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 Novel methods for information processing are highly desired in our information-driven 

society. Inspired by the brain ’ s ability to process information, the recently introduced paradigm 

known as  ‘ reservoir computing ’  shows that complex networks can effi ciently perform 

computation. Here we introduce a novel architecture that reduces the usually required large 

number of elements to a single nonlinear node with delayed feedback. Through an electronic 

implementation, we experimentally and numerically demonstrate excellent performance 

in a speech recognition benchmark. Complementary numerical studies also show excellent 

performance for a time series prediction benchmark. These results prove that delay-dynamical 

systems, even in their simplest manifestation, can perform effi cient information processing. 

This fi nding paves the way to feasible and resource-effi cient technological implementations 

of reservoir computing.         

      1    Applied Physics Research Group (APHY), Vrije Universiteit Brussel , Pleinlaan 2,  B-1050   Brussel ,  Belgium   .         2    Instituto de F í sica Interdisciplinar y Sistemas 

Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears ,  E-07122   Palma de Mallorca ,  Spain   .         3    Laboratoire d ’ Information Quantique, CP 225, 

Universit é  Libre de Bruxelles, Boulevard du Triomphe ,  B-1050   Bruxelles ,  Belgium   .         4    Department of Electronics and Information Systems, Ghent University , 

St Pietersnieuwstraat 41,  B-9000   Ghent ,  Belgium . Correspondence and requests for materials should be addressed to I.F. (email:  ingo@ifi sc.uib-csic.es )  .   

     Information processing using a single dynamical 
node as complex system   
  L.       Appeltant   1      ,     M.C.       Soriano   2      ,     G.       Van der Sande   1      ,     J.       Danckaert   1      ,     S.       Massar   3      ,     J.       Dambre   4      ,     B.       Schrauwen   4      , 

    C.R.       Mirasso   2        &      I.       Fischer   2             



ARTICLE

2 

NATURE COMMUNICATIONS  |    DOI:  10.1038/ncomms1476 

NATURE COMMUNICATIONS  |  2:468  |    DOI:  10.1038/ncomms1476   |  www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

infl uenced by inputs from the recent past, but independent of the 
inputs from the far past. Th is property is essential for processing 
temporal sequences (such as speech) for which only the recent 
history of the signal is important. Additionally, the results of RC 
computations must be reproducible and robust against noise. For 
this, the reservoir should exhibit suffi  ciently diff erent dynamical 
responses to inputs belonging to diff erent classes. At the same time, 
the reservoir should not be too sensitive: similar inputs should not 
be associated to diff erent classes. Th ese competing requirements 
defi ne when a reservoir performs well. Typically, reservoirs depend 

    Figure 1    |         Sketch of RC schemes. ( a ) Classical RC scheme. The input is 

coupled into the reservoir via a randomly connected input layer to the 

N nodes in the reservoir. The connections between reservoir nodes are 

randomly chosen and kept fi xed, that is, the reservoir is left untrained. 

The reservoir ’ s transient dynamical response is read out by an output 

layer, which are linear weighted sums of the reservoir node states  x   i  ( t ). 

The output  ̂y t( )   thus has the form  ̂y t w x ti
N

i i( ) ( )= ⋅=Σ 1   . The coeffi cients  w   i   of 

the sum are optimized in the training procedure to best project onto the 

target classes. ( b ) Scheme of RC utilizing a nonlinear node with delayed 

feedback. A reservoir is obtained by dividing the delay loop into  N  intervals 

and using time multiplexing. The input states are sampled and held for a 

duration   τ  , where   τ   is the delay in the feedback loop. For any time  t  0 , the 

input state is multiplied with a mask, resulting in a temporal input stream 

 J ( t ) that is added to the delayed state of the reservoir  x ( t     −      τ  ) and then fed 

into the nonlinear node. The output nodes are linear weighted sums of the 

tapped states in the delay line given by  Σi
N

iw x t
N

N i= ⋅ − −1 ( ( ))
t

  . ( c ) Scheme 

of the input data preparation and masking procedure. A time-continuous 

input stream  u ( t ) or time-discrete input  u ( k ) undergoes a sample and 

hold operation, resulting in a stream  I ( t ) that is constant during one delay 

interval   τ   before it is updated. The random matrix  M  defi nes the coupling 

weights from the input layer to the virtual nodes. The temporal input 

sequence, feeding the input stream to the virtual nodes, is then given by 

 J ( t )    =     M  ×  I ( t ).  

 N
onlinear systems with delayed feedback and / or delayed 
coupling, oft en simply put as  ‘ delay systems ’ , are a class of 
dynamical systems that have attracted considerable atten-

tion, both because of their fundamental interest and because they 
arise in a variety of real-life systems 1 . It has been shown that delay 
has an ambivalent impact on the dynamical behaviour of systems, 
either stabilizing or destabilizing them 2 . Oft en it is suffi  cient to tune 
a single parameter (for example, the feedback strength) to access a 
variety of behaviours, ranging from stable via periodic and quasi-
periodic oscillations to deterministic chaos 3 . From the point of view 
of applications, the dynamics of delay systems is gaining more and 
more interest. While initially it was considered more as a nuisance, 
it is now viewed as a resource that can be benefi cially exploited. One 
of the simplest possible delay systems consists of a single nonlinear 
node whose dynamics is infl uenced by its own output a time   τ   in 
the past. Such a system is easy to implement, because it comprises 
only two elements, a nonlinear node and a delay loop. A well-stud-
ied example is found in optics: a semiconductor laser whose output 
light is fed back to the laser by an external mirror at a certain dis-
tance 4 . In this article, we demonstrate how the rich dynamical prop-
erties of delay systems can be benefi cially employed for processing 
time-dependent signals, by appropriately modifying the concept of 
reservoir computing. 

 Reservoir computing (RC) 5 – 10  is a recently introduced, bio-
inspired, machine-learning paradigm that exhibits state-of-the-
art performance for processing empirical data. Tasks, which are 
deemed computationally hard, such as chaotic time series predic-
tion 7 , or speech recognition 11,12 , amongst others, can be success fully 
performed. Th e main inspiration underlying RC is the insight that 
the brain processes information generating patterns of transient 
neuronal activity excited by input sensory signals 13 . Th erefore, RC 
is mimicking neuronal networks. 

 Traditional RC implementations are generally composed of 
three distinct parts: an input layer, the reservoir and an output layer, 
as illustrated in  Figure 1a . Th e input layer feeds the input signals 
to the reservoir via fi xed random weight connections. Th e reser-
voir usually consists of a large number of randomly inter connected 
nonlinear nodes, constituting a recurrent network, that is, a 
network that has internal feedback loops. Under the infl uence of 
input signals, the network exhibits transient responses. Th ese 
transient responses are read out at the output layer via a linear 
weighted sum of the individual node states. Th e objective of RC 
is to implement a specifi c nonlinear transformation of the input 
signal or to classify the inputs. Classifi cation involves the discrimi-
nation between a set of input data, for example, identifying features 
of images, voices, time series and so on. To perform its task, RC 
requires a training procedure. As recurrent networks are notori-
ously diffi  cult to train, they were not widely used until the advent 
of RC. In RC, this problem is resolved by keeping the connections 
fi xed. Th e only part of the system that is trained are the output 
layer weights. Th us, the training does not aff ect the dynamics of the 
reservoir itself. As a result of this training procedure, the system 
is capable to generalize, that is, process unseen inputs or attribute 
them to previously learned classes. 

 To effi  ciently solve its tasks, a reservoir should satisfy several 
key properties. First, it should nonlinearly transform the input 
signal into a high-dimensional state space in which the signal is 
represented. Th is is achieved through the use of a large number of 
reservoir nodes that are connected to each other through the recur-
rent nonlinear dynamics of the reservoir. In practice, traditional 
RC architectures employ several hundreds / thousands of non linear 
reservoir nodes to obtain good performance. In  Figure 2 , we illus-
trate how such a nonlinear mapping to a high-dimensional state 
space facilitates separation (classifi cation) of states 14 . Second, the 
dynamics of the reservoir should be such that it exhibits a fad-
ing memory (that is, a short-term memory): the reservoir state is 
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on a few parameters (such as the feedback gain and so on) that 
must be adjusted to satisfy the above constraints. Experience shows 
that these requirements are satisfi ed when the reservoir operates 
(in the absence of input) in a stable regime, but not too far from 
a bifurcation point. Further introduction to RC, and in particular 
its connection with other approaches to machine learning, can be 
found in the  Supplementary Discussion . 

 In this article, we propose to implement a reservoir compu-
ter in which the usual structure of multiple connected nodes is 
replaced by a dynamical system comprising a nonlinear node 
subjected to delayed feedback. Mathematically, a key feature of 
time-continuous delay systems is that their state space becomes 
infi nite dimensional. Th is is because their state at time  t  depends 
on the output of the nonlinear node during the continuous time 
interval [ t  –   τ  ,  t [, with   τ   being the delay time. Th e dynamics of the 
delay system remains fi nite dimensional in practice 15 , but exhib-
its the properties of high dimensionality and short-term memory. 
Th erefore, delay systems fulfi l the demands required of reservoirs 
for proper operation. Moreover, they seem very attractive systems 
to implement RC experimentally, as only few components are 
required to build them. Here we show that this intuition is cor-
rect. Excellent performance on benchmark tasks is obtained when 
the RC paradigm is adapted to delay systems. Th is shows that very 
simple dynamical systems have high-level information-processing 
capabilities.  

 Results  
  Delay systems as reservoir   .   In this section, we present the concep-
tual basis of our scheme, followed by the main results obtained for 
the two tasks we considered: spoken digit recognition and dyna-
mical system modelling. We start by presenting in  Figure 1b  the 
basic principle of our scheme. Within one delay interval of length 
  τ  , we defi ne  N  equidistant points separated in time by   θ      =      τ   /  N . We 
denote these  N  equidistant points as  ‘ virtual nodes ’ , as they have a 
role analogous to the one of the nodes in a traditional reservoir. Th e 
values of the delayed variable at each of the  N  points defi ne the states 
of the virtual nodes. Th ese states characterize the transient response 
of our reservoir to a certain input at a given time. Th e separation 
time   θ   among virtual nodes has an important role and can be used 
to optimize the reservoir performance. We chose   θ      <     T , with  T  
being the characteristic time scale of the nonlinear node. With this 
choice, the states of the virtual nodes become dependent on the 
states of neighbouring nodes. Interconnected in this way, the virtual 
nodes emulate a network serving as reservoir ( Supplementary 
Discussion ). We demonstrate in the following that the single 
nonlinear node with delayed feedback performs comparably to 
traditional reservoirs. 

 Th e virtual nodes are subjected to the time-continuous input 
stream  u ( t ) or time-discrete input  u ( k ) which can be a time-vary-
ing scalar variable or vector of any dimension  Q . Th e feeding to the 
individual virtual nodes is achieved by serializing the input using 
time multiplexing. For this, the input stream  u ( t ) or  u ( k ) under-
goes a sample and hold operation to defi ne a stream  I ( t ) that is 
constant during one delay interval   τ  , before it is updated. Th us, 
in our approach, the input to the reservoir is always discretized in 
time, no matter whether it stems from a time-continuous or time-
discrete input stream. To defi ne the coupling weights from the 
stream  I ( t ) to the virtual nodes we introduce a random (NxQ) matrix 
 M , in the following called mask (we recall that  N  is the number of 
virtual nodes). On carrying out the multiplication  J ( t  0 )    =     M  ×  I ( t  0 ) at 
a certain time  t  0 , we obtain a  N  dimensional vector  J ( t  0 ) that rep-
resents the temporal input sequence within the interval [ t  0 ,  t  0     +      τ  ]. 
Each virtual node is updated using the corresponding component 
of  J ( t  0 ). Alternatively, one can view  J ( t ) as a continuous time scalar 
function that is constant over periods, corresponding to the sepa-
ration   θ   of the virtual nodes.  Figure 1c  illustrates the above input 
preparation and masking procedure. Aft er a period   τ  , the states of 
all virtual nodes have been updated and the new reservoir state is 
obtained. Subsequently,  I ( t  0 ) is updated to drive the reservoir during 
the next period of duration   τ  . For each period   τ  , the reservoir state 
is read out for further processing. A training algorithm assigns an 
output weight to each virtual node, such that the weighted sum of 
the states approximates the desired target value as closely as possible 
(see  Supplementary discussion ). Th e training of the read-out fol-
lows the standard procedure for RC 5,7 . Th e testing is then performed 
using previously unseen input data of the same kind of those used 
for training. 

 To demonstrate our concept, we have chosen the widely studied 
Mackey – Glass oscillator 16 . Th e model of this dynamical system with 
its characteristic delayed feedback term, extended to include the 
external input  J ( t ), reads 

 
�X t X t

X t J t

X t J t p( ) ( )
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= − + ⋅ − + ⋅

+ − + ⋅
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with  X  denoting the dynamical variable,   X ̇   its derivative with respect 
to a dimensionless time  t , and   τ   the delay in the feedback loop. Th e 
characteristic time scale of the oscillator, determining the decay of 
 X  in the absence of the delayed feedback term, has been normalized 
to  T     =    1. Th e parameters   η   and   γ   represent feedback strength and 
input scaling, respectively. Th e value of   η   we use guarantees that 
the system operates in a stable fi xed point in the absence of external 
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   Figure 2    |         Illustration of linear separability. It is well known that a non 

linear mapping from a small dimensional space into a high-dimensional 

space facilitates classifi cation. This is illustrated in a simple example: In 

( a ) a two-dimensional input space is depicted, in which the yellow spheres 

and the red stars cannot be separated with a single straight line. With a 

nonlinear mapping into a three-dimensional space, as depicted in ( b ), 

the spheres and stars can be separated by a single linear hyperplane. 

It can be shown that the higher dimensional the space is, the more likely 

it is that the data become linearly separable, see for example, ref.  14 . RC 

implements this idea: the input signal is nonlinearly mapped into the 

high-dimensional reservoir state through the transient response of the 

reservoir. Furthermore, in RC the output layer is a linear combination 

with adjustable weights of the internal node states. The readout and 

classifi cation is thus realized with linear hyperplanes, as in the fi gure.  
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input (  γ      =    0). With input, however, the system might exhibit com-
plex dynamics. Th e choice of the nonlinearity in  equation (1)  has 
two main advantages. First, it can be easily implemented by an ana-
logue electronic circuit 17 , which allows for fi ne parameter tuning 18 . 
Th is is the physical realization we have employed for the experimen-
tal demonstration ( Fig. 3) . Second, the exponent  p  can be used to 
tune the nonlinearity if needed. However, we expect other nonlinear 
functions to perform equally well.   

  Spoken digit recognition task   .   We now demonstrate by experi-
ment and simulation, the capability of our single nonlinear delay-
dynamical node to perform isolated spoken digits recognition. Th e 
isolated spoken digit recognition task, as introduced by Doddington 
and Schalk 19 , is generally accepted as a benchmark speech recogni-
tion task. Our experimental realization has a Mackey – Glass nonlin-
earity with an exponent of  p     =    7 that is easily obtained with standard 
electronic components. We have verifi ed through numerical simu-
lations that a broad range of values of  p  yields similar results. Th e 
virtual node separation is set at   θ      =    0.2 that off ers optimal perform-
ance (Methods section), whereas the total number of virtual nodes 
is  N     =    400. Th e specifi cs of the training procedure are detailed in the 
 Supplementary Discussion and the Methods  section. As an exam-
ple,  Figure 4  depicts the experimentally and numerically obtained 

classifi cation performance of unknown samples as a function of 
  η   for   γ      =    0.5, which has been chosen such that input and feedback 
signals are of the same order of magnitude. Th e classifi cation per-
formance is expressed in two ways: the word error rate (WER) that 
shows the percentage of words that have been wrongly classifi ed, 
and the margin (distance) between the reservoir ’ s best guess of the 
target and the closest competitor. It can be seen that an increase in 
margin corresponds to a decrease in WER. Our results show that 
there is a broad parameter range in   η   with good performance, with 
an optimum for both, margin and WER, around   η      =    0.8. Note that 
the performance breaks down when   η   approaches 1. Th is is expected 
as it corresponds to the threshold of instability of the MG oscillator 
when there is no input (  γ      =    0). At the optimum value of   η  , we obtain 
a WER as low as 0.2 %  in experiments and 0.14 %  in numerical simu-
lations. Th is corresponds to only one misclassifi cation in 500 words. 
Th ese performance levels are comparable to or even better than 
those obtained with traditional RC composed of more than 1,200 
nodes for which a WER of 4.3 %  was reported 11 , with a reservoir of 
308 nodes for which more recently a WER of 0.2 %  was obtained 12  
and also with alternative approaches based on hidden Markov 
models that achieved a WER of 0.55 %  (ref.   20).   

  NARMA task as an example of dynamical system modelling   . 
  We now present results from numerical simulations demonstrat-
ing the computational capabilities of the single nonlinear delay-
dynamical node for a second task, commonly used in RC literature: 
dynamical system modelling, in particular training the readout to 
reproduce a certain signal 21,22 . Specifi cally, we train the system to 
model the res ponse to white noise of a discrete-time tenth order 
nonlinear auto-regressive moving average (NARMA) system, origi-
nally introduced in reference   23. Th e details of this benchmark are 
described in the  Supplementary Discussion  and in the Methods 
section. To quantify the performance of the reservoir, the normal-
ized root mean square error (NRMSE) of the predicted value versus 
the value obtained from the NARMA model is used. Up to now, 
the best performance reported in traditional RC for a reservoir of 
 N     =    100 nodes, is NRMSE    =    0.18 (ref.   12). If the reservoir is replaced 
by a shift  register that contains the input, the minimal NRMSE is 
0.4. NRMSE values below this level require a nonlinear reservoir. 
We have chosen a nonlinear exponent of  p     =    1, resulting in a weak 
nonlinearity that allows for longer memory as compared with the 
previously used value of  p     =    7 ( Supplementary Discussion ).  Figure 5  
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  Figure 3    |         Schematic of the experimental reservoir computer. The 

Mackey – Glass type nonlinear node is realized as in ref.   17. The time 

constant of the system is  T     =    10   ms. The delay loop is implemented digitally 

by means of Analog to Digital and Digital to Analog Converters (ADC 

and DAC). The preprocessing to create the input stream   γ   J ( t ), with   γ   the 

adjustable input gain described in  equation (1) , and the postprocessing 

to create the output  ̂y t( )   are also realized digitally. See  Supplementary 

discussion  for further details on the experimental implementation.  
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  Figure 4    |         Numerical and experimental results for spoken digit 
recognition. The  y -axis on the left-hand side denotes the margin, whereas 

the  y -axis on the right-hand side denotes the word error rate. The abscissa 

represents the parameter   η  .   γ   has been kept fi xed at 0.5 and the exponent 

is set to  p     =    7. The delay time is set at   τ      =    80, with  N     =    400 neurons of 

  θ      =    0.2 separation. The red line represents results for the numerically 

obtained margin and the black line represents the numerically obtained 

word error rate. The red and black crosses denote the corresponding 

experimental results.   
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  Figure 5    |         Simulation results for the NARMA task. The two scanned 

parameters are   γ   (input scaling) and   η   (feedback strength). The exponent 

in  equation (1)  is set to  p     =    1. Other characteristics of the reservoir are as 

in  Figure 4  (  τ      =    80,  N     =    400,   θ      =    0.2). The obtained performance for the 

NARMA-10 task, expressed as a normalized root mean square error, is 

encoded in colour.  
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depicts our numerical results in the   γ      −      η   plane. A large region 
with NRMSE    <    0.2 (dark green) has been obtained. In  Figure 6,  we 
depict the NRMSE as a function of the virtual node separation   θ  . 
Th e optimal value lies around   θ      =    0.2. When   θ   is larger, there is not 
enough coupling between virtual nodes, and performance decreases. 
When   θ   is smaller, too much averaging causes decreased perform-
ance. Th e minimal normalized root mean square error is as low as 
NRMSE    =    0.15. We therefore achieved comparable performance to 
conventional RC, but with a much simpler architecture.    

 Discussion 
 We have demonstrated, both in experiment and simulation, that a 
simple nonlinear dynamical system subject to delayed feedback can 
effi  ciently perform information processing. As a consequence, our 
simple scheme can replace the complex networks used in traditional 
RC. Moreover, to the best of our knowledge, this experiment rep-
resents the fi rst hardware implementation of RC with results com-
parable to those obtained with state-of-the-art digital realizations 
( Supplementary Discussion ). 

 To get good performance with our system, a number of param-
eters need to be adjusted. Th ese include the feedback gain   η  , the 
input gain   γ  , the delay time   τ  , the separation of virtual nodes in the 
delay line   θ  , the type of nonlinearity (in our case the exponent  p  of 
the MG system), and the choice of input mask. Th ese parameters 
have analogues with similar parameters used in traditional RC: 
feedback gain and input gain have similar roles to spectral radius 
and input scaling; the delay time   τ   is related to the number of nodes 
and the separation of the virtual nodes to the sparsity of the inter-
connection matrix; the type of nonlinearity can also be varied in 
traditional RC and so on. As demonstrated here, some of the param-
eters can vary signifi cantly around certain optimal values and still 
yield very good results. As experience with systems such as ours 
grows, we expect – as in traditional RC – that good heuristics on what 
parameter values to use will emerge. We expect that delay reservoirs 
can be realized that are, within some restrictions, versatile for diff er-
ent tasks. Moreover, owing to their much simpler hardware imple-
mentation, specifi cally optimized solutions for certain tasks could 
make sense. From a fundamental point of view, the simplicity of our 
architecture should facilitate gaining a deeper understanding of the 
interplay of dynamical properties and reservoir performance. 

 Besides the fundamental aspect of understanding information 
processing capabilities of dynamical systems, our architecture also 
off ers practical advantages. Th e reduction of a complex network to 
a single hardware node facilitates implementations enormously, 

because only few components are needed. Nevertheless, the use of 
delay dynamical systems implies certain constraints, because the 
feeding of the virtual nodes is carried out serially, in contrast to the 
parallel feeding of the nodes in traditional RC. Th is serial feeding 
procedure results in a slow-down of the information processing, 
compared with parallel feeding. Th is potential slow-down is com-
pensated for by the much simpler hardware architecture of the res-
ervoir, and by the fact that the read-out can be taken at a single point 
of the delay line. Th ese simplifi cations will enable ultra-high-speed 
implementations, using high-speed components that would be too 
demanding or expensive to be used for many nodes. In particular, 
realizations based on electronics or photonics systems should be 
feasible using this simple scheme, including real-time processing 
capabilities. Moreover, we expect that compromises can be found 
concerning speed, performance and memory capacity by extend-
ing the concept to network motifs of delay-coupled elements. Ulti-
mately, a novel information-processing paradigm might emerge.   

 Methods  
  Spoken digit recognition task   .   In the spoken digit recognition task, the input 
dataset consists of a subset of the NIST TI-46 corpus 24  with ten spoken digits (0 – 9), 
each one recorded ten times by fi ve diff erent female speakers. Hence, we have 500 
spoken words, all sampled at 12.5   kHz. Th e input  u ( k ) (with  k  the discretized time) 
for the reservoir is, in this case, a set of 86-dimensional state vectors (channels) 
with up to 130 time steps. Each of these inputs represents a spoken digit, preproc-
essed using a standard cochlear ear model 25 . To construct an appropriate target 
function, ten linear classifi ers are trained, each representing a diff erent digit of the 
dataset. Th e target function is     −    1 if the spoken word does not correspond to the 
sought digit, and     +    1 if it does. For every target, the time trace is averaged in time 
and a winner-takes-all approach is applied to select the actual digit. 

 To eliminate the impact of the specifi c division of the available data samples 
between regularization, training and testing, we used  n -fold cross-validation. Th is 
means that the entire process of regularization, training and testing is repeated  n  
times (with  n     =    20) on the same data, but each time with a diff erent assignment of 
data samples to each of the three stages. Th e reported performances are the mean 
across these  n  runs. 

 For the spoken digit recognition task, the mask consists of a random assign-
ment of three values: 0.59, 0.41 and 0. Th e fi rst two values have equal probability 
of being selected, whereas the third one is more likely to be selected. Using a zero 
mask value implies that some nodes are insensitive to certain channels, thus avoid-
ing averaging of all the channels.   

  NARMA10 task   .   Th e NARMA10 task is one of the most widely used benchmarks 
in RC. It was introduced in 21 , and used in many other publications in the context of 
RC, for instance in references   23,26. For the NARMA10 task, the input  u ( k ) of the 
system consists of scalar random numbers, drawn from a uniform distribution in 
the interval [0, 0.5] and the target  y ( k     +    1) is given by the following recursive formula 
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Th e input stream  J ( t ) for the NARMA10 test is obtained from  u   k   according to the 
procedure discussed in the manuscript. For the regularization, training and test 
of the dynamical system modelling task, we used 4 samples with a length of 800 
points each and twofold cross-validation. Th e input scaling for the mask consists 
of a random series of amplitudes of 0.1 and     −    0.1. Th e input signal, multiplied 
with the mask and the input scaling factor  γ , feeds the Mackey-Glass node as in 
 equation (1) . Th e importance of the parameters  γ , the feedback strength  η , and 
the separation between virtual nodes   θ  , has been discussed above. In particular,   θ   
has a crucial role. In  Figure 6,  we show the numerically obtained performance of 
the Mackey – Glass system for the NARMA10 test when scanning   θ  . Th e optimal 
point is found for virtual node separations of   θ      =    0.2, in units of the characteristic 
time scale of the nonlinear node. For shorter separations, too much averaging takes 
place and the Mackey – Glass system does not respond to the external input. For 
larger separations, the connectivity among virtual nodes is lost and, consequently, 
also the memory with respect to previous input. For node separations   θ      >    3, the 
NRMSE reaches a level of 0.4, which is the performance of a shift -register.                                           
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