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Abstract
Proteomics, the study of the protein complement of a biological system, is generating increasing quantities of data
from rapidly developing technologies employed in a variety of different experimental workflows. Experimental
processes, e.g. for comparative 2D gel studies or LC-MS/MS analyses of complex protein mixtures, involve a
number of steps: from experimental design, through wet and dry lab operations, to publication of data in reposi-
tories and finally to data annotation and maintenance. The presence of inaccuracies throughout the processing
pipeline, however, results in data that can be untrustworthy, thus offsetting the benefits of high-throughput tech-
nology.While researchers and practitioners are generally aware of some of the information quality issues associated
with public proteomics data, there are few accepted criteria and guidelines for dealing with them. In this article, we
highlight factors that impact on the quality of experimental data and review current approaches to information
quality management in proteomics. Data quality issues are considered throughout the lifecycle of a proteomics
experiment, from experiment design and technique selection, through data analysis, to archiving and sharing.
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INTRODUCTION
Proteomics can be defined as the study of the protein

complement of a biological system, for example an

organism, cell, or tissue. The gathering of informa-

tion about a proteome, indeed about any biological

component or system, requires both experimental

observation (‘wet lab’ procedures) and data analysis

(‘dry lab’ procedures). The quality of the final output

depends on several considerations including experi-

mental design, control of biological and analytical

variability, the recording of descriptive information

about the experiment (‘metadata’) along with the

results themselves, and the appropriate use of

bioinformatics tools and statistical significance tests

for data analysis [1–3].

Proteomics is generating increasing quantities of

data from rapidly developing technologies employed

in a variety of different experimental workflows.

Large-scale proteomics experiments have relied

mainly on the technologies of two-dimensional gel

electrophoresis (2DE) [4] and liquid chromatography-

tandem mass spectrometry (LC-MS/MS) [5].
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The high-throughput nature of some of these

experiments presents the scientist with significant

data handling challenges, not least of these being the

problem of false-positive results [6]. If proteomics data

is to be stored in public repositories for re-use by other

scientists or combined with other data sets to inform

systems biology studies [7], then the quality of that

data has wider importance still. Ways must be found

to measure, annotate and make accessible the quality

of proteomics data sets so that researchers can decide

whether they are suitable for their particular

application.

A framework for discussion of data
quality issues in proteomics
A typical proteomics experiment involves a wet lab

and a dry lab portion, as well as a final phase during

which the results are published and shared with the

scientific community.

We have identified a number of quality issues that

pertain to each of these phases, as illustrated in

Figure 1. Some of these issues relate to the determi-

nation of which proteins are relevant to the

experimental hypothesis (qualitative proteomics) or

concern the measurement of how much of these

proteins are present in the sample (quantitative

proteomics). These two are inter-linked, however,

because quantification of individual proteins in the

sample is a necessary prelude to the selection of the

subset of proteins whose expression levels are consid-

ered to be regulated as a result of the experimental

challenge. Other issues may only become apparent

once the experimental data have been published.

In this survey we present an analysis of how

technology and other factors, such as the adoption of

standardised descriptions of the experiments, affect

the quality of the outcome in the different phases of

the experiment, as well as the ability of the scientific

community to exploit those results. The separation

into technologies and phases within the workflow

facilitates this analysis and is reflected in the

organisation of the article.

In the following section, Quality issues in

experimental data generation, we discuss problems

affecting the quality of the data produced in the lab,

based on the following considerations:

� A number of factors may affect the quality of the
sample, including the environment in which the

experiment takes place and the adoption of

standard operating procedures.
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Figure 1: A framework illustrating where information quality issues (lower panel) can arise during typical
proteomics workflows (upper panel).
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� The choice of experimental technology affects

the number of proteins that can be successfully

identified, i.e. the completeness of the result, which

includes the ability to detect low-abundance

proteins (sensitivity).
� Reproducibility takes account of the biological

and technical variations inherent in the

experiment by including a number of replicates,

and using matched controls to minimise the

number of simultaneous biological variables.

Also, two main factors that affect errors in protein

identification, namely:

� The accuracy of the matches obtained using

algorithms (inaccurate matches may result in false

positives).

� The qualityof thereference protein databases used for the

match: an incomplete or inaccurate database may

result in false negatives, i.e. by failing to identify

proteins that are present in the sample.

Then, in the section on Archiving and sharing

proteomics data, we focus on the issues that affect the

potential exploitation of the result by the commu-

nity, namely:

� Uniformity of representation, i.e. the standardisation of

the data formats, as well as of the metadata that

describes the experiment.

� Accuracy and level of detail of the experiment

description, which is necessary to allow the

entire experiment to be repeated.

Finally, we will conclude by noting how software

environments for recording and annotating proteo-

mics experiments may alleviate some of the problems

in the last two phases of the workflow by providing

views of the data that make some of its quality

characteristics explicit to the user.

QUALITY ISSUES IN
EXPERIMENTALDATA
GENERATION
The quality of the final output from proteomics

studies intrinsically depends on the wet lab phase of

the workflow. We begin a discussion of the

importance of controlling the biological and techni-

cal variables within proteomics experiments by

considering the quality of the biological sample.

Sample quality control
As with all lab-based studies, the importance of

minimising variation by strict adherence to robust

experimental protocols, use of single batches of

reagents and use of matched controls should not

be underestimated in proteomics. Moreover, the

authors of a recent commentary state that ‘many

proteomics efforts suffer from a lack of rigor’ and

focus on sample preparation as an area that requires

more critical attention [8].

The experimental design should closely reflect

the scientific hypothesis being tested and it may be

important to control factors such as the genetic

background of microbial strains, the age and gender

profiles of patient populations, the cell type

composition of tissue extracts and the environmental

variables that might affect sample quality (tempera-

ture, constituents of growth media, timing of

collection, etc.). Checking sample quality at an

early stage and replacing poor-quality samples where

possible is preferable to having to deal with the

resulting quality issues during subsequent data

analysis steps. For example, 1D gels can be used to

test the quality of samples destined for 2DE by

revealing the effects of proteolytic degradation.

Simply recording, in a prescribed way, the details

of how the various experimental steps were carried

out may promote the use of standard operating

procedures, and is an argument for the development

of proteomics standards (see Standardisation of

experiment description section). Standard operating

procedures tend to be developed by individual

laboratories for a particular type of sample [9–11]

and may not be particularly successful when

transferred to other applications.

Wet lab quality issues for 2DE
The design of 2DE-based experiments is an

important factor determining the quality of the

output from such studies. The aims should be to

minimise biological and analytical variation, and to

avoid introducing bias between sample groups. It is

desirable to develop and use standard operating

procedures for protein extraction/solubilisation,

electrophoresis and gel image analysis, and to

determine the number of biological and technical

replicates necessary to detect a given difference

in protein expression level between sample groups

[12, 13].

Such a ‘power analysis’ is rarely, if ever, carried

out in proteomics because of the cost involved in
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setting up a pilot study. ‘How many replicate gels

should be run?’ is an often-asked question.

Unfortunately, there is no simple answer—it

depends on the variability of the biological material,

reproducibility of the technique and the degree of

difference between sample groups that is to be

detected (other things being equal, fewer replicates

would be required to confidently detect a 3-fold

change in spot volume than a 1.5-fold change). For

samples generated under well-controlled conditions,

it may be reasonable to run four (biological) replicate

gels per sample group and to include spots that are

detected and matched in at least three gels per set

when using software that allows for missing values.

For samples known to be variable, such as tissue, it

may be advantageous to run more replicates or pool

material within sample groups prior to 2DE.

A major advance in the reproducibility of 2DE

has been provided by immobilised pH gradient gels

(IPG strips) for the first dimension separation coupled

with pre-cast second dimension gels [14], as used

in the IPGphor and Ettan DALT systems (GE

Healthcare) [15]. 2DE remains one of the most

important technologies for separating complex

protein mixtures and continues to be developed.

The problem of under-representation of certain

classes of proteins in 2DE is well-known, for

example for membrane proteins (very hydrophobic),

DNA-binding proteins (very alkaline) and signalling

proteins (low abundance), and standard 2DE meth-

ods may not be suitable for proteins having such

characteristics [4].

Quantification in 2DE depends on visualising the

resolved protein spots with a suitable stain, scanning

the gel to produce a bitmapped image and using

software to select spots showing reproducible

changes in intensity [16]. Choice of staining

technique can markedly affect the sensitivity of

2DE, with silver-stains and fluorescent dyes better

able to detect low-abundance proteins than the

commonly used Coomassie blue. However, silver-

staining is less suitable for quantitative studies because

the reaction is non-stoichiometric and the end-point

is subjective [4].

Success of the subsequent image analysis is

strongly dependent on the similarity of the replicate

2D gels and also on the performance of the software

algorithms used for spot matching or gel image

alignment. Difference gel electrophoresis (DIGE)

technology, in which two samples are labelled

with different CyDyes and mixed prior to the

electrophoretic separation, reduces the number of

gels required and overcomes some of the problems

associated with gel-to-gel variability [17].

Dry lab quality issues for 2DE
The accuracy of comparative studies using 2D gels

depends on the success of matching spots within and

between groups of replicate gel images from different

experimental conditions. Recent developments in

2DE analysis software such as Progenesis SameSpots

(Nonlinear Dynamics) or Melanie 6.0 [Geneva

Bioinformatics (GeneBio) SA] focus on reducing

the amount of user editing (subjective input) and the

application of multivariate statistical methods for

analysing the spot data [18, 19]. For example, a

principal components analysis (PCA) plot can

provide a quality check showing that replicate gels

from a particular experimental condition group

together, and are separated from those generated

under different conditions. By way of illustration,

Figure 2 shows how the replicate 2DE gel images

from an experiment involving the growth of Candida
albicans in media containing different carbon sources

grouped together in a PCA plot, confirming that the

experimental challenge (changing the carbon source)

had a greater impact on the proteome than biological

and analytical variance. Some programs, e.g.

Progenesis SameSpots, depend on warping the

images so that the corresponding spots can be

superimposed—volume data is collected from every

replicate whether a protein spot is visible or not and

therefore missing values do not compromise the use

of statistical tests.

Wet lab quality issues for peptide mass
fingerprinting (MALDI-TOFMS)
Experimental design is equally important in MS-

based proteomics and has been discussed elsewhere

[1, 20]. Some technologies are less suitable for

detecting low-abundance proteins, as we have

already noted for 2D gel staining. Peptide mass

fingerprinting (MALDI-TOF MS) has typically been

employed for the identification of relatively abun-

dant proteins in 2D gel spots. It does not have the

power to identify proteins in more complex mixtures

because suppression effects in the ionisation source

limit the number of peptides that can be simulta-

neously analysed by MALDI-TOF MS, and success

depends on obtaining good sequence coverage from

a reasonable number of peptides (at least 4–6,

preferably more) matched to each protein.
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These suppression effects also make MALDI-TOF

MS susceptible to loss of sample peptide signals

caused by the presence of other abundant ions,

whether these come from extraneous sources (e.g.

keratin and polyethylene glycol) or from the sample

itself (e.g. albumin) if procedures to remove them

are inadequate. In practice it proves difficult to

confidently identify more than two or three proteins

in the same sample by peptide mass fingerprinting.

This was clearly illustrated by a comparative analysis

of 98 2DE gel spots from Methanococcus jannaschii [21].
By MALDI-TOF MS, 88% of spots contained a

single protein, 11% contained two and 1% a mixture

of three different proteins. In contrast, the same

samples analysed by LC-MS/MS revealed that 41%

were single-protein spots, with the majority

containing multiple proteins—as many as six per spot.

Dry lab analysis of MALDI-TOFMSdata
Despite the limitations mentioned in the previous

section, peptide mass fingerprinting remains a

popular protein identification technique and there

are a number of bioinformatics tools available for the

analysis of MALDI-TOF MS data [3].

The accuracy of protein identifications obtained

by peptide mass fingerprinting depends on the

successful matching of the experimental peptide

masses by a search algorithm to theoretical masses

derived from a protein sequence database. Various

outputs from the search result may help to indicate

whether a particular match is correct or not.

Different search engines calculate their search scores

in different ways, and interpreting this information

can be difficult. Three simple metrics; hit ratio, mass

coverage and excess of limit-digested peptides, have

been proposed as universal measures of the quality

of a protein identification by peptide mass finger-

printing that can be combined into a single score

and used to validate such protein identifications,

particularly in large data sets [22].

The Molecular & Cellular Proteomics journal guide-
lines suggest that, for peptide mass fingerprinting, the

number of masses matched to the identified protein,

the number of masses not matched in the spectrum

and the sequence coverage should be reported along

with the input parameters used in the database search

[6]. These guidelines advise the use of probability-

based scoring schemes or the reporting of the

expected false-positive rate. Of the various peptide

mass fingerprinting tools available, Aldente [23, 24],

Mascot [25] and ProFound [26] provide sufficient

information to fulfil these requirements. Aldente

gives statistics on random sequences and colour-

codes results depending on whether the score is

greater or lower than the best random score. It also

has a viewer (requires web browser Java plugin) that

displays peaks matched in the spectrum and their

peptide mass error distribution (Figure 3)—informa-

tion that is useful for validating the result. However,

the choice of database is limited to Swiss-Prot or

TrEMBL. Mascot has a ‘decoy’ database search

option that returns the score of the best random

hit, reports a probability-based Mowse score and

expectation value, and displays error distribution

plots but not the peptide mass spectrum. The public

web server allows searches to be run over the

MSDB, NCBInr and Swiss-Prot databases, while the

purchase of Mascot Server software allows the user

to install any database if a suitable FASTA sequence

(DNA or amino acid) file is available. ProFound can

report either an expectation value or a probability

value and Z-score, and displays the spectrum

coverage and mass error distribution. An evaluation
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Figure 2: PCA plot for replicate 2D gels fromdifferent
samples groups.Candidaalbicans cells were grown onvar-
ious carbon sources (closed diamonds ^ glucose; open
squares ^ casamino acids; closed squares ^ casamino
acids plus glucose; open circles ^ oleic acid; closed
circles ^ oleic acidplus glucose; open triangles ^ lactate;
closed triangles ^ lactate plus glucose), soluble proteins
were extracted and separated by 2DE. The gel images
from three biological replicates per condition were
subjected to a principal components analysis using
SIMCA-P (Umetrics).
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of search engines commonly used for peptide mass

fingerprinting concluded that ProFound provided

the best discrimination between random matches and

correct identifications [27].

Dry lab analysis of tandemmass
spectrometry (LC-MS/MS) data
Tandem mass spectrometry (LC-MS/MS) data

contains sequence information that can be used to

identify peptides (and from them, proteins) by denovo
sequencing [28], peptide fragment fingerprinting

[29], or peptide sequence tagging [30]. Of these,

only peptide fragment fingerprinting is used on a

large scale. Peptide fragment fingerprinting is an

analogous protein identification technique to peptide

mass fingerprinting in which peptide fragment, or

MS/MS, spectra are matched to theoretical masses of

peptide fragments generated in silico from a sequence

database [29]. Knowledge of which bonds in the

peptides break preferentially in the mass spectro-

meter is important in peptide fragment fingerprint-

ing, in the same way that the specificity of the

cleavage reagent (e.g. trypsin) is used to predict the

peptides generated in a peptide mass fingerprinting

experiment. Peptide fragmentation is dependent

upon the type of tandem mass spectrometer and

dissociation technique—these parameters should be

specified when conducting the database search.

Of the various search engines available and

reviewed in [3], Mascot [25] and SEQUEST [31]

2

1

Figure 3: Output from the BioGraph viewer of the Aldente peptide mass fingerprinting tool.Ovalbumin standard
was run on a1D gel, the band excised, and subjected to in-gel tryptic digestion. Peptidemasses determinedbyMALDI-
TOFMSwere input as a peak table (PKT) file to Aldente.Panel (1) shows the spectrum coverageview andpanel (2) the
mass error distribution plot, for the bestmatch in the Swiss-Prot database.
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are probably the most widely used. Evaluations of

different search engines, including Mascot and

SEQUEST, have reached variable conclusions

[27, 32, 33], suggesting that their relative perfor-

mance may depend on the nature of the data set used

for testing. Mascot MS/MS ions searches may be

performed using the public web server (which may

be quite slow and limits the size of the data file to a

maximum of 300 masses) or on a local Mascot server.

In order to achieve a significant gain in speed from a

local server, a powerful cluster of processors is

required. SEQUEST is exclusively marketed by

Thermo Scientific as part of the BioWorks software

designed for their instruments. Phenyx [34] provides

a public web interface for low-throughput submis-

sions [35], while the OMSSA web server [36] is

designed for higher-throughput use, but does not

consolidate the individual peptide identifications into

protein ‘hits’. X! Tandem [37] cannot be run via the

Internet but must be downloaded and installed on

a local web server—a process that may require

specialist knowledge. In practice, the choice of search

engine may depend on the type of instrument

because of the limited compatibility of certain MS

file formats. Only Mascot currently accepts proprie-

tary data files from a wide range of different

instruments. However, this situation will change as

the generic XML-based file format specified by the

mzData standard [38] becomes more widely imple-

mented—a tangible benefit of the Proteome

Standards Initiative (PSI) (see Standardisation of

experiment description section).

Because the output files produced from LC-MS/

MS experiments are large and complex, there is a

danger that protein identification software systems

are used as ‘black boxes’ by practitioners with little or

no validation of the results. This reinforces the

concerns over false-positive protein identifications

mentioned previously (see Introduction section).

Considerable attention has been focussed on the

fact that many of the spectra generated by LC-MS/

MS proteomics experiments cannot be confidently

assigned to known peptide sequences. It has been

argued that many of the MS/MS spectra are of

low quality and should be filtered out of the analysis

[39–42]. Another approach is to improve discrim-

ination between correct and random matches,

by using machine learning techniques to classify

database search results [43], average peptide scores

based on Mascot ion scores [44], or S-scores based
on sequence tag information [45]. Mass deviance has

been proposed as a suitable metric for assessing the

quality of a peptide assignment from MS/MS data

[46], and the excess of limit-digested peptides quality

metric proposed for peptide mass fingerprinting [22]

is also predicted to be of value for assessing

protein identifications by peptide fragment finger-

printing. A third approach, taken by commercial

software systems such as ProteinScape (Bruker

Daltonics), PEAKS (Bioinformatics Solutions Inc.)

and Spectrum Mill (Agilent Technologies)

(see Laboratory information management systems

section), is to send the input masses to more than one

search engine and to cross-validate or consolidate the

results in an attempt to increase confidence in the

protein identification. Identifications of peptides

from MS/MS data may be validated by comparing

the results with experimental peptide fragment

spectra from other labs, for which the probability

of correct identification has been uniformly tested.

This is the idea behind data repositories such as

the Global Proteome Machine (GPM) [47] and

PeptideAtlas [48, 49] (see Proteomics data reposi-

tories section).

‘Decoy’ databases, in which the protein sequences

are reversed or randomised, are particularly useful

for estimating false-positive identification rates in

peptide fragment fingerprint searches [50–52]. False-

negative identifications, caused by analytical incom-

pleteness, may be a serious problem in qualitative

differential display LC-MS/MS experiments [53].

Quantitative mass spectrometry-based approaches

overcome this problem.

Quantification can be achieved in LC-MS/MS by

using stable isotope mass-tagging techniques

(reviewed in [54–56]). Introducing mass tags and

pooling the different samples early in the workflow,

as in the SILAC technique (stable isotope labelling

by amino acids in cell culture) [57], has the advantage

of removing the effect of analytical variance in

subsequent processing steps (Figure 4).

An interesting recent advance is the virtual 2D

mapping of LC-MS data [60, 61]. This technique

can be used for comparative proteomics based on the

display of two separate LC-MS/MS runs. In this

case, the problem of spot matching in 2DE is

replaced by one of peak retention time matching.

While 2D gels display protein spots separated by

charge and molecular size, a virtual 2D map displays

LC-MS data as ion intensities distributed by mass-to-

charge ratio (m/z) and retention time. LC-MS

image analysis may also have potential applications
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in quality assessment (artifacts created during sample

processing may be recognised as characteristic

patterns on the virtual map) and post-translational

modification (PTM) discovery, and may prove to be

a powerful tool that helps the researcher to cope

with the size and complexity of the data produced

by LC-MS/MS experiments. The MSight mass

spectrometry imaging software (Figure 5) is freely

available [62] and supports MS and MS/MS data in a

variety of proprietary and generic data formats.

ARCHIVINGAND SHARING
PROTEOMICS DATA
This section describes the pragmatics of experimental

data management and sharing, with a view to

identifying the relationship between data quality

and information management systems, data standards

and public repositories.

Laboratory information management
systems
Many software tools for proteomics have been

developed to accomplish specific tasks, but there is

a need to support the whole data-gathering and

reporting process. Laboratory information manage-

ment systems (LIMS) have been used for many years

for sample tracking and reporting purposes, for

example in the clinical biochemistry laboratory

where maintaining an accurate sample audit trail is

essential. Similar systems are being developed for

proteomics laboratories that aim to combine sample

tracking and automated data analysis (including

protein identification and validation) with the

functionality to generate output files that are

compliant with proteomics standards and compatible

with data repositories [63]. Not only does this help to

increase throughput in the proteomics laboratory,

but it should also improve the consistency of data

processing and minimise failures in the sample audit

trail. These systems have been described as ‘pipeline

tools’ or ‘workflow systems’ [3, 64]. They include

the trans-proteomic pipeline (TPP) [65, 66],

ProteinScape (Bruker Daltonics) and Spectrum Mill

(Agilent Technologies). However, such systems

cannot be expected to work seamlessly with data

repositories until the proteomics standards that shape

them become mature and stable.
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Figure 4: Workflows for quantitative MS-based differential proteomics.Generalisedworkflows for the comparison
of two biological samples (1, 2) using stable isotope labelling by amino acids in cell culture (SILAC) [57], isotope coded
protein labelling (ICPL) [58] or isobaric tag for relative and absolute quantification (iTRAQ) [59]. Labelling certain
amino acids with light (grey) or heavy (black) mass tags then mixing (crossed circle) the samples is performed before
harvesting in the case of SILAC, after the extraction of proteins in the case of ICPL, and after digestion of the proteins
to peptides in the case of iTRAQ.For clarity, protein or peptide separation steps are not shown, but these are neces-
sary to reduce the complexity of the sample prior to mass spectrometry.
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Standardisation of experiment
description
Where a sufficiently large and organised community

exists, it is possible to prevent some of the more

common and serious information quality problems

by coming to agreement on how members of the

community will record and structure their experi-

mental results. A data set may be wholly accurate,

but if it is stored in an obscure format, using

undocumented conventions, then the information it

contains may still be unusable. Standardisation efforts

facilitate data archiving and sharing by defining data

formats that allow experimental data produced across

the community to be described consistently, and by

characterising and promoting good practice in data

collection and publishing.

The PSI [67] of the Human Proteome

Organisation (HUPO) [68] is the principal organisa-

tion associated with the development of proteomics

standards. Its goal is to facilitate the systematic

capture, comparison, exchange and verification of

proteomics data [69]. Three different kinds of

proteomics standard can be identified, as illustrated

in Figure 6:

Minimum information guidelines
In common with other standards bodies, the PSI is

defining a collection of documents under the MIAPE

heading (Minimum Information About a Proteomics

Experiment) that state what should be recorded

about a proteomics experiment [70]. The guidelines

take the form of a checklist, in which a collection

Figure 5: Screenshot from MSight mass spectrometry imaging software. Panel (1): Images of two related experi-
ments aligned in the same sheet (A). Panel (2):The same region of both images marked in panel (1) seen in a 3D view.
Panel (3): Mass spectrum view. Panel (4): Text report of both experiments. Panel (5): TheWorkspace window that is
used to organise experiments. Panel (6):The Status Bar indicates the number of MS runs in the current sheet and the
number of selected annotations. It also indicates coordinates in real value and intensity of the data located under
mouse cursor.
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of data properties are defined that together con-

stitute the minimum amount of information

required to carry out the stated tasks. For example,

in the case of protein identification by peptide mass

fingerprinting (see Dry lab analysis for MALDI-TOF

MS data section) the number of masses matched to

the identified protein, the number of masses not

matched in the spectrum (these two can be

combined together as the ‘hit ratio’) and the

sequence coverage are properties of the search

result that may be used to validate a protein

identification [22]. Minimum information guidelines

say nothing about the accuracy of the experimental

results reported; rather they seek to ensure

that sufficient information is recorded about each

experiment to allow informed observers to judge the

effectiveness of the approach adopted for the

problem at hand. In other words, they promote

completeness of information.

Good practice guidelines
When applying sophisticated experimental techni-

ques, considerable care is required in experiment

design and result interpretation. For example, see

‘Wet lab quality issues for 2DE’ section for a

discussion of how many replicate gels should be

run in a 2DE experiment. The journals Molecular and
Cellular Proteomics and Proteomics have developed

guidelines for authors that specify not only what

information should be provided, but also what

characterises a well-designed experiment [6, 53].

Good practice guidelines seek to encourage the

reporting of high quality results (e.g., results with a

small and known false-positive rate) by indicating

how experiments should be designed and carried

out. In other words, this form of standard promotes

credibility of information.

Data formats
Given minimum information guidelines, the

question remains as to how data should be described.

Both minimum information and good practice

guidelines tend to result in textual descriptions

suitable for manual access by scientists. Formats, in

contrast, are designed to support computational

searching and manipulation of the data. They

typically include some form of structured file

format, often represented using XML (eXtensible

Markup Language), and some form of terminology to

be used when populating data elements in the XML

file. In the PSI, there is normally a one-to-one

correspondence between MIAPE documents [70]

and data formats [71]. Proteomics data formats,

whether those produced by the PSI or by inde-

pendent researchers [72, 73], should increase the

consistency of the data, thereby allowing software to

use data from different sites in ways that influence the

quality of the data. For example, searches for

identifications can be repeated using consistent

software settings or underlying sequence databases,

thereby allowing results to be compared more

directly.

Proteomics data repositories
Public repositories of proteomics data seek to fulfil

one of the early hopes of these information-rich

experiments, i.e. that added value may be gained by

combining data sets from different studies and

enabling complex queries to be run over them

[74]. Realisation of the difficulties involved in

capturing the information that might be useful

from such experiments was the driving force

behind the proteomics standards movement (see

‘Standardisation of experiment description’ section).

It is important that principles and formats emerging

from standards-based approaches are used to shape

the structure of proteomics data repositories in order

Good Practice
Guidelines

Formats

Means of
organisation

Means of
representation

Usage
principles

Experimental
good practice

Means of
representation

Minimum
Information
Guidelines

Figure 6: Relationships between types of standard
document. An overview of the relationships between
the different forms of standard, with the arrows indicat-
ing how each one benefits from the other. For example,
good practice guidelines provide a means of arguing for
the presence of a particular data item in minimum infor-
mation guidelines, while this latter form of standard
helps to provide the basic vocabulary and structuring
principles for the definition of the former. Similarly, mini-
muminformationguidelinesprovide a baseline setof con-
cepts for the designers of standard data formats, while
the formats themselves help the designers of minimum
information guidelines to state more precisely what
information is to be considered mandatory and that
which is not.
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to facilitate querying and re-use of the stored

information.

The various proteomics data repositories currently

available have been reviewed elsewhere from the

viewpoint of data integration [64]. PRIDE [75] is

unique in that it contains protein identifications

generated from both peptide mass fingerprinting and

peptide fragment fingerprinting, whereas the GPM

database [47], Open Proteomics Database (OPD)

[76] and PeptideAtlas [48] are limited to LC-MS/MS

data. The Gene Expression Omnibus (GEO) [77] is

mostly concerned with microarray data, but also

supports non-array techniques, including MS-based

proteomics.

The PRIDE database, as of January 2008, held

over 3000 experiments on 26 different species, with

370 000 identified proteins and over 2 million

identified peptides with rich experimental descrip-

tions. The ‘compare experiments’ function in

PRIDE produces a Venn diagram showing the

protein identifications unique to each experiment

and those common to both. PRIDE allows regis-

tered users to submit data files generated by the

Proteome Harvest Spreadsheet [78]—a Microsoft

Excel workbook with functionality that enforces

the inclusion of certain required data (mandatory

fields) and enables the user to select controlled

vocabulary terms from the Ontology Lookup

Service, thereby promoting data completeness

and consistency.

The OPD consists entirely of a collection of MS/

MS data files generated by the host laboratory

(University of Texas) together with descriptions of

the sample processing procedure and MS parameters

used in their generation. The only functionality

provided is downloading of the zipped data files.

The GPM contained over 40 million peptide

identifications from 14 different proteomes (as of

January 2008). It allows the user to search the

database with MS/MS data (DTA, PKL or MGF file

formats) and gives the option of adding the input

data to the database either as a named or anonymous

contribution. The GPM database does not store

contextual or experimental protocol information.

Although sharing and re-use of proteome data sets

is not yet widespread, projects have integrated data

from coordinated experiments in multiple labora-

tories [79], and studies have been undertaken

that seek to establish properties of experimental

techniques through systematic studies of large data

sets (e.g. [80, 81]).

Software tool support for managing
data quality in proteomics
It was recognised early in the work on establishing

proteomics data repositories that associated software

tools should have functionality built-in to help

scientists manage the quality of their data. The

PEDRo [74] repository was provided with a software

application (originally called the PEDRo Data

Collator, later renamed to simply ‘Pedro’ [82])

which helped ensure that data captured for entry

into the repository conformed to the constraints of the

XML Schema that defined the PEDRo data model.

Moreover, the Pedro tool was designed to allow users

to check entered data against controlled vocabularies,

to ensure that meaningful values were entered into

particular fields.

Developing this idea further, recent work has

exploited the ‘plug-in’ architecture of the Pedro tool

in order to allow users to access quality-checking

services appropriate for their data. This ‘quality-

aware’ Pedro plugin [83] uses the identifier of the

XML Schema (e.g. PEDRo) to look up available

quality-checking services on the Web, and allows

users to call those services (as Web services) to check

the data they have loaded into the tool. Currently, in

proteomics, services are available to apply the metrics

described earlier in this article [22]. The augmented

Pedro tool with quality-aware plugin is shown in

Figure 7 and is downloadable from [84].

The approach of making quality-checking ser-

vices available as Web services has the significant

benefit that they can then be re-used within other

software environments. As an example, such services

can be invoked as part of bioinformatics workflows

in the Taverna Workbench [85], to enable auto-

mated filtering or flagging of the data as it is

processed, according to criteria set by the user. An

example of this approach in the proteomics domain

is presented in [86].

CONCLUSIONS
The major proteomics technologies (2DE and

LC-MS/MS) and their associated data analysis systems

are continually under development in order to

improve the quality of information generated by

proteomics experiments. Increased automation, the

provision of well-designed experimental workflows

and robust (multivariate) statistical methods, should

increase confidence in the results generated by high-

throughput experiments. Information standards

offer a valuable mechanism by which certain forms
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of quality (in particular, completeness, credibility and

consistency) can be attained by the proteomics

community. Repositories, such as PRIDE, that are

closely linked to the standards initiatives, play an

important role in sharing experimental data and are

becoming another form of quality assurance, along-

side peer-review, for the publication of large-scale

functional genomic studies. Finally, the need for

scientists to apply their own measures of information

quality has been stated, and the importance of having

‘quality-aware’ software tools, which make quality

measures more explicit has been highlighted.
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