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Abstract
In the context of agent based modeling and network theory, we focus on the problem of re-

covering behavior-related choice information from origin-destination type data, a topic also

known under the name of network tomography. As a basis for predicting agents' choices we

emphasize the connection between adaptive intelligent behavior, causal entropy maximiza-

tion, and self-organized behavior in an open dynamic system. We cast this problem in the

form of binary and weighted networks and suggest information theoretic entropy-driven

methods to recover estimates of the unknown behavioral flow parameters. Our objective is

to recover the unknown behavioral values across the ensemble analytically, without explicit-

ly sampling the configuration space. In order to do so, we consider the Cressie-Read family

of entropic functionals, enlarging the set of estimators commonly employed to make optimal

use of the available information. More specifically, we explicitly work out two cases of partic-

ular interest: Shannon functional and the likelihood functional. We then employ them for the

analysis of both univariate and bivariate data sets, comparing their accuracy in reproducing

the observed trends.

1 Introduction
In this paper we focus on the problem of recovering behavior-related micro choice information
from aggregate data. In particular, we consider origin-destination data, casting this problem as
an inference problem concerning the prediction of flows on networks [1–4]. We recognize that
this type of data comes from dynamic, adaptive behavior systems involving interdependent
micro components which give rise to an instantaneous, feedback-adaptive, world: as a result,
such systems are non-deterministic in nature, involve information and uncertainty and are
driven toward a certain, optimal, stationary state (see, for example, [5, 6]). As a basis for pre-
dicting agents’ choices, we cast this as a self-organized, equilibrium seeking system in the form
of weighted and binary networks; we make use of information theoretic entropy-based meth-
ods to solve the ill-posed stochastic inverse problem and recover estimates of the unknown
binary parameters.
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1.1 Binary Network Problem
To go beyond traditional reductionist modeling and mathematical anomalies, we use a new
paradigm that is developing under the name of Network Science (see, for example, [7, 8] and
the references contained therein). There are several things that make this approach attractive
for information recovery in economics and in other social sciences: for example, in the eco-
nomic-behavioral sciences everything seems to depend on everything else and this fits right
into the interconnectedness simultaneity of the nonlinear (and dynamic) network paradigm.
Another example is provided by microeconomic theory, where the network representation of
markets arises quite naturally (in fact, in many ways markets and binary networks are equiva-
lent—see [9]). Finally, in terms of a methodology, network problems are consistent with the in-
formation theoretic approach to information recovery (see [10, 11]).

We seek an expression for the probabilities that the origin and the destination nodes are
connected along a specific pathway in the statistical ensemble of possible pathways, without ex-
plicitly sampling the configuration space. Given information about the origin-destination net-
work structure in the form of a matrix A, the unknown pathway probabilities pij must be
estimated from aggregate flow data that may be noisy in nature. The number of unknown path-
way parameters of the protocol matrix A is much larger than the number of measured aggre-
gate origin-destination data points and, moreover, the components of the matrix A cannot be
observed directly. This means that although the observed data are considered to be directly
influenced by the values of model components, the observations only indirectly reflect the in-
fluence of the latter: as a result, the analyst must use indirect noisy observations to recover in-
formation on the unobserved vector of parameters. As a consequence, the relationship
characterizing the effect of unobservable components on the observed data must be somehow
inverted. This type of ill posed pure or stochastic inverse regularization problem cannot be
solved by traditional econometric information recovery methods.

1.2 Status Measure
As we seek new ways to think about the causal adaptive behavior of complex and dynamic
micro systems, we note that problems of this type may be re-formulated as problems of con-
strained entropy-maximization over the pathways. In other words, causal entropy maximiza-
tion can be adopted as the systems status-measure and optimization criterion (following [12]).
The result provides an exact expression for the occurrence of the unknown probabilities over
the ensemble of pathways and yields the preferred probability distribution (see [13]).

This permits us to recast a behavioral system in terms of path microstates where entropy re-
flects the number of ways a macrostate can evolve along a path of possible microstates: the
more diverse the number of path microstates, the larger the causal path entropy. The result is a
causal entropic force that captures self-organized equilibrium seeking behavior (see [12, 14]).
In other words, causal entropy maximization is a link that leads us to believe that a behavioral
system with a large number of individuals, interacting locally and in finite time, is in fact opti-
mizing itself. We would like to stress that the optimization tendency characterizing behavioral
systems is what qualifies entropy-based inference methods as the most correct ones to model
such systems. The rationale beyond this lies in the nature of their adaptive behavior: agents
tend to adapt behavior in line with an optimizing principle (as the maximization of the future,
accessible paths diversity—also definable, more generally, as “resources” [12, 13]), whence the
need for a robust estimation procedure making the best use of the available information while
disergarding any other arbitrary assumption. On the contrary, most behavioral economic-
econometric models rest upon ad hoc assumptions which may lead to the identification and
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biased estimates of the unknown parameters, the underlying inference procedure and, in turn,
the conclusions about the agents’ behavior (see [15–17]).

In the sections ahead we analyse systems within this framework, that permits the interpreta-
tion of adaptive economic behavior in terms of entropic functions: as a basis for solving micro-
behavioral information recovery problems, we suggest an information theoretic family of en-
tropic functions; to demonstrate applicability, we consider binary and weighted data sets and
recover the optimum corresponding unknown probabilities.

2 Information Recovery Framework
In developing a basis for the use of information theoretic (IT) methods to infer origin-destina-
tion networks flows, we focus on a stochastic ill posed inverse problem and the corresponding
regularization method it implies (the pure, without-noise inverse problem is just a special
case). In this context the Cressie-Read (CR) family of entropic functions [18, 19] provides a
basis for linking the data and the unknown model parameters.

This permits the researcher to exploit the statistical machinery of information theory to
gain insights on the underlying adaptive behavior of a dynamic process from a system that may
not be in equilibrium. This approach contrasts with the traditional approach to micro informa-
tion recovery that rests on reductionist economic and econometric functional analysis and ob-
servational agent behavior data: however, precisely because of the nonlinear and ordinal nature
of dynamic micro systems, the traditional approach is cumbersome in terms of identifying and
expressing adaptive behavior.

We start introducing the CR multi parametric convex family of entropic functional mea-
sures [20]:

Iðp;q; gÞ ¼ 1

gðgþ 1Þ
X

c

pc
pc
qc

� �g

� 1

� �
: ð1Þ

In Eq 1, γ is a parameter that indexes members of the CR family, pc’s represent the subject
probabilities and the qc’s are interpreted as reference (or prior) probabilities (the reason for in-
dexing our coefficients with c will be clarified in the following section). Being probabilities, the
usual properties of pc, qc 2 [0, 1], 8c, and ∑c pc = 1, ∑c qc = 1 are assumed to hold. As γ varies the
resulting CR estimator that minimize the divergence between p and q exhibits a qualitatively
different behavior that includes, as noteworthy examples, the Kullback-Leibler measure (in the
limit as γ! 0 as Shannon entropy and in the limit as γ! −1 as the likelihood functional) and,
in a binary context, the logistic distribution-divergence (see [21]).

In other words, the CR family of power divergences is a class of additive convex functions
that encompasses a broad family of test statistics, in turn representing a broad family of func-
tional relationships within a moments-based estimation context. In addition, the CR measure
exhibits proper convexity in p, for all values of γ and q, and embodies characteristics such as
additivity and invariance with respect to a monotonic transformation of the divergence mea-
sures. In the context of extremummetrics, the CR family represents a flexible family of pseu-
do-distance measures from which to derive empirical probabilities.

3 Integer Versions of the CR Family
In what follows we consider the two values γ = −1, 0, corresponding respectively to the likeli-
hood functional and the Shannon functional. In the limit as γ! 0

lim
g!0

Iðp;q; gÞ ¼
X

c

pc ln
pc
qc

� �
ð2Þ
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the Kullback-Leibler divergence between p and q is obtained. The particular case of a uniform
prior, qc = 1/C, allows us to recover the usual form of (minus) the Shannon entropy of the p dis-

tribution: I p; 1
C
; 0

� � ¼ P
cpc ln pc þ lnC. In the limit as γ! −1 provides the second functional

of our list

lim
g!�1

Iðp;q; gÞ ¼
X

c

qc ln
qc
pc

� �
ð3Þ

the Kullback-Leibler divergence between q and p. The particular case of uniform prior qc = 1/C
allows us to recover the usual form of (minus) the likelihood function of the p distribution:

I p; 1
C
;�1

� � ¼ �P
c
ln pc
C
� lnC.

We stress that while the Shannon functional has been already employed for the analysis of
univariate and bivariate data sets, the likelihood functional case has not been explicitly worked
out yet, thus representing the major contribution of this paper to the analysis of
behavioral networks.

4 Network Behavior Recovery
To demonstrate the applicability of our approach in the binary network area, an example may
be useful. Consider the problem of determining least-time, point-to-point traffic flows between
sub-networks, when only aggregate origin-destinations volumes are known (see Fig 1). In
many ways this is like a transportation network, with the emphasis on design and efficiency in
routing the traffic flows (see [2] and the references therein), exactly as in an economic-behav-
ioral network the efficiency of information flow is predicated on discovering, or designing, pro-
tocols that efficiently route information. The research question concerns the prediction of the
volume of flows on the pathways, given a set of measures taken along them.

If we indicate by y the R-dimensional vector of observed fluxes and by x the C-dimensional
vector of intermediate measures, the “activity” of an origin-destination network can be

Fig 1. A schematic representation of an origin-destination network. Blue dots represent the origin and
the destination nodes. Connections between them represent the ensemble of pathways described by the
probability distribution fpcgCc¼1. The CR family allows one to determine the probability coefficients pc, 8c by
making use of the available partial information, i.e. aggregate data on traffic volumes.

doi:10.1371/journal.pone.0125077.g001
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summed up by writing

y ¼ Ax ð4Þ
whereA is an R × C rectangular matrix, encoding the information about connections. Thus, our
problem translates into estimating x on the basis of the R, available components of y and the con-
nection structure A. The ill-posed nature of the problem is such that the inversion of Eq 1 is not
feasible: the number of unknowns is greater than the number of known data, i.e. R< C. In this
case, one can resort to the information theoretic methodology for solving problems of inference
on the basis of partial information (see [22–25]). In order to implement, the problem unknowns
have to be interpretable as probabilities and estimated on the basis of some known distribution
moments. In our case, this can be easily achieved by dividing both sides of Eq 1 by xtot� ∑c xc:

y

xtot
� r ¼ Ap � A

x

xtot
ð5Þ

where y andA are known, p is unknown and ∑c pc = 1. We have thus rewritten Eq 1 in terms of
fractions of fluxes distributed across the C channels and interpret them as unknown probabilities.
Notice that this peculiar definition of probability coefficients induces a distribution on the set of
pathways, that play the role of an ensemble and allows us to restate the problem of predicting the
fluxes on origin-destination networks as a (more) general problem of statistical inference. We
can now may make use of the CR family of entropic divergence measures and write the problem
as the following constrained optimization problem:

L � Iðp;q; gÞ � y0
X

c

pc � 1

" #
�
X
a

ya
X

c

pcAac � ra

" #
ð6Þ

In particular, since the functional I is a divergence, the Lagrangean function has to be mini-

mized with respect to the vector of coefficients p. This gives us the desired coefficients fpcgC
c¼1

as functions of the Lagrangean multipliers, pc ¼ pcð~yÞ; 8 c. Once found, the parametric proba-
bility coefficients must be substituted back into L, in order to obtain a quantity which is a func-

tion of the unknowns solely: Lð~yÞ. The last step of our procedure prescribes the optimization

of the function Lð~yÞ.
A similar problem is faced whenever a whole matrix of probability coefficients (and not a

simple vector), P, is considered. Problems of this type can be formulated in much the same
way, by writing the equation

y0 ¼ x0P ð7Þ

thus mimicking Eq 1. As we will show, treating y0 and x0 as known vectors allows us to succes-
fully also tackle this second type of problem.

These are just the solutions to a standard problem when a function must be inferred from
insufficient sample-data information. Thus network inference and monitoring problems have
a strong resemblance to an inverse problem in which key aspects of a system are not directly
observable (for details on the use of information theoretic entropic methods for this type of
network information flow problems see also [23–26]).

5 Applications
To test the effectiveness of our method, in what follows we analyze two aggregate data sets (for
which origin-destination traffic volumes were collected), the first one concerning traffic on a
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local area network and the second one concerning consumers’ choices of complementary
products.

Bell Labs data. The first data set involves traffic volumes on a local area network at Bell
Labs (see [23, 27]) whose routing matrix is reported in Fig 2. The network topology we consid-
er here yields 7 observed aggregate traffic volumes and 16 origin-destination traffic volumes to
be estimated. Aggregate volumes were measured every five minutes, over one day, on the Bell
Labs corporate network, resulting in a set of measurements of 287 time points (see Figures A
and B in S1 Information for another application of our method to univariate data sets).

Complementary products. The second data set comes from an economic case-study and re-
lates to consumers’ behavior in the purchase of eggs and bacon (see [23, 28]). In particular, data
consist of a sample of 548 independent households and the purchased products at the market, re-
corded over 4 consecutive trips. For each trip, it was recorded whether or not the household pur-
chased eggs, bacon or both: the matrix entries represent the number of times a given customer
purchased bacon and eggs over the course of the 4 trips, as reported in Table 1 [28] (see Tables A
and B in S1 Information for another application of our method to bivariate data sets).

5.1 Bell Labs data
The analysis of Bell Labs data is illustrated in Figs 3 and 4. The panels report what we have called
“channel plots”, showing the label of each origin-destination pattern (or channel) on the x-axis
and the traffic volumes measured and estimated on it, on the y-axis. Black trends represent the
observed traffic volumes and colored trends represent the expected traffic volumes, predicted via
our procedure: blue trends represent the predictions obtained by using Shannon functional, red
trends represent the predictions obtained with the empirical likelihood functional. Each panel
corresponds to a given time point, chosen among the 287 available possibilities.

As a general comment, the predictions of both functionals reproduce the majority of the ob-
served trends satisfactorily, with the likelihood functional performing slightly better than

Fig 2. Pictorial matrix representation of a local area network at Bell Labs (black squares represent ones, white squares represent zeros—see [23,
27]), composed by four subnetworks (fddi, corp, local and switch) communicating via a router. The network topology we consider yields 7 observed
aggregate traffic volumes and 16 origin-destination traffic volumes.

doi:10.1371/journal.pone.0125077.g002
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Shannon functional whose estimates, in some cases, show larger discrepancies. Moreover, the
performance of both functionals improves when single peaks are registered on a single channel,
accompanied by small traffic volumes on the others. However, at night, whenever the latter are
exactly zero the agreement between our estimates and observations seems to deteriorate: as
shown in the left panel of Fig 4, if zero traffic flows happen to be measured on some line, both
Shannon and the likelihood functionals predict smaller peaks and larger values for the
neighboring lines.

A solution to improve the predictions accuracy is to explicitly exclude zero values from our
dataset. This can be achieved by considering a reduced x vector and a reduced Amatrix with-
out the 1st and the 16th columns, i.e. precisely those contributing to the values x1 = x16 = 0.
The right panel of Fig 4 shows how much the accuracy of our method is improved: notice how
peaks are reproduced much better now and traffic values on the neighboring lines are predicted
to be much smaller than the former, as observed values confirm. The predicted trends in Fig 3
are calculated by adopting the same criterion, i.e. explicitly excluding the zero values on the
extreme channels.

5.2 Complementary products
The result of the application of our information recovery method to the “eggs and bacon” data
set is shown in Table 2. Since the anaysis concerns a bivariate network, the predictions of our
functionals concern the matrix entries, estimated from the available rows and columns totals
(see the S1 Information, “Bivariate data sets—SI” section, for the detailed calculations).

Table 2 depicts the predictions based on Shannon functional, the likelihood functional and
the Euclidean functional. In order to further condense the information, we have also calculated
the correlation coefficient between each observed row and the corresponding expected one, re-
porting the obtained values in the last entry of each row of Table 2. The correlation coefficients
are high for all the three functionals, which predict close values to the observed ones.

A closer inspection of Table 2 reveals that, as for the Bell Labs data set, the rows with the
zeros are still the most problematic ones. However, the likelihood functional performs better
than Shannon one: the predicted entries are closer to the real ones and the correlation coeffi-
cients are higher.

6 Some summary comments
This paper represents a contribution to the study of behavioral information recovery for self-
organizing systems. The approach we proposed questions the use of traditional information re-
covery methods (see [13]), stressing the connections between adaptive behavior and causal

Table 1. Observed bivariate distribution of the number of times bacon and eggs were purchased on
four consecutive shopping trips (see [23, 28]).

Eggs

Bacon 0 1 2 3 4 Total

0 254 115 42 13 6 430

1 34 29 16 6 1 86

2 8 8 3 3 1 23

3 0 0 4 1 1 6

4 1 1 1 0 0 3

Total 297 153 66 23 9 548

doi:10.1371/journal.pone.0125077.t001
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Fig 3. Analysis of Bell Labs data corresponding to ten chosen time points. The number of the channel is reported on the x-axis. Observed and
estimated x are reported on the y-axis. Colors refers to: observed data (black trend), our estimation based on Shannon functional (blue trend), our estimation
based on the likelihood functional (red trend).

doi:10.1371/journal.pone.0125077.g003
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entropy maximization (see [12]) in self organizing systems. This intuition can be formalized by
implementing the procedure we propose, resting on the optimization of a class of entropic
functionals under the constraints provided by the available information. Remarkably, other
studies have presented results compatible with this view, i.e. that the real word is well approxi-
mated by maximum entropy ensembles where only partial information is used to reconstruct
the entire system (see [10, 11, 29]).

The class of entropic functionals employed in this work is known as Cressie-Read family,
which not only constitutes the analytical basis of our analysis but also represents a solution to
the issue of solving ill-posed inverse problems by formally treating them as inference problems.
Our results indicate that the performance of functionals constituting the CR family may vary

Table 2. Expected bivariate distribution of the number of times bacon and eggs were purchased on four consecutive shopping trips (see [23, 28]).

Shannon functional

Eggs

Bacon 0 1 2 3 4 r

0 262.378 122.478 40.468 4.65702 0.0191661 0.999453

1 27.3702 23.502 18.8328 12.2212 4.0738 0.970398

2 5.38417 5.16918 4.87188 4.33981 3.23497 0.86233

3 1.25404 1.24078 1.22175 1.18545 1.09798 −0.0718339

4 0.613532 0.61028 0.605583 0.596516 0.574089 0.847078

Likelihood functional

Eggs

Bacon 0 1 2 3 4 r

0 258.603 118.489 40.1875 9.81096 2.90897 0.99991

1 30.4192 26.7046 18.5562 7.63744 2.68261 0.993516

2 6.02486 5.86333 5.34772 3.78732 1.97677 0.850168

3 1.32087 1.31294 1.28519 1.1694 0.911598 0.019223

4 0.631723 0.629903 0.623446 0.594872 0.520056 0.824691

doi:10.1371/journal.pone.0125077.t002

Fig 4. Analysis of Bell Labs data for the 90th time point. The number of the channel is reported on the x-axis. Observed and estimated x are reported on
the y-axis. Colors refers to: observed data (black trend), our estimation based on Shannon functional (blue trend), our estimation based on the likelihood
functional (red trend). Left panel: zero traffic flows are included in the data set. Right panel: zero traffic flows are excluded from the data set.

doi:10.1371/journal.pone.0125077.g004
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significantly: in some cases, the likelihood functional (to the best of our knowledge, explicitly
worked out here for the first time) provides the best performance; in others, it is outperformed
by the Shannon functional. This indicates these two functionals are the ones making the best
possible use of the available information, predicting the closest values to the observed ones.

In order to suggest applicability of our procedure, we have considered behavioral problems
within the framework of network theory. The results we obtained not only indicate the effec-
tiveness of our algorithm (applicable to univariate as well as bivariate data sets and for both re-
producing available data and predicting unavailable data), but also demonstrate that networks
are a useful way to present micro behavioral systems. In this context, the perspective proposed
by our study can be enlarged by considering each node as a network on its own, a possibility
which would simplify the task of modelling evolving networks, such as in the case of a growing
economy, where a larger number of (adapting) nodes appear.

Given the importance of recovering dynamic economic behavioral information, a natural
question arises about the continued use of traditional regularization information recovery
methods as a solution basis for traditional pure and stochastic inverse type problems. For this
reason, the next step is to extend the concept of adaptive-optimizing behavior and apply it
(within the information theoretic framework) in the context of a range of micro economic set-
tings, thus opening the promising perspective of turning the descriptive character of behavioral
disciplines into a more quantitative one.

Supporting Information
S1 Information. We report and discuss a number of other cases of interest to which our
methodology has been applied.
(PDF)
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