
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 09, 2022

Information rates and power spectra of digital codes

Justesen, Jørn

Published in:
I E E E Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.1982.1056516

Publication date:
1982

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Justesen, J. (1982). Information rates and power spectra of digital codes. I E E E Transactions on Information
Theory, 28(3), 457-472. https://doi.org/10.1109/TIT.1982.1056516

https://doi.org/10.1109/TIT.1982.1056516
https://orbit.dtu.dk/en/publications/afef2b6b-ece2-4c34-82fb-9bdbd87af871
https://doi.org/10.1109/TIT.1982.1056516


IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-28, NO. 3, MAY 1982 457 

[34] P. No11 and R. Zelinski, “Bounds on quantizer performance in the 
low bit-rate region,” IEEE Trans. Commun., vol. COM-26, pp. 
300-304, Feb. 1978. 

351 L. Franks, Signal Theory. Englewood Cliffs, NJ: Prentice-Hall, 
1969, p. 7. 

361 W. A. Finamore and W. A. Pearlman, “Optimal encoding of 
discrete time continuous-amplitude memoryless sources with finite 
output alphabets,” IEEE Trans. Inform. Theory, vol. IT-26, pp. 
144- 155, March 1980. 

371 J. G. Dunham, “On iterative theory of code design,” submitted to 
IEEE Trans. Inform. Theory, Biomedical Computer Laboratory, 

Monograph no. 389, Washington University School of Medicine, St. 
Louis, MO, Jan. 1981. 

[38] J. S. Meditch, Stochastic Optimal Linear Estimation and Control. 
New York: McGraw-Hill, 1969. 

[39] S. P. Lloyd, “Least squares quantization in PCM,” unpublished 
memorandum, Bell Laboratories, 1957; see IEEE Trans. Inform. 
Theory, vol. IT-29, pp. 129-137, March 1982. 

[40] N. T. Gaarder and D. Slepian, “On optimal finite-state digital 
transmission systems,” presented at the I979 IEEE Int. Symposium 
on Information Theov, Grignano, Italy, June 1979. 

Information Rates and Power Spectra of 
Digital Codes 

J0RN JUSTESEN 

Absrruct-The encoding of independent data symbols as a sequence of 

discrete amplitude, real variables with given power spectrum is considered. 

The maximum rate of such an encoding is determined by the achievable 

entropy of the discrete sequence with the given constraints. An upper 

bound to this entropy is expressed in terms of the rate distortion function 

for a memoryless finite alphabet source and mean-square error distortion 

measure. A class of simple de-free power spectra is considered in detail, 

and a method for constructing Markov sources with such spectra is derived. 

It is found that these sequences have greater entropies than most codes 

with similar spectra that have been suggested earlier, and that they often 

come close to the upper bound. When the constraint on the power spectrum 

is replaced by a constraint on the variance of the sum of the encoded 

symbols, a stronger upper bound to the rate of de-free codes is obtained. 

Finally, the optima@ of the binary biphase code and of the ternary bipolar 

code is decided. 

I. INTRODUCTION 

I N DIGITAL communication and recording, a data 
‘sequence from a finite alphabet B = {b,, b,, . . *, b,} is 

converted into a continuous real-valued function of time: It 
is convenient to introduce as an intermediate step a se- 
quence of real numbers from a finite set I’ = 

{ VI, f-5,‘. . ,oK}. This sequence may be converted to the 
desired continuous signal by interpolation and possibly 
modulation. Part of the necessary shaping of the power 
spectrum may take place in the coding from the data 
sequence to the real sequence. In particular it is convenient 
to suppress undesirable low frequency content at this point. 

Manuscript received November 13, 1979; revised February 23, 1981. 
This work was presented at The Fifth International Symposium on 
Information Theory, Tbilisi, USSR, July 1979. 

The author is with the Institute of Circuit Theory and Telecommunica- 
tion, Technical University of Denmark, Building 343, DK-2800 Lyngby, 
Denmark. 

We refer to [l] for an introduction to the literature on 
spectrum shaping codes. 

A code will be defined as a one-to-one mapping from the 
data sequence to the real sequence. We shall assume that 
the data sequence may be described as a sequence of 
independent identically distributed random variables x = 

. . . , A,-,, A,, At+19 * * * and that the encoded sequence 
is a stationary ergodic random sequence x = 
. . . > 4-1, x,, xt+,, . . . with given power spectrum S,( 0). 
The rate of the code is the average number of data symbols 
per encoded symbol. 

The main purpose of this investigation is to provide 
good upper bounds to the rate of such codes. While many 
different codes have been described in the literature, such 
bounds have not been available, and consequently it has 
not been clear whether significantly better results could be 
obtained with other codes. In Section II, it is proved that 
the achievable rate depends directly upon the maximum 
possible entropy of a sequence with alphabet V and power 
spectrum S,(w). Slepian [2] has given an excellent discus- 
sion of the problems involved in constructing maxentropic 
sequences over finite alphabets for given second moments. 
Some results were obtained for finite-order Markov 
processes, but the general problem of specifying the 
maxentropic sequence or obtaining the exact value of its 
entropy appears to be very difficult. 

In Section III, we derive an upper bound to the entropy 
of a sequence with given probability distribution on V and 
given power spectrum. This bound involves the rate distor- 
tion function for a memoryless source with alphabet V, 
and the distortion in question is the minimum mean-square 
error of any linear predictor for x We discuss a computa- 
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tional procedure for evaluating this bound. In several 
examples in this and the following sections, the upper 
bound is compared to the entropies of finite order Markov 
sources. In many cases, the difference is only a few percent. 
For binary sequences, the bound is less tight. For most 
applications, it is desirable that the encoded sequence have 
a spectrum which is 0 for o = 0, remain low for w less than 
a certain cut-off frequency wO, and be approximately con- 
stant over the remaining frequency band up to o = 7~. In 
order to obtain more detailed results of practical relevance, 
we consider the case where V is a set of integers and the 
spectrum is a simple rational function. In Section IV we 
show that the sum of the encoded symbols plays an im- 
portant role in the analysis of codes whose spectrum 
vanishes at o = 0. In the literature [3], [4], the sum is often 
used in comparisons between different codes, but there has 
‘been given little justification for this approach. We prove 
that the sum is closely related to the best linear predictor 
and that an approximate value of w0 can be found from the 
variance of the sum. 

Practical coding methods lead to encoded sequences 
which may be described as unifilar Markov sources. For 
Markov sources with S,(O) = 0, there is a particular value 
of the sum of the encoded symbols associated with each 
state. In Section V we use this fact in the construction of 
Markov sources with simple power spectra. Comparisons 
of the entropies of such sources and the rates of several 
well-known codes show that practical codes often do not 
achieve the best possible spectra. We give examples of 
better codes derived from the Markov sources. 

If the variance of the sum is given rather than the entire 
power spectrum, it is less complicated to find a sequence 
with maximum entropy. In Section VI, we carry out the 
maximization for binary sequences and obtain closer 
bounds than those derived in Section III. A similar proce- 
dure is possible in the case of ternary sequences, but the 
result is a great deal more involved. 

In Section VII, we consider the problem of finding 
maxentropic sequences of spectra of the form Sx(w) = 
A( 1 - cos w ). It is proved that the binary biphase sequence 
has maximum entropy. On the other hand, the widely used 
ternary bipolar or “alternate mark inversion” code pro- 
duces a sequence which is shown not to be maxentropic. 

II. ENCODING OF SPECTRUM SHAPING CODES 

The data sequence 2 is assumed to consist of indepen- 
dent random variables with alphabet B and identical prob- 
ability distribution p,(b,). The entropy of this sequence is 
H(A). We wish to encode the data as a stationary ergodic 
sequence x with values from a finite alphabet of real 
numbers V in such a way that the probability distribution 
of each X, is a given px( vk) and the power spectral density 
of the sequence equals a given function, S,(w). Equiva- 
lently, the correlation sequence 

R,(k) = E[X,X,+,] = z1;;J_” Sx(w)eik”dw (1) 
$7 

may be given. We shall assume that the spectrum does not 
contain any discrete components, and in particular that 
E[X,] = 0. The entropy of Xmay be written [5, p. 571 

H(X) = H(X,IX,_,, x,-,;**). (4 

The difference between the coding problem considered 
here and the more usual source coding problems is the 
restriction on the statistics of the encoded sequence. The 
basic difficulty of the problem is that there is no simple 
connection between the power spectrum and the entropy of 
ZI 

In order to define the rate of the encoding, we collect 
m data symbols at a time into blocks A;” = (A,,, 
A mt+1,"', A mr+m-,). Similarly the encoded symbols are 
collected into blocks X: = ( Xnt, X,,, ,; . .,X,,t+n- ,). These 
new data symbols are again independent identically dis- 
tributed and the new encoded sequence is again stationary 
and ergodic. A code is a one-to-one mapping between these 
sequences such that the average number of encoded sym- 
bols equals the average number of data symbols. The 
dimensionless rate of the code is then I= m/n. 

The most natural coding theorem in the present case is 
obtained by application of the Ornstein-Gray sliding block 
coding theorem [6]. In order to apply this result, we must 
restrict the sequence p to be a B-process, i.e., a process 
which can be approximated arbitrarily closely by a Markov 
process. It appears that this class of processes actually 
includes all sequences of practical interest. The following 
theorem is a direct consequence of the sliding block coding 
theorem. 

Theorem 1: An encoding of rate I of a sequence x is 
possible if and only if there exists a B-process, X, with the 
required alphabet, probability distribution, and power 
spectrum such that the entropies satisfy I= H( X)/H( A). 

By this result, the problem of maximizing the rate is 
transformed into the problem of constructing a sequence of 
maximum entropy. 

If the restriction that Xn be a B-process is dropped, a 
much less satisfying coding theorem may be proved. We 
shall not give any details, but briefly indicate the changes 
involved. From the source block coding theorem [5, p. 601 
it follows that if the symbols in B are equiprobable and 
H(X) > /H( A-), then blocks from x may be encoded as 
blocks from X. The statistics of the encoded sequence are 
changed a little in the encoding process and not all blocks 
are used. However, for large block lengths, the spectrum 
will be close to the desired function. If the data symbols 
are not equiprobable, a set of small total probability will 
not be encoded. 

Most practical encoding algorithms may be described as 
finite state transducers [7, p. 2811. A transducer, or a 
sequential machine, is defined by a set of states, R = 

{ so, SI,. * . ,sv}, a set of input symbols, I, a set of output 
symbols, 0, a state transition function 6: I X R + R and 
an output function 5: I X R -+ 0 or {: R + 0. If the state 
at time 1 is S(t) = sj and the input symbol is i,, then 
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S(l + 1) = 6(sj, ik). In most of our examples, the input at 
time t is A, and the output X, is associated with the state 
transition. Later we shall define a function 2, which is a 
function of S(t). Usually the alphabets of x and z will be 
different. 

Since the A, are independent, they determine via 6 a set 
of transition probabilities pij = P[S( t + 1) = sj ] S(t) = 
si]. If the input is suppressed and replaced by these proba- 
bilities, the output sequence is a Markov source [6, pp. 
63-691. We shall assume that, given S(t,) and the output 
for t L t,, the sequence of states may be reconstructed. A 
Markov source with this property is often called unifilar. 
We shall further assume that the state sequence S(t) is an 
ergodic Markov chain [8, pp. 35-371, which may be regular 
or cyclic. Thus there is a unique stationary probability 
distribution on the states p,(s,) satisfying 

PSCsj) = 12PS(si)Pij (3) 

or, in terms of the transition matrix QT = {p,,} and the 

vector Fs’ = (Ps(~o), PsCsi)> * * * ,Ps(SN))~ 

QPs = Ps. 

If the probability distribution of the source is assumed to 
be ps( sj) at all times, the output sequence is stationary and 
ergodic. The entropy of the source may be expressed as 

H( x, = - XPS(‘i) EPijl”g Pij* (4) 

I j 
Even though cyclic sources can be made stationary by 
proper choice of the probability distribution, their sample 
functions may contain undesirable periodicities. Thus spe- 
cial attention is required in order to avoid discrete frequen- 
cies in their spectra. 

Example 1: Perhaps the most widely used spectrum 
shaping code is the bipolar or the alternate mark inversion 
(AMI) code. It is used for encoding independent equiprob- 
able binary symbols into a sequence with alphabet V = 
(0, t l}, probability distribution ~~(0) = l/2, p,(l) = 

P&l) = l/4, and power spectrum S,(o) = (1 - 
cos w)/2. The encoding may be described by the transition 
function 6 and the output function [: 

6(s,,O) = so, EhJ,O) = 0, 

S(s,, 1) = Sl, -i(so, 1) = 1, 

6(s,,O) = $1, =$,,o) = 0, 

qs,, 1) = so, ((s,, 1) = -1. 

probability distribution and power spectrum could have a 
rate greater than one. 

III. AN UPPER BOUND TO THE ENTROPY OF A 
DIGITAL SEQUENCE 

In this section, we shall derive a general upper bound to 
the entropy of a sequence with alphabet V, probability 
distribution px( ok), and power spectrum S,(w). First we 
replace the past in (2) by a function of the past to obtain 

ff(X,IX,-,, T-29.. *> -‘f$qm-,, q*,*-1). 

(5) 

The type of function we have in mind is a predictor for 2, 
i.e., a function which provides an estimate of X,. The idea 
is that a sequence which has a predictor with small predic- 
tion error must have a small entropy, whereas a sequence 
which cannot be predicted well has a large entropy. The 
predictor that minimizes the variance of the prediction 
error is E[X, 1 Xt-,, Xte2,. . .I. However, this function de- 
pends on properties of the sequence about which we have 
no information. Knowledge of the correlation sequence, 
however, suffices to determine the linear minimum mean- 
square error (LMMSE) predictor 

kl = ; h,X,-,. 
j=l 

(6) 

From the orthogonality condition for LMMSE estimation 
[9, p. 2361 we get 

E[ e,Xt-,] = 0, j > 0, (7) 

where e, = X, - Xl is the prediction error. Combining (6) 
and (7) we get the Wiener-Hopf equation 

s hjR,(k -j) = R,(k), k = 1,2;.. . (8) 
j=l 

The variance of the LMMSE prediction error may be 
expressed directly in terms of the power spectrum [lo, p. 
3011 as 

If S,(w) vanishes for certain isolated real frequencies, 
the predictor must be expressed in a somewhat different 
form. We shall assume that x has no deterministic compo- 
nent. In that case [lo, p. 2921 

The same sequence may be obtained by interpreting the 
and the prediction error is still given by (9). A good 

input as the real numbers -+ 1 and using the linear encod- 
approximation to the LMMSE predictor is obtained by 

ing rule 
restricting the sum in (6) to a finite number of terms. 
However, for rational power spectra we can get an exact 

x, = (A, - A,_,)/2. expression by using recursive estimation. Let the power 

The power spectrum follows immediately from this expres- sPectrum be given bY 
sion. The rate of the code is one and the entropy of the 
output sequence 1 bit. Much of the research reported here s,( (3) = $ &ewiaj/ i gJepiwj 2. (11) 
was motivated by the question whether a code with this j=O j=o 
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For such spectra the analysis is much simpler [ 11, pp. 
121-1251 and the predictor has a more satisfactory inter- 
pretation. The condition (10) assures that X can be ob- 
tained by passing a sequence of uncorrelated random vari- 
ables I!? through a linear filter [ 10, p. 2931, and from (11) it 
follows that the transfer function of the filter can be taken 
as 

G(a) = $ Qpiuj/ $ gjepiuj, (12) 
j=O j=O 

where we assume that g, = 1 and that all zeros of the 
denominator are outside the unit circle. The transfer func- 
tion (12) corresponds to the difference equation 

$ gjxt-j = i f,v,-,. 03) 
j=O j=O 

In the literature on recursive filtering [9, pp. 255-2621, this 
equation is usually written as a first-order vector equation. 
For the present purpose, however, we prefer a scalar equa- 
tion of higher order. The term ,t& is uncorrelated with the 
past and may be identified as the prediction error e,. 
Rewriting (13), we find that Xt = X, - e, is determined 
recursively as 

or 

$j gjXtpj = e, + $ Jf( Xt-j - ill,) 
j=O j=l 

kt = - ; @t-j -I- ; (6 - gj)xt-j. (14 
j=l j=l 

If S,(w) has no real zeros, the numerator of G( w ) does not 
have any zeros on the unit circle. In this case the initial 
conditions are unimportant if the recursion was sprted in 
the distant past, and the stochastic sequence X is de- 
termined by (14). However, if Sx(a’) = 0 for some 
frequency w’,the initial conditions must be chosen in such 
a way that X does not contain any deterministic compo- 
nent with this freq%ncy. In particular, if S,(O) = 0, a 
sample function of X is determined by the corresponding 
sample function of xonly up to an additive constant which 
must be chosen to make the time average vanish. This 
point will be discussed in greater detail in Section IV. 

We now return to the bound on the entropy. We choose 
the LMMSE predictor Xl as the function + in (5) so that 

H(X) sI(X,I2J. (15) 

Now, let F be set of real-valued random variables, Y, 
satisfying 

E[(X, - Y)“] = u,“. 

Thus X* E F. We may then obtain the desired bound as 

fJ(x) -(4l~i,> y$WI w 

= ff(X,) - fnin_(l(x,; 0). (16) 

Here H( X,) depends only on the probability distribution 

on I’, and the term min{l(X,; Y)} is a point on the rate 
distortion function r*(D) for a memoryless source with 
probability distribution px( vk) [ 12, p. 231. We restate this 
result as a theorem. 

Theorem 2: The entropy of a stationary ergodic se- 
quence with alphabet V, probability distribution px(uk), 
and power spectrum S.Jo) is upper-bounded by 

H(X) I N(X,) - r*(0,2), 

where r* is the rate distortion function for a memoryless 
source with probability distribution px(vk), for the set of 
real numbers as the reproducing alphabet and mean-square 
error as the distortion measure and the distortion u,’ is the 
minimum mean-square error for linear prediction. 

The rate distortion problem defined above is somewhat 
unusual since it combines a discrete source alphabet and a 
continuous reproducing alphabet. However, the basic prop- 
erties of the r*(D) curve follow immediately from the 
analysis of discrete sources in [ 12, pp. 20-461. r*(D) is a 
convex function with r*(O) = H(X,) and P(u,‘) = 0. It has 
infinite slope at D = 0 and usually nonzero slope at D = u,“. 
The probability distribution of Y is discrete with at most 
K + 1 active reproducing symbols for a given value of D. 

It is convenient to distinguish between the K + 1 ab- 
stract reproducing symbols y,, y,, . . . ,yK and the set of real 
numbers consisting of the value wj( D) associated with each 
yj for a particular value of D. The y satisfy 

EIX,lYj] = wj(D) (17) 

since this choice of the real numbers minimizes D for a 
given set of conditional probabilities. Thus 

(32 = 02 - 02 = & 
Y x = 08) 

r*(D) may be computed by an extended version of Blahut’s 
algorithm [ 131. For a given value of the slope s, this 
algorithm generates a convergent set of conditional proba- 
bilities. We have extended the algorithm by using (17) to 
adjust the reproducing alphabet and hence the distortions 
between vk and yj. 

We conjecture that, under mild restrictions on the proba- 
bility distribution of X,, the w,(D) are continuous func- 
tions of D in an interval of the form 0 5 D 5 D,. Clearly 
we can take w,(O) = vj and at least two functions are 
defined in the entire interval from 0 to 0,’ and have 
wj(u,“) = 0. We expect the number of active reproducing 
symbols to be monotonically decreasing for increasing D. 
A symbol yj may disappear for D = Dj when its probability 
reaches 0, or it may merge with another symbol with the 
same value w,(p,) = ~~(9~). These assumptions facilitate 
the use of the iterative algorithm, but we have been unable 
to prove that they are always true. However, we may verify 
that a computed set of conditional probabilities corre- 
sponds to a point on the r?(D) curve by testing the 
condition [12, p. 351 

c(w) = xpx(vk)Xkexp [s(w - ok)23 5 1, (19) 
k 
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Fig. 1. Rate distortion function for ternary source and construction of 
the upper bound to the rate of the bipolar code. 

where 

Equation (19) must be satisfied for all real w, and for each 
active reproducing symbol yj it is satisfied with equality 
when w = wj. Thus it is sufficient to determine the values 
of the relative maxima for c(w), all of which must be less 
than or equal to one. 

Example 2: Fig. 1 shows the rate distortion function for 
a ternary source with V = (0, t l} and p(0) = l/2, p(1) 
=p(-1) = l/4. I n E xample 1, we described a code with 
spectrum (1 - cos w)/2. The LMMSE predictor for a se- 
quence with this spectrum is 

2t = 2zit-, - x,-, 

and the prediction error has variance cr,’ = l/4. For this 
case the upper bound of Theorem 2 becomes H(X) I 1.024 
bit. Thus at most a small increase in the rate of the AM1 
code is possible. 

Fig. 2 presents the rate distortion function for a source 
with five symbols. For small distortions, there are five 
reproducing symbols, while in an interval D, I D 5 D2 
only three symbols are used, and finally, for large distor- 
tions, only two reproducing symbols are active. 

In most of the cases considered in the following sections 
the rate distortion functions are evaluated at points where 
the only active reproducing symbols are *oi. 

bits 
log 5 

2.0 

1.0 

0 

r*(D) 

0 .5 1.0 1.5 2.0 

Dl D2 

Fig. 2. Rate distortion function for a source with five equiprobable 
symbols and a segment of the function for a source with symbol 
distribution (1/8,1/4,1/4,1/4,1/8). 

IV. PROPERTIES OF DC-FREE SEQUENCES 

In most applications of spectrum shaping codes, it is 
desirable that the code be dc-free, i.e., that S,(O) = 0, that 
the spectrum remain low up to some cut-off frequency and 
be approximately constant over the rest of the frequency 
band. The exact form of the power spectrum is usually less 
important than the complexity of the coding algorithm. 

The performance of a dc-free code is often expressed in 
terms of the set of values that the sum of the encoded 
symbols 

f2 

=:,t2 = x xk 
k=t, 

can take [3], [4], [ 141. The most common performance index 
is the digital sum variation 

In this section we shall make this concept more precise and 
give some analytical justification for using the variance of 
the sum as a measure of the bandwidth of the encoded 
sequence. 

Assume, as in the previous section, that 2 has no de- 
terministic component, so that (10) is satisfied, and x can 
be obtained by passing a sequence 0 of uncorrelated 
random variables through a causal linear filter. We shall 
not require that the transfer function G(o) be rational. 
Further, let S,(O) = 0 and let fhe derivative of S,(w) be 
continuous at w = 0. Then S,(w)/(l - cos w) has a finite 
limit for w + 0, and we can write G(w) as a product of the 
transfer functions G’(o) and G”(w) for two causal filters 

G’( w ) = G(w)/ (1 - e-‘“) 

G”(m) = 1 - e-i”. (20) 
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When u is the input to the first filter, the output is a 
stationary random sequence z with power spectrum 

s&d) = (1/2)S,(w)/(l - COSGJ). (21) 

The difference equation for the second filter is then 

2, = z,_, + x,. (22) 

As noted in Section III, the sequence z is only uniquely 
defined if we specify that it contains no deterministic 
component. It follows from (22) that z may be interpreted 
as the sum of the encoded symbols with a correction to 
ensure that the time average vanishes. Thus this sum is well 
defined for any purely random dc-free sequence whose 
spectrum is smooth at w = 0. The variance of the sum may 
be found by integration of (21) or it may be expressed 
directly in terms of R ,.J k). Consider 

z, - z, = x, + x2 + . . * +x,. 

By taking the variance of this variable we get 

2.0 

1.0 

.5 

0 

5 Xj 

2 

2at-2R,(k)=E 

I( 11 j=I 

k-l 

Fig. 3. 

0 Oo/' .5 1.0 

First-order power spectra. As an example the cut-off frequency 
is shown for r = l/2. 

= 2 (k - lAPx(~) 
j= -k+ I 

k-l k-l 

= kjzTk+,R,(d - 2 2 .P,(j). 
j=l 

(23) 

taking the first-order rational functions 

S;(w) = a,‘(1 + r)(l - cos w)/ (1 + r2 - 2rcos w), 

1 rl< 1, (26) 

or equivalently 

When we take the limit for k --) cc in (23) and use 

lim R,(k) = 0, 
k-m 

and 
k-l 

R’,(k) = - (1/2)a:(l - r)rlkl-‘, k # 0. (27) 

The peak values of these spectra are S;(r) = 2( 1 + r)- ‘a,‘. 
In Fig. 3, S;(o) is plotted for several values of r. A 
sequence with spectrum Sj;(_w) may be obtained by passing 
an uncorrelated sequence U through a filter with transfer 
function 

we get 

a2 = - 2 kR,(k). P 
k=l 

(24) 

With this result R,(k) may be found from (23) in terms of 
the correlation function for x In many cases a,” can be 
determined directly from the definition of the code even 
when no closed form expression for the spectrum is avail- 
able. 

It is not clear from the results above how the sum is 
related to the cut-off frequency. As discussed in [4] the 
obvious approximation to the power spectrum for small 
values of w would be 

S,(o) = -a2 $ k2R,(k), 
k=l 

(25) 

which is not related to the sum in any simple way. 
We can obtain a class of simple power spectra with the 

properties mentioned in the beginning of this section by 

G’(a) = (1 - e-io)/ (1 - rep’“). (30) 

It is convenient to define the cut-off frequency [ 151, wO, by 

S,(o,) = a,2/2. (31) 

For Sk(w) we get 

1 - cos o0 = (1 - r)2/2. (32) 

For small values of 1 - r we may use the approximation 

wo- 1 -r. (33) 

Actually, this approximation is within one percent even for 
r = l/2. Using (14) we find the best linear predictor to be 

2tt = it-, - (1 - r)X,-,. (34) 

Taking variances on both sides of this equation, and using 
(7) we get 

a; = (1 - r)a,2/2, a,’ = (1 + r)a,2/2. (35) 

Comparing (34) and (22), we see that 

it = - (1 - r)Z,-, (36) 
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and thus 

a,’ = (1 - r)-‘a,2/2. (37) 

Thus the cut-off frequency may be approximated by 

w. - a:/ (20:). (38) 

This expression is very convenient because it can often be 
evaluated by simple calculations even though the spectrum 
is a complicated function. For first-order spectra the ap- 
proximation (25) becomes wa = (1 + r)- ‘/*( 1 - r), which 
is not so close to the acutal value (32) as (33). Thus, for 
first-order spectra, the cut-off frequency is proportional to 
the inverse of the variance of the sum, and the sum has the 
additional interpretation of being proportional to the best 
linear predictor. For spectra that are similar to first-order 
spectra, we shall use (38) as an approximation to the 
cut-off frequency. In all cases where the spectrum can 
readily be obtained by calculation or from the literature, 
we have confirmed the value obtained in this way. 

The codes of greatest practical interest have alphabets of 
the form 

v2K= {-+-1,?3,%(2K- 1)) 

or 

V 2K+* = (0, *1, *2;**,*K}. (39) 

In this case Z, must take values from a set of the form 

w,= {cX,(Y*1,QI*2;..,}, 

where finitely or infinitely many elements may have non- 
zero probabilities. It follows from (36) that & for first-order 
spectra takes values of the form (1 - r)( a ? j). If V has an 
even number of elements, z must alternate between two 
subsets of W, since an odd integer is added in each step. 
Most of the codes that have been suggested in the literature 
have a symmetry that leads to (Y = 0 or (Y = l/2. However, 
one of the difficult problems in constructing a sequence of 
maximum entropy is to determine the best value of a. 

If x is a Markov source, the situation is particularly 
simple. We shall prove that Z, is a function of the state 
S(t). Let {( sj) = zj indicate the value of the sum associated 
with state sj and let the symbol from V that is produced on 
transition from state sj to sk be denoted by xjk. 

Theorem 3: If x is an ergodic dc-free Markov source, 
there is a unique function of the state, l((s(t)), such that 

and 

&Sb,)Zj = 0 (40) 
i 

Xjk = Zk - zj. (41) 

Proof: There is at most one function which satisfies 
(40) and (41). For a given z,,, the remaining zj can be found 
by repeated application of (41) since all states can be 
reached. If a constant is added to za, the same constant is 
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that makes the mean value vanish. This set of zj provides 
the correct initial conditions for the recursion (22), and for 
first-order spectra, the initial conditions for (14) are ob- 
tained via (36). In order to prove that the function $ exists, 
we must prove that (41) cannot lead to conflicting assign- 
ments of zj. It is convenient to think of a sequence of state 
transitions as a path through the graph that has a node 
representing each state and a directed branch for each 
transition [5, p. 641. A sample function X = 
. . . ,X,-l, x,, x(+1, * * * may be divided into cycles which 
start and end in state s0 and which do not pass through sO. 
Let the sum of the xij along the jth cycle be vi, and let p 
denote the finite average length of the cycles. The power 
spectrum of the source can be calculated from the sample 
function, and in particular for o = 0 we have 

2 

S,(O) = lim L-’ i xi . / i (42) 
L-+03 \j=l ‘I 

Rewriting this sum in terms of the cycles, we get 

linpq’ 
l I 

g vj 2 =o. (43) 
j=l 

However, in (43) we could interpret the vj as a sample 
function for a sequence of independent random variables. 
Consequently, (43) implies that vj = 0 for all j. Assume 
that, starting from a particular value ze, we reach a state sj 
with two different sums, zi # z,I’, by following two differ- 
ent paths. These paths could be extended to cycles with 
different sums, and at least one cycle would have a nonzero 
sum. Thus, the assumption leads to a contradiction. 

V. _CONSTRUCTION OF MARKOV SOURCES WITH 

GIVEN POWER SPECTRA 

If the transition probabilities and the output function for 
a Markov source are given, the power spectrum may be 
determined by a straightforward calculation. We shall re- 
strict our presentation to the case of a state output, Z, = 
{( S( 1)). It follows from Theorem 3 that, for dc-free Markov 
sources, the sum is a function of the state. The spectrum of 
xis related to S,(w) by (21). 

For a source with transition matrix Q, and stationary 
probability distribution j?s, R,(k) may be expressed as 

R,(k) = fTQkG, k r 0, (44) 

where c and & indicate the column vectors 

y” = (S(Q), Sb,),* . .,SbN)) 

s;T = (sbohhd~ rhh%h)~- * * hA?&lv))~ 

From the Cayley-Hamilton theorem Q satisfies the linear 
recursion C(Q) = 0 where C(A) = ] E - hQ 1 and E is a 
unit matrix. From (44) R,(k) satisfies the same recursion. 

added to all other zj. Thus there is exactly one choice for z,, If Q has distinct eigenvalues 1, A,, X2, * . . , X, and right 
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eigenvectors &, U,, U2,. . +, UN, we can write (44) as 

R,(k) = CT @-- + $ A;.vjz-ij , 
i 1 

kr0. (45) 
j=l 

Usually, the most efficient method for computing the spec- 
trum will be to use the recursion for R,(k) and to find the 
initial conditions from (44). However, it may be possible to 
simplify the recursion if it is known that some of the terms 
in (45) are zero. Thus, if it has been assured that 

$ Ps(sj)S(sj) = fTF, = O> 
j=O 

the factor A - 1 in the recursion may be canceled. As a 
more important example, many sources of interest satisfy 
the symmetry conditions [(sj) = - {(sNmj) and pij = 
pNeii, N-,. If N is odd, the transition matrix may be ex- 
pressed as 

where Q’ indicates that the rows and columns of Q’ have 
been reversed. In this case half of‘the terms in (45) vanish 
because the eigenvectors satisfy ujk = uj, N-k. The recur- 
sion may be simplified to C(A) = ( E - A(Q’ - Q’,‘) ( , 
where @’ is obtained by reversing the order of the columns 
in Q”. The power spectrum may be expressed in closed 
form as 

S,(o) = 5 RZeCiwk 
-Do 

= -R,(O) + fT(E - eiwQ)-‘g 

+fT(E - e?-Q)-‘Sip. (46) 

It follows from (46) that the denominator of S,(o) and 
S,(o) divides II E - Qe-‘” II 2. However, it is a rather 
time-consuming task to invert the matrix in order to find 
the numerator of the spectrum. 

The method outlined above for computing the power 
spectrum is also useful for constructing Markov sources 
with given spectra when the number of states is sufficiently 
small. In general there seems to be no practical procedure 
for constructing a source with a prescribed spectrum. We 
shall describe a method which can be applied in many 
cases of interest in the present context, and we shall use the 
entropies of these Markov sources as lower bounds to the 
rate of the best codes. 

The construction is based on making the additional 
assumption that the LMMSE predictor for x coincides 
with the conditional expectation 

(47) 

It is not clear when this extra condition can be satisfied or 
how a process with this property compares with the maxen- 
tropic sequence. However, if it is possible to construct a 

l/2 1 0 0 

0 0 0 l/2 

Q= l/2 0 0 0 

I I 

’ 
0 0 1 l/2 

and the stationary probabilities are p&so) = ps(s3) = l/3, 
ps(sl) =ps(s2) = l/6. The source emits runs of l’s and 
- l’s with at least two symbols in each run. The entropy is 
2/3 bits. An encoder would encode a binary symbol each 
time the machine is in state s0 or s3. This sequence may be 
seen as a simplified model for delay modulation or Miller 
code [ 171 which has a similar spectrum. This code has rate 

source satisfying (47), then it has a rational power spec- l/2 and is used in magnetic recording. By changing a sign 
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trum and, since the best linear predictor has a correct form, 
it follows from (14) that the sequence has the desired 
power spectrum up to a constant factor. The construction 
of a finite-state Markov source satisfying (47) is possible 
only if Xt assumes values from a finite set. 

If S,(o) = I G( e-‘“) 1-2, where G is a polynomial of 
degree N, then the linear predictor has only N terms 

$ = f$ hjXt-,, (48) 
j=l 

and we may attempt at constructing an Nth order Markov 
process as a Markov source with one state for each of the 
KN values of X,- ,, XIe2, Xr-s,. . -,Xr-,,,. To each of these 
states (48) assigns a value of the linear predictor, and we 
should adjust the transition probabilities in such a way that 
(47) is satisfied. Slepian [2] constructed Markov sources 
with the same choice of states as discussed here. Binary 
sources with N = 2 and ternary sources with N = 1 must 
have transition probabilities that satisfy (47) in order to 
have the required values of R,(O), R,(l), and, for the 
binary sources, R,(2). Since Slepian proves that such 
sources have maximum entropy for these values of the 
correlation sequence, they are certainly maxentropic for the 
spectra in question. For larger N and larger alphabets, 
Slepian’s approach leads to sources with more complicated 
spectra. For binary sources (47) becomes 

P(l JSj) - P(-1 lSj) = 1 - 2P(-1 ISj) = [(Sj). 

(49) 

Thus the transition probabilities are uniquely determined 
by the vector c 

Example 3: The spectrum Sx(w) = 1 1 - (1/2)e-‘” + 
(1/2)ep2’” )-’ = (3/2 - (3/2)cos w + cos2w)-’ may be 
obtained with a four-state binary Markov source. The 
LMMSE predictor for this spectrum is 

A?* = (1/2)X,-] - (1/2)x,-, 

and takes values 0 and ? 1. Let the states so, s,, s2, s3 
correspond to (Xl-,, X,-,) = (1, l), (1, -l), (-1, l), 
(- 1, - 1). .$ is a function [(S(t)) with [(so) = 0, {(s,) = 1, 

S(sJ = -1, Hs3) = 0. 

Using (49), we get the transition probabilities 
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to S,(o) = (3/2 + (3/2)cos w + cos20)-’ we get a 
source that emits runs of length two at the most. 

Example 4: For a binary code, let R,( 1) = - l/2, 
Rx(k) = 0 for k > 1. In a later section we shall determine 
the maxentropic sequence for this spectrum. Here we shall 
consider a third-order Markov process which has the same 
values of the correlation for k 5 4. Solving (8) we get the 
predictor 

Tcf = - (3/4)x,-, - (1/2)X,-, - (1/4)X,-, 

and consequently 

Sx(w) =I 1 + (3/4)e-‘” + (1/2)e-2’” + (1/4)ew3’” I-*. 

Since (47) can be satisfied only for ] x, ) I 1, the variables 
Xrer, XtP2, X,-s cannot all take the same value. If the 
states sO, s,; a .,sg correspond to (Xr-,, Xtw2, X,-,) = 

(191, -I>, (1, - 1, I>, (1, - 1, - I>, (- 1,L l), t- 1, 1, -I>, 
(- 1, - 1, l), the transition matrix becomes 

0 l/4 l/2 0 0 0 

0 0 0 l/2 3/4 0 1 
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0 3/4 l/2 0 0 0 

0 0 0 l/2 l/4 0 J 

In both of the previous examples the denominator of 
Sx(w) is IIE - e-““(Q’ - Q’)ll’. 

We shall apply the same approach to sources with the 
spectrum S;(o) of (26). From Theorem 3, we have that 
Z,- , = {(S(t)) and (36) now shows that 

it = - (1 - r)@(t)). 

In this section, we shall let each value of Z, correspond to a 
unique state. We first select a value of (Y, 0 -( (Y < 1. For 
each element in the set W, that has nonzero probability, 
(47) provides a linear constraint on the transition probabil- 
ities. It follows from (45) that if the transition probabilities 
satisfy these constraints, r is an eigenvalue of Q. We 
consider the most important alphabets in detail. 

A binary source can satisfy (47) only if I Xt ) I 1. Since 
the numerical value of Z, is limited by this constraint, there 
must be states s,, and sN with 

and 

,P[l]s,]=P[-lls,]=O, 

[(so) = (1 - r)--I, l(s,) = - (1 - r)-’ 

since otherwise the numerical value of Z, could increase 
further. Thus the construction is possible only if 1 - r 
divides 2. For negative values of r there is no binary source 
since R,( 1) and R,(2) cannot have the required values [2]. 
We have not found any finite-state Markov source with 
spectrum S&(w) for values of r other than 0, l/3, l/2, 
3/5, 2/3, -. . . For these values of r, (47) is satisfied by a 
unique source with N + 1 = 1 + 2/(1 - r) states, sta- 
tionary probability distribution, transition probabilities, 

.5 1.0 1.5 2.0 2.5 

Fig. 4. Comparison of binary dc-free codes. a) Upper bound for codes 
with first-order spectra. b) Lower bound for first-order spectra. c) 
Sequences with limited digital sum variation. d) Balanced block codes. 

and entropy given by 

P&k) = rN f ( 1 
Pk,k--l = k/N 

where X(p) is the binary entropy function. 
As was discussed in Section III, the bound of Theorem 2 

can be evaluated explicitly for binary codes 

HI x(1/2 - u,/2) 

and for first-order spectra 

(51) 

HI 3c( l/2 - (1/2)/m). (54 

For a small number of states, (52) is a rather loose bound, 
and we shall derive a stronger result in the following 
section. For large N, the difference between the entropy 
given by (50) and the upper bound (52) decreases. Both 
functions are plotted in Fig. 4. 

It is often useful to adjust the probabilities of the 
encoded strings by splitting certain states in the source. We 
use the concept of expanding a Markov chain [8, pp. 
140-1451 such that a transition in the original chain is 
replaced by a state in the expanded chain. Thus, if there 
are transitions from states si and sj to sk, then sk is split 
into s;, which can be reached from si, and s:, which can be 
reached from s,. In a later section, we shall use this method 
to obtain a prescribed correlation function. In the follow- 
ing example, the splitting of certain states is used to 
facilitate the encoding. An optimum binary variable length 
code can be constructed when the probabilities of the 
source strings are inverse powers of two [5, pp. 43-481. We 
shall obtain an encoding of a Markov source by adjusting 
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the transition probabilities in such a way that all strings 
that start and end in a certain subset of the states have 
probabilities of the required form. 

Exatiple 5: For r = l/2, we obtain a five-state source 
with transition matrix and sum vector 

0 l/4 0 0 0 

f= A. 
I I -1 

-2 

This sequence has entropy H4 = (3/8)X(1/2) + 
(1/2)X(1/4) = 0.781 bit. By splitting states s,, s2, and ss 
and adjusting the transition probabilities we obtain the 
following transition matrix and sum vector: 

Q’ = 

‘0 l/4 l/3 0 0 0 0 0 

1 0 0 l/2 0 0 0 0 

00 0 0 l/2 0 0 0 

0 0 2/3 0 0 2/3 0 0 

0 3/4 0 0 0 0 3/4 0 

00 0 l/2 0 0 0 1 

00 0 0 l/2 0 0 0 

00 0 0 0 l/3 l/4 0 

2 

I I 1 
1 f= ;. 
II -1 

-1 
-2 

All strings that start and terminate in states s; or s;’ can be 
encoded by an optimum prefix code. The state sequence 

s;, sy, , 9 0, , s” s s’ which produces the output - 1, 1, 1, - 1 
has probability 3/4 * l/2 . l/3 * 1 = l/8. Thus, this out- 
put can be used as an encoding of three binary data 
symbols. In Table I we give a prefix code for the strings 
that start in s;. The strings from s; are encoded similarly. 

This code has u;’ = 15/14 and entropy H = 11/14 e 
0.786 bit. A block code with block length four and rate 3/4 
has been suggested for optical communication [ 141. Such a 
code can be selected to have the same distribution of the 
sum as the Markov source with r = l/2. 

Franklin and Pierce [15] discussed simple binary dc-free 
block codes. They suggested a code consisting of all blocks 
of length 2n with an equal number of l’s and - 1’s. The 
entropy of such a code is 

= 1 --&log?rn. (53) 

TABLE I 
VARIABLELENGTHENCODINGOFBINARYCODEWITH~= l/2 

Data Codeword 

11 +- 
101 -++- 
100 --+ 
010 -+--I- 
011 -+-- 

001 ---f-k 
ooo --+- 

The spectrum of the encoded sequence was derived in [15] 
and a table of the entropies and cut-off frequencies of 
several codes was given. It is easier to determine the sum 
variance. As noted in [15], the correlation between two 
positions in the same block satisfies 

-1 
EIXkX,I = -3 k # 1, 

and thus the correlation function for the encoded sequence 
is 

1, k = 0, 
k - 2n 

RX(k) = 2n(2p - 1) ’ 
1 kls,2n, 

Ikl’h 
and from (24) we get 

a2 = (2n + 1)/6. z (54) 

The approximate value of o0 calculated from (54) using 
(38) is about five percent greater than the value determined 
directly from the spectrum for the example considered. The 
values plotted in Fig. 4 indicate that the cut-off frequencies 
of these block codes are significantly lower than those 
obtained with the Markov sources constructed above. 

Example 6: A code that has four l’s in each block of 
eight symbols has entropy H = (l/S) log70 = 0.766 bit. 
The cut-off frequency is approximately w0 N a,-*/2 = l/3. 
The true cut-off frequency of the block code is 0.321 [15]. 
However, with r = l/2 the sequence of Example 5 has 
slightly better entropy and about 50 percent better cut-off 
frequency. 

Chien [17] considered the problem of determining se- 
quences of maximum entropy for given digital sum varia- 
tion. The sequence is a Markov source with one state for 
each value of the sum. In order-to determine the transition 
probabilities that maximize the entropy of an N-state 
source, one must determine the eigenvector P, that satisfies 

I 0 0 1 . . . 0 1 1 . . . 0 0 1 . . . 0 0 1 . . . -0. .** *** . . . I *Pa = AL, 

where X = 2 cos r/( N + 1) is the maximal eigenvalue of 
the N by N adjacency matrix. The entropy is log X. The 
transition probabilities are then given by 

Pij = ‘-‘Paj/Pai’ (55) 
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It may be readily verified that the transition matrix Q with 
these transition probabilities has eigenvector 

with eigenvalue one. Thus, the stationary probability distri- 
bution becomes 

k = 1,2;..,N, (56) 

and the sum variance is 

(9 = 
I 2 5 ( F - k)=sin’ & . 

Iv+ 1 k=, 
(57) 

Again several values of the entropies of these sequences are 
plotted in Fig. 4. It is clear from these data that although 
sequences with a small digital sum variation have fairly 
good spectra, better results may be obtained by allowing a 
larger number of states in the Markov sources. 

Example 7: If the sum is allowed to take values 
0, * 1, ~2, the maximal entropy is obtained by considering 
the matrix 

0 1 0 0 0 
1 0 1 0 0 
0 10 10, 
0 0 1 0 1 

,o 0 0 1 0 I 

which has maximal eigenvalue A = 0. Thus, the entropy 
becomes H = (l/2) log 3 = 0.793 bit. The eigenvector is 

The transition matrix for the source with greatest entropy 
is 

0 l/3 0 0 0 

l/2 0 0 

Q = t 2;3 0 2/3 0 

0 0 l/2 0 1 

00 0 l/3 0 

with stationary distribution p = (l/12, l/4, l/3, l/4, 
l/12). The sum variance becomes u,’ = 7/4. Thus, the 
sequence is somewhat inferior to the Markov sources with 
r = l/2 and r = 3/5. 

It may be noted that the three classes of binary se- 
quences considered here have the same first member. This 
is the biphase sequence which may be described either as 
balanced blocks of length two or as a three-state Markov 
source with spectrum S:(w) = 1 - cos w. 

For ternary sequences with spectra S&(w), one finds 

P(1 IS/) - P(-1 ISi) = - (1 - r)+ (58) 

In addition, the variance of the sequence must be specified 
by one of the equations 

~ps(/)P(o, Sj) = 1 - IJ,‘. (59) 

Equation (58) and one part of (59) imply the other part of 
(59). Ternary Markov sources satisfying (58) and (59) may 
be constructed for all values of r, - 1 < Y < 1. For nega- 
tive r, the construction is possible only for u,” I (1 - r)/2, 
and in this case there is a unique soiution with two states. 
The case r = 0 is of special interest and is considered in the 
following example. 

Example 8: A ternary source, with spectrum S,(w) = 
u,‘( 1 - cos w) may be constructed as a Markov source with 
three states, z,, = 1, z, = 0, z2 = - 1, and transition matrix 

Here the variance is cr,” = 4p/(l + 2p) and the entropy 
H = (2p + X(2p))/(l + 2~). The entropy reaches its 
maximum value of 1 bit for p = l/4 where u,’ = 2/3. 
Alternatively, a two-state source with z0 = p, z, = p - 1 
and transition matrix 

Q= [ 
l-p l-p 

P P 1 
may be considered. This sequence has variance u,” = 2p(l 

- p) and entropy X(p). The greatest entropy occurs for 
p = l/2, where the sequence is the bipolar sequence con- 
sidered in Example I. For 0.40 5 u,’ I 0.50 this sequence 
has greater entropy than the three-state source with the 
same variance. Several practical modifications of the bi- 
polar code have variances exceeding l/2 [3], but rate 1 bit. 
The upper bound of Theorem 2 is H < 1.1547 bit for 
u2 = 2/3, suggesting that entropies greater than 1 bit may 
bi possible. We shall return to this case in Section VII. 

Example 9: Franaszek [ 1 S] has described a ternary block 
code with rate 4/3, which is an improvement over earlier 
block codes with the same rate. The spectrum of the coded 
sequence was computed by Bosik [19] and by Cariolaro 
and Tronca [20].’ The sum variance can be calculated 
directly from the definition of the code, and in this way the 
cut-off frequency is found to be approximately w,, = 0.35. 
This result agrees well with the figures in [19] and [20]. A 
sequence with the same entropy can be constructed as a 
Markov source satisfying (58) and (59) with Y = l/2. Thus 
significantly better dc suppression is possible. If we choose 
a symmetric source with four states, z0 = 3/2, z, = i/2, 
z2 = - l/2, zs = -3/4, there is a unique transition ma- 
trix 

l/4 15/76 0 0 

Q= 
3/4 27/76 17/38 0 

0 17/38 27/76 

i 

3/4 ’ 

0 0 15/76 l/4 

The entropy H = 1.365 is comparable to the rate of the 
Franaszek code if it is taken into consideration that the 
all-zero sequence is eliminated from the block code in 
order to facilitate synchronization. As in Example 5, we 

‘The complicated expression for the power spectrum in [20] contains an 
error since it does not give S(0) = 0. 
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may modify the transition probabilities and split certain 
states to obtain a sequence which can be divided into 
segments with probabilities of the form 2-“. It is then 
possible to obtain a variable length code that converts 
independent data into a string with the desired probability 
distribution. A transition matrix with this property and the 
associated sum vector are 

Q= 

f= 

l/4 l/4 l/6 0 0 0 
0 l/4 l/3 l/2 0 0 

3/4 0 0 0 l/2 0 
0 l/2 0 l/4 l/3 0 

0 0 l/2 0 0 3/4 
0 0 0 l/4 l/6 l/4 

3/4 

l/4 

l/4 > 
-l/4 * 

-l/4 

-3/4 

7 
This sequence has variance u,’ = 13/18, sum variance a; 
= 25/36 and thus cut-off frequency w0 = 0.52. The en- 
tropy is 4/3. The upper bound of Theorem 2 for u,’ = 2/3 
and r = l/2 is H I 1.391. In practical applications of 
ternary codes, long runs of zeros must be avoided in order 
to ensure proper synchronization. We shall not discuss the 
effect of this extra constraint, but an alternative approach 
might be the use of sequences with four symbols. Such 
sequences have received little attention, but we note the 
following example. 

Example 10: A sequence with alphabet V, and r = 0 is 
defined by the transition probabilities and the sum vector 

Q= 

00 0 l/4 0 0 0 
0 0 l/4 0 l/4 0 0 
0 l/2 0 l/4 0 l/2 0 
1 0 l/2 0 l/2 0 1 
0 l/2 0 l/4 0 l/2 0 
0 0 l/4 0 l/4 0 0 
0 0 0 l/4 0 0 0 

3‘ 
2 

c=< iL. 
-1 
-2 

\-3, 

An encoding method is given in Table II. The entropy of 
this sequence is 4/3. 

Sequences with larger alphabets V,,-, and spectra 
A(1 - cos w) may be obtained by passing independent 
symbols from V, through a discrete linear system with 

TABLE II 
ENCODINGOFAQUATERNARYCODEWITH~= 0* 

State 

sO(s6) 

SI(S5) 

s2(s4) 

33 

Data Symbols 

0 f3 
0 +I 
1 +3 
0 -1 

10 +I 
II +3 
00 +3 
01 +1 
10 -1 
II -3 

* 0 denotes the empty string. In states s4, s5, 
and s6 the opposite sign is used. 

transfer function (1 - e-‘“)/2. For equiprobable symbols, 
the rate is obviously log K. Higher rates and lower cut-off 
frequencies may be obtained by the following construction 
[21]: one or more of the extreme symbols of V,,-, are not 
used while the remaining symbols represent independent 
data. For 2, > 0, some of the positive symbols are ex- 
cluded; for 2, < 0, the corresponding negative symbols are 
not used. The bipolar code may be interpreted as the 
simplest example of both encoding methods. In the final 
example of this section we consider codes with alphabets 

v,- 
Example 11: A sequence from V, with spectrum (4/3) 

(1 - cos w) and rate log 3 = 1.585 bits may be obtained by 
filtering equiprobable ternary symbols. However, the same 
spectrum is obtained with the Markov source defined by 
the transition matrix and sum vector 

0 5/38 5/38 

Q = I l/2 7/19 7/19 

l/2 7/19 7/19 

0 5/38 5/38 

I v1 

f= l/2 
{ I -l/2 . 

I -vJ 

0 

l/2 

l/2 
0 J 

This sequence has entropy H = 1.658 bits. Better rates can 
be obtained if the variance is increased, but it follows from 
Theorem 2 that the rate cannot reach 2 bits with r = 0. A 
code with rate 2 bits can be obtained by encoding two 
binary symbols as { - 1, 0, 1,2} when the sum is negative 
and { - 2, - 1, 0, 1 } when the sum is positive. In order to 
avoid ambiguity for 2, = 0 and asymmetry, we let Z, take 
values from the set W,,,. The stationary distribution of the 
sum is 

P[Z, = ‘l/2] = l/2(& 1) 

P[Zr= *(k- l/2)] = (fi- l)k, kr2. 

From this distribution we get uz2 = 9/4 + &! = 3.66 and 
then w0 N 0.205. However, the same entropy can be ob- 



JUSTESEN: RATES AND SPECTRA OF DIGITAL CODES 469 

tained with a seven-state Markov source with r = l/2 and can be stated entirely in terms of z if (60) is replaced by 
transition matrix z,- z,-, E v, 

E[(Z, - Z,-,)‘I = u,‘. (61) 

Assume that the probability distribution Pz(zi) and the 
transition probabilities P[ 2, = zk ] Z,- , = zi] are known. 

* It then follows from the convexity of the entropy function 
that we get the largest entropy by letting 

P[Zt = zi, 1 z*-, = zi,, z*-, = zi2, . * . ] 

= P[ Z, = zlo 1 Z,-, = xi,]. (62) 

l/8 l/16 l/20 0 0 0 0 

l/4 3/16 7/50 17/60 0 0 0 

5/8 7/16 17/50 l/l2 27/100 0 0 

0 5/16 l/5 4/15 l/5 5/16 0 

0 0 27/100 l/12 17/50 7/16 5/8 

0 0 0 17/60 7/50 3/16 l/4 

0 0 0 0 l/20 l/l6 l/8 

Both codes have symbol probabilities (l/8, l/4, l/4, 

l/4, l/8) but the finite -state source has o0 = 0.5 and 
entropy H = 2.031 bits. The upper bound for this distribu- 
tion is H I 2.051 bits. 

We conclude that all but the simplest codes that have 
been suggested for dc suppression have lower cut-off fre- 
quencies than the best codes with the same rates. For the 
type of power spectra that are of greatest practical interest 
we have, in most cases, obtained close agreement between 
the upper bound and the entropy of the Markov sources 
constructed in this section. Significant differences between 
the upper and lower bounds occur for binary codes with 
large cut-off frequencies and for ternary codes with large 
variance and large cut-off frequencies. These cases will be 
considered in detail in the last two sections. 

VI. MARKOV SOURCES WITH GIVEN SUM VARIANCE 

AND MAXIMAL ENTROPY 

Since it is difficult to construct a maxentropic sequence 
for a given power spectrum, we shall consider the easier 
problem of maximizing the entropy of a dc-free sequence 
when u,’ and u,’ are given. One motivation for this ap- 
proach is the observation in Section IV that the cut-off 
frequencies of sequences with equal values of these vari- 
ances are approximately equal. In addition, the construc- 
tion considered here will provide a new upper bound to the 
rate of dc-free codes. If the power spectrum is given, we 
can determine u,” from (24), and the maximum value of the 
entropy cannot decrease when a constraint on the power 
spectrum is replaced by a constraint on the sum variance. 
In some cases, the bound of Theorem 2 is not very tight. 
This is due to a significant difference between the distribu- 
tion P(x,, y) and possible distributions P(x,, a,). In such 
cases we may obtain better results with the bound to be 
developed in this section. In particular we shall prove that, 
for first-order spectra Si( w), we always get a bound that is 
tighter than Theorem 2. 

We shall construct a sequence x with alphabet V,, 
variance u,’ , and a sum sequence 2 with variance u,‘, mean 
value E [ Z,] = 0, where 

zt=zt-, +x, 650) 

in such a way that H(X) is maximized. It follows im- 
mediately from (60) that H(Z) = H(X), and the problem 

Thus z should be a Markov chain. The alphabet of zis the 
set W,. 

In the analysis of this Markov chain we shall use the 
simplified notation for the stationary distribution and tran- 
sition probabilities 

P[Z, = a +j] = pi, j=O,kl,rt2,.**, 

P[Z, = (Y + k +jl Z,-, = a +j] =pj(k), kE V,. 

Considering the transitions between those subsets of states 
for which Z, I (Y + j and Z, > (Y + j respectively, we get 

k-l 

IX I: [&~Pj-l(k) - I;.+k-iPj+k-it-k)] = 0, 
k>O i=O 

j = 0, *l, *2;.. . (63) 

For binary and ternary sequences, (63) implies that the 
probability distribution of Z,, Z,, , satisfies 

‘(‘i,Y ‘i2) = ‘(‘i2> ‘i,> (64) 

and by the Markov property (62), the distribution of 

z,, Zff,,. . .Y Z,+n-, has the symmetry 

p(zi,, ZiZ>***7Zin) = p(zin7 zi,_,, .‘. Yzi,)* (65) 

It follows from (65) that the distribution of 

4, q+,,* * *> X,+n-, satisfies 

p( 2)i,, vi27’ ’ ’ >oi,) = P(-uinp -oinm,,* . . > -ui,)* (66) 

For larger alphabets and symbol distributions satisfying 

PAk) = P&k) 

we may use Lagrange multipliers to determine the transi- 
tion probabilities that maximize the entropy for given 
values of Pj, the constraints (63) and 

x (p,# + Q,t-k)) = Q-+tk)- 

These transition probabilities satisfy (64) and thus also (65) 
and (66). The maxentropic sequence studied by Slepian [2] 
satisfy the relations 

p(Di,~z)i2~~‘*~2)i,) =p(Di,,Di,~,,“‘,Di,) 

and 

p( q,, q2>. . * ,Oi”) = P(-II,,, -zl+* . *, -q). 
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However, for dc-free codes these relations are satisfied only 
if 

p(zi,7 zi27’ ’ * Pzi,) = p( -zi,9 -zi2Y’ . ’ 3 -zi,)? 

and thus we must have (Y = 1 or (Y = l/2. For other values 
of (Y only the symmetry condition (66) is valid. The maxi- 
mum entropy often occurs for either (Y = 1 or cx = l/2, but 
we shall demonstrate in an example that this is not always 
the case. 

We have not been able to determine the transition 
probabilities of the Markov chain for a general alphabet 
V,, but for binary sequences they must satisfy an interest- 
ing difference equation. We use the notation 

Pj(l) =Pj, Pj(-l) = 1 -Pj. 

We want to maximize 

subject to the constraints 

zq= 1 

xjq= --a 
i 

2 j'P, = u: + a2 

and the condition (63) which becomes 

PjPj = pj+l(l -Pj+l)’ 

] = u,“. Here (67) and (68) ensure that E [ Z,] = 0 and E [ Z,? 
Using Lagrange multipliers, we find the conditions 

(67) 

(68) 

X(p,) + p + qj + pj2 + Xjpj + Xi-,(1 -pj) = 0 

(69) 

and 

1 -Pj 
In - 

Pj 
+ Aj - A,-, = 0. 

Solving (69) and (70), we get 

p,( 1 - p,+,) = yp(j+Q2. 

(70) 

This difference equation may be used to compute a set 
of transition probabilities for a suitable initial value p,, and 
given values of the parameters p, y, 6. A complete discus- 
sion of the solutions to (71) will appear elsewhere [22], here 
we shall only state some of the main properties. The 
parameter 6 is closely related to (Y. Thus for S = 0 and 
p0 = fi, we get a symmetric chain with cr = l/2, and for 
6 = l/2 and p. = l/2 we g et a symmetric solution with 
(Y = 0. Thus, without loss of generality we may assume 
0 I 6 I l/2. Th e variance of Z, is largely determined by 
/3, which must be positive and at most one. If we want a 
finite state solution with pN = 0 and peM = 1 for given N 
and M, (71) may be solved for y. However, we conjecture 
that the largest entropy is obtained when y is chosen as the 
unique value for which the chain has infinitely many states 
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and 

for sufficiently large j. For other values of y, the pj cannot 
be transition probabilities of a stable Markov chain. A 
certain amount of numerical calculation is necessary in 
order to obtain the best chain for a given variance. The 
correct value of S must be found, and the exact value of the 
variance depends upon all three parameters. However, 
since the pj decrease very rapidly with increasing j, an 
excellent approximation may often be obtained by consid- 
ering a small number of states. 

We state the upper bound as the following theorem. 

Theorem 4: The entropy of a binary dc-free sequence 
with sum variance u,’ is upper-bounded by the maximum 
entropy of a Markov chain, z, with transition probabilities 
satisfying (7 1) and stationary distribution satisfying (67) 
and (68). 

We shall now prove that, for the first-order spectra 
S$( w), Theorem 4 is a stronger result than Theorem 2. For 
an arbitrary dc-free sequence, x, and the corresponding 
sum sequence, z, defined by (60), we consider the linear 
predictor 

T?< = hZ,-,. (72) 

The value of h that gives the smallest error variance is 
obtained by solving 

u,=h = E[X,Z,-,] = -u,2/2, (73) 

where the correlation is determined by taking the variance 
of both sides of (60). It follows from (73) that 

h = -u,2/2u; (74) 

u? = ux’( 1 - c&40,2). (75) 

For first-order spectra u,’ is given by (37), and (74) and 
(75) become 

h = - (1 - r) 

uj? = (1 + r)u,2/2 

which agree with (35) and (36). Thus for these spectra, z 
has the same structure as the best linear predictor, it has 
the same variance, and the error variance has the correct 
value. In general, of course, x does not have the right 
spectrum and (72) does not define the best linear predictor. 
Since the error variance has the correct value, H(Z) is 
upper-bounded by the entropy given by Theorem 2, and 
we have obtained a stronger bound. 

Example 12: Let r = l/2 and thus u,’ = 1. We have 
calculated the entropies of the Markov chains with this 
variance for several values of (Y. For (Y = 0, p0 = l/2, and 
6 = l/2, we get p = 0.721 and y = 0.426. This gives a 
stationary distribution with PO = 0.387, P, = 0.247, P2 = 
0.056 while the remaining probabilities are very small. The 
entropy is H = 0.793. With cu = l/2 and 6 = 0, we find a 
chain with the same variance for /3 = 0.720 and y = 0.426 
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confirming that the variance is closely related to the value 
of /3. In this case, the stationary distribution is PO = 0.347, 
P, = 0.273, P2 = 0.032, and the entropy is approximately 
the same as before. Other values of (Y give the same entropy 
within the accuracy of the calculations. This entropy should 
be compared to the upper bound H I 0.811 obtained by 
application of Theorem 2 and the lower bound H 2 0.780 
that follows from the construction in Example 5. 

For larger alphabets, the same approach may be used, 
but the calculations are more complex. In the ternary case, 
one finds 

p,(O) = yp+s)* 
(76) 

P,(l)Pj+I(--l) 7 EPj(")Pj+l(0)* (77) 

While these equations are quite similar to (71), it is much 
more difficult to construct a chain with given variances 
that satisfies (76) and (77). 

VII. MAXENTROPIC SEQUENCES WITH SPECTRA 

S,(w) = A(1 - cos 0) 

In this section we shall decide the optimality of two 
simple codes. First we prove that the biphase sequence 
discussed in Section V is optimal, then we construct a 
sequence which demonstrates that the bipolar sequence 
introduced in Example 1 is not optimal. Finally, we discuss 
some properties of ternary sequences with greater entropy 
than the bipolar sequence. 

For a binary sequence with spectrum S,(w) = 1 - cos o, 
we have I$* = l/2, and (67) and (68) become 

In order to prevent this situation from occurring, we 
replace (78) by 

Xp2j = 2'2j+I = 1/2 (80) 

Xz’jPzj = i (2j + l)Pzj+i = --a/2. (81) 
i i 

Combining (79), (80), and (Sl), we form the sum 

zc,P, = Ej’P, + 2z2jPzj - zPzj+, 
j j i i 

= a(cl - 1) IO. (82) 

It is readily verified that c0 = c,i = cp2 = 0, c2 = 8, and 
cj > 0 for 1 j I> 2. Since Pj 2 0, we conclude from (82) that 
cx = 0. Thus, the biphase sequence has maximum entropy 
for the spectrum 1 - cos w. We have not been able to 
prove optimality for any other dc-free code. 

In the case of the ternary bipolar code, the situation is 
quite different. Again we follow the approach of Section VI 
with u,’ = l/2 and 0,’ = l/4. We first note two simple 
cases. If (Y = 0 the only possible distribution is PO = 3/4, 

P, = P-, = l/8. Similarly, if a = l/2, we must have PO 
= P-, = l/2. These Markov chains were found in Exam- 
ple 8. However, a greater entropy is possible for other 
values of (Y and this shows that the maximum does not 
always occur for (Y = 0 or (Y = l/2. A three-state chain 
with (Y = l/3 and transition matrix 

xjp, = --a 

&, = l/2 + ff*. 

(78) has the right variances and entropy H y 1.0083. The spec- 
trum is not exactly (1 - cos 0)/2, but by splitting the last 

(79) 
state, we may obtain the desired correlation sequence (27). 
The transition matrix becomes 

J 

If we take (Y = 0, the only stationary distribution is PO = 
l/2, P, = P-, = l/4, and we obtain the biphase sequence 
with entropy l/2 bit. However, if (Y = l/2 a Markov 
source with IJ,” = l/2 can have a greater entropy. With 
four states, we get a chain with transition matrix 

and entropy H = (7/8)X(1/7) = 0.518. However, this se- 
quence has a rather undesirable spectrum. If at time zero 
the chain is in state Z, = - l/2 or Z, = 3/2, then it must 
always be in one of these states for t even, and be in 
Z, = -3/2 or l/2 for t odd. Thus, the mean value is 

E[Z,,] = -l/4 m21+11 = l/4. 

Therefore, the sequence contains a deterministic compo- 
nent, and the power spectrum has a line at w = r. 

0 l/46 0 0 

Q’ = 1 14/23 l-u l-u 

0 17/46 0 

0 0 u V I 

0 . 

Now the general expression for the correlation sequence 
(45) and (46) is applied. Q’ has eigenvalues 1, 0, h,, X2, 
and the correlation sequence satisfies a second-order dif- 
ference equation. R,(l) = 0 follows from (60) and u: = 
u,2/2. If u and v are adjusted to make R,(2) = 0, the 
difference equation ensures that R,(k) = 0 for k > 2. The 
solution is u = 128/391, v = 7/23. With these transition 
probabilities, the source has entropy H = 1.0082 bits. Thus, 
we may conclude that the maxentropic sequence for the 
alphabet V, and S,(w) = (1 - cos w)/2 has entropy 
greater than 1 bit and that the maximum occurs for some 
value of (Y between 0 and l/2. Consequently, this sequence 
lacks some of the symmetry found in the bipolar sequence. 

An improved upper bound to the entropy of a sequence 
with the same spectrum as the bipolar sequence may be 
obtained by solving (76) and (77). We have used numerical 
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techniques to maximize the entropy of a chain with four earlier on more intuitive grounds. We have constructed 
states. From these results, the approximate values of the sequences with high entropies for several combinations of 
parameters in (76) and (77) can be found and, finally, the alphabets and power spectra. These sequences have signifi- 
difference equations may be used for calculating the best cantly greater entropies or cut-off frequencies than most 
transition probabilities for a general Markov chain. The codes suggested earlier. We have described a practical 
maximum occurs for (Y = 0.354 and, actually, a very close encoding method based on variable length codes for suit- 
approximation to the maximum is obtained with only four ably modified Markov sources. It has been proved that the 
states. In this way the upper bound H I 1.01 bits is found. biphase sequence has maximum entropy, but this is the 
The details of the maxentropic sequence appear to be of only new maxentropic sequence that we have been able to 
little interest. However, it would be quite feasible to split determine. The rate of the familiar AM1 code is very close 
the states of the Markov chain and adjust the transition to the upper bound, but the maxentropic sequence is much 
probabilities to give the spectrum (1 - cos 0)/2. more complicated. 

As discussed in Example 8, there is more room for 
improvement if the variance of the sequence is increased, 
and in most applications it is desirable to reduce ~~(0). 

Example 13: If we take u,’ = 2/3 and (Y = l/2, we may 
construct a ternary source with four states and u,” = u2/2: 
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The entropy of this chain is 1.114 bits. The power spectrum 
can be corrected to S.Jw) = (2/3)(1 - cos w) if the mid- 
dle states are split into three states each. As discussed in 
Section V, the difference equation for the correlation se- 
quence can be found as the characteristic equation of a 
four by four matrix. Further, since r = 0, 0 must be one of 
the eigenvalues. Thus, it is enough to ensure that R,(l) = 
R.(2) = R,(3) = 0. This condition leads to a system of 
quadratic equations which may be solved for the transition 
probabilities. We omit the details. The entropy of the 
source is now 1.111 bits. Using the same technique as in 
Examples 5 and 9, we can also split the same states to 
obtain a set of transition probabilities that can be matched 
by a variable-length code: 

Q’ zr 

0 l/16 l/10 0 0 0 0 0 

1 0 0 l/3 2/3 0 0 0 

0 5/16 0 0 0 0 5/S 0 

0 0 3/10 0 0 3/5 0 0 

0 0 3/5 0 0 3/10 0 0 

0 5/S 0 0 0 0 5/16 0 

0 0 0 2/3 l/3 0 0 1 

0 0 0 0 0 l/10 l/16 0 

This source has u,’ = 0.702, CT,’ = 0.356, and entropy H - 
1.085 bits. 

VIII. CONCLUSION 

We have presented a general upper bound to the rate of 
a code with a given power spectrum and a computational 
procedure for evaluating this bound. For dc-free codes, 
which is the class of greatest practical interest, we have 
obtained a tighter bound. The suppression of low frequen- 
cies has been related to the variance of the sum of the 
encoded symbols, which is a parameter that has been used 
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