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We calculate the communication capacity of a broadband electromagnetic waveguide as a function of its
spatial dimensions and input power. We analyze the two cases in which either all the available modes or only
a single directional mode are employed. The results are compared with those for the free-space bosonic
channel.
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In the analysis of electromagnetic communication chan-
nels using quantum information, emphasis has been placed
on free-space communication protocols, in which waves
propagate unconstrained: a goodsummaof all the obtained
results can be found in Refs.[1,2]. Here we will focus on
constrained communication lines, such as optical fibers or
radio waveguides, in the lossless limit. Although the spatial
mode structure for free-space propagation between a pair of
apertures has long been understood[3], its near-field modes
only approximate the lossless behavior of ideal waveguides.
In contrast, since the spatial properties of the waveguide
modes are always well defined, we will be able to derive the
exact dependence of the information rate on the system pa-
rameters, e.g., the powerP and the waveguide cross-
sectional areaA, obtaining results that closely resemble the
ones described in Ref.[1,4] for the free-space channel.
Moreover, as will be discussed in detail, our derivation re-
solves some of the open issues connected with the optimiza-
tion of the multimode communication protocols.

We start by describing the waveguide communication
channel in Sec. I and calculate the rate in Sec. II. In particu-
lar, Secs. II A and II B are devoted to the regimes of multiple
modes and single directional mode, respectively. The discus-
sion and the comparison with prior results are given in
Sec. III.

I. THE CHANNEL

Although guided-wave optical communications are nor-
mally carried out using dielectric waveguides, metallic
waveguides provide a simpler mode structure for deriving
the broadband information rate. In the ideal, lossless case
that we consider, such waveguides confine the electromag-
netic field into a finite region of space by means of perfectly
reflecting boundaries. In this paper we will analyze in detail
the rectangular cross-section case with transverse spatial di-
mensionsL1 and L2 described in Fig. 1, even though the
procedure can be readily extended to other configurations. In
a hollow waveguide the transverse-electromagnetic modes
customarily used in free-space communications do not
propagate. They are replaced by the transverse-electric(TE)
and the transverse-magnetic(TM) modes in which only the

electric and magnetic terms, respectively, possess null longi-
tudinal components. These modes are characterized by the
wave vectors[5]
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where the discretization of the transverse components de-
rives from the boundary conditions at the waveguide walls
and where the longitudinal componentk3 is a positive quan-
tity because we are considering only modes propagating
from the sender to the receiver. By introducing the transmis-
sion timeT si.e., the time interval in which the sender oper-
ates the channeld, the longitudinal parameterk3 can be dis-
cretized using periodic boundary conditions. In particular, a
mode with wave vectork bounces off the waveguide walls
ssee Fig. 1d so that it propagates across the transmission line
with a longitudinal speedsgroup velocityd c cosu;ck3/ uku.
This means that all the photons of that mode used in the
transmission can be ideally enclosed in a box of longitu-
dinal lengthcT cosu: assuming periodic boundary condi-
tions k3 can be discretized as 2pn3/ scT cosud, with n3 a
positive integer. This relation introduces a nonlinearity in
the dependence of the mode frequenciesvksn1,n2,n3d
;cuku on the parametersn1, n2, andn3, i.e.,

FIG. 1. Description of the ideal metallic waveguide. The modes
(TE or TM) with wave vectork propagate in the positive longitu-
dinal direction bouncing off the perfectly reflecting walls of the
waveguide.
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As will be discussed in Sec. II A, this is the main difference
between our approach and the free-space calculation per-
formed in Ref.f1g.

II. THE COMMUNICATION RATE

The communication rateR is the maximum number of
bits per second that can be transmitted through the channel,
and is given by the capacity(i.e., the maximum of the mutual
information between the input and the output of the channel)
divided by the transmission timeT. The capacity can be es-
timated from a quantum-mechanical analysis of the commu-
nication in which each symbolu, transmitted with probabil-
ity density psud, is associated with a quantum statersud of
the Hilbert spaceH of the media used in the communication
process(in our case, the electromagnetic field). Without any
constraints, the infinite dimensions of the input spaceH of
the system under consideration can accommodate an arbi-
trary amount of information and the capacity would diverge.
Physically it is, thus, sensible to introduce an energy con-
straint on the accessible input states[2]. In particular, we
consider the following limit on the available average power
(i.e., energy transmitted per unit time):

P =
TrfHrg

T , s4d

wherer=edupsudrsud is the average message sent through
the channelsi.e., the electromagnetic field state at the inputd,
andH is the Hamiltonian of the modes, i.e.,

H = o
k,e

Hk,e, Hk,e ; "vkak,e
† ak,e, s5d

with e=TE,TM andak,e being the annihilation operator of
the modee with wave vectork and commutator

fak,e ,ak8,e8
† g = dee8dkk8. s6d

In order to calculate the capacity of the channel under con-
sideration, i.e., the maximization of the mutual information
under the constraints4d, we need the infinite-dimensional
extensionf2g of the Holevo theoremf6g which, in the noise-
less case, gives an upper bound to the capacity in terms of
the maximal input von Neumann entropy. As discussed in
Ref. f2g, this upper bound is achievable, so that the rate is

R= max
r

Ssrd
T , s7d

whereSsrd=−Trfr log2 rg is the von Neumann entropy and
the maximum is taken over all the possible density matri-
ces r of the modes employed in the transmission, which

satisfy Eq.s4d. Notice that Eq.s7d might be seen as an
instance of the Holevo-Schumacher-Westmoreland theo-
rem f7g, but for the case under consideration it was first
derived by Yuen-Ozawaf2g. The maximization of Eq.s7d
under the constraints4d can be performed by means of a
variational principle: the maximum is reached forr that
satisfies

dHSsrd
T

−
l

ln 2

TrfHrg
T −

l8

ln 2
TrfrgJ = 0, s8d

wherel andl8 are the two Lagrange multipliers that derive
from the power constraints4d and from the normalization
condition onr, respectivelysthe factor ln 2 hasbeen in-
serted so that all calculations can be performed using
natural logarithmsd. Using standard techniquesssee, for
instance, Ref.f8gd, it is possible to show that Eq.s8d is
satisfied by the density matrix

rmax=
e−l0H

Zsl0d
, s9d

where Zsld;Trfe−lHg is the partition function andl0 is
determined by the equation

P = − U ]

] l
S ln Zsld

T DU
l0

. s10d

Using this solution, the maximum rate in bits per unit time is
finally given by

R=
1

ln 2
Sl0P +

ln Zsl0d
T D . s11d

To obtain an explicit expression forR, we thus only need to
evaluate the partition functionZsld for the Hamiltonians5d.
In the two following sections we will undertake such en-
deavor for two different communication scenarios.

A. Multimode communication

In this section we calculate the rateR when all the wave
vectors that propagate in the positive longitudinal direction
(from the sender to the receiver) are employed in the com-
munication.

Since modes with differentk or different e are indepen-
dent, the partition function factorizes in product of single-
mode partition functionsZk,esld so that

ln Zsld = o
k,e

ln Zk,esld, s12d

with

Zk,esld ; Trfe−lHk,eg =
1

1 − e−l"vk
. s13d

Substituting Eq.s13d into Eq. s12d one can computeZsld by
summing over the allowed values ofn1, n2, andn3. Since we
are interested in the stationary information rate, we should
take the limitT→` which allows the summation overn3 to
be replaced with an integral. Even with this simplification,
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the calculation is quite demanding and is postponed to the
final paragraphs of this section for the sake of readability.
Here we consider the simpler high-power/high cross-section
regime, defined by the condition

g ;
AP

c2"
@ 1, s14d

whereA=L1L2 is the cross-sectional area of the waveguide.
In this regime too, the summations overn1 andn2 reduce to
integrals and, apart from corrections of order 1/g, Eq. s12d
becomes

ln Zsld .
gAcT
2p3 E

V
dx lnF 1

1 − e−l"cfsxdG , s15d

where the volume integral must be performed on the sub-
spaceV of positive xj and fsxd is defined in Eq.s3d. The
parameterg=2 in Eq. s15d counts the different species of
modes, TE and TM in this case. It plays the same role as the
polarization degeneracy in the free-space propagation of
electromagnetic waves. By performing a change of integra-
tion variables and using the integral of Eq.sA2d of the Ap-
pendix, Eq.s15d reduces to

ln Zsld =
gp2

240

AT
"3l3c2 . s16d

Substituting this result in Eq.s10d gives

l0 = Sgp2

80

A

P"3c2D1/4

, s17d

which through Eq.s11d implies the following maximum rate:

R=
4

3 ln 2
Sgp2

80

A

c2D1/4SP

"
D3/4

. s18d

Numerical results.When conditions14d does not apply, the
summations overn1 and n2 in the definition of lnZsld
cannot be performed analytically. In this case we can re-
sort to numerical evaluation of the rate. For the sake of
simplicity we will consider a waveguide with square cross
section, i.e.,L1=L2. Remembering that not all the values
of n1 and n2 contribute both to the TE and to the TM
modes, the summation of Eq.s12d can be written as

ln Zsld =
cT
ÎA

WSpl"c
ÎA

D s19d

with

Wsbd ; o
n1,n2=1

`

Fn1,n2
sbd + o

n1=1

`

Fn1,0sbd, s20d

where
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sbd ; E
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`

dx lnF 1

1 − e−bfsn1,n2,xdG . s21d

Using Eq.s11d, one can show thatRÎA/c is a function only
of the dimensionless parameterg, defined in Eq.s14d. In
fact, Eq.s11d becomes

R=
c

ln 2ÎA
Fgb0

p
+ Wsb0dG , s22d

where b0 is the dimensionless quantity determined by the
condition s10d, i.e., the solution of

U ]

] b
WsbdU

b0

= −
g

p
. s23d

In Fig. 2 the numerical evaluation of the rateR is reported.
Notice that in the limitg@1, the solutions22d approaches
the asymptotic behavior

RÎA

c
→ 4

3 ln 2
Sgp2

80
D1/4

g3/4, s24d

which corresponds to the high-power/high cross-sectional
limit solution of Eq.s18d discussed previously.

The dimensionless parameterg that identifies the onset of
the asymptotic regime forRÎA/c has a relatively simple
physical interpretation. From the density matrix, Eq.(9), we
see that the occupancy probabilities are highest for the
lowest-frequency(lowest photon energy) modes. From the
exact formulation for the partition function, Eq.(12), we see
that the triple-integral approximation in Eq.(15) will be
valid when the occupancy probabilities change very little
between modes with adjacent energy levels. The largest such
photon-energy spacing occurs for the lowest-frequency
modes, and, roughly speaking, is equal to"c/ÎA, i.e., the
photon energy of the waveguide’s cutoff frequency. If we
concentrate all of the sender’s average power into the lowest-
frequency mode, the resulting power spectral density will be
approximatelyPÎA/c, and henceg equals this spectrum
measured in units of the photon energy"c/ÎA of the lowest-
order mode. The conditiong@1 then guarantees the desired
smooth behavior of the occupancy probabilities, because
Eq. (9) implies that high-photon-number occupancy of the

FIG. 2. Numerical plots.(a) Plot of the rateR given by Eq.(22)
as a function of the dimensionless parameterg. (b) Comparison
between the same solution and the asymptotic behaviorRasym of
Eq. (24): the ratio between these two quantities tends to 1 forg
@1.
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lowest-order mode will, of necessity, be accompanied by
similar occupancy of other low-frequency modes.

This analysis clarifies the regime of applicability of the
approximation(18) and underlines the importance of the
quantityg in the definition of maximum rate.

B. Single directional mode communication

In this section we calculate the rateR when the wideband
transmission is limited to using a single direction of the wave
vector k. We will specify this direction assigning the polar
angle u=arccossk3/ ukud and the azimuth angle w
=arctansk2/k1d. In terms of the discretization parametersn1,
n2, andn3, these conditions become

n2

n1
=

L2

L1
tan w, s25d

Spn1

L1
D2

+ Spn2

L2
D2

=
sin2 u

cos4 u
S2pn3

cT D2

, s26d

where the nonlinear relation of Eq.s2d was used in deriving
Eq. s26d. In this case, only those modes withk compatible
with the chosen direction contribute to the partition function
sum s12d, i.e.,

ln Zsld = o
n3=0

`

o
n1,n2=1

`

lnF 1

1 − e−2pln3/sT cos2 udG
3dn2,n1 tan w L2/L1

dn1,2n3L1 sin u/fcTs1 + tan2 wd1/2cos2 ug,

s27d

where, for the sake of simplicity, only the TM mode has
been considered and where the two Kroneckerd’s take into
account the conditionss25d and s26d. Again working in the
high-power/high cross-sectional regimes14d, the summa-
tions can be replaced with integrals and the Kroneckerd’s
become Diracd functions, so that we find

ln Zsld .
cT
2p
E

V
dx lnF 1

1 − e−l"cx3/cos2 uGdsx2 − x1 tan wd

3dSx1 − x3
sin u

Î1 + tan2 w cos2 u
D =

pT cos2 u

12l"
,

s28d

whereV is again the subspace of positive components ofxj.
Substituting this result into Eqs.s10d and s11d, we now find
that the maximum rate is

R=
cosu

ln 2
ÎpP

3"
. s29d

If both the TE and TM modes of the chosen direction were
used for the transmission, then a factorÎ2 would appear in
Eq. s29d.

III. DISCUSSION

In the preceding section we calculated the maximum rate
R for information transmission through an ideal metallic

waveguide under an average input power constraint. In par-
ticular, we found that when the sender is using all the avail-
able modes,R scales asA1/4P3/4, as reported in Eq.(18). This
scaling is reminiscent of the free-space communication one
[1]. The main difference between the two cases is that, for
waveguides all the positively propagatingk vectors actually
reach the receiver owing to the reflecting walls of the wave-
guide. For frequency-v propagation over anL-m-long free-
space path between identical circular apertures of diameter
D, there are approximatelyfD2v / s8cLdg2 low-loss propaga-
tion modes per polarization state[3]. In essence, the low-loss
modes represent propagation angles that lie within the solid
angle subtended by the receiver at the sender. These low-loss
modes can be accounted for by introducing a factor of
Îsin umax (umaxbeing the channel angular aperture as seen by
the sender) in the free-space rate—see Sec. VI A in Ref.[1].
The lossy free-space modes that do not satisfy the preceding
angular subtense condition can be used for communication,
but their analysis requires inclusion of an accompanying
noise source, which is mandated by the quantum theory of
loss. As noted at the end of this section, finding the capacity
of the lossy propagation channel is a considerably more dif-
ficult problem.

Apart from these physical considerations, a technical dif-
ference between our calculation and the free-space analysis
is also evident. In deriving their result, authors of[1], instead
of using Eq.(7), calculate the maximum rate as

R= max
rk,e

o
k,e

Ssrk,ed
T cosu, s30d

whereu is the polar angle of the mode wave vectork and the
maximum is performed over the mode statesrk,e se here
counts the different polarizations of free-space electromag-
netic wavesd. The presence of the term cosu is introduced
in the sum to take into account the difference in the lon-
gitudinal speed of mode propagation.fIn our calculation it
is the nonlinear Eq.s2d that takes care of this.g Accord-
ingly, the power constraint is calculated as

P = o
k,e

TrfHk,erk,eg
T cosu. s31d

This procedure assumes implicitly that the maximum com-
munication rate is achieved by a global state of the input
modes which is unentangled overk. This assumption is cor-
rect as can be seensat least for the waveguide communica-
tion protocol studied hered from the factorized form of the
state in Eq.s9d. In order to compare the two approaches, we
have calculated the maximum rate of the waveguide using
Eqs. s30d and s31d in place of Eqs.s7d and s4d. The results
are, predictably, similar to the ones reported in Sec. II A,
even though the numerical factor differs: in fact, for multi-
mode communication and high-power regime, we now find

R=
4

3 ln 2
Sgp2

120

A

c2D1/4SP

"
D3/4

s32d

smaller than Eq.s18d by a s3/2d1/4 factor, which derives
from the particular choice of maximization of Eq.s30d.
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If we consider the case of a single directional mode, on
the other hand,R scales as cosu P1/2 [see Eq.(29)]: this is
the same result obtained in the free-space propagation[1,2],
apart from the cosu factor that takes into account the de-
crease in longitudinal propagation speed of the field due to
the reflections at the waveguide walls.

All the results discussed in this paper have been obtained
in the lossless case, in which all the photons injected into the
waveguide arrive to the receiver. In the presence of loss, the
calculation procedure complicates noticeably: the capacity is
no more simply given by the entropy of the initial state, but
by the Holevo quantity, which is not known to be additive
over successive uses of the channel[6,9,10]. Finally, we
have not considered the presence of prior entanglement
shared between the sender and the receiver. In this case the
rate R can be doubled by using the superdense coding pro-
tocol [11]. The calculation of the entanglement assisted ca-
pacity for the single directional mode case in the presence of
loss was given in Ref.[12], following the procedure of Ref.
[13].

In conclusion we have calculated the maximum commu-
nication rate for a perfect waveguide in the two regimes of
multimode and single directional-mode communication. A
comparison with the known results on free-space communi-
cation schemes has been given.
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APPENDIX

In this appendix the integration needed for Eq.(15) is
given.

After performing the change of variablesyj =2l"cxj s j
=1,2,3d, the integral in Eq.(15) becomes

E
0

`

dy1E
0

`

dy2E
0

`

dy3lnF 1

1 − e−fsydG
=

p

2
E

0

`

dx xE
0

`

dy lnF 1

1 − e2x2/sy−Îy2+4x2dG , sA1d

where in the right-hand term polar coordinates have been
employed in thesy1,y2d plane. Changing to polar coordinates
also in the plane spanned bys2x,yd, the integral becomes

E
0

p/2

df
p cosf

s1 + sinfd3E
0

`

dr r2 lnF 1

1 − e−rG =
p5

120
.

sA2d
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