eiφl (= λl). Note that, for any CPTP map E ,
the following lemma from [57] holds.

Lemma 9.2. Any eigenvalue λ of E must satisfy |λ| � 1.
This, together with Lemma 9.1, implies that |λk| � 1 ∀ k.

Next, consider powers of E . En can be written using the
Jordan normal form as SJ nS−1 where J n =
diag[J n

1 ,J n
2 , . . . ,J n

K ] with each J n
k being an upper-triangular

matrix:

J n
k =

⎛
⎜⎜⎜⎜⎜⎝

λn
k

(
n

1

)
λn−1

k

(
n

2

)
λn−2

k . . .

0 λn
k

(
n

1

)
λn−1

k . . .

0 0 λn
k . . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ . (B10)

Using the form of J n
k in Eq. (B10), we can show the following

fact about the rotating points of E .
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Lemma 9.3 Any (nondegenerate) rotating point of E must
occur in a one-dimensional Jordan block.

Proof. (This proof follows ideas from [58] for the proof of
Lemma 9.2.) Suppose there exists a rotating point X such that
it belongs to some m × m Jordan block Jk with m > 1. Let
{X(k)

α }mα=1 be an operator basis for the operators in the support
(as vectors) of Jk , with X

(k)
1 ≡ X. Consider the completely

mixed state ρ1l ≡ 1l/d (d is the dimension of the Hilbert
space). Let σ be some operator in the span of {X(k)

α }mα=2
and consider the operator ρ ≡ ρ1l + ησ where η is a positive
number chosen small enough so that ρ is positive. Applying
En to ρ gives En(ρ) = En(ρ1l) + ηEn(σ ). Since E is TP, En(ρ1l)
remains finite. However, since X is a rotating point, we know
that |λk| = 1, and the entries of J n

k grows in amplitude as n

increases, and hence the entries of En(σ ) (viewed as a vector)
grow in amplitude. For large enough n (η fixed), there will be a
choice of σ such that En(ρ) is no longer positive semidefinite.
But this violates the assumption that E is a CPTP map. Hence,
we must have that m = 1. �

Lemma 9.3 tells us that any Jordan block Jk with m > 1
must have |λk| < 1.

Now, let {Yβ} be an operator basis for operators outside of
Rot(E). Yβ’s are the operators occurring in Jordan blocks with
|λk| < 1, and hence limn→∞ En(Yβ) = 0 since Eq. (B10) tells
us that limn→∞ J n

k = 0 if |λk| < 1. We can use {Xl}
⋃{Yβ} as

an operator basis for B(H), and write any operator A ∈ B(H)
as A = ∑

l alXl + ∑
β bβYβ . Then,

lim
n→∞ En(A) = lim

n→∞

( ∑
l

al(ER)n(Xl) +
∑

β

bβEn(Yβ)

)

=
∑

l

al lim
n→∞(ER)n(Xl), (B11)

assuming the limit limn→∞(ER)n(Xl) exists for all l.
To work out what limn→∞(ER)n(Xl) is, we need the

following lemma.
Lemma 9.4. For every ε > 0, there exists some Nε ∈ N such

that ‖(ER)Nε − 1lR‖ < ε, where 1lR is the identity operator on
Rot(E).

Proof. Recall that ER is a diagonal matrix, with entries eiφl ,
l = 1, . . . ,M , where M = dim[Rot(E)]. Therefore, (ER)n is
also diagonal, with entries einφl , and in particular (ER)0 = 1l.
The set of all such matrices forms an n torus with a finite
volume (2π )M . Each (ER)n is surrounded by an ε neighbor-
hood Nn, containing all matrices X on the torus such that
‖(ER)n − X‖ < ε. Each such neighborhood has volume at
least εM , and so if we consider the neighborhoods of (ER)n

for n = 0, . . . ,(2π/ε)M , then at least one pair must overlap.
Denote the pair with overlapping neighborhoods

If φl’s are all rational multiples of 2π (that is, φl = 2πpl

ql
,

pl,ql ∈ N), then choosing Nε to be the lowest common
multiple of all ql works.

Otherwise, a more complicated analysis is required. To have

‖(ER)Nε − 1lR‖ = max
l

|exp(iNεφl) − 1|
= 2 max

l
|sin(Nεφl/2)| < ε,

it suffices to demand Nεφl(mod 2π ) < ε for all l. Consider the
point [nφ1(mod 2π ), . . . ,nφM (mod 2π )], where we always
take the smallest non-negative value of nφl(mod 2π ). As
n increases from 0, this point traces out a trajectory on
the surface of an M-dimensional torus. If there is at least
one φl that is a rational multiple of 2π , this trajectory
will eventually close upon itself, and the path length of the
trajectory is finite. If there is no such φl , the trajectory will
cover the surface of the torus, which has finite area (since it
is finite dimensional). Consider hyperspheres of (Euclidean)
diameter ε centered at [nφ1(mod 2π ), . . . ,nφM (mod 2π )] for
each n ∈ N. Because the trajectory either has finite length or
traverses a space of finite area, some of these hyperspheres
will eventually overlap, that is, there exists finite r and s > r

such that the hyperspheres centered at points with n = r

and n = s overlap. The distance between the centers of the
overlapping hyperspheres is

√∑
l[(s − r)φl(mod 2π )]2 < ε,

which implies that (s − r)φl(mod 2π ) < ε for all l. Therefore,
we can choose Nε = s − r . �

We can view the limit limn→∞(ER)n equivalently as the limit
limn→∞(ER)Nεn. Intuitively, provided we choose ε to decrease
fast enough, this should converge to 1lR . More precisely, we
can write (ER)Nε = 1lR + Gε , where Gε is some map (need
not be CP) on Rot(E) such that ‖Gε‖ < ε. Now consider the
map (ER)Nεn = (1lR + Gε)n = ∑n

m=0( n

m
)Gm

ε , for n ∈ N, which
gives

‖(ER)Nεn − 1lR‖ �
n∑

m=1

(
n

m

)∥∥Gm
ε

∥∥ � ε(2n − 1). (B12)

Let us choose ε = 3−n (actually, ε = C−n
0 for any choice of

C0 > 2 works). Then taking the limit n → ∞ of Eq. (B12),
we conclude that limn→∞(ER)Nεn = 1lR .

From this, we see that Eq. (B11) can be rewritten as

lim
n→∞ En(A) =

∑
l

alXl ∈ Rot(E). (B13)

Therefore, Einf ≡ limn→∞ EnNε (with ε depending on n as
above) is the projection onto Rot(E). Since a unitarily noiseless
code is preserved under any power of E , it must be preserved
under Einf , which gives the desired isometry condition. �

Note that Einf is CPTP simply because E is CPTP,
and the set of CPTP maps on a finite-dimensional Hilbert
space is closed under composition. Furthermore, it projects
every operator onto the span of the rotating points of E .
Observe that Rot(E) is precisely the set of fixed points
of Einf .
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