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INFORMATION-REGRET COMPROMISE IN
COVARIATE-ADAPTIVE TREATMENT ALLOCATION

BY ASYA METELKINA AND LUC PRONZATO

Université Côte d’Azur, CNRS, I3S

Covariate-adaptive treatment allocation is considered in the situation
when a compromise must be made between information (about the depen-
dency of the probability of success of each treatment upon influential co-
variates) and cost (in terms of number of subjects receiving the poorest
treatment). Information is measured through a design criterion for parame-
ter estimation, the cost is additive and is related to the success probabilities.
Within the framework of approximate design theory, the determination of
optimal allocations forms a compound design problem. We show that when
the covariates are i.i.d. with a probability measure μ, its solution possesses
some similarities with the construction of optimal design measures bounded
by μ. We characterize optimal designs through an equivalence theorem and
construct a covariate-adaptive sequential allocation strategy that converges
to the optimum. Our new optimal designs can be used as benchmarks for
other, more usual, allocation methods. A response-adaptive implementation
is possible for practical applications with unknown model parameters. Sev-
eral illustrative examples are provided.

1. Introduction and motivation. We consider a treatment allocation problem
with K treatments for which the probabilities of success depend on side informa-
tion given by covariates; see, for example, [22, 24, 39]. The response Yt = Yt (X)

of a subject with covariates X to treatment t satisfies

(1.1) E{Yt |X = x, t = k} = ηk(x, θk), k ∈ {1, . . . ,K},
where θk denotes the (unknown) vector of model parameters for treatment k and
where the functions ηk are assumed to be known. In particular, this covers the case
of binary responses Yt ∈ {0,1}, with Prob[Yt = 1|X = x, t = k] = ηk(x, θk), with
logistic regression as a typical example. Throughout the paper, we consider scalar
responses ηk , but the multivariate situation case may be considered as well; see,
for example, [13–15, 31] for bivariate binary responses corresponding to efficacy
and toxicity. Note that the different models may have some parameters in common;
that is, the vectors θk may share some components. We suppose that the covariates
are i.i.d. among subjects, with some probability measure μ. The responses are
independent too; that is, the random vectors (Xi, Y1(Xi), . . . , Yk(Xi)) are i.i.d.
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Most clinical trials are designed in such a way that patients are assigned sequen-
tially with some randomized rule. Their covariate information can then be used to
tune allocation probabilities: in a typical Covariate-Adjusted Response-Adaptive
(CARA) design, the (n + 1)st patient, with covariates Xn+1, is assigned to treat-
ment k with probability πk(Xn+1, θ̂

n), where θ̂ n denotes the current estimated
value of the vector θ of all parameters θk in the K models; see [21], Chapter 9, [7],
Chapter 6, [39]. Extension to additional dependence in the past covariate values
is considered in [8, 38]. The survey [33] contains a classification of CARA de-
signs and the recent book [7] offers a thorough review of results of adaptive design
theory. A key issue here, addressed in particular in [8, 38, 39], concerns the investi-
gation of the asymptotic properties of θ̂ n and allocation proportions. On the other
hand, the definition of suitable desired allocation probabilities π∗

k (x, θ), in con-
nection with some criterion for optimal design, is considered as an open problem,
which forms the main motivation for this paper. Once suitable targets π∗

k (x, θ) are
defined, results presented in [8, 24, 38, 39] can be used to construct procedures
ensuring fast convergence to the π∗

k (x, θ) with low variability.
Clinical trials are usually facing two conflicting objectives: (i) statistical infer-

ence about the response models ηk ; (ii) individual ethics, related to the efficient
treatment of the individuals enroled in the trial. Here, these conflicting objectives
will be taken into account explicitly, through (i) an information criterion related
to the precision of θ and (ii) a cumulative regret relative to allocation of each
subject to the best treatment. The overall strategy may then correspond to maxi-
mizing information under a constraint on regret, or minimizing the regret with a
constraint on information. From Lagrangian duality, when the information and re-
gret functionals are respectively concave and convex (we shall use a linear regret
in what follows), such strategies amount at maximizing a linear combination of
information and regret. By tuning the (scalar) Lagrange coefficient, we can then
set a compromise between the information gained from the trial and the efficient
treatments of individuals in the trial, in the same spirit as what is done in [13, 14,
29] for dose selection (without covariates).

The main objective of the paper is to characterize optimal compromise designs
and to derive simple covariate-adaptive rules π∗

k (x, θ) whose information and re-
gret attain asymptotically the optimal values for the chosen compromise. The con-
cept of design measures is natural for investigating asymptotic properties of de-
signs, and we shall decompose μ into positive measures ξ1, . . . , ξK on the set of
covariates, with ξk the fraction of μ corresponding to subjects allocated to treat-
ment k. Any such decomposition defines a design ξ . Due to the presence of the

constraint
∑K

k=1 ξk = μ on ξ , the optimal design problem presents some simi-
larities with the construction of optimal bounded design measures (see [17, 34,
37]), and an equivalence theorem characterizing optimal designs ξ∗[μ] is derived
in Section 2. Although we do not explicitly aim at reducing imbalance between
treatments, the avoidance of strongly imbalanced allocation is considered in Sec-
tion 2.6. In biased-coin designs, a compromise has to be done between loss (of
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information concerning the estimation of treatment difference) and reduction of
selection bias; see, for example, [5, 9, 24]; see also the recent survey [4] and the
references therein. Our approach is different, since we target a compromise be-
tween information and allocation to the best treatment. As a consequence, our
“optimal” allocation rules are deterministic. However, the introduction of random-
ization to reduce selection bias is considered in Section 3. Two covariate-adaptive
allocation rules are presented in Section 4. The first one relies on the prior con-
struction of an (oracle) optimal design ξ∗[μ], the second is doubly adaptive and
does not assume knowledge of μ. The paper focusses on locally optimum design,
where the model parameters θk are fixed to some prior nominal values. CARA
rules, where allocation of the (n + 1)st subject to one of the K treatments depends
on the current Xn+1 and estimated value θ̂ n, are briefly considered in Section 5,
where other possible extensions are also suggested.

2. Optimal covariate-adaptive design.

2.1. Allocation criterion. Let X ⊂ R
d denote the space of covariates Xi ,

which are assumed to be independently identically distributed (i.i.d.) with a prob-
ability measure μ such that μ(X ) = 1. We shall consider the two following situ-
ations:

H1a: X is finite;
H1b: X is a compact subset of Rd with nonempty interior int(X ) and μ has

a density with respect to the Lebesgue measure.

In the second case, we shall assume the following:

H2: in (1.1), the functions ηk(x, θk) are continuously differentiable with respect
to x ∈ int(X ).

We assume that the models are distinguishable in the following sense:

(2.1) μ
{
x ∈ X : ηk(x, θk) = ηj (x, θj ) for some j �= k

} = 0.

Regret. If the parameters θk in each model ηk were known, we could use an
oracle rule and allocate a subject with covariates X to treatment k∗ such that

η∗(X) = ηk∗(X) = max
k=1,...,K

ηk(X, θk).

However, for unknown θk allocation to the best treatment cannot be guaranteed
and we define the (cumulative) regret after n allocations as

Rn(θ) = 1

n

n∑
i=1

[
η∗(Xi) − ηki

(Xi, θki
)
]
,
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when the ith subject with covariates Xi has been allocated to treatment ki , for all
i = 1, . . . , n. This can also be written as

(2.2) Rn(θ) = Pμnη∗ −
K∑

k=1

Pξn,k
ηk(·, θk),

where, for a measure ν on X and a ν-measurable function f : X −→ R, we
denote Pνf = ∫

X f (x)dν(x). Here, μn is the empirical measure of the Xi and

(2.3) ξn,k = Nn,k

n
μn,k, k = 1, . . . ,K,

with μn,k the empirical measure of the Xi that have been allocated to treatment
k in the first n assignments, and Nn,k their number. Other forms of regret will be
suggested in Section 5.

Information. Let θ ∈ Rp denote the vector of all parameters in the K models
ηk , with p <

∑K
k=1 dim(θk) when the models have some parameters in common.

Information will be related to the precision of the Maximum Likelihood (ML)
estimation of θ , measured by the (inverse of the) normalized Fisher information
matrix. Denote by Mk(x; θk) the elementary information matrix corresponding to
the observation of the response Yt |X = x, t = k, with expectation ηk(x, θk); see
(1.1); Mk(x; θk) is p × p, but its j th row and column are formed of zeros when
θk does not contain the j th component of θ . For example, in Bernoulli trials with
a single response Yt ∈ {0,1}, we have

(2.4) Mk(x; θk) = ∂ηk(x, θk)

∂θ

∂ηk(x, θk)

∂θ�
1

ηk(x, θk)[1 − ηk(x, θk)] .
In case of H1b, we assume the following in complement of H2:

H2′: the functions {Mk(x; θk)}ij are continuously differentiable with respect to
x ∈ int(X ), 1 ≤ i, j ≤ p.

With notation similar to the regret calculation, we can compute the normalized
information matrix after n allocations as

(2.5) Mn(θ) = 1

n

n∑
i=1

Mki
(x; θki

) =
K∑

k=1

Pξn,k
Mk(·; θk).

We shall measure the information content of the trial by �(Mn), with �(·) a de-
sign criterion defined on the set of symmetric nonnegative definite p ×p matrices.
We suppose that �(·) is concave, monotonic for Loewner ordering, twice contin-
uously differentiable and strictly concave on the set M+ of symmetric positive-
definite matrices. Typical examples are

(2.6) �q(M) =
{− tr

(
M−q)

for q > 0,

log det(M) for q = 0 (D-optimality),

with A-optimal design when q = 1; see, for example, [30], Chapter 5.
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Limiting allocations and design measures. In the usual context of optimal de-
sign theory, the consideration of an asymptotic framework where design measures
are substituted for exact designs of given size n much facilitates the construction of
optimal designs. It is also the case here, with a further justification by the presence
of the probability measure μ at the core of the problem.

The measures ξn,k defined by (2.3) satisfy
∑K

k=1 ξn,k = μn, with μn → μ as
n → ∞ since the Xi are i.i.d. with μ. We shall thus consider design measures
ξ = (ξ1, . . . , ξK) that form a decomposition of μ into μ = ∑K

k=1 ξk , where ξk will
define the target limiting allocation in a sequential allocation rule and corresponds
to the fraction of μ devoted to treatment k. Note that the ξk are not probability
measures. We shall denote by

(2.7) 	(μ) =
{
ξ = (ξ1, . . . , ξK) ∈ (MX )K :

K∑
k=1

ξk = μ

}

the (convex) set of such ξ , with MX the set of nonnegative measures on X abso-
lutely continuous with respect to μ.

Combining information and regret. The regret R(ξ ; θ) for a ξ ∈ 	(μ) can be
written as

(2.8) R(ξ ; θ) = Pμη∗ −
K∑

k=1

Pξk
ηk(·, θk);

see (2.2). The associated information is ψ(ξ ; θ) = �[M(ξ ; θ)], with

M(ξ ; θ) =
K∑

k=1

Pξk
Mk(·; θk);

see (2.5). We suppose that M(ξ ; θ) is positive definite when all ξk = μ/K in ξ ;
this balanced design will be denoted ξ

μ
. We shall consider design problems that

correspond to the maximization of compromise criteria of the form

J (α)(ξ ; θ) = (1 − α)ψ(ξ ; θ) − αR(ξ ; θ),

for some α ∈ [0,1]. The use of compromise designs in clinical trials is motivated
in [6], but without considering the presence of covariates. Balancing efficiency and
ethics is also considered in [23], but no explicit optimal design is used as a target
for sequential allocation (see, in particular, Example 3 below). An alternative ap-
proach is considered in [10] for longitudinal responses with two treatments, where,
for each Xn+1, the allocation probability πk(Xn+1) is obtained by maximizing an
utility function (depending on the current estimated value θ̂ n and associated infor-
mation matrix) that sets a compromise between information and allocation to the
best treatment. Simpler sequential allocation rules targeting an optimal compro-
mise will be proposed in Section 4.
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In J (α)(ξ ; θ), the information content of the trial, measured by ψ(ξ ; θ), is bal-
anced by the regret R(ξ ; θ) which corresponds to an ethical cost. Due to the equiv-
alence between constrained and compound optimal designs (see [12, 29] and [18],
Chapter 4), this is equivalent to maximizing ψ(ξ ; θ) under a constraint of the form
R(ξ ; θ) ≤ τ for some constant τ . Indeed, the Lagrangian for this constrained prob-
lem can be written as L (ξ,C) = ψ(ξ ; θ) − C[R(ξ ; θ) − τ ], with C ≥ 0 the La-
grange parameter; maximizing ψ(ξ ; θ) with R(ξ ; θ) ≤ τ is equivalent to maxi-
mizing L (ξ,C) for some C = C(τ) and is equivalent to maximizing J (α)(ξ ; θ)

for α = C/(1 + C). Due to the concavity of �(·), any nondominated solution ξ∗
[i.e., such that there does not exist a ξ ′ ∈ 	(μ) satisfying ψ(ξ ′; θ) ≥ ψ(ξ∗; θ)

and R(ξ ′; θ) ≤ R(ξ∗; θ) with one of these inequalities being strict] maximizes
J (α)(ξ ; θ) for some α ∈ [0,1]. Figure 3(right) in Example 3 will provide an il-
lustration. Similarly, maximizing J (α)(ξ ; θ) is equivalent to minimizing R(ξ ; θ)

under the constraint ψ(ξ; θ) ≥ τ ′ for some constant τ ′.
We shall omit the dependence in θ of information and regret when it does not

impede readability. Due to the expression (2.8) of the regret, maximizing J (α)(ξ)

is equivalent to maximizing

(2.9) H(α)(ξ) = (1 − α)ψ(ξ) + αφ(ξ),

where φ(ξ) = ∑K
k=1 Pξk

ηk(·) is a cumulative reward (to be maximized). The cri-
terion (2.9) will be our measure of optimality in all the rest of the paper. Note that
when �(M) = log det(M) (D-optimality), optimal designs for H(α)(·) are invari-
ant by reparameterization of the models ηk for any α ∈ [0,1].

2.2. An equivalence theorem for compromise optimal designs. When μ is
known, the maximization of H(α)(ξ) under H1a corresponds to a finite dimen-
sional concave problem. Indeed, for X = {x(1), . . . , x(m)}, we need to determine
k×m weights wk,j = ξk(x

(j)) satisfying
∑K

k=1 wk,j = μ(x(j)) for all j = 1, . . . ,m

and such that H(α)(ξ) is maximum. The necessary and sufficient condition for op-
timality presented below provides a characterization of optimal designs that facil-
itates their construction in more general situations. The fact that optimal designs
have particularly simple shapes will also facilitate the sequential constructions of
Section 4.

As usual in design theory, the convexity of 	(μ) given by (2.7) and the con-
cavity of H(α)(·) given by (2.9) yield an equivalence theorem, which states that
ξ∗ ∈ 	(μ) maximizes H(α)(·) if and only if FH(α)(ξ∗;ν) ≤ 0 for any ν ∈ 	(μ),
where FH(α)(ξ ;ν) denotes the directional derivative:

FH(α)(ξ ;ν) = lim
γ→0+

H(α)((1 − γ )ξ + γ ν) − H(α)(ξ)

γ
.
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For any ξ ∈ (MX )K such that �(·) is differentiable at M(ξ), we denote ∇ψ(ξ) =
∇�[M(ξ)], where ∇�(M) = ∂�(M)/∂M. Direct calculation then gives

FH(α)(ξ ;ν) = (1 − α) tr
[∇ψ(ξ)

{
M(ν) − M(ξ)

}] + α
[
φ(ν) − φ(ξ)

]
.

Denoting

(2.10) G
(α)
k (ξ , x) = (1 − α) tr

[∇ψ(ξ)Mk(x)
] + αηk(x),

we thus have FH(α)(ξ ;ν) = ∑K
k=1 Pνk

G
(α)
k (ξ , ·)−∑K

k=1 Pξk
G

(α)
k (ξ , ·). We then ob-

tain the following characterization of optimal design measures.

THEOREM 2.1. Suppose that H(α)(·) is differentiable at ξ∗(α) = (ξ∗
1 , . . . ,

ξ∗
K) ∈ 	(μ). The following statements are equivalent:

(i) ξ∗ = ξ∗(α) is optimal, that is, ξ∗ maximizes H(α)(ξ) with respect to ξ ∈ 	(μ);

(ii) for all i = 1, . . . ,K , G
(α)
i (ξ∗, x) ≥ maxj �=i G

(α)
j (ξ∗, x) ξ∗

i -a.e.;

(iii) X can be partitioned into nK subsets XJt = X (α)
Jt

, t = 1, . . . , nK ≤ 2K −1,
with index sets Jt that are subsets of {1, . . . ,K}, and such that, for all t =
1, . . . , nK ,

(a)
∑

i∈Jt
ξ∗
i = μ on XJt ,

(b) G
(α)
i (ξ∗, x) = G

(α)
j (ξ∗, x) on XJt for all i, j ∈ Jt ,

(c) G
(α)
i (ξ∗, x) > G

(α)
j (ξ∗, x) for x ∈ XJt , i ∈ Jt and j /∈ Jt .

The proof of Theorem 2.1 is presented in the supplemental material [26]. The
theorem takes a simpler form when K = 2: the function x → �

(α)
12 (ξ∗, x) =

G
(α)
1 (ξ∗, x) − G

(α)
2 (ξ∗, x) then defines a partition of X in m sets, m ≤ 3, as ex-

pressed in the following corollary.

COROLLARY 2.1. Suppose that K = 2 and H(α)(·) is differentiable at ξ∗(α) =
(ξ∗

1 , ξ∗
2 ) ∈ 	(μ). The following statements are equivalent:

(i) ξ∗ = ξ∗(α) is optimal, that is, it maximizes H(α)(ξ) with respect to ξ ∈ 	(μ);

(ii) �
(α)
12 (ξ∗, x) ≥ 0 ξ∗

1 -a.e. and �
(α)
12 (ξ∗, x) ≤ 0 ξ∗

2 -a.e.;

(iii) there exist two subsets X1 = X (α)
1 and X2 = X (α)

2 of X such that:

(a) ξ∗
1 = μ on X1 and ξ∗

2 = μ on X2,

(b) �
(α)
12 (ξ∗, x) = 0 on X \ (X1 ∪ X2),

(c) �
(α)
12 (ξ∗, x) > 0 for x ∈ X1 and �

(α)
12 (ξ∗, x) < 0 for x ∈ X2.

Notice that ξ∗, the K functions x → G
(α)
k (ξ , x) and the sets Xi depend on θ ,

see (2.10). We shall use the notation ξ∗
θ

and G
(α)
k (ξ , x; θ) to emphasize this depen-

dence when necessary (Section 5).



COVARIATE-ADAPTIVE TREATMENT ALLOCATION 2053

2.3. Some properties of optimal designs. The values of H(α)(ξ∗(α)),

(1 − α)ψ(ξ∗(α)) and αφ(ξ∗(α)) are always uniquely defined for any α ∈ [0,1]
[which implies that ψ(ξ∗(α)) and φ(ξ∗(α)) are uniquely defined for α respectively

in [0,1) and (0,1]]. Moreover, one can show that H(α)(ξ∗(α)), (1 − α)ψ(ξ∗(α))

and αφ(ξ∗(α)) are continuous functions of α in [0,1], that ψ(ξ∗(α)) is non-

increasing for α ∈ [0,1) and φ(ξ∗(α)) is nondecreasing on (0,1], and that

H(α)(ξ∗(α)) is convex and continuously differentiable with respect to α in (0,1),

with dH(α)(ξ∗(α))/dα = φ(ξ∗(α)) − ψ(ξ∗(α)).

2.3.1. The special case α = 1. It corresponds to the usual framework in ban-
dit theory, with abundant results on the construction of strategies minimizing the
expected regret; see, for example, [19, 20, 25]. Theorem 2.1 applies when α = 1
since H(1)(ξ) = ∑K

k=1 Pξk
ηk(·) is linear in the ξk , and the sets Xj are uniquely

defined. For instance, when K = 2, (2.1) implies that the optimal design is given
by ξ∗ = ξ∗(1) = (ξ∗

1 , ξ∗
2 ) such that ξ∗

1 = μ on X (1)
1 = {x ∈ X : η1(x) > η2(x)}

and ξ∗
2 = μ on X (1)

2 = {x ∈ X : η1(x) < η2(x)}. Therefore, when the models

are such that η1(x) > η2(x) for all x ∈ X , X (1)
1 = X and ξ∗ does not allow

the estimation of θ2. In a sequential response-adaptive situation where assignment
decisions are based on estimated values of the model parameters, it means that a
deterministic decision rule using α = 1 (a method sometimes called “best intention
design”) may fail to ensure the consistent estimation of θ ; moreover, allocation to
the poorest treatment for all n large enough may happen with positive probability.

When M(ξ∗(1)) is nonsingular, the design ξ∗(1) may be optimal for all H(α)(·)
with α in some interval [α,1]; see Example 3. Note that

max
ξ∈	(μ)

φ(ξ) = φ
(
ξ∗(1)) and

(2.11)
R(ξ) = φ

(
ξ∗(1)) − φ(ξ) for any ξ ∈ 	(μ).

2.3.2. Uniqueness of M(ξ∗(α)) for α < 1. The information criteria (2.6) are
such that �(M) = −∞ for any singular M and is finite otherwise. Then, for
any α ∈ [0,1), a design ξ∗(α) optimal for H(α)(·) defined by (2.9) is such that

M(ξ∗(α)) ∈ M
+; H(α)(·) is thus differentiable at ξ∗(α) and Theorem 2.1 ap-

plies. This is also the case for the positively homogeneous versions �(M) =
det1/p(M) and �(M) = (tr[M−q]/p)−1/q (q > 0), which have continuous exten-
sions �(M) = 0 at singular M; see [30], Chapter 5. Indeed, the property that the
directional derivative of �(·) at M in the direction M′ equals +∞ when M is
singular and M′ has full rank ensures that M(ξ∗(α)) is nonsingular when α < 1.

The strict concavity of �(·) implies the uniqueness of M(ξ∗(α)) ∈ M
+, and

therefore of the functions x → G
(α)
k (ξ∗(α), x) and sets X (α)

Jt
in Theorem 2.1(iii).
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2.3.3. Uniqueness of ξ∗(α). The optimal design ξ∗(α) = (ξ∗
1 , . . . , ξ∗

K) that
maximizes H(α)(ξ) is uniquely defined (up to sets of zero measure) when

(2.12) μ
{
x ∈ X : G(α)

i

(
ξ∗, x

) = G
(α)
j

(
ξ∗, x

)} = 0 for all i �= j

[which corresponds to μ(X1 ∪ X2) = 1 when K = 2, see Corollary 2.1].
Condition (2.12) is often satisfied when α ∈ [0,1) and μ has a density with re-

spect to the Lebesgue measure, but the reverse situation cannot be considered as
exceptional, as Example 1 will illustrate. A simple generic case where the condi-
tion fails is when α = 0, K = 2, η1, η2 have no parameters in common, but the
numerical values of θ1 and θ2 are such that, for any ξ , M1(ξ) = cM2(ξ) when we
write M(ξ) as

M(ξ) =
(

M1(ξ1) O
O� M2(ξ2)

)
,

with c some positive constant. Take for instance �(M) = log det(M). Then, for
any ξ ∈ 	(μ) we have H(0)(ξ) = log det[M1(ξ1)] + log det[M1(ξ2)] + p1 log(c),
with p1 the number of parameters in η1 (and η2). Consider ξ

μ
= (μ/2,μ/2) =

((ξ1 + ξ2)/2, (ξ1 + ξ2)/2) ∈ 	(μ); it satisfies H(0)(ξ
μ
) = 2 log det {M1[(ξ1 +

ξ2)/2]} + p1 log(c). The concavity of log det(·) implies that H(0)(ξ
μ
) ≥ H(0)(ξ),

and ξ
μ

is thus optimal, with X1 = X2 = ∅ in Corollary 2.1(iii). Moreover, any op-
timal design ξ∗ = (ξ∗

1 , ξ∗
2 ) is such that M1(ξ

∗
1 ) = M1(ξ

∗
2 ), and the designs (ξ∗

2 , ξ∗
1 )

and (1−γ )ξ∗ +γ ξ
μ

are also optimal for all γ ∈ [0,1]. Since α = 0, these optimal
designs may have different regret values; see Example 3.

Provided that (2.12) is satisfied, so that ξ∗(α) is uniquely defined, the sequential
allocation rules presented in Section 4 are such that the empirical measures ξn,k

defined by (2.3) converge a.s. to the ξ∗
k

(α) (weak convergence), and the allocation
proportions ξn,k(X ) converge a.s. to their optimal counterparts ξ∗

k
(α)(X ). More

generally, for α < 1 this convergence of allocation proportions can always be en-
sured by including an intercept θ0k in each of the k models ηk : indeed, for any ξ the
diagonal element of M(ξ) corresponding to θ0k equals ξk(X ), and the uniqueness

of M(ξ∗(α)) (see Section 2.3.2) implies that ξn,k(X ) converges to ξ∗
k

(α)(X ).

2.4. Bounds on optimal regret and information. The construction of an upper
bound on the optimal regret and of a lower bound on the optimal information may
help to choose a suitable compromise parameter α; see also Section 5.

Upper bounds on optimal regret. Let ξ∗(α) ∈ 	(μ) be an optimal design that
maximizes H(α)(ξ) for a given α ∈ (0,1]. Take any k ∈ {1, . . . ,K} and consider a
set XJt in Theorem 2.1(iii) that contains k, the measure ξk being positive on such
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sets XJt only. For any x ∈ XJt and any j ∈ {1, . . . ,K}, we have

ηj (x) − ηk(x) ≤ 1 − α

α
tr

{∇ψ
(
ξ∗(α))[

Mk(x) −Mj (x)
]};

see (2.10). The monotonicity of �(·) for Loewner ordering implies that ∇ψ(ξ∗(α))

is nonnegative definite, therefore,

η∗(x) − ηk(x) = max
j

[
ηj (x) − ηk(x)

] ≤ 1 − α

α
tr

[∇ψ
(
ξ∗(α))

Mk(x)
]
.

Repeating the same operation for all k, and integrating over all ξ∗
k

(α), we obtain

(2.13) R
(
ξ∗(α)) ≤ 1 − α

α
tr

[∇ψ
(
ξ∗(α))M(

ξ∗(α))]
.

In the special case �(M) = log det(M), the bound does not depend on ξ∗(α): in-

deed, we then have ∇ψ(ξ) = M−1(ξ), which gives R(ξ∗(α)) ≤ p(1 − α)/α.

The optimality of ξ∗(α) for H(α)(·) directly implies an upper bound on R(ξ∗(α)).
Indeed, for any ξ ∈ 	(μ) we have

(2.14) (1 − α)ψ
(
ξ∗(α)) + αφ

(
ξ∗(α)) ≥ (1 − α)ψ(ξ) + αφ(ξ),

which, using (2.11), implies R(ξ∗(α)) ≤ R(ξ) + (1 − α)/α[ψ(ξ∗(α)) − ψ(ξ)] for

α > 0. Since ψ(ξ∗(α)) ≤ ψ(ξ∗(0)), we get

(2.15) R
(
ξ∗(α)) ≤ R(ξ) + 1 − α

α

[
ψ

(
ξ∗(0)) − ψ(ξ)

]
, ∀ξ ∈ 	(μ),α ∈ (0,1].

A lower bound on optimal information. Using (2.14) and (2.11), we obtain

(2.16) ψ
(
ξ∗(α)) ≥ ψ(ξ) − α

1 − α
R(ξ), ∀ξ ∈ 	(μ),α ∈ [0,1).

2.5. Examples.

2.5.1. Example 1. Consider a linear response bandit problem, with K = 2, and
ηk(x, θk) = a0 + bkx, k = 1,2. The two models have the parameter a0 in common,
and θ = (a0, b1, b2)

�. We take �(M) = log det(M) and suppose that μ is uniform
on X = [−1,1] and that Yt |X = x, t = k has mean ηk(x, θk) and variance 1. We
thus have, for any x ∈ X and any ξ = (ξ1, ξ2) ∈ 	(μ),

M1(x) =
⎛⎜⎝1 x 0

x x2 0
0 0 0

⎞⎟⎠ , M2(x) =
⎛⎜⎝1 0 x

0 0 0
x 0 x2

⎞⎟⎠ ,

M(ξ) =
⎛⎜⎝ 1 m1 m2

m1 s2
1 0

m2 0 s2
2

⎞⎟⎠ ,
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where mk = ∫
X x dξk(x), s2

k = ∫
X x2 dξk(x) (with m1 + m2 = 0 and s2

1 + s2
2 =∫

X x2 dμ(x) = 1/3). This example illustrates the fact that we can have X (α)
1 =

X (α)
2 = ∅ in Corollary 2.1 for all α in some interval also in the case where μ has

a density with respect to the Lebesgue measure. Without any loss of generality, we
suppose that a0 = 0 and b2 > b1.

Direct calculation shows that the optimal design for all α ≥ α = 24/(24 + b2 −
b1) is ξ∗(1) such that X (α)

1 = [−1,0) and X (α)
2 = (0,1].

On the other hand, G
(α)
1 (ξ, x) and G

(α)
2 (ξ, x) are polynomials of degree 2 in x

for any ξ ∈ 	(μ), and when α ≤ α their difference can be made identically zero
for all x ∈ X by choosing a ξ ∈ 	(μ) with suitable values of m1, m2, s2

1 and s2
2 .

The conditions are s2
1 = s2

2 = 1/6 and m1 = −m2 = m∗
1
(α) with

m∗
1
(α) = 1

α(b2 − b1)

(
1 − α −

[
(1 − α)2 + α2(b2 − b1)

2

12

]1/2)
,

and then X (α)
1 = X (α)

2 = ∅ in Corollary 2.1. They are fulfilled for instance
for ξ∗

1
(α) = μ on [−1,−A(α)] ∪ [0,A(α)] and ξ∗

2
(α) = μ on the complement,

with A(α) = √
2(m∗

1
(α) + 1/4)1/2, which satisfies A(α) = 0 and limα→0 A(α) =

1/
√

2. Also, elementary calculations show that the optimal solution whose
(Shannon) entropy

∑2
i=1

∫
X − log{[dξ∗

i /dμ](x)}dξ∗
i (x) is maximum is given by

[dξ∗
1 /dμ](x) = (1/2)[1 + exp(λ1x)]−1, with λ1 > 0 such that m1 = m∗

1
(α). Note

that ξ∗
1

(α)(X ) = ξ∗
2

(α)(X ) = 1/2 for all α for these two types of solutions, but
other optimal designs ξ∗(α) exist such that ξ∗

1
(α)(X ) �= ξ∗

2
(α)(X ) for α < α.

The information and regret of a design ξ only depend on m1 and s2
1 and their

optimal values are given by

ψ
(
ξ∗(α)) = −2 log(12), R

(
ξ∗(α)) = 0 for α ≥ α

ψ
(
ξ∗(α)) = log

[
1

36
− (m∗

1
(α))2

3

]
,

R
(
ξ∗(α)) = (b2 − b1)

[
m∗

1
(α) + 1

4

]
otherwise.

2.5.2. Example 2. This slightly simpler version of previous example yields a
completely different solution: take η1(x, θk) = a0, η2(x, θ2) = a0 + b2x, so that
there are two parameters only, θ = (a0, b2)

�; μ is still uniform on X = [−1,1],
�(M) = log det(M). Suppose that b2 > 0. The information matrix for a ξ ∈ 	(μ)

is

M(ξ) =
(

1 m2

m2 s2
2

)
,
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with m2 = ∫
X x dξ2(x), s2

2 = ∫
X x2 dξ2(x). The design ξ∗(1) with X (α)

1 = [−1,0)

and X (α)
2 = (0,1] is now optimal for α ≥ α = 72/(72 + 5b2). For α < α,

G
(α)
2 (ξ , x) is still a polynomial of degree 2 in x but G

(α)
1 (ξ, x) is constant, and

their difference cannot be made identically zero for x in an interval. The solu-
tion is thus much different from that in Example 1: the optimal design ξ∗(α) is

uniquely defined for α < α, it corresponds to ξ∗
1

(α) = μ on X (α)
1 = (A(α),0) and

ξ∗
2

(α) = μ on X (α)
2 = [−1,A(α))∪ (0,1], where A(α) ∈ [−1,0] is solution of the

fourth-degree equation:

3αb2A
4 − 8αb2A

3 + 24(1 − α)A2 − 48(1 − α)A − 16αb2 = 0,

with A(α) = −1 and A(0) = 0 (for α = 0, observing Y2 only permits to estimate
both a0 and b2, while the regret is ignored).

2.5.3. Example 3. We consider optimal allocation for two logistic regression
models with Mk(x, θk) given by (2.4), k = 1,2, and η1(x) = η1(x, θ1) = 0.25 +
0.5ez1(x)/(1 + ez1(x)), η2(x) = η2(x, θ2) = 0.25 + 0.5/(1 + ez2(x)), where zi(x) =
bi(x − ai), θi = (ai, bi), i = 1,2.

We take �(M) = log det(M), with nominal parameter values θ1 = θ2 =
(1/2,10)�, and μ uniform on X = [0,1]. Figure 1 presents η1(x) and η2(x)

as functions of x, with η1(x) = η2(x) for x = 1/2. The two responses are chosen
totally different (and symmetric) on purpose.

For any α ∈ (0,1], the optimal design ξ∗ = ξ∗(α) is uniquely defined, with

ξ∗
1 = μ on X (α)

1 = (A(α),B(α)) ∪ (C(α),1] and ξ∗
2 = μ on X (α)

2 = [0,A(α)) ∪
(B(α),C(α)) for some A(α) ≤ B(α) ≤ C(α) in (0,1). Figure 2(left) illustrates
the situation for α = 0.7 through a plot of G

(α)
1 (ξ∗, x) − G

(α)
2 (ξ∗, x) as a function

of x; see Corollary 2.1(ii). The optimal designs obtained for α varying in (0,1]

FIG. 1. Example 3: η1(x) (solid line) and η2(x) (dashed line) as functions of x.
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FIG. 2. Example 3—Left: illustration of the optimality of ξ∗ for α = 0.7; right: subsets X1
(α) and

X2
(α) of Corollary 2.1(iii) for α ∈ (0,1].

are shown in Figure 2(right). Here, η2(x) = 1 − η1(x); the peculiar symmetry of
the responses yields A(α) + C(α) = 1 and B(α) = 1/2 for all α. The optimal de-
sign ξ∗(1) for α = 1 corresponds to A(1) = C(1) = 1/2 and ξ∗

1
(1) = μ on (1/2,1],

ξ∗
2

(1) = μ on [0,1/2). Numerical calculations show that it is optimal for all H(α)(·)
with α ≥ α � 0.9949.

Figure 3(left) presents the optimal regret R(ξ∗(α)) (solid line) and the upper
bound p(1 − α)/α (dashed line) as functions of α; the bottom part of the figure
shows ψ(ξ∗(α)) (solid line) and the lower bound (2.16) (dashed line) obtained
for ξ = ξ

μ
= (μ/2,μ/2). Since η2(x) = 1 − η1(x), we are in the situation of

FIG. 3. Example 3—Left-top: R(ξ∗(α)) (solid line) and upper bound 4(1 − α)/α (dashed line);

left-bottom: ψ(ξ∗(α)) (solid line) and lower bound (2.16) (dashed line); right: ψ(ξ∗(α)) as a function

of R(ξ∗(α)), α ∈ (0,1] with a circle at α = 0.95; R(ξ∗(α)) is not uniquely defined at α = 0; the star
corresponds to allocation based on covariate-adjusted odds ratio, the triangles to the limiting values
for the ad hoc compromise rule (2.17) with a = 1 and b = 3,4,6,10 from right to left.
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Section 2.3.3: when α = 0, any convex combination (1 − γ )ξ∗(0) + γ ξ
μ

with

γ ∈ [0,1] is optimal, where ξ∗(0) denotes the particular solution given by ξ
∗(0)
1 = μ

on X1
(0) � (0.3621,0.5) ∪ (0.6379,1] and ξ

∗(0)
2 = μ on X2

(0) � [0,0.3621) ∪
(0.5,0.6379). The regret at α = 0 can take any value between R(ξ∗(0)) and R(ξ

μ
).

Figure 3(right) presents the information ψ(ξ∗(α)) as a function of the regret

R(ξ∗(α)) for α ∈ (0,1]. Nondominated solutions (see Section 2.1) correspond to
the curve in solid-line, on which the solution for α = 0.95 is indicated by a circle.
The slope of the tangent to the curve at this point (in dashed line) equals C =
α/(1 − α) = 19, with C the Lagrange coefficient for the maximization of �(ξ)

under the constraint R(ξ) ≤ R(ξ∗(0.95)).

The construction of optimal designs ξ∗(α), together with plots similar to the
one in Figure 3(right), can be used to benchmark other designs. For instance, the
information and regret values obtained for ξ based on covariate-adjusted odds
ratio (see, e.g., [21], Chapter 9), with [dξ1/dμ](x) proportional to η1(x)[1 −
η2(x)]/{η2(x)[1 − η1(x)]}, is indicated by a star, showing that it can be improved
both in terms of information and regret. The same is true for other rules which
are not targeting any specific compromise, in particular those obtained as limits
of sequential ad hoc allocation rules. For instance, one may consider the limits
of the information and regret values ψ(ξ

n
) and R(ξ

n
) (obtained by simulation)

for the following generalization of the sequential compromise rule of [23], which
allocates the (n + 1)st subject to treatment 1 with probability

(2.17) π1(Xn+1) = da
1 (ξ

n
,Xn+1)

[1 − η1(Xn+1)]b
( 2∑

k=1

da
k (ξ

n
,Xn+1)

[1 − ηk(Xn+1)]b
)−1

,

with a and b some positive constants, dk(ξn
, x) = tr[M−1(ξ

n
)Mk(x)], and where

ξ
n

denotes the empirical design (ξn,1, ξn,2); see (2.3). Taking b = 1 and a = 1 or
2 as suggested in [23] gives limiting designs close to ξ

μ
, and a large regret close

to R(ξ
μ
) � 0.1814. For a = 1, the limiting designs approach ξ∗(1) as b increases,

the values for b = 3,4,6 and 10 are indicated by triangles on Figure 3(right), from
right (b = 3) to left (b = 10).

In general, the limiting designs for such ad hoc rules do not have the particular
form of the optimal designs in Theorem 2.1 and are therefore suboptimal, both in
terms of regret and information. Sequential rules that converge to an optimal ξ∗(α)

for any given α will be presented in Section 4.

2.6. Guaranteed minimal allocation proportions. Setting lower bounds on al-
location proportions permits to avoid strongly imbalanced allocation. In this sec-
tion, we impose that ξk(X ) ≥ β/K for all k, with β ∈ [0,1] [remember that
μ(X ) = 1]. An optimal unconstrained design as considered in Section 2.2 may
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then remain optimal within this framework when β is small enough, but the con-
straints on allocation proportions modify the characterization of optimal designs
for large β .

For any ξ = (ξ1, . . . , ξK) ∈ 	(μ), denote

(2.18) w(ξ) = K min
k=1,...,K

ξk(X ).

The set 	β(μ) of designs ξ ∈ 	(μ) such that w(ξ) ≥ β is convex, and ξw∗(α,β) ∈
	β(μ) maximizes H(α)(·) if and only if FH(α)(ξw∗(α,β);ν) ≤ 0 for all ν ∈ 	β(μ).
In the case K = 2, this yields the following modification of Corollary 2.1.

THEOREM 2.2. Suppose that K = 2 and H(α)(·) is differentiable at
ξw∗(α,β) = ξ∗ = (ξ∗

1 , ξ∗
2 ) ∈ 	β(μ) for some α,β ∈ [0,1]. The following statements

are equivalent:

(i) ξ∗ is optimal, that is, it maximizes H(α)(ξ) with respect to ξ ∈ 	β(μ);

(ii) there exists a constant c = c(α,β) such that �
(α)
12 (ξ∗, x) ≥ c ξ∗

1 -a.e. and

�
(α)
12 (ξ∗, x) ≤ c ξ∗

2 -a.e.;

(iii) there exist two subsets X1 = X
(α,β)

1 and X2 = X
(α,β)

2 of X and a constant
c = c(α,β) such that:

(a) ξ∗
1 = μ on X1 and ξ∗

2 = μ on X2,

(b) �
(α)
12 (ξ∗, x) = c on X \ (X1 ∪ X2),

(c) �
(α)
12 (ξ∗, x) > c for all x ∈ X1 and �

(α)
12 (ξ∗, x) < c for all x ∈ X2.

The proof is provided in the supplemental material [26]. Note that when μ has a
density with respect to the Lebesgue measure and β > 0, it is reasonable to assume
that M(ξ) has full rank for all ξ ∈ 	β(μ), which guarantees the differentiability of

H(α)(·) at ξw∗(α,β).
The bounds on regret and information obtained in Section 2.4 remain valid

provided that we consider designs ξ ∈ 	β(μ). In particular, using ξ = ξ
μ

ob-
tained for balanced random allocation (so that ξ

μ
∈ 	β(μ) for all β ∈ [0,1]),

we obtain R(ξw∗(α,β)) ≤ R(ξ
μ
) + (1 − α)[ψ(ξ∗(0)) − ψ(ξ

μ
)]/α for α > 0, and

ψ(ξw∗(α,β)) ≥ ψ(ξ
μ
) − αR(ξ

μ
)/(1 − α) for α < 1.

3. Allocation with randomization. Selection bias occurs if the experimenter
is able to correctly guess next allocation in a sequential trial; see, for example,
[32], Chapter 6. The bias factor Bn for n allocations is

Bn = nb. of correctly guessed allocations − nb. of incorrect guesses

n
.

(We consider the sensible guessing strategy that votes for the treatment with high-
est allocation probability.)
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When condition (2.12) is satisfied, the allocations of Section 4.1 based on an
optimal design characterized by Theorem 2.1 are deterministic (all patients with
covariates in Xj are assigned to treatment j ), and the bias factor Bn equals 1 for
all n. This remains true for a response-adaptive implementation, where the sets Xj

depend on the current estimated parameters θ̂ n; see Section 5: an experimenter
who knows θ̂ n can still predict the next allocation with certainty. Suppose now
that, for each subject, with probability β we use random balanced allocation and
with probability 1 − β we use a predictable rule. Then, only the fraction 1 − β of
allocations can be guessed correctly with certainty, and Bn

a.s.→ 1 − β as n → ∞.
This section presents an extension of the results of Section 2 to this randomized
framework.

3.1. Optimal design and equivalence theorem. For any ξ ∈ 	(μ), we define
the uniform randomization factor of ξ as

(3.1) r(ξ) = K min
k=1,...,K

inf
x∈X

dξk

dμ
(x),

with dξk/dμ the Radon–Nikodým derivative of ξk with respect to μ. [Note that
r(ξ) ≤ w(ξ) defined by (2.18), with equality if and only if ξk = μ/K for some k.]
Then, if the ξn,j defined by (2.3) tend to ξj as n tends to infinity (weak conver-
gence), Bn satisfies lim supn→∞ Bn ≤ 1 − r(ξ).

Consider the maximization of H(α)(ξ) with respect to ξ ∈ 	(μ) under the con-

straint r(ξ) ≥ β , for some given α,β ∈ [0,1], and denote by ξ r∗(α,β) an optimal
design. Any admissible ξ is such that each of its components ξk can be decomposed

as ξk = (β/K)μ + ξ̃k , where ξ̃ = (ξ̃1, . . . , ξ̃K) belongs to 	[(1 − β)μ]; see (2.7).

Therefore, the optimal design problem consists now in maximizing H(α,β)(ξ̃ ) =
H(α)(ξ̃ + βξ

μ
) with respect to ξ̃ ∈ 	[(1 − β)μ], with ξ

μ
= (μ/K, . . . ,μ/K) ∈

	(μ). As in Section 2.2, this is a concave optimization problem over a convex
set. Optimal designs ξ r∗(α,β) = ξ̃

∗ + βξ
μ

are still characterized by Theorem 2.1,

with the following slight modifications: the statement in (ii) is now valid ξ̃∗
i -a.e.;∑

i∈Jt
ξ̃∗
i = (1 − β)μ in (iii-a). When K = 2, Corollary 2.1 is modified as fol-

lows: the statements in (ii) are valid ξ̃∗
1 and ξ̃∗

2 -a.e.; in (iii), ξ∗
1 = (1 − β/2)μ

on X1 and ξ∗
2 = (1 − β/2)μ on X2. Note that H(α,β)(·) is differentiable at any

ξ̃ ∈ 	[(1 − β)μ] when β > 0, since we have assumed that M(ξ
μ
) ∈ M

+.

REMARK 3.1. The case of unbalanced randomization, with different values of
β for different k, could be treated in the same way, with now ξk = βkμ+ ξ̃k , where
βk ≥ 0 for all k,

∑K
k=1 βk = B ∈ [0,1] and ξ̃ = (ξ̃1, . . . , ξ̃K) ∈ 	[(1 − B)μ]. Also,

similar developments can be made when the randomization is not uniform over X
and the constraint on ξ takes the form (dξk/dμ)(x) ≥ β(x)/K for k = 1, . . . ,K ,
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with β(x) ∈ [0,1] for all x ∈ X . In that case, each ξk can be decomposed into ξk =
νk + ξ̃k , where (dνk/dμ)(x) = β(x)/K for all k and ξ̃ = (ξ̃1, . . . , ξ̃K) ∈ 	(μ̃β)

with (dμ̃β/dμ)(x) = 1 − β(x).

3.2. Bounds on optimal regret and information. When β > 0, due to the lin-
earity in ξ of R(ξ), the regret for an optimal design ξ r∗(α,β) = ξ̃

∗ + βξ
μ

can

be decomposed into two parts, R(ξr∗(α,β)) = R(ξ̃
∗
) + βR(ξ

μ
), where R(ξ̃

∗
) sat-

isfies an inequality similar to (2.13). Therefore, for α > 0, R(ξr∗(α,β)) ≤ [(1 −
α)/α] tr[∇ψ(ξr∗(α,β))M(ξ̃

∗
)] + βR(ξ

μ
). When �(M) = log det(M), we obtain

R
(
ξ r∗(α,β)) ≤ p

1 − α

α
+ βR(ξ

μ
) − β

1 − α

α
tr

[
M−1(

ξ r∗(α,β))M(ξ
μ
)
]
.

Using the rough bound tr[M−1(ξ r∗(α,β))M(ξ
μ
)] > tr{[KM(ξ

μ
)]−1M(ξ

μ
)} =

p/K , we get

R
(
ξ r∗(α,β))

< p

(
1 − β

K

)
1 − α

α
+ βR(ξ

μ
).

We can also obtain an inequality similar to (2.15), provided that we consider ξ ∈
	(μ) such that r(ξ) ≥ β .

When α < 1, we can compare the information ψ(ξr∗(α,β)) with that obtained
for another design ξ ∈ 	(μ) such that r(ξ) ≥ β . As in Section 2.4, we have

ψ(ξr∗(α,β)) ≥ ψ(ξ) + α[φ(ξ) − φ(ξr∗(α,β))]/(1 − α) and, therefore,

ψ
(
ξ r∗(α,β)) ≥ ψ(ξ) + α

1 − α

[
φ(ξ) − max

ν∈	(μ):r(ν)≥β
φ(ν)

]
= ψ(ξ) + α

1 − α

[
φ(ξ) − βφ(ξμ) − (1 − β) max

ν∈	(μ)
φ(ν)

]
,

where we have used the linearity of φ(ξ) with respect to ξ . Using (2.11), we obtain
in particular

ψ
(
ξ r∗(α,β)) ≥ ψ(ξ

μ
) − (1 − β)

α

1 − α
R(ξ

μ
),

which can be compared with (2.16).

3.3. Example 4. We modify the allocation problem in Example 3, and take
now η1(x) = η1(x, θ1) = 0.1 + 0.5ez1(x)/(1 + ez1(x)). We introduce balanced ran-
dom allocation through the constraint r(ξ) ≥ β = 0.2. The optimal designs ob-
tained for α ∈ [0,1] are presented in Figure 4(right). Note that there is a range of
values of α for which the sets X (α)

j are now the unions of three intervals, compare

with Figure 2(right). Also, for α = 0 and all β ∈ [0,1] the optimal designs ξ r∗(0,β)

are now uniquely defined.



COVARIATE-ADAPTIVE TREATMENT ALLOCATION 2063

FIG. 4. Example 2—Left: η1(x) (solid line) and η2(x) (dashed line) as functions of x; right: subsets

X
(α)

1 and X
(α)

2 of Corollary 2.1(ii) for α ∈ [0,1] and β = 0.2.

4. Covariate-adaptive sequential allocation targeting an optimal design.
Denote by T1,T2, . . . the sequence of treatment assignments, where Tn =
(Tn,1, . . . , Tn,K) with Tn,j = 1 when the nth subject, with covariates Xn, is al-
located to treatment j , all Tn,i with i �= j being then zero. The (n + 1)st subject is
allocated to treatment k with probability

(4.1) πk(Xn+1) = Prob(Tn+1,k = 1|Xn+1,Fn), k = 1, . . . ,K,

with Fn the filtration σ(T1, . . . ,Tn,X1, . . . ,Xn). Denote Nn = ∑n
i=1 Ti , so that

its kth component Nn,k is the number of subjects allocated to treatment k in the first
n assignments. The empirical measures ξn,k defined in (2.3) are given by ξn,k =
(1/n)

∑n
i=1 Ti,kδXi

.
In this section, we present different choices for πk(·) in (4.1) that asymp-

totically achieve the limiting allocation given by one of the optimal designs
ξ∗ = (ξ∗

1 , . . . , ξ∗
K) considered in Sections 2 and 3. If ξ∗ is known, a straightforward

construction ensuring ξn,k
a.s.→ ξ∗

k (weak convergence) consists in sampling accord-
ing to ξ∗

k ; see (4.2). A second rule, design adaptive in the sense that πk(Xn+1)

depends on the ξn,k , k = 1, . . . ,K , is considered in Section 4.2. In that case, we
assume that the first n0 subjects are allocated with some predefined rule (e.g., bal-
anced random allocation), for some n0 > 0.

4.1. Sequential allocation based on oracle optimal design. Consider the se-
quential allocation rule defined by

(4.2) π∗
k (Xn) = dξ∗

k

dμ
(Xn), n ≥ 1,

where ξ∗ denotes an optimal design as in Section 2, or an optimal design ξ r∗(α,β)

satisfying r(ξ r∗(α,β)) ≥ β as in Section 3; see (3.1). In particular, when (2.12) is
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satisfied then (4.2) corresponds to the following generalized biased-coin design:

(4.3) π∗
k (Xn) =

⎧⎪⎪⎨⎪⎪⎩
1 − (K − 1)β

K
if G

(α)
k

(
ξ∗,Xn

) = max
j=1,...,K

G
(α)
j

(
ξ∗,Xn

)
,

β

K
otherwise

(the rule being deterministic when β = 0). Tn follows a multinomial distribution,
with Prob{Tn,k = 1} = ξ∗

k (X ) for all k and n. Therefore,

(4.4) N/n
a.s.→ ρ∗ = ρ

(
ξ∗) = (

ξ∗
1 (X ), . . . , ξ∗

K(X )
)�

from the strong law of large numbers (SLLN), and

(4.5)
√

n
(
N/n − ρ∗) d→ N

(
0,�∗)

, with �∗ = diag
(
ρ∗) − ρ∗ρ∗�

,

from the central limit theorem (CLT). The proportions Nn/n also satisfy the
law of the iterated logarithm. Moreover, Rn = R(ξ∗

n
) and Mn = M(ξ∗

n
), re-

spectively given by (2.2) and (2.5), satisfy Rn
a.s.→ R(ξ∗) and Mn

a.s.→ M(ξ∗),
where ξ∗

n
= (ξ∗

n,1, . . . , ξ
∗
n,K) with ξ∗

n,k the empirical measure (2.3). We thus have

ψ(ξ∗
n
)

a.s.→ ψ(ξ∗) and H(α)(ξ∗
n
)

a.s.→ H(α)(ξ∗). The values of R(ξ∗
n
) and ψ(ξ∗

n
) also

obey the CLT; direct calculations show that
√

n[R(ξ∗
n
)−R(ξ∗)] d→ N (0,V ∗

R) and

(using the delta method) that
√

n[ψ(ξ∗
n
) − ψ(ξ∗)] d→ N (0,V ∗

ψ), with

V ∗
R =

K∑
k=1

Pξ∗
k
(η∗ − ηk)

2 − R2(
ξ∗)

,

V ∗
ψ =

K∑
k=1

Pξ∗
k

tr2[∇ψ
(
ξ∗)

Mk(·)] − tr2[∇ψ
(
ξ∗)

M
(
ξ∗)]

.

Although attractive from a theoretical viewpoint, (4.2) has the inconvenient that
it requires the knowledge of μ and relies on the prior construction of an optimal
design ξ∗. Note that this construction may be difficult when X and μ satisfy H1b
with d = dim(X) > 1. Moreover, extension to response-adaptive allocation may
be unpractical: indeed, allocation of the (n + 1)st subject should then be based on
the optimal design ξ∗(θ̂n) for the current estimated value θ̂ n of θ (see Section 5),
which means that an oracle providing ξ∗(θ) for any θ should be available. In the
next section, we consider an allocation rule π̂k(Xn) that asymptotically samples
from ξ∗ without requiring neither the explicit construction of ξ∗ nor the knowledge
of μ.

4.2. Doubly-adaptive sequential allocation. The rule is based on the substitu-
tion of ξ̂

n
= (ξ̂n,1, . . . , ξ̂n,K) for ξ∗ in (4.3), with ξ̂n,k the empirical measure (2.3)

for the sequential assignments. It is covariate and design-adaptive, that is, adaptive
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also with respect to previous allocations, and uses allocation probabilities given by
(for n larger than some n0 > 0)

π̂k(Xn+1)
(4.6)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − [K − �n(Xn+1)]β/K

�n(Xn+1)

if G
(α)
k (ξ̂

n
,Xn+1) = max

j=1,...,K
G

(α)
j (ξ̂

n
,Xn+1),

β

K
otherwise,

where �n(x) = |{j ∈ {1, . . . ,K} : G
(α)
j (ξ̂

n
, x) = maxk=1,...,K G

(α)
k (ξ̂

n
, x)}|. When

�n(Xn+1) = 1, then π̂k(Xn+1) = 1−(K−1)β/K for k such that G(α)
k (ξ̂

n
,Xn+1) =

maxj=1,...,K G
(α)
j (ξ̂

n
,Xn+1).

Theorem 4.1 below indicates that when β > 0, ξ̂
n

generated by (4.6) has the

same asymptotic information and regret values as ξ r∗(α,β) of Section 3.

THEOREM 4.1. Under H1a or (H1b, H2, H2′), for any β ∈ (0,1] and α ∈
[0,1], the allocation rule (4.6) satisfies

H(α)(ξ̂
n
)

a.s.→ H(α)(ξ r∗(α,β))
, n → ∞,

with ξ r∗(α,β) an optimal design maximizing H(α)(ξ) with respect to ξ ∈ 	(μ) un-

der the constraint r(ξ) ≥ β; see (3.1). Moreover, M(ξ̂
n
)

a.s.→ M(ξ r∗(α,β)), ψ(ξ̂
n
)

a.s.→
ψ(ξr∗(α,β)), and also R(ξ̂

n
)

a.s.→ R(ξr∗(α,β)) if α > 0.

When α = 0 and �(M) = log det(M), (4.6) corresponds to the sequential con-
struction of a D-optimal design in 	(μ); see [1–3]. Notice that the investigation
of the convergence properties of such extensions of biased-coin designs with co-
variate information, based on optimal design theory, has received little attention
in the literature, if any. Also note that the allocation rule (4.6) does not enter the
general framework considered in [8]. The proof of Theorem 4.1 is presented in the
supplemental material [26]. The assumption that X is bounded in H1b can be re-
laxed, at the expense of adding suitable moment conditions on Mk(X) and growth
condition on ∇2�(·) to H2 and H2′, similarly to [28], Theorem 9.

When α < 1, the assumption that β > 0 permits to bound the second-order
derivative of ψ(·) from below and is crucial in the proof of the theorem. For
β = 0, we only have a dichotomous property, similar to that in [36]: either
H(α)(ξ̂

n
) → H(α)(ξ r∗(α,β)), or lim infn→∞ �[M(ξ̂

n
)] = −∞ when �(·) is one

of the criteria (2.6) (lim infn→∞ �[M(ξ̂
n
)] = 0 for their positively homogeneous

versions). However, since the Xi are i.i.d. in X and M(ξ
μ
) ∈ M

+, one can force
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the second event to have zero probability. For α ∈ [0,1) and β = 0, we modify the
rule (4.6) through the introduction of a lower bound ψ

(α)∗ on ψ(ξ∗(α)), obtained
for instance from (2.16). For each n ≥ n0, we allocate the (n+1)st subject to treat-
ment k with probability 1/K if ψ(ξ̂

n
) < min{ψ(α)∗ ,ψ(ξ

μ
)} and with probability

π̂
β=0
k (Xn+1) otherwise, where π̂

β=0
k (Xn+1) substitutes β = 0 in (4.6). Then, for

α < 1 and β = 0, the second-order derivative of ψ(·) at ξ̂
n

is bounded from be-

low (a.s.), and the empirical design ξ̂
n

obtained with this modified allocation rule
satisfies the same asymptotic properties as in Theorem 4.1.

From Theorem 4.1, when α,β > 0 (or β = 0 with 0 < α < 1 for the modified
rule just above), the information and regret values obtained with (4.6) converge
(a.s.) to those obtained with the rule (4.2) based on an oracle optimal design. Un-
der the conditions mentioned at the end of Section 2.3.3, this is also the case for
the allocation proportions N/n. On the other hand, numerical simulations indicate
that their asymptotic variance �̂ is smaller than �∗ obtained with π∗

k (Xn+1) [see
(4.5)], a phenomenon that resembles the improved treatment balance obtained by
the method of [27] generalizing [16]; see also [4]. Assuming that θ is known, the
doubly-adaptive designs of [38], which extend the approach of [22] to the presence
of covariates, are able to yield (in the limit) a reduction of �∗ to

Var
(
π∗) = Pμ

[(
π∗(·) − ρ∗)(

π∗(·) − ρ∗)�]
,

where π∗(x) = (π∗
1 (x), . . . , π∗

K(x))� with π∗
k (x) and ρ∗ respectively given by

(4.2) and (4.4). Note that Var(π∗)/n corresponds to the asymptotic covariance
matrix of the ML estimator ρ̂n = (1/n)

∑n
i=1 π∗(Xi)—under the assumption that

the π∗(Xi) are i.i.d. When β = 0 and (2.12) is satisfied, so that π∗
k (x) ∈ {0,1}

for all x, then Var(π∗) = �∗. Numerical simulations show that the rule π̂k(Xn+1)

given by (4.6), which is design-adaptive, achieves a smaller asymptotic variance
than Var(π∗) for the proportions N/n. This is illustrated in Section 4.3.1 which
continues Example 3.

REMARK 4.1. (i) The approach used in [38] for the derivation of �̂, based
on a functional CLT, seems difficult to extend to our situation where the design
adaptation concerns the whole matrix M(ξ̂

n
) and not only the proportions N/n.

(ii) The fact that (4.6) yields a smaller asymptotic variance than Var(π∗) for
the proportions N/n indicates than the efficient designs in Definition 2.1 of [38]
are not of asymptotic minimum variability within the class of covariate-adjusted
designs satisfying condition (2.2) in the same paper. On the other hand, the notion
of efficiency in [38], Definition 2.1, remains valid when restricted to the class of
CARA rules of the form π(Xn+1, θ̂

n).

REMARK 4.2. When ξ∗ is not unique, one may wonder what is the limiting
design for (4.6). Numerical simulations with Example 1 indicate convergence to
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a unique design, whatever the initialization of the sequential procedure (with n0
arbitrarily large). Further developments are required to investigate if some stability
properties of (4.6) around an optimal design ξ∗ would permit to characterize which
particular optimal designs can be reached in the limit.

4.3. Examples.

4.3.1. Example 3 (continued). Consider again the situation of Example 3 (see
Section 2.5.3), with α = 0.7 and β = 0. We have performed 1000 simulations of
allocation rules (4.3) and (4.6) with n = 5000 subjects (we use n0 = 4, with two
initial assignments of each treatment). Empirical distributions are smoothed with
a normal kernel density estimator, using Silverman’s rule for bandwidth selection.

Figure 5 shows the empirical distributions of
√

n(Nn,k/n − ρ∗
k), for k = 1 (top)

and k = 2 (bottom). The dashed-line curves are for (4.3) and show good agreement
with the asymptotic distributions N (0,�∗

kk
2) (solid-line); the dotted-line curves

are for (4.6) which exhibits smaller variability around the optimal proportions ρ∗.

4.3.2. Example 4 (continued). Consider again the situation of Example 4, (see
Section 3.3) with α = 0.7 and β = 0.2. Figure 6(left) presents histograms of ξ̂n,1

and ξ̂n,2 obtained with the allocation rule (4.6) (with n = 2×104 and n0 = 4—two
initial assignments of each treatment). Note the good agreement with the optimal
design ξ r∗(α,β) presented in Figure 4(right), where ξ∗

1 = (1 − β/2)μ on X1 �
(0.237,0.368) ∪ (0.495,0.610) ∪ (0.7525,1].

FIG. 5. Example 3 (α = 0.7, β = 0, n = 5000, 1000 repetitions): empirical distributions of√
n(Nn,k/n − ρ∗

k), k = 1,2, for (4.3) (dashed-lines) and (4.6) (dotted lines), the solid-lines cor-

respond to N (0,�∗
kk

2).
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FIG. 6. Example 4 (α = 0.7, β = 0.2)—Left: histograms of ξ̂n,1 and ξ̂n,2, n = 2 × 104; right:
histogram of covariates for which (4.3) would disagree from (4.6).

In fact, for most assignments the rule (4.6) agrees with (4.3) which samples
from ξ r∗(α,β): different allocations occur essentially for values of x near the end-
points of the intervals that define X1; see Figure 6(right) for a histogram of the
values of X where (4.3) would give a treatment different from that given by (4.6).
Figure 7(left) shows the number ND

n of disagreements with (4.3) when (4.6) is
used in a sequence of length n. G

(α)
j (ξ̂

n
, x) converges to Gj(ξ

r∗(α,β), x) in 1/
√

n,

j = 1,2, and ND
n increases as

√
n, see the curve in dashed line. Figure 7(right)

presents the evolution of R(ξ̂
n
) (top) and H(ξ̂

n
) (bottom) as functions of n for the

rule (4.6). Convergence to the optimal values (indicated by dashed lines) is reason-

FIG. 7. Example 4 (α = 0.7, β = 0.2)—Left: number of disagreements with (4.3) when (4.6) is used
in a sequence of length n (the curve in dashed line corresponds to 3.75

√
n); right: R(ξ̂

n
) (top) and

H(ξ̂
n
) (bottom) as functions of n for allocation rule (4.6), optimal values are indicated in dashed

lines.
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FIG. 8. Example 5—Histograms of ξ̂n,k , k = 1,2,3 (n = 2 × 104) for α = 0.7, β = 0.2 (left) and
α = 0.9, β = 0.2 (right).

ably fast; the figure is quasi identical when (4.3) is used with the same sequence
of covariates.

4.3.3. Example 5. We add a third model to Example 4, η3(x, θ3) = θ3 = 0.1,
so that η3(x, θ3) < min{η1(x, θ1), η2(x, θ2)} for all x, with the third treatment rep-
resenting for instance placebo. Histograms of ξ̂j,n obtained with (4.6) (n = 2×104

and n0 = 6) are presented in Figure 8, respectively, for α = 0.7, β = 0.2 and
α = 0.9, β = 0.2. For α or β large enough, the optimal design is such that
ξ∗

3 = (β/3)μ, that is, the random component of the design gives enough preci-
sion for the estimation of θ3 (the placebo effect), taking the poor efficacy of this
treatment into account.

5. Further extensions and developments. We have proposed sequential al-
location rules that target optimal compromise strategies, in the sense that the
asymptotic regret and information values are nondominated, contrasting with ad
hoc rules whose asymptotic regret and information can both be improved. These
results can be extended in various directions.

Extension to response-adaptive rules. As usual in nonlinear situations, opti-
mal designs ξ∗

θ

(α) depend on the unknown value θ of the model parameters. Here,
we only considered locally optimum design, where θ is set to a given nominal
value θ0. In a response-adaptive implementation, when assigning the (n + 1)st
subject, θ0 can be replaced by θ̂ n, the current ML estimator of θ based on the n

responses observed previously. The asymptotic properties given in Section 4.1 and
Theorem 4.1 must be reconsidered when such CARA designs are used. In partic-
ular, the asymptotic variances of the proportions N/n, information and regret are
modified (increased) compared to Section 4 due to adaptation of allocations to θ̂ n.
Only a few indications are given below, detailed developments on the asymptotic
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properties of these CARA designs for generalized linear models, which cover a
broad class of applications, will be presented in a forthcoming paper. How to de-
fine and obtain an optimal allocation scheme is still considered as an open problem,
see [21], page 155, [39], Section 4. To our knowledge, this is the first attempt to
incorporate covariate information in a response-adaptive design which converges
to an optimal target.

First, one may consider a response-adaptive version of (4.2) based on the
construction of ξ

∗(α)

θ̂n
for each n, with θ̂ n in a compact subset � of Rp con-

taining admissible θ . When α < 1, developments similar to those in [39] can
be used to prove the strong consistency and asymptotic normality of θ̂ n, with√

n(θ̂n − θ)
d→ N (0,M−1(ξ∗

θ

(α); θ)) under rather standard regularity assump-
tions. Condition A of [39] is not satisfied since μ{x : π∗

k (x; θ) = 0} > 0 when
π∗

k (x; θ) is given by (4.2), but it may be counterbalanced by the assumption that
all optimal information matrices M(ξ∗

θ

(α); θ), θ ∈ �, are nonsingular. The asymp-
totic normality of allocation proportions N/n, information and regret, can also be
proved, similarly to Section 4.1 but with larger variances. A reduction of variance
based on the approach in [38] might then be considered, provided that the alloca-
tion probabilities are suitably smoothed to remove abrupt fronts.

Although theoretically feasible, the computation of ξ
∗(α)

θ̂n
for each n is rather

inconvenient. One may circumvent that difficulty by constructing approximations
ĝ

(α)
k (x, θ) of the functions g

(α)
k (x, θ) = G

(α)
k (ξ∗

θ

(α), x; θ) defined on X ×�, based

on the knowledge of x → g
(α)
k (x, θ(�)) for a few θ(�), and then compute the K

allocation probabilities π̂∗
k (Xn+1; θ̂ n) for every θ̂ n by using Theorem 2.1 and the

approximations ĝ
(α)
k (x, θ̂n).

Alternatively, one may consider a response-adaptive version of (4.6), with
G

(α)
k (ξ

n
, x; θ̂ n) substituted for G

(α)
k (ξ

n
, x; θ0). One can show that the strong con-

sistency of θ̂ n and its asymptotic normality are preserved under suitable regularity

assumptions, with
√

n(θ̂n − θ)
d→ N (0,M−1(ξ∗

θ

(α); θ)). This is essential since it

provides a justification for the use of �[M(ξ∗
θ

(α); θ)] as a measure of the informa-
tion content of the experiment.

Other cumulative regrets. As an alternative to (2.2) which relies on cumu-
lative treatment responses, one may relate the regret to the number of subjects
not receiving the best treatment (i.e., receiving the worst treatment when K = 2)
and consider Rn = (1/n)

∑n
i=1 I{ηki

(Xi) �= η∗(Xi)} = 1 − ∑K
k=1 ξn,k{x : ηk(x) =

η∗(x)}. This means replacing the responses ηk by the indicator functions η′
k(x) =

I{ηk(x) = η∗(x)} in φ(ξ); see (2.9), and G
(α)
k (ξ , x), see (2.10). Also, when the ηk

correspond to success probabilities for binary responses, one may enforce individ-
ual ethics by increasing the penalty for not using the best treatment, and consider
Rn = ∑n

l=1 Pξn,k
[ηq

k (·) − η
q∗(·)] with q < 0. The definition of regret may also be
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extended to account for efficacy and toxicity in the case of bivariate binary re-
sponses. Most of the results presented remain valid provided that R(ξ) is linear
in ξ .

Other measures of information. Here, we have considered a global measure of
information, accounting for the precision of the estimation of all components of θ .
One might alternatively consider an information criterion related to a specific fea-
ture of the model responses, like the treatment difference, possibly in a particular
range of the covariates. For instance, in Example 1, one may be interested in the
estimation of b2 − b1, considering a0 as a nuisance parameter. This would provide
an extension of the approach in [1–3, 5] to the case of generalized linear models
with attention to ethical cost.

Choice of α. When θ is fixed, the behaviours of R(ξ∗(α)) and ψ(ξ∗(α)) as
functions of α (see Figure 3) allow an iterative choice of α to target a prescribed
risk or information value. Also, the bounds given in Sections 2.4 and 3.2 may guide
the selection of a suitable α.

In the sequential framework considered in Section 4.2, an alternative solution
would be to specify a target τ on the regret, and maximize information under
the constraint that R(ξ) ≤ τ , with associated Lagrangian L (ξ,C) = ψ(ξ ; θ) −
C[R(ξ ; θ) − τ ]; see Section 2.1. In a CARA scheme, one might then let the

Lagrange coefficient C vary with n as Cn+1 = max{0,Cn + γ [R(ξ̂n; θ̂ n) − τ ]},
with γ some positive constant. This is equivalent to letting α depend on n, with
Cn = αn/(1 − αn) and αn+1 = Cn+1/(1 + Cn+1).

Finally, one may consider adaptive strategies that give an increasing importance
to allocation to the best treatment, and let α = αn tend to 1 as n → ∞ in a CARA
rule. This is equivalent to letting Cn = αn/(1 − αn) tend to infinity, which raises
several open questions: which increase rate for Cn ensures the strong consistency
of θ̂ n? Is it possible to reach the best achievable decrease rate for the expected
regret in this context, that is, E{Rn} = O(log(n)/n); see, for instance, [11, 20, 25].
Also, is is tempting to relate αn to the precision of the estimation of θ in order to
focus on allocation to the best treatment when there is enough evidence of which
treatment is best, with some similarities with the approach in [35], Section 6, that
gradually shifts emphasis from model discrimination to parameter estimation.

SUPPLEMENTARY MATERIAL

Supplement to “Information-regret compromise in covariate-adaptive
treatment allocation” (DOI: 10.1214/16-AOS1518SUPP; .pdf). In this Supple-
ment, we give the proofs of Theorems 2.1, 2.2 and 4.1.

http://dx.doi.org/10.1214/16-AOS1518SUPP
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