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Abstract

Information relaxation and duality in Markov decision processes have been studied recently by several researchers

with the goal to derive dual bounds on the value function. In this paper we extend this dual formulation to controlled

Markov diffusions: in a similar way we relax the constraint that the decision should be made based on the current

information and impose penalty to punish the access to the information in advance. We establish the weak duality,

strong duality and complementary slackness results in a parallel way as those in Markov decision processes. We

explore the structure of the optimal penalties and expose the connection between Markov decision processes and

controlled Markov diffusions. We demonstrate the use of the dual representation for controlled Markov diffusions in

a classic dynamic portfolio choice problem. We evaluate the lower bounds on the expected utility by Monte Carlo

simulation under a sub-optimal policy, and we propose a new class of penalties to derive upper bounds with little

extra computation. The small gaps between the lower bounds and upper bounds indicate that the available policy is

near optimal as well as the effectiveness of our proposed penalty in the dual method.

I. INTRODUCTION

Markov decision processes (MDPs) and controlled Markov diffusions play a central role respectively in modeling

discrete-time and continuous-time dynamic decision making problems under uncertainty, and hence have wide

applications in diverse fields such as engineering, operations research and economics. However, the standard

approach of solving for optimal polices via dynamic programming and Hamlton-Jacobi-Bellman (HJB) equation

suffers from the “curse of dimensionality”- the size of the state space increases exponentially with the dimension

of the state. Many modern approximate dynamic programming methods have been proposed for solving MDPs

in recent years to combat this curse of dimensionality, such as [1], [2], [3], [4]. These methods often generate

sub-optimal policies, simulation under which leads to lower bounds (or upper bounds) on the optimal expected

reward (or cost). Though the accuracy of the sub-optimal policies is generally unknown, the lack of performance

guarantee on sub-optimal policies can be potentially addressed by providing a dual bound, i.e., an upper bound (or

lower bound) on the optimal expected reward (or cost). Valid and tight dual bounds based on a dual representation

of MDPs were recently developed by [5] and [6]. The main idea of this duality approach is to allow the decision

maker to foresee the future uncertainty but impose a penalty for getting access to the information in advance. In
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addition, this duality approach only encompasses pathwise deterministic optimization problems and therefore is

well-suited to Monte Carlo simulation, making it useful to evaluate the quality of sub-optimal policies in complex

dynamic systems.

This dual formulation of MDPs is attractive in both theoretical and practical aspects. On one hand, the idea of

relaxing the constraint on the non-anticipative policies in the setting of MDPs at least dates back to [7], as exposed

by [8]. In addition, the optimal penalty is not unique: for general problems we have the value function-based penalty

developed by [5] and [6]; for problems with convex structure there is an alternative optimal penalty, that is, the

gradient-based penalty, as pointed out by [9]. On the other hand, in order to derive tight dual bounds, various

approximation schemes based on different optimal penalties have been proposed including [6], [9], [10], [11]. We

notice that the real implementation of computing the dual bounds based on this dual framework has just begun,

and it has found increasing applications in different fields of problems such as [12], [9], [13], [14], [15].

The goal of this paper is to extend the information relaxation approach and the dual representation of MDPs to

controlled Markov diffusions. The motivation is that the HJB equation rarely allows a closed-form value function,

especially when the dimension of the state space is high or there are constraints on the control space. Many

numerical methods have been developed based on different approximation schemes: [16] considered the Markov

chain approximation method by discretizing the HJB equation; [17] extended the approximate linear programming

method to controlled Markov diffusions. Another standard numerical approach is to discretize the time space,

which reduces the original continuous-time problem to an MDP and hence the techniques of approximate dynamic

programming can be applied. Since the quality of a numerical solution is hard to justify in many problems, we are

interested in deriving a tight dual bound on the value function of a controlled Markov diffusion by formulating its

dual representation. Around this topic some central questions are

• Can we establish a similar framework of dual formulation for controlled Markov diffusions based on information

relaxation as that for MDPs?

• If the answer is yes, what is the form of the optimal penalty in the setting of controlled Markov diffusions?

Is the optimal penalty unique?

• If certain optimal penalty exists, does it help to facilitate the computation of the dual bound on the value

function?

The answer to the first question is yes, at least for a wide class of controlled Markov diffusions. To fully answer

all the questions we should employ the technical machinery “anticipating stochastic calculus” (see, e.g., [18], [19]).

To ease reading we first present the information relaxation-based dual formulation of controlled Markov diffusions

without using the heavy machinery. We establish the weak duality, strong duality and complementary slackness

results in a parallel way as those in the dual formulation of MDPs. The complete answers to the second question

are postponed to Appendix D, where we develop all the needed technical machinery and investigate one type

of the optimal penalties, the so-called “value function-based penalty”. Then we emphasize on the computational

aspect using the result of this dual representation so as to answer the third question. One key feature of the value



function-based optimal penalty is that it can be written compactly as an Ito stochastic integral under the natural

filtration generated by the Brownian motions. This compact expression potentially enables us to design sub-optimal

penalties in simple forms and also facilitates the computation of the dual bound. A direct application is illustrated

by a classic dynamic portfolio choice problem with predictable returns and intermediate consumptions: we consider

the numerical solution to a discrete-time model that is discretized from a continuous-time model; an effective class

of penalties that are easy to evaluate is proposed to derive dual bounds on the value function for the discrete-time

model.

It turns out that [20], [21], [22] have pioneered a series of related work for controlled Markov diffusions. They

also adopted the approach of relaxing the future information and penalizing, which is much earlier than the dual

framework of MDPs established. In particular, [20] proposed a Lagrangian approach for penalization, where the

Lagrangian term plays essentially the same role of a penalty in our dual framework; in addition, we find that the

Lagrangian term has a similar flavor of the gradient-based penalty proposed by [9] for MDPs. The early work of

[20] is not widely known maybe due to its technical complication. The main difference of their work compared

with ours is that we propose a more general framework that may incorporate their Lagrangian approach as a special

case; the optimal penalty we develop in this paper is value function-based while their Lagrangian approach behaves

like a gradient-based penalty. In addition, their work is purely theoretical and does not suggest any computational

method. In contrast, we provide a numerical example to demonstrate the practical use of our dual formulation. We

summarize our contributions as follows:

• We establish a dual representation of controlled Markov diffusions based on information relaxation. We also

explore the structure of the optimal penalty and expose the connection between MDPs and controlled Markov

diffusions.

• Based on the result of the dual representation of controlled Markov diffusions, we demonstrate its practical

use in a dynamic portfolio choice problem. In many cases the numerical results of the upper bounds on the

expected utility show that our proposed penalties are near optimal, comparing with the lower bounds induced

by sub-optimal policies for the same problem.

The rest of the paper is organized as follows. In Section II, we review the dual formulation of MDPs and derive

the dual formulation of controlled Markov diffusions. In Section III, we illustrate the dual approach and carry out

numerical studies in a dynamic portfolio choice problem. Finally, we conclude with future directions in Section IV.

We leave most of the proofs and discuss the connection between [20], [9] and our work in Appendix.

II. CONTROLLED MARKOV DIFFUSIONS AND ITS DUAL REPRESENTATION

We begin with a brief review of the dual framework on Markov Decision Processes that is first developed by [5]

and [6] in Section II-A. We then give the basic setup of the controlled Markov diffusion and its associated Hamilton-

Jacobi-Bellman equation in Section II-B. We develop the dual representation of controlled Markov diffusions and

present the main results in Section II-C.



A. Review of Dual Formulation of Markov Decision Processes

Consider a finite-horizon MDP on the probability space (Ω,G ,P). Time is indexed by K = {0,1, · · · ,K}. Suppose

X is the state space and A is the control space. The state {xk} follows the equation

xk+1 = f (xk,ak,vk+1), k = 0,1, · · · ,K−1, (1)

where ak ∈ Ak is the control whose value is decided at time k, and vk is a random variable taking values in the

set V with a known distribution. The evolution of the information is described by the filtration G= {G0, · · · ,GK}

with G = GK . In particular, each vk is Gk-adapted.

Denote by A the set of all control strategies a , (a0, · · · ,aK−1), i.e., each ak takes value in A . Let AG be

the set of control strategies that are adapted to the filtration G, i.e., each ak is Gk-adapted. We also call a ∈ AG

a non-anticipative policy. Given an x0 ∈ X , the objective is to maximize the expected reward by selecting a

non-anticipative policy a ∈ AG:

V0(x0) = sup
a∈AG

J0(x0;a),

where J0(x0;a), E

[
K−1

∑
k=0

gk(xk,ak)+Λ(xK)|x0

]
. (2)

The expectation in (2) is taken with respect to the random sequence v = (v1, · · · ,vK). The value function V0 is a

solution to the following dynamic programming recursion:

VK(xK), Λ(xK);

Vk(xk), sup
ak∈A
{gk(xk,ak)+E[Vk+1(xk+1)|xk,ak]}, k = K−1, · · · ,0.

Next we describe the dual formulation of the value function V0(x0). Here we only consider the perfect information

relaxation, i.e., we have full knowledge of the future randomness, since this relaxation is usually more applicable

in practice.

Define E0,x[·], E[·|x0 = x]. Let MG(0) denote the set of dual feasible penalties M(a,v), which do not penalize

non-anticipative policies in expectation, i.e.,

E0,x[M(a,v)]≤ 0 for all x ∈X and a ∈ AG.

Denote by D the set of real-valued functions on X . Then we define an operator L : MG(0)→D :

(L M)(x) = E0,x

[
sup
a∈A
{

K−1

∑
k=0

gk(xk,ak)+Λ(xK)−M(a,v)}

]
. (3)

Note that the supremum in (3) is over the set A not the set AF, i.e., the control ak is made based on the exposed future

information. The optimization problem inside the expectation in (3) is usually referred to as the inner optimization

problem. In particular, the right hand side of (3) is well-suited to Monte Carlo simulation: we can simulate a

realization of v = {v1, · · · ,vK} and solve the inner optimization problem:



I(x,M,v), max
a

K−1

∑
k=0

gk(xk,ak)+Λ(xK)−M(a,v) (4a)

s.t. x0 = x,

xk+1 = f (xk,ak,vk+1), k = 0, · · · ,K−1, (4b)

ak ∈Ak, k = 0, · · · ,K−1, (4c)

which is in fact a deterministic dynamic program. The optimal value I(x,M,v) is an unbiased estimator of (L M)(x).

Theorem 1 below establishes a strong duality in the sense that for all x0 ∈X ,

sup
a∈AG

J0(x0;a) = inf
M∈MG(0)

(L M)(x0).

In particular, Theorem 1(a) suggests that L M(x0) can be used to derive an upper bound on the value function

V0(x0) given any M ∈MG(0), i.e., I(x0,M,v) is a high-biased estimator of V0(x0) for all x0 ∈X ; Theorem 1(b)

states that the duality gap vanishes if the dual problem is solved by choosing M in the form of (5).

Theorem 1 (Theorem 2.1 in [6])

1) (Weak Duality) For all M ∈MG(0) and all x ∈X , V0(x)≤ (L M)(x).

2) (Strong Duality) For all x ∈X , V0(x) = (L M∗)(x), where

M∗(a,v) =
K−1

∑
k=0

(Vk+1(xk+1)−E[Vk+1(xk+1)|xk,ak]). (5)

Remark 1

1) Note that the right hand side of (5) is a function of (a,v), since {xk} depend on (a,v) through the state

equation (1).

2) The reason that M ∈MG(0) is called a (dual feasible) penalty function becomes clear: if the relaxation of

the requirement on the non-anticipative policies is penalized by using a proper function in MG(0), then the

value function V0 can be recovered via the dual approach due to the strong duality result.

3) Note that the optimal penalty M∗(a,v) is the sum of a G-martingale difference sequence when a ∈ AG;

therefore, M∗(a,v) ∈MG(0). Since M∗ depends on the value function {Vk}, it is refereed to as the value

function-based penalty.

The optimal penalty (5) that achieves the strong duality involves the value function {Vk}, and hence is intractable

in practical problems. In order to obtain tight dual bounds, a natural idea is to derive sub-optimal penalty functions

based on a good approximate value function {V̂k} or some sub-optimal policy â. Methods based on these ideas

have been successfully implemented in the American option pricing problems by [23], [24], [25], and also in [6],

[12], [13]. However, these approaches cannot be extended immediately to general continuous-state MDPs in parallel

with the American options pricing problem. The first difficulty, as pointed out by [8], is that E[V̂k+1(xk+1)|xk,ak]



usually cannot be written as an analytic function of xk and ak. Though this conditional expectation may be evaluated

approximately after discretizing the state space, it could be time-consuming when V is of high dimension. Second,

even if the penalty V̂k+1(xk+1)−E[V̂k+1(xk+1)|xk,ak] can be computed analytically, the inner optimization problem

(4) may still be difficult to solve since no convex structure can be guaranteed (even assuming that (4) is convex with

M = 0). To overcome these difficulties, [9] introduced the gradient-based penalty in the context of dynamic portfolio

optimization with transaction costs, and [10] derived a penalty by employing a parameterized quadratic function

to approximate the value function in linear systems with convex costs. [11] proposed the idea of parametrization

on penalties directly to avoid starting with approximate value functions. Furthermore, [10] explored the connection

between information relaxation duality method and the approximate linear programming approach proposed by [4],

and [8] revealed that in linear-quadratic problems the value function-based penalty and gradient-based penalty are

both optimal, but in different senses.

B. Controlled Markov Diffusions and Hamilton-Jacobi-Bellman Equation

This subsection is concerned with the control of Markov diffusion processes. Applying the Bellman’s principle

of dynamic programming leads to a second-order nonlinear partial differential equation, which is referred to as the

Hamilton-Jacobi-Bellman equation. For a comprehensive treatment on this topic we refer the readers to [26].

Let us consider an Rn-valued controlled Markov diffusion process (xt)0≤t≤T driven by an m-dimensional Brownian

motion (wt)0≤t≤T on a probability space (Ω,F ,P), following the stochastic differential equation (SDE):

dxt = b(t,xt ,ut)dt +σ(t,xt ,ut)dwt , 0≤ t ≤ T, (6)

where ut ∈ U ⊂ Rdu is the control applied at time t, and b and σ are functions b : [0,T ]×Rn×U → Rn and

σ : [0,T ]×Rn×U → Rn×m. The natural (augmented) filtration generated by the Brownian motions is denoted by

F= {Ft ,0≤ t ≤ T} with F = FT . In the following ‖ · ‖ denotes the Euclidean norm.

Definition 1 A control strategy u = (us)s∈[t,T ] is called an admissable strategy at time t if

1) u = (us)s∈[t,T ] is an F-progressively measurable process taking values in U (i.e., u is a non-anticipative

policy), and satisfying E[
∫ T

t ||us||2ds]< ∞;

2) Et,x[sups∈[t,T ] ||xs||2]< ∞, where Et,x[·], E[·|xt = x].

The set of admissible strategies at time t is denoted by UF(t). With the standard technical conditions imposed on

b and σ (specified in Appendix A), the SDE (6) admits a unique pathwise solution when u ∈UF(0).

Let Q = [0,T )×Rn and Q̄ = [0,T ]×Rn. We define the functions Λ : Rn→ R and g : Q̄×U → R as the final

reward and intermediate reward, respectively. Then we introduce the reward functional

J(t,x;u), Et,x[Λ(xT )+
∫ T

t
g(s,xs,us)ds].

The final reward Λ and the intermediate reward g satisfy the polynomial growth conditions that are specified in

Appendix A. Given an initial condition (t,x) ∈ Q, the objective is to maximize J(t,x,u) over all the control u in



UF(t):

V (t,x) = sup
u∈UF(t)

J(t,x;u). (7)

Here we abuse the notation of the state x, the rewards Λ and g, and the value function V , since they play the same

roles as those in MDPs.

Let C1,2(Q) denote the space of function L(t,x) : Q→R that is C1 in t and C2 in x on Q. For L ∈C1,2(Q), define

a partial differential operator Au by

AuL(t,x), Lt(t,x)+Lx(t,x)>b(t,x,u)+
1
2

tr(Lxx(t,x)(σσ
>)(t,x,u)),

where Lt , Lx, and Lxx denote the t-partial derivative, the gradient and the Hessian with respect to x respectively,

and (σσ>)(t,x,u), σ(t,x,u)σ(t,x,u)>. Let Cp(Q̄) denote the set of function L(t,x) : Q̄→R that is continuous on

Q̄ and satisfies a polynomial growth condition in x, i.e.,

|L(t,x)| ≤CL(1+ ‖ x ‖cL)

for some constants CL and cL. The following well-known verification theorem provides a sufficient condition for

the value function and an optimal control strategy using Bellman’s principle of dynamic programming.

Theorem 2 (Verification Theorem, Theorem 4.3.1 in [26]) Suppose that V̄ ∈C1,2(Q)∩Cp(Q̄) satisfies

sup
u∈U
{g(t,x,u)+AuV̄ (t,x)}= 0, (t,x) ∈ Q (8)

and V̄ (T,x) = Λ(x). Then

(a) J(t,x;u)≤ V̄ (t,x) for any u ∈UF(t) and any (t,x) ∈ Q̄.

(b) If there exists a function u∗ : Q̄→U such that

g(t,x,u∗(t,x))+Au∗(t,x)V̄ (t,x) = max
u∈U
{g(t,x,u)+AuV̄ (t,x)}= 0 (9)

for all (t,x) ∈ Q and if the control strategy defined as u∗ = (u∗t )t∈[0,T ] with u∗t , u∗(t,xt) is admissible at time 0

(i.e., u∗ ∈UF(0)), then

1) V̄ (t,x) =V (t,x) = supu∈UF(t) J(t,x;u). for all (t,x) ∈ Q̄.

2) u∗ is an optimal control strategy, i.e., V (0,x) = J(0,x;u∗).

Equation (8) is the well-known HJB equation associated with the stochastic optimal control problem (6)-(7).

However, the existence of V̄ ∈ C1,2(Q) in Theorem 2 requires many technical assumptions that might not be

true in practice. For example, the HJB equation is usually assumed to be of uniformly parabolic type if there exists

cσ > 0 such that for all (t,x,u) ∈ Q×U and ξ ∈ Rn,

ξ
>(σσ

>)(t,x,u)ξ ≥ cσ ‖ ξ ‖2 .

Otherwise, a classic solution V̄ ∈C1,2(Q) may not be expected and we need to interpret the value function as a

viscosity solution to the HJB equation (see, e.g., [26]).



C. Dual Representation of Controlled Markov Diffusions

In this subsection we present the information relaxation-based dual formulation of controlled Markov diffusions.

In a similar way we relax the constraint that the decision at every time instant should be made based on the current

information and impose penalty to punish the access to the future information. We will establish the weak duality,

strong duality and complementary slackness results for controlled Markov diffusions, which parallel the results in

MDPs. The value function-based optimal penalty is also characterized to motivate the practical use of our dual

formulation, which will be demonstrated in Section III.

We consider the perfect information relaxation, i.e., we can foresee all the future randomness generated by the

Brownian motion so that the decision made at any time t ∈ [0,T ] is based on the information set F = FT . To

expand the set of the feasible controls, we use U (t) to denote the set of measurable U -valued control strategies

at time t, i.e., u = (us)s∈[t,T ] ∈U (t) if u is B([t,T ])×F -measurable and us takes value in U for s ∈ [t,T ], where

B([t,T ]) is the Borel σ -algebra on [t,T ]. In particular, U (0) can be viewed as the counterpart of A introduced in

Section II-A for MDPs.

Unlike the case of MDPs, the first technical problem we have to face with is to define a solution of (6) with

an anticipative control u ∈U (0). Since it involves the concept of “anticipating stochastic calculus”, we postpone

the relevant details to Appendix D-A, where we use the decomposition technique to define the solution of an

anticipating SDE following [20], [18]. For this purpose we need to restrict the dependence of σ(t,x,u) in (6) only

on t and x, i.e., we have σ : [0,T ]×Rn→ Rn×m in this subsection.

Right now we assume that given a control strategy u ∈U (0) there exists a unique solution (xt)t∈[0,T ] to (6) that

is B([0,T ])×F -measurable. Next we consider the set of penalty functions in the setting of controlled Markov

diffusions. Suppose h(u,w) is a function depending on a control strategy u ∈U (0) and a sample path of Brownian

motion w , (wt)t∈[0,T ]. We define the set MF(0) of dual feasible penalties h(u,w) that do not penalize non-

anticipative policies in expectation, i.e.,

E0,x[h(u,w)]≤ 0 for all x ∈ Rn and u ∈UF(0).

In the following we will show MF(0) parallels the role of MG(0) for MDPs in the dual formulation of controlled

Markov diffusions.

With an arbitrary choice of h ∈MF(0), we can determine an upper bound on (7) with t = 0 by relaxing the

constraint on the adaptiveness of control strategies.

Proposition 1 (Weak Duality) If h ∈MF(0), then for all x ∈ Rn,

sup
u∈UF(0)

J(0,x;u)≤ E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h(u,w)}

]
. (10)



Proof: Proof. For any ū ∈UF(0),

J(0,x; ū) =E0,x[Λ(xT )+
∫ T

0
g(t,xt , ūt)dt]

≤E0,x[Λ(xT )+
∫ T

0
g(t,xt , ūt)dt−h(ū,w)]

≤E0,x[ sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h(u,w)}].

Then inequality (10) can be obtained by taking the supremum over ū ∈ UF(0) on the left hand side of the last

inequality.

The optimization problem inside the conditional expectation in (10) is the counterpart of (4) in the context of

controlled Markov diffusions: an entire path of w is known beforehand (i.e., perfect information relaxation), and

the objective function depends on a specific trajectory of w. Therefore, it is a deterministic and path-dependent

optimal control problem parameterized by w. We also call it an inner optimization problem, and the expectation

term on the right hand side of (10) is a dual bound on the value function V (0,x). [20], [22], [21] have conducted a

series of research on this problem under the name “anticipative stochastic control”; in particular, one of the special

cases they have considered is h = 0, which means the future information is accessed without any penalty. [20]

characterized this reward due to the perfect information relaxation by a PDE. We would expect that the dual bound

associated with zero penalty can be very loose as that in MDPs. Suppose the inner optimization problem can be

solved by some technique. Then the evaluation of the dual bound is well suited to Monte Carlo simulation: we can

generate a sample path of w and solve the inner optimization problem in (10), the solution of which is a high-biased

estimator of V (0,x).

An interesting case is when we choose

h∗(u,w) = Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−V (0,x). (11)

Note that h∗ ∈MF(0), since

E0,x[Λ(xT )+
∫ T

0
g(s,xs,us)ds]≤V (0,x) for all x ∈ Rn and u ∈UF(0),

by the definition of V (0,x). We also note that by plugging h = h∗ in the inner optimization problem in (10), the

objective value of which is independent of u and it is always equal to V (0,x). So the following strong duality result

is obtained.

Theorem 3 (Strong Duality) For all x ∈ Rn,

sup
u∈UF(0)

J(0,x;u) = inf
h∈MF(0)

{
E0,x

[
sup

u∈U (0)
{Λ(xT )+

∫ T

0
g(t,xt ,ut)dt−h(u,w)}

]}
. (12)

The minimum of the right hand side of (12) can always be achieved by choosing an h ∈MF(0) in the form of (11).

Due to the strong duality result, the left hand side problem of (12) is referred to as the primal problem and

the right hand side problem of (12) is referred to as the dual problem. Since the relaxation of the requirement on

admissible strategies is penalized and compensated by using a proper function in MF(0), we can see why h∈MF(0)



is called a (dual feasible) penalty function. If u? is a control strategy that achieves the supremum on the left side

of (12), and h? is a dual feasible penalty that achieves the infimum on the right side of (12), then they are referred

to as the optimal solutions to the primal and dual problem, respectively. The “complementary slackness condition”

in the next theorem characterizes such a pair (u?,h?), which parallels the discrete-time problem (Theorem 2.2 in

[6]).

Theorem 4 (Complementary Slackness) Given u? ∈UF(0) and h? ∈MF(0), a sufficient and necessary condition

for u? and h? being optimal to the primal and dual problem respectively is that

E0,x[h?(u?,w)] = 0,

and

E0,x[Λ(x?T )+
∫ T

t
g(s,x?s ,u

?
s )ds−h?(u?,w)]

=E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(s,xs,us)ds−h?(u,w)}

]
, (13)

where x?t is the solution of (6) using the control strategy u? = (u?t )t∈[0,T ] on [0, t) with the initial condition x?0 = x.

Here, we have the same interpretation on complementary slackness condition as that in the dual formulation of

MDPs: if the penalty is optimal to the dual problem, the decision maker will be satisfied with an optimal non-

anticipative control strategy even if she is able to choose any anticipative control strategy. Clearly, if an optimal

control strategy u∗ to the primal problem (6)-(7) does exist (see, e.g., Theorem 2(b)), then u∗ and h∗(u,w) defined

in (11) is a pair of the optimal solutions to the primal and dual problem. However, we note that the optimal penalty

in the form of (11) is intractable as it depends on the exact value of V (0,x). The next proposition provides some

motivation to design good penalties.

Proposition 2 Suppose the value function V (t,x) and the optimal control u∗ satisfy all the assumptions in Theorem

2(b). Then h∗(u∗,w) has the following equivalent form:

h∗(u∗,w) =
∫ T

0
Vx(t,x∗t )

>
σ(t,x∗t )dwt ,

where x∗t is the solution of (6) using the optimal control u∗ = (u∗t )t∈[0,T ] on [0, t) with the initial condition x∗0 = x.

Proof: Proof. Since the value function V (t,x) ∈ C1,2(Q)∩Cp(Q̄), we can apply the Ito differential rule on



V (t,x∗t ) given u∗ = (u∗)0≤t≤T (note that V (T,x∗T ) = Λ(x∗T )):

h∗(u∗,w) =Λ(x∗T )+
∫ T

0
g(t,x∗t ,u

∗
t )dt−V (0,x)

=V (0,x)+
∫ T

0
Au∗t V (t,x∗t )dt +

∫ T

0
Vx(t,x∗t )

>
σ(t,x∗t )dwt

+
∫ T

0
g(t,x∗t ,u

∗
t )dt−V (0,x)

=
∫ T

0
(Au∗t V (t,x∗t )+g(t,x∗t ,u

∗
t ))dt +

∫ T

0
Vx(t,x∗t )

>
σ(t,x∗t )dwt

=
∫ T

0
Vx(t,x∗t )

>
σ(t,x∗t )dwt ,

where the last equality holds due to (9).

The optimal penalty h∗(u,w) can be written compactly as an Ito stochastic integral, when it is evaluated at

u = u∗. A natural question would be whether
∫ T

0 Vx(t,xt)
>σ(t,xt)dwt plays the role of an optimal penalty in (12)

as M∗(a,v) does in Theorem 1 achieving the strong duality. Unfortunately,
∫ T

0 Vx(t,xt)
>σ(t,xt)dwt is not even a

well-defined object in terms of an Ito stochastic integral, when u is not adapted to F. To fix this problem, we also

need the machinery of “anticipating stochastic calculus”. However, we can still provide a concise answer here, that

is, there exists an alternative optimal penalty that coincides with
∫ T

0 Vx(t,xt)
>σ(t,xt)dwt when u ∈UF(0). We fully

develop the relevant results in Theorem 5 in Appendix D-B. In the following proposition we formalize one of

the main results in Theorem 5, which also guides the numerical approximation scheme that will be illustrated in

Section III.

Proposition 3 Suppose the value function V (t,x) defined in (7) satisfies all the assumptions in Theorem 2(b).

Then under some technical conditions, there is an optimal solution to the dual problem, i.e., an optimal penalty

h∗v(u,w) ∈MF(0) in the form of

h∗v(u,w) =
∫ T

0
Vx(t,xt)

>
σ(t,xt)dwt for u ∈UF(0), (14)

where xt is the solution of (6) using the control u = (ut)t∈[0,T ] on [0, t) with the initial condition x0 = x.

Since the value functions {V (t,x),0 ≤ t ≤ T} are unknown in real applications, how does Proposition 3 guide

us to generate a suboptimal penalty given approximate value functions {V̂ (t,x),0 ≤ t ≤ T} that are of sufficient

regularity? The form of h∗v(u,w) implies that it can be approximated by ĥv(u,w) ,
∫ T

0 V̂x(t,xt)
>σ(t,xt)dwt at

least for u ∈ UF(0). If we further assume V̂x(t,x)>σ(t,x) satisfies the polynomial growth condition in x, then

E0,x[ĥv(u,w)] = 0 for all x ∈ Rn and u ∈UF(0). As a result, ĥv(u,w) ∈MF(0), which means that ĥv can be used

to derive an upper bound on the value function V (0,x) through (10). Therefore, in terms of the approximation

scheme implied by the form of the optimal penalty, Proposition 3 presents a value function-based penalty that can

be viewed as the continuous-time analogue of M∗(a,v) in (5).

It is revealed by the complementary slackness condition in both discrete-time (Theorem 2.2 in [6]) and continuous-

time (Theorem 4) cases that any optimal penalty has zero expectation evaluating at an optimal policy; as a stronger



version, the value function-based optimal penalty in both cases assign zero expectation to all non-anticipative polices

(note that M∗ in (5) is a sum of martingale differences under the original filtration G).

Intuitively, we can interpret the strong duality achieved by the value function-based penalty as to offset the

path-dependent randomness in the inner optimization problem; then the optimal control to the inner optimization

problem coincides with that to the original stochastic control problem in the expectation sense, which is reflected

by the proof of Theorem 5 in Appendix D-B for controlled Markov diffusions (resp., see the proof of Theorem

1(b) in [11] for MDPs). This idea should also apply to other continuous-time controlled Markov processes, for

example, we can directly formulate the dual representation of controlled jump diffusions in a parallel way, and a

similar result of Proposition 2 can be derived after applying the Ito formula with jumps.

In addition to the value function-based penalty, [20] (see its Theorem 2.1 and Theorem 2.2) proposed a Lagrangian

approach that falls into our dual framework of controlled Markov diffusions, where the Lagrangian term behaves

like a “penalty” function in the sense that it satisfies the complementary slackness condition developed in Theorem

4. We find that the derivation of this Lagrangian term is analogous to that of the gradient-based penalty proposed

by [9] for MDPs; therefore, we review these results in Appendix D-C for reference.

We note that most of the numerical methods proposed so far for solving (7) focus on the operator of the HJB

equation (see, for example, [16] and [17]). We will show the practical use of the dual formulation of controlled

Markov diffusions, especially the value function-based penalty in the form of (14), in solving a dynamic portfolio

choice problem in the next section.

Finally, we should point out that though the dual formulation of controlled Markov diffusions established in this

subsection is valid provided that σ is a function of t and x, its validity only relies on the existence of a unique

pathwise solution (xt)t∈[0,T ] to (6) with u ∈ U (0). In other words, the dual formulation remains valid if such a

solution can be properly defined for a general σ that also depends on u.

III. DYNAMIC PORTFOLIO CHOICE PROBLEM

In this section we will show how the value function-based optimal penalty helps to solve a classic dynamic

portfolio choice problem with predictable returns and intermediate consumptions. Dating back to [27], [28], [29],

dynamic portfolio choice problems have become computationally intensive due to more model features incorporated,

such as position constraints, transaction costs and risk measures. Some recent works along this line include [30], [31],

[32], [14]. Since most portfolio choice problems of practical interest cannot be solved analytically, various numerical

methods have been developed to address this problem. These approximation schemes include but not limited to the

martingale approach [33], [34], state-space discretization methods [35], [36], and approximate dynamic programming

methods [37], [17]. These methods all induce sub-optimal policies, by performing which it is straightforward to

obtain a lower bound on the optimal expected utility. However, it is often hard to tell how far the induced policy

is from the optimal ones. Though some methods bear the property of asymptotic convergence, its accuracy with

limited computational power cannot be measured. To overcome this problem, [38] and [9] constructed an upper

bound on the expected utility based on the dual formulation of the constrained portfolio choice problem proposed



by [39] and the information relaxation duality method proposed by [6], [5], respectively. The gap between the lower

bound and the upper bound can be used to justify the performance of a candidate policy.

We focus on solving a discrete-time dynamic portfolio choice problem that is discretized from a continuous-time

model, which is similar to the one considered in [40] and [39]. We evaluate the lower bound on the optimal expected

utility for this discrete-time model by performing sub-optimal policies using Monte Carlo simulation. To obtain

an upper bound on the optimal expected utility simultaneously, we apply the information relaxation dual approach

and propose a new class of penalties based on the time discretization of the value function-based optimal penalties

of the continuous-time model; these penalties make the inner optimization problem much easier to solve in terms

of computation compared with the penalties directly derived from the discrete-time model. We demonstrate the

effectiveness of our method in computing dual bounds through numerical experiments.

A. The Portfolio Choice Model

We first consider a continuous-time financial market with finite horizon [0,T ], which is built on the probability

space (Ω,F ,P). There are one risk-free asset(cash) and n risky assets the investor can invest on. The risk-free asset

is denoted by S0
t and the instantaneous risk-free rate of return is denoted by r f . Then S0

t follows the process

dS0
t

S0
t

= r f dt.

The vector of risky assets is denoted by St = (S1
t , · · · ,Sn

t )
> and it follows a geometric Brownian motion

dSt

St
= µtdt +σtdzt , (15)

where dSt
St

denotes ( dS1
t

S1
t
, · · · , dSn

t
Sn

t
)>, and z , (zt)0≤t≤T is an n-dimensional standard Brownian motion. The drift

µt = µ(t,φt) and the volatility σt = σ(t,φt) are of proper dimensions and are functions of an m-dimensional market

state variable φt that follows another diffusion process

dφt = µ
φ

t dt +σ
φ ,1
t dzt +σ

φ ,2
t dz̃t , (16)

where µ
φ

t = µφ (t,φt), σ
φ ,1
t = σφ ,1(t,φt), σ

φ ,2
t = σφ ,2(t,φt), and z̃ , (z̃t)0≤t≤T is another d-dimensional standard

Brownian motion independent of z. Denote the filtration by F = {Ft ,0 ≤ t ≤ T}, where Ft is generated by

{(zs, z̃s),0 ≤ s ≤ t}. The covariance matrices σtσ
>
t ,σ

φ ,1
t (σ

φ ,1
t )>,σ

φ ,2
t (σ

φ ,2
t )> are denoted by Σt ,Σ

φ ,1
t , and Σ

φ ,2
t ,

respectively.

Let πt = (π1
t , · · · ,πn

t )
> denote the fraction of wealth invested in the risky assets. The instantaneous rate of

consumption is denoted by c̃t . The total wealth Wt of a portfolio that consists of n risky assets and one risk-free

asset evolves according to

dWt =Wt
[
π
>
t (µtdt +σtdzt)+ r f (1−π

>
t 1n)dt− c̃tdt

]
=Wt

(
π
>
t (µt − r f 1n)+ r f − c̃t

)
dt +Wtπ

>
t σtdzt , (17)

where 1n is the n-dimensional all-ones vector. The control process u , (ut)0≤t≤T with ut , (πt , c̃t) is assumed to

be an admissible strategy in the sense that



1) The control u is F-progressively measurable and E[
∫ T

0 ||ut ||2dt]< ∞;

2) We require Wt > 0, c̃t ≥ 0, and
∫ T

0 Wt c̃tdt < ∞ a.s.;

3) We may restrict ut ∈U , where U is a closed convex set in Rn+1.

We still use UF(t) to denote the set of admissible strategies at time t and we will specify the control space U

later. Suppose U1 and U2 are two strictly increasing and concave utility functions. The investor’s objective is to

maximize the weighted sum of the expected utility of the intermediate consumption and the final wealth :

V (t,φt ,Wt) = sup
u∈UF(t)

E
[∫ T

t
αβ

sU1(c̃sWs)ds+(1−α)β TU2(WT )
∣∣φt ,Wt ], (18)

where β is the discount rate, and α indicates the relative importance of the intermediate consumption. Since the

utility gain caused by the intermediate consumption generally means a potential loss of the utility from the final

wealth, the investor seeks to balance her dynamic portfolio strategy at every time instant.

The value function (18) sometimes admits an analytic solution, for example, under the assumption that µt and

σt are constants and there is no constraint on ut = (πt , c̃t). A recent progress on the analytic tractability of (18) can

be found in [40]. However, (18) usually does not have an analytic result when there is a position constraint on πt .

Considering that the investment and consumption can only take place in a finite number of times in the real

world, we solve the discrete-time counterpart of the continuous-time problem (16)-(18) by discretizing its time

space. Suppose the decision takes place at equally spaced times {0 = t0, t1 · · · , tK} such that K = T/δ , where

δ = tk+1− tk for k = 0,1, · · · ,K−1. We simply denote the time grids by {0,1, · · · ,K}. Note that (15) is equivalent

to

d log(St) = (µt −
1
2

σ
2
t )dt +σtdzt ,

where σ2
t denotes the vector that consists of the diagonal of Σt . That is to say, Sk+1 = Rk+1Sk with log(Rk+1) ∼

N((µk − 1
2 σ2

k )δ ,Σkδ ), or more precisely, log(Rk+1) ∼ N(
∫ (k+1)δ

kδ
(µs− 1

2 σ2
s )ds,

∫ (k+1)δ
kδ

Σsds). Hence, we can dis-

cretize (16),(15), and (17) as follows:

φk+1 = φk +µ
φ

k δ +σ
φ ,1
k

√
δZk+1 +σ

φ ,2
k

√
δ Z̃k+1, (19a)

log(Rk+1) = (µk−
1
2

σ
2
k )δ +σk

√
δZk+1, (19b)

Wk+1 =Wk(R>k+1πk)+Wk(1−1>n πk)R f −Wkck,

=Wk(R f +(Rk+1−R f 1n)
>

πk− ck), (19c)

where {(Zk, Z̃k),k = 1, · · · ,K} is a sequence of identically and independently distributed standard Gaussian random

vectors. In particular, we use R f , 1+ r f δ and the decision variable ck to approximate er f δ and c̃kδ due to the

discretization procedure.

Here we abuse the notations φ ,W, and π in the continuous-time and discrete-time settings. However, the subscripts

make them easy to distinguish: the subscript t ∈ [0,T ] is used in the continuous-time model, while k = 0, · · · ,K is

used in the discrete-time model.



Denote the filtration of the process (19) by G= {G0, · · · ,GK}, where Gk is generated by {(Z j, Z̃ j), j = 0, · · · ,k}.

In our numerical examples we assume that short sales and borrowing are not allowed, and the consumption cannot

exceed the amount of the risky-free asset. Then the constraint on the control ak , (πk,ck) for the discrete-time

problem can be defined as

A , {(π,c) ∈ Rn+1|π ≥ 0,c≥ 0,c≤ R f (1−1>n π)}. (20)

Since ck is used to approximate c̃kδ , (20) corresponds to a control set for the continuous-time model, which is

defined as

U , {(π, c̃) ∈ Rn+1|π ≥ 0, c̃≥ 0, c̃≤ R f (1−1>n π)/δ}.

Let AG again denote the set of A -valued control strategies a , (a1, · · · ,aK−1) that are adapted to the filtration

G. The discretization of (18) serves as the value function to the discrete-time problem:

H0(φ0,W0) = sup
a∈AG

E0[
K−1

∑
k=0

αβ
kδU1(ckWk)δ +(1−α)β KδU2(WK)], (21)

which can be solved via dynamic programming:

HK(φK ,WK) = (1−α)β KδU2(WK);

Hk(φk,Wk) = sup
ak∈A
{αβ

kδU1(ckWk)δ +E[Hk+1(φk+1,Wk+1)|φk,Wk]}. (22)

We will focus on solving the discrete-time model (19)-(21), which is discretized from the continuous-time model

(16)-(18). Though our methods proposed later can apply on general utility functions, for the purpose of illustration

we consider the utility functions of the constant relative risk aversion (CRRA) type with coefficient γ > 0, i.e,

U(x),U1(x) =U2(x) = 1
1−γ

x1−γ , which are widely used in economics and finance. Due to the utility functions of

CRRA type, both value functions (18) and (21) have simplified structures. To be specific, the value function to the

continuous-time problem can be written as

V (t,φt ,Wt) = β
tW 1−γ

t J̃(t,φt), (23)

where J̃(T,φT ) = (1−α)/(1− γ), and

J̃(t,φ) = sup
u∈UF(t)

E[
∫ T

t
β

s−t α

1− γ
(c̃sWs)

1−γ ds+β
T−t 1−α

1− γ
W 1−γ

T |φt = φ ,Wt = 1];

and the value function to the discrete-time problem is

Hk(φk,Wk) = β
kδW 1−γ

k Jk(φk), (24)

where Jk is defined recursively as JK(φK) = (1−α)/(1− γ) and

Jk(φk) = sup
(πk,ck)∈A

{ α

1− γ
c1−γ

k δ +β
δE
[(

R f +(Rk+1−R f )
>

πk− ck
)1−γ Jk+1(φk+1)|φk

]}
. (25)

It can be seen that the structure of the value functions to both continuous-time model and discrete-time model are

similar: they can be decomposed as a product of a function of the wealth W and a function of the market state variable

φ . If δ is small, J̃(kδ ,φ) and Jk(φ) may be close to each other. As a byproduct of this decomposition, another



feature of the dynamic portfolio choice problem with CRRA utility function is that the optimal asset allocation

and consumption (πt , c̃t) in continuous-time model is independent of the wealth Wt given φt (respectively, the

optimal (πk,ck) in discrete-time model is independent of the wealth Wk given φk). So the dimension of the state

space in (22) is actually the dimension of φk. A number of numerical methods have been developed to solve the

discrete-time model based on the recursion (25) including the state-space discretization approach [35], [36], and a

simulation-based method [37].

B. Penalties and Dual Bounds

Since we can use Monte Carlo simulation to evaluate the expected utility under any admissible strategy, we are

interested in how good the strategy is and how much better we could do. The purpose of this subsection is to provide

a way to evaluate the quality of the strategies developed for the discrete-time (continuous-state) model (19)-(21).

Note that this problem falls in the framework of the dual approach for MDPs introduced in Theorem 1, which

can be used to complement the lower bound on the value function H0 by an upper bound in principle. However,

Theorem 1 does not directly suggest a tractable approximation scheme on penalty functions for continuous-state

problems. According to the numerical experiments reported in [6], [9], the choices of the penalties significantly

influence the quality of the dual bounds. Therefore, we are aiming to accomplish two goals in this subsection:

• We want to design appropriate penalties that can help to achieve tight dual bounds.

• We want to keep the computational cost of the inner optimization problem at a reasonable level.

Throughout this subsection we assume that an approximate function of Jk(φ), say Ĵk(φ), and an approximate

policy â ∈ AG are available. We do not require that â should be derived based on Ĵk(φ) and vice versa; in other

words, they can be obtained using different approaches. We first describe the information relaxation dual approach

of MDPs in the context of our portfolio choice problem. We focus on the perfect information relaxation that assumes

the investor can foresee the future uncertainty Z = (Z1, · · · ,ZK) and Z̃ = (Z̃1, · · · , Z̃K), i.e., all the market states and

returns of the risky assets. A function M(a,Z, Z̃) is a dual feasible penalty in the setting of dynamic portfolio

choice problem if for any (φ0,W0),

E[M(a,Z, Z̃)|φ0,W0]≤ 0 for all a ∈ AG. (26)

Let MG(0) denote the set of all dual feasible penalties. For M ∈MG(0) we define L M as a function of (φ0,W0):

(L M)(φ0,W0) = E

[
sup
a∈A
{

K−1

∑
k=0

αβ
kδU(ckWk)δ +(1−α)β KδU(WK)−M(a,Z, Z̃)}|φ0,W0

]
. (27)

Based on Theorem 1(a), (L M)(φ0,W0) is an upper bound on H0(φ0,W0) for any M ∈MG(0) .

To ease the inner optimization problem, we introduce equivalent decision variables Πk = Wkπk and Ck = Wkck,

which can be interchangeably used with πk and ck. We still use a to denote an admissable strategy, though in

terms of (Πk,Ck) now. Then we can rewrite the inner optimization problem in the conditional expectation in (27)

as follows:



I(φ0,W0,M,Z, Z̃), max
a
{

K−1

∑
k=0

αβ
kδU(C j)δ +(1−α)β KδU(WK)−M(a,Z, Z̃)} (28a)

s.t. φk+1 = φk +µ
φ

k δ +σ
φ ,1
k

√
δZk+1 +σ

φ ,2
k

√
δ Z̃k+1,

log(Rk+1) = (µk−
1
2

σ
2
k )δ +σk

√
δZk+1,

Wk+1 =WkR f +(Rk+1−R f 1n)
>

Πk−Ck, (28b)

Πk ≥ 0, Ck ≥ 0, (28c)

Ck ≤ R f (Wk−1>n Πk), for k = 0, · · · ,K−1. (28d)

Note that (28b) is equivalent to (19c), and(28c)-(28d) are equivalent to (20). The advantage of this reformulation

is that the inner optimization problem (28) has linear constraints. Therefore, we may find the global maximizer of

(28) as long as the objective function in (28a) is jointly concave in a.

Heuristically, we need to design near-optimal penalty functions in order to obtain tight dual bounds on H0. A

natural approach is to construct a penalty function by replacing the value function in the optimal penalty for the

discrete-time problem (see (5)) with its approximation. In the following we will see why deriving penalty in this

way will result in an intractable inner optimization problem. Alternatively, the inner optimization problem becomes

tractable when we construct a heuristic penalty according to the form of the optimal penalty for the continuous-time

model. We first investigate the optimal penalty for the discrete-time problem according to (5):

M∗(a,Z, Z̃) =
K−1

∑
k=0

∆Hk+1(a,Z, Z̃).

Based on the factorized structure of Hk in (24), we can obtain

∆Hk+1(a,Z, Z̃) =Hk+1(φk+1,Wk+1)−E[Hk+1(φk+1,Wk+1)|φk,Wk,ak]

=β
(k+1)δ (

κ(a,Z, Z̃)−E[κ(a,Z, Z̃)|φk,Wk,ak]
)
, (29)

where

κ(a,Z, Z̃), (WkR f +(Rk+1−R f 1n)
>

Πk−Ck)
1−γ Jk+1(φk+1).

We can explicitly write out φk+1 = φk+1(φ0, Z̃1:k+1,Z1:k+1) and Rk+1 = Rk+1(φ0, Z̃1:k+1,Z1:k+1) via (19a)-(19b) to

emphasize the dependence on the randomness sequence (Z, Z̃), where Z1:k (resp., Z̃1:k) denotes the first k entries

of Z (resp., Z̃). In practice we can approximate Jk(φk) by Ĵk(φk); however, it does not mean that an approximation

of ∆Hk+1 can be easily computed, since an intractable conditional expectation over (m+ n)-dimensional space is

involved in (29). Another difficulty is that M∗ = ∑
K−1
k=0 ∆Hk+1 enters into (28a) with possibly positive or negative

signs for different realizations of (Z, Z̃), making the objective function of (28) nonconcave, even if U1 and U2 are

concave functions. Therefore, it might be extremely hard to locate the global maximizer of (28).

To address these problems, we exploit the value function-based optimal penalty h∗v for the continuous-time

problem (16)-(18), assuming that all the technical conditions are satisfied. If we disregard the dependence of the



diffusion coefficient of Wt (the second term on the right side of (17)) on πt , then according to Proposition 3 we

can formally write h∗v as

h∗v(u,z, z̃) =
∫ T

0

Vφ (t,φt ,Wt)

VW (t,φt ,Wt)

> σ
φ ,1
t σ

φ ,2
t

Wtπtσt 0

dzt

dz̃t


=

K−1

∑
k=0

∫ (k+1)δ

kδ

[
Vφ (t,φt ,Wt)

>
σ

φ ,1
t dzt +Vφ (t,φt ,Wt)

>
σ

φ ,2
t dz̃t

+VW (t,φt ,Wt)Wtπtσtdzt
]
,

=
K−1

∑
k=0

∫ (k+1)δ

kδ

β
t[W 1−γ

t ∇φ J̃(t,φt)
>

σ
φ ,1
t dzt +W 1−γ

t ∇φ J̃(t,φt)
>

σ
φ ,2
t dz̃t

+(1− γ)W 1−γ

t J̃(t,φt)πtσtdzt
]
, (30)

for u = (πt , c̃t)0≤t≤T ∈UF(0), and the last equality holds due to structure of the value function (23). In particular,
we use ∇φ to denote the gradient of the function J̃ with respect to φ . Motivated by the fact that our discrete-time
model is discretized from the continuous-time model, we propose the following function that approximates each
∆Hk+1 in M∗, that is,

β
kδ
[
W 1−γ

k ∇φ Jk(φk)
>

σ
φ ,1
k

√
δZk+1 +W 1−γ

k ∇φ Jk(φk)
>

σ
φ ,2
k

√
δ Z̃k+1 +(1− γ)W−γ

k Jk(φk)Π
>
k σk
√

δZk+1
]
. (31)

It is obvious that this term is derived by discretizing the Ito stochastic integrals in the (k + 1)-th term of the

summation in (30), and we will justify that it is a dual feasible penalty for the discrete-time problem later. For the

purpose of incorporating this term to the dual approach in the numerical implementation, we should note that the

value of Jk(φk) and the differentiability of Jk(φ) in φ are not known yet. However, as mentioned in the beginning

of Section III, we can approximate Jk(φk) using different approaches that lead to piecewise linear functions (by

state-space discretization method) or smooth functions (by approximate dynamic programming method), denoted

by Ĵk(φk). Hence, ∇φ Jk(φk) can be formally approximated by the gradient of these approximate functions, namely,

∇φ Ĵk(φk). We will formalize in Proposition 4 that the approximations in Jk(φk) and ∇φ Jk(φk) will not influence the

validity of (31) being a dual feasible penalty for the discrete-time problem (i.e., condition (26) is satisfied).

We describe the procedure of evaluating an applicable penalty function using simulation. We first generate a

realization of (Z, Z̃) and consequently we can obtain φ̄k , φk(φ0,Zk, Z̃k), σ̄k , σ(φ̄k), σ̄
φ ,1
k , σφ ,1(k, φ̄k), σ̄

φ ,2
k ,

σφ ,2(k, φ̄k), Ĵk(φ̄k), and ∇φ Ĵk(φ̄k); with an admissible strategy â = (â0, · · · , âK), we can also obtain

W̄k ,Wk(W0, â(φ0,W0,Zk, Z̃k),Zk, Z̃k) via (19c) as an approximation to the wealth under the optimal policy. Then

we can approximate M∗(a,Z, Z̃) by

M1(a,Z, Z̃),
K−1

∑
k=0

β
kδ
[
Ψ

1
k+1(a,Z, Z̃)+Ψ

2
k+1(a,Z, Z̃)+Ψ

3
k+1(a,Z, Z̃)

]
, (32)

where

Ψ
1
k+1(a,Z, Z̃) =W̄ 1−γ

k ∇φ Ĵk(φ̄k)
>

σ̄
φ ,1
k

√
δZk+1,

Ψ
2
k+1(a,Z, Z̃) =W̄ 1−γ

k ∇φ Ĵk(φ̄k)
>

σ̄
φ ,2
k

√
δ Z̃k+1,

Ψ
3
k+1(a,Z, Z̃) =(1− γ)W̄−γ

k Ĵk(φ̄k)Π
>
k σ̄k
√

δZk+1.



Note that when a realization of (Z, Z̃) is fixed, Ψ1
k+1 and Ψ2

k+1 are constants with respect to a (but varies across

sample paths), which can be seen as control variates; Ψ3
k+1 depends on Πk (hence, on a), and thus is the only term

that contributes to the inner optimization problem (28). Since Ψ3
k+1 is affine in Πk, the objective function (28a) is

jointly concave in a with M = M1. As a result, the inner optimization problem (28) remains a convex optimization

problem and can be easily solved. In our numerical experiments, we will consider dual bounds generated by this

penalty.

To find some variants of the penalties while still keeping the inner optimization problem convex, we also generate

Ψ̆1
k+1 based on a first-order Taylor expansion of Ψ1

k+1 around the strategy âk−1 = (Π̂k−1,Ĉk−1):

Ψ̆
1
k+1(a,Z, Z̃) =

[
W̄ 1−γ

k +(1− γ)W̄−γ

k

(
(R̄k−R f 1n)

>(Πk−1− Π̄k−1)

− (Ck−1−C̄k−1)
)]
·∇φ Ĵk(φ̄k)

>
σ̄

φ ,1
k

√
δZk+1, (33)

where R̄k , Rk(φ0,Zk, Z̃k), Π̄k−1 , Π̂k−1(φ0,W0,Zk−1, Z̃k−1), and C̄k−1 , Ĉk−1(φ0,W0,Zk−1, Z̃k−1). Then Ψ̆1
k+1 is

linear in Πk−1 and Ck−1. We can also obtain a variant of Ψ2
k+1, say Ψ̆2

k+1, in exactly the same way. Since Ψ3
k+1 is

already linear in Πk, we do not linearize it with respect to âk−1. In our numerical experiments we will also consider

dual bounds generated by

M2(a,Z, Z̃),
K−1

∑
k=0

β
kδ
[
Ψ̆

1
k+1(a,Z, Z̃)+ Ψ̆

2
k+1(a,Z, Z̃)+Ψ

3
k+1(a,Z, Z̃)

]
. (34)

To go further, we can also generate a penalty function by linearizing Ψ1
k+1 around (â0, · · · , âk−1). Finally, we

justify the validity of M1 and M2 being dual feasible penalties in Proposition 4.

Proposition 4 The functions M1 in (32) and M2 in (34) are dual feasible penalties, i.e., M1,M2 ∈MG(0). Hence,

L M1(φ0,W0) and L M2(φ0,W0) are upper bounds on the value function H0(φ0,W0).

Proof: Proof. We observe that with a fixed non-anticipative policy â ∈ AG, it is obvious that φ̄k, W̄k, Ĵk(φ̄k),

∇φ Ĵk(φ̄k), σ̄k, and σ̄
φ , j
k , j = 1,2, are naturally Gk-adapted for k = 0, · · · ,K−1. We also note that Πk is Gk-adapted

due to a ∈ AG. Since Zk+1 and Z̃k+1 have zero means and are independent of Gk and (φ0,W0), we have for any

(φ0,W0),

E[Ψi
k+1(a,Z, Z̃)|φ0,W0] = 0 for all a ∈ AG,

for i = 1,2,3. So E[M1(a,Z, Z̃)|φ0,W0] = 0 for all a ∈ AG, and hence M1 ∈MG(0). Since the same argument can

apply on Ψ̆i
k+1(a,Z, Z̃) for i = 1,2, it can be concluded that M2 ∈MG(0).

The penalty function in the form of (32) or (34) bear several advantages: first, it can be evaluated without

computing any conditional expectation, i.e., a substantial computational work can be avoided; second, the design

of the penalty function is quite flexible: we can use any admissible policy to obtain a valid penalty, and we can

choose to do a linearization around this policy, which makes the inner optimization problem (28) convex and

computationally tractable.



C. Numerical Experiments

In this section we discuss the use of Monte Carlo simulation to evaluate the performance of the suboptimal

policies and the dual bounds on the expected utility (21). We consider a model with three risky assets (n = 3)

and one market state variable (m = 1). We choose T = 1 year and δ = 0.1 year in our numerical experiments. In

addition, we use α = 0.5 for the weight of the intermediate utility function and use β = 1 as the discount factor.

Other information on the state equation (19) can be found in Appendix E. In particular, the market state variable

{φk} follows a mean-reverting Ornstein-Uhlenbeck process: it has relatively small mean reversion rate and volatility

in parameter sets 1 and 3, while it has relatively large mean reversion rate and volatility in parameter sets 2 and

4. We assume φ0 = 0 and W0 = 1 as the initial condition and impose the constraint (20) on the control space A in

the following numerical tests.

For each parameter set we first use the discrete state-space approximation method to solve the recursion (25). In

particular, we approximate the market state variable φk using a grid with 21 equally spaced girds from −2 to 2,

and the transition between these grid points is determined by (19a) noting that φk+1 ∼ N
(
φk +µ

φ

k δ ,(‖ σ
φ ,1
k ‖2 + ‖

σ
φ ,2
k ‖2)δ

)
; the random variables Zk and Z̃k are approximated by Gaussian quadrature method with 3 points for

each dimension (see, e.g., [41]). So the joint distribution of the market state and the returns are approximated by a

total of 33×21 = 567 grid points, which are used to compute the conditional expectation in (25): we assume φk+1

and Rk+1 are independent conditioned on φk, then the conditional expectation reduces to a finite weighted sum. For

the optimization problem in (25) we use CVX ([42]), a package to solve convex optimization problems in Matlab,

to determine the optimal consumption and investment policy on each grid of φk at time k. We record the value

function and the corresponding policy on this grid at each time k = 0, · · · ,K. Note that the market state variable

φk is one dimensional, so the value function and the policy can be naturally defined on the market state φk that

is outside the grid by piecewise linear interpolation. In our numerical implementation the extended value function

and the extended policy play the roles of the approximate value function Ĵk(φk) and the approximate policy â to

the discrete-time problem (19)-(21); and we take the slope of the piecewise linear function Ĵk(φ) as ∇φ Ĵk(φ), if φ

is between the grid points; otherwise, we can use the average slope of two consecutive lines as ∇φ Ĵk(φ).

We then repeatedly generate random sequences of (Z, Z̃), based on which we generate the sequences of market

states and returns according to their joint probability distribution (19)-(21). Then we apply the aforementioned

policy â on these sequences to get an estimate of the lower bound on the value function H0; based on each random

sequence we can also solve the inner optimization problem (28) with penalty M1 in (32) or M2 in (34), which

leads to an estimate of the upper bound on H0. We present our numerical results in the following tables: the lower

bound, which is referred to as “Lower Bound”, is obtained by generating 100 random sequences of (Z, Z̃) and their

antithetic pairs (see [43] for an introduction on antithetic variates) in a single run and a total number of 10 runs;

the upper bounds induced by penalties M1 and M2, which are referred to as “Dual Bound 1” and “Dual Bound

2” respectively, are obtained by generating 30 random sequences of (Z, Z̃) and their antithetic pairs in a single

run and a total number of 10 runs. To see the effectiveness of these proposed penalties, we use zero penalty and



repeat the same procedure to compute the upper bounds that are referred to as “Zero Penalty” in the table. These

bounds on the value function H0 (i.e., the expected utility) are reported in the sub-column “Value”, where each

entry shows the sample average and the standard error (in parentheses) of the 10 independent runs. We also list

the certainty equivalent of the expected utility in the sub-column “CE” (this is reported in the literature such as

[33]), where “CE” is defined through U(CE) = Value. For ease of comparison, we compute the duality gap – the

smaller differences of lower bounds with two upper bounds on the expected utility and its certainty equivalent –

as a fraction of the lower bounds in the column “Duality Gap”.

TABLE I

RESULTS WITH PARAMETER SET 1

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE

1.5 −5.480 1.332 −5.391 1.376 −5.392 1.376 -4.861 1.693 1.61% 3.30%

(0.003) (0.001) (0.008) (0.004) (0.007) (0.004) (0.012) (0.008)

3.0 −42.887 1.080 −39.227 1.129 −39.873 1.120 -27.562 1.347 7.53% 3.70%

(0.036) (0.001) (0.164) (0.002) (0.317) (0.004) (0.252) (0.006)

5.0 −2445.9 1.005 −2066.5 1.049 −2025.5 1.054 -1105.7 1.226 15.51% 4.38%

(1.635) (0.001) (22.019) (0.003) (17.833) (0.002) (16.438) (0.004)

TABLE II

RESULTS WITH PARAMETER SET 2

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE

1.5 −5.466 1.339 −5.380 1.382 −5.381 1.381 -4.864 1.691 1.56% 3.14%

(0.005) (0.001) (0.011) (0.006) (0.015) (0.008) (0.020) (0.008)

3.0 −42.585 1.084 −39.645 1.123 −39.690 1.122 -27.708 1.343 6.80% 3.51%

(0.081) (0.001) (0.229) (0.003) (0.155) (0.002) (0.209) (0.005)

5.0 −2431.6 1.007 −2043.8 1.052 −2040.7 1.052 -1122.1 1.222 15.95% 4.47%

(7.510) (0.001) (11.881) (0.002) (19.882) (0.003) (9.842) (0.004)

We consider utility functions with different relative risk aversion coefficients γ = 1.5,3.0, and 5.0, which reflect

low, medium and high degrees of risk aversions. The dual bounds induced by zero penalty perform poorly as we

expected. On the other hand, it is hard to distinguish the performance of “Dual Bound 1” and “Dual Bound 2”,

which may imply that Ψ3
k+1 plays an essential role in the inner optimization problem in order to make the dual

bounds tight in this problem. We observe that the duality gaps on the value function H0 are generally smaller when

γ is small, implying that both the approximate policy and penalties are near optimal. For example, when γ = 1.5,

the duality gaps are within 2% of the optimal expected utility for all sets of parameters. As γ increases, the duality

gaps generally become larger.



TABLE III

RESULTS WITH PARAMETER SET 3

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE

1.5 −5.439 1.352 −5.376 1.384 −5.376 1.384 -4.904 1.663 1.16% 2.37%

(0.002) (0.001) (0.008) (0.004) (0.007) (0.003) (0.014) (0.009)

3.0 −41.961 1.092 −38.221 1.144 −38.800 1.135 -28.5874 1.322 7.53% 3.94%

(0.074) (0.001) (0.243) (0.003) (0.241) (0.003) (0.168) (0.004)

5.0 −2402.6 1.005 −1997.3 1.049 −2011.5 1.056 -1157.3 1.212 16.28% 4.38%

(7.243) (0.001) (16.467) (0.002) (15.288) (0.002) (14.836) (0.004)

TABLE IV

RESULTS WITH PARAMETER SET 4

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE(10−1) Value CE

1.5 −5.441 1.351 −5.384 1.380 −5.375 1.385 -4.895 1.669 1.05% 2.15%

(0.001) (0.001) (0.004) (0.002) (0.008) (0.004) (0.008) (0.005)

3.0 −41.933 1.092 −38.432 1.141 −38.664 1.137 -28.661 1.321 7.80% 4.12%

(0.088) (0.001) (0.380) (0.006) (0.218) (0.003) (0.127) (0.003)

5.0 −2394.2 1.011 −1984.6 1.059 −2005.9 1.057 -1135.2 1.218 16.22% 4.55%

(5.130) (0.001) (12.951) (0.002) (13.758) (0.002) (14.353) (0.004)

There are several reasons to explain the enlarged duality gaps on the value function with increasing γ . Note

that the utility function U(x) is a power function (with negative power of 1− γ) of x and it decreases at a higher

rate with larger γ , as x approaches zero. This is reflected by the fact that both the lower and upper bounds on

the value function H0 decrease rapidly with higher value of γ . In the case of evaluating the upper bounds on

H0, it can be inferred that with larger γ the objective value (28a) is more sensitive to the solution of the inner

optimization problem (28), and hence the quality of the penalty functions. In other words, even a small torsion

of the optimal penalty will lead to a significant deviation of the dual bound. In our case the heuristic penalty is

derived by discretizing the value function-based penalty for the continuous-time problem, however, this penalty

may become far away from optimal for the discrete-time problem when γ increases. Similarly, obtaining tight lower

bounds on the expected utility by simulation under a sub-optimal policy also suffers the same problem, that is,

solving a sub-optimal policy based on a same approximation scheme of the recursion (25) may cause more utility

loss with larger γ . The performance of the sub-optimal policy also influences the quality of the penalty function,

since the penalties M1 and M2 involve the wealth W̄k induced by the suboptimal policy and its error compared

with the wealth under the optimal policy will be accumulated over time. Hence, the increasing duality gaps on the

value function with larger risk aversion coefficients are contributed by both sub-optimal policies and sub-optimal

penalties.



These numerical results provide us with some guidance in terms of computation when we apply the dual approach:

we should be more careful with designing the penalty function if the objective value of the inner optimization

problem is numerically sensitive either to its optimal solution or to the choice of the penalty function. Fortunately,

the sensitivity of the expected utility with respect to γ in this problem is relieved to some extent by considering

its certainty equivalent. We can see from the table that the differences between the lower bounds and the upper

bounds in terms of “CE” are kept at a relatively constant range for different values of γ .

IV. CONCLUSION

In this paper we study the dual formulation of controlled Markov diffusions by means of information relaxation.

This dual formulation provides new insights into seeking the value function: if we can find an optimal solution

to the dual problem, i.e., an optimal penalty, then the value function can be recovered without solving a HJB

equation. From a more practical point of view, this dual formulation can be used to find a dual bound on the value

function. We explore the structure of the value function-based optimal penalty, which provides the theoretical basis

for developing near-optimal penalties that lead to tight dual bounds. As in the case of MDPs, if we compare the

dual bound on the value function of a controlled Markov diffusion with the lower bound generated by Monte Carlo

simulation under a sub-optimal policy, the duality gap can serve as an indication on how well the sub-optimal

policy performs and how much we can improve on our current policy. Furthermore, we also expose the connection

of the gradient-based optimal penalty between controlled Markov diffusions and MDPs in Appendix.

We carried out numerical studies in a dynamic portfolio choice problem that is discretized from a continuous-time

model. To derive tight dual bounds on the expected utility, we proposed a class of penalties that can be viewed as

discretizing the value function-based optimal penalty of the continuous-time problem, and these new penalties make

the inner optimization problem computationally tractable. This approach has potential use in many other interesting

applications, where the system dynamic is modeled as a controlled Markov diffusion. Moreover, by examining the

duality gaps on the expected utility with different parameters, we find that the objective function in the primal

problem may largely influence the sensitivity of the optimal solution to the dual problem, and hence the quality

of the dual bounds. These numerical studies complement the existing examples on applying the dual approach to

continuous-state MDPs.

This dual approach also sheds light on some future directions. First, we attempt to study more practical methods

that can apply the dual approach on general (continuous-state) MDPs. For example, a new type of the gradient-

based penalty has been presented in [44]. Second, we would like to formulate the dual representation of other

continuous-time controlled Markov processes. An analogue of Proposition 2 or Proposition 3 may be established

as long as the evolution of the value function under the state dynamics can be explicitly represented; if the value

function-based penalty admits simple structure (under natural filtration) as that in the setting of controlled Markov

diffusions, it may have the potential to generate dual bounds easily in terms of computation.
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APPENDIX A

TECHNICAL ASSUMPTIONS ON CONTROLLED MARKOV DIFFUSIONS

In integral form, (6) can be written as

xt = x0 +
∫ t

0
b(s,xs,us)ds+

∫ t

0
σ(s,xs,us)dws, 0≤ t ≤ T. (35)

The second term on the right side of (35) is an Ito stochastic integral. We say that a process (xt)0≤t≤T is a pathwise

solution of (6) or (35) if it is F-progressively measurable and has continuous sample paths almost surely (a.s.) given

x0 = x ∈ Rn.

To guarantee a unique pathwise solution (xt)t∈[0,T ] to (6) or (35) when u ∈ UF(0), we impose the following

standard assumptions:

Assumption 1 b and σ are continuous on Q̄×U , and for some constants C1,C2 > 0,

1) ‖ b(t,x,u) ‖+ ‖ σ(t,x,u) ‖≤C1(1+ ‖ x ‖+ ‖ u ‖) for all (t,x,u) ∈ Q̄×U ;

2) ‖ b(t,x,u)−b(s,y,u) ‖+ ‖ σ(t,x,u)−σ(s,y,u) ‖≤C2(|t− s|+ ‖ x− y ‖) for all (t,x),(s,y) ∈ Q̄.

To guarantee Theorem 2 to hold, we also assume that Λ and g satisfy the following polynomial growth conditions:

Assumption 2 For some constants CΛ,cΛ,Cg,cg > 0,

1) |Λ(x)| ≤CΛ(1+ ‖ x ‖cΛ) for all x ∈ Rn;

2) |g(s,x,u)| ≤Cg(1+ ‖ x ‖cg + ‖ u ‖cg) for all (t,x) ∈ Q̄.



APPENDIX B

PROOF OF THEOREM 3

We note that the left side of (12) is the definition of V (0,x). By weak duality result, the left side of (12) is less

than or equal to the right side. We only need to show that with h = h∗ in (11), the right side of (12) is equal to the

left side. This is done by the argument before the statement of Theorem 3.

APPENDIX C

PROOF OF THEOREM 4

We first consider sufficiency. Let u? ∈ UF(0) and h? ∈MF(0). We assume E0,x[h?(u?,w)] = 0 and (13) holds.

Then by weak duality, u? and h? should be optimal to the primal and dual problem, respectively.

Next we consider necessity. Let u? ∈UF(0) and h? ∈MF(0). Then we have

E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h?(u,w)}

]
≥E0,x[Λ(x?T )+

∫ T

t
g(t,x?t ,u

?
t )dt−h?(u?,w)]

≥J(0,x;u?).

The last inequality holds due to h? ∈MF(0). Since we know u? and h? are optimal to the primal and dual problem

respectively, by strong duality result, we have

J(0,x;u?) = E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h?(u,w)}

]
,

which implies all the inequalities above are equalities. Therefore, we know E0,x[h?(u?,w)] = 0 and (13) holds.

APPENDIX D

COMPLEMENT OF SECTION 2.1

In this section we aim to develop the value function-based penalty as a solution to the dual problem on the right

side of (12), which can be viewed as the counterpart of (5) in the setting of controlled Markov diffusions. For

this purpose we introduce the anticipating stochastic calculus and anticipating stochastic differential equation in

Appendix D-A, and present the value function-based optimal penalty in Appendix D-B. In Appendix D-C, we will

review a Lagrangian approach proposed by [20], which falls in our dual framework of controlled Markov diffusions;

the Lagrangian term they proposed satisfies the complementary slackness condition developed in Theorem 4, and

hence it behaves like a “penalty” function. Moreover, we compare the procedure of deriving this Lagrangian term

with that of the gradient-based penalty proposed by [9] for MDPs, in order to expose their similarities.

Throughout this section we assume that σ in (6) only depends on t and x. To be specific,

xt = x+
∫ t

0
b(s,xs,us)ds+

∫ t

0
σ(s,xs)dws, 0≤ t ≤ T, (36)

where b : [0,T ]×Rn×U → Rn and σ : [0,T ]×Rn→ Rn×m. Besides the technical assumption in Appendix A, we

further assume the gradient of σ(t,x) with respect to x exists and it is continuous and bounded on Q̄. The reason



to suppress the dependence of σ on u is to extend the definition of a solution to (36) with anticipative controls.

When the stochastic integral is defined in Ito sense, SDE (36) has a well-defined solution provided that the control

strategy u ∈UF(0); however, if an anticipative control strategy u ∈U (0) is considered, we need to first define a

stochastic integral with respect to an anticipative process and then define a solution to an anticipating stochastic

differential equation (see, e.g., [19], [18], [20]). This solution is an extension of that to the (regular) SDE in the Ito

sense, i.e., it should coincide with the solution to the SDE in Ito sense when u ∈UF(0). We follow [20] to define

such a solution using the decomposition technique, and for this purpose we require that σ is a function of only t

and x.

The reward functional to be maximized and the value function are the same as in (7):

V (t,x) = sup
u∈UF(t)

J(t,x;u), (37)

where

J(t,x;u), Et,x[Λ(xT )+
∫ T

t
g(s,xs,us)ds].

The partial differential operator Au is then redefined as

AuL(t,x), Lt(t,x)+Lx(t,x)>b(t,x,u)+
1
2

tr(Lxx(t,x)(σσ
>)(t,x)), L ∈C1,2(Q).

A. Anticipating Stochastic Calculus and Anticipating Stochastic Differential Equation

There are several ways to integrate stochastic processes that are not adapted to Brownian motions such as Skorohod

and (generalized) Stratonovich integrals (see, e.g, [19], [18]). In this subsection we present the Stratonovich integral

and its associated Ito formula. Then we define the solution to the anticipating stochastic differential equation in the

Stratonovich sense.

We first assume that w = (wt)t∈[0,T ] is a one-dimensional Brownian Motion in the probability space (Ω,F ,P).

We denote by I an arbitrary partition of the interval [0,T ] of the form I = {0 = t0 < t1 < · · ·< tn = T} and define

|I|= sup0≤i≤n−1(ti+1− ti).

Definition 2 (Definition 3.1.1 in [19]) We say that a measurable process y = (yt)t∈[0,T ] such that
∫ T

0 |yt |dt < ∞ a.s.

is Stratonovich integrable if the family

SI =
∫ T

0
yt

n−1

∑
i=0

wti+1−wti
ti+1− ti

1(ti,ti+1](t)dt

converges in probability as |I| → 0, and in this case the limit will be denoted by
∫ T

0 yt ◦dwt .

Remark 2 We can translate an Ito integral to a Stratonovich integral and vice versa. If y=(yt)t∈[0,T ] is a continuous

semimartingale of the form

yt = y0 +
∫ t

0
υs ds+

∫ t

0
ζs dws,



where (υt)t∈[0,T ] and (ζt)t∈[0,T ] are adapted processes taking value in Rn and Rn×m such that∫ T
0 ‖ υs ‖ ds < ∞ and

∫ T
0 ‖ ζs ‖2 ds < ∞ a.s.. Then y is Stratonovich integrable on any interval [0, t], and∫ t

0
ys ◦dws =

∫ t

0
ys dws + 〈y,w〉t =

∫ t

0
ys dws +

1
2

∫ t

0
ζs ds, (38)

where 〈y,w〉t denotes the joint quadrature variation of the semimartingale y and the Brownian motion w. Definition

2 and the equality (38) can be naturally extended to the vector case.

Then we present the Ito formula for Stratonovich integral in Proposition 5, the detail of which can be found in

Section 3.2.3 of [19].

Proposition 5 (Theorem 3.2.6 in [19]) Let w = (w1
t , · · · ,wm

t )t∈[0,T ] be an m-dimensional Brownian motion. Sup-

pose that y0 ∈ D1,2, υs ∈ L1,2, and ζ i ∈ L2,4
S , i = 1, · · · ,m. Consider a process y = (yt)t∈[0,T ] of the form

yt = y0 +
∫ t

0
υs ds+

m

∑
i=1

∫ t

0
ζ

i
s ◦dwi

s, 0≤ t ≤ T.

Assume that (yt)0≤t≤T has continuous paths. Let F : Rn → R be a twice continuously differentiable function.

Then we have

F(yt) = F(y0)+
∫ t

0
Fy(ys)

>
υs ds+

m

∑
i=1

∫ t

0
[Fy(ys)

>
ζ

i
s ]◦dwi

s, 0≤ t ≤ T, (39)

where Fy(·) denotes the gradient of F w.r.t. y.

Proposition 5 basically says that the Stratonovich integral obeys the ordinary chain rule.

Based on the definition of Stratonovich integral and Remark 2, we generalize SDE (36) to the Stratonovich sense

(referred to as S-SDE) by letting yt = σ i(t,xt). Then (36) is equivalent to

xt = x+
∫ t

0
b̄(t,xt ,ut)dt +

m

∑
i=1

∫ t

0
σ

i(t,xt)◦dwi
t , 0≤ t ≤ T, (40)

where σ i : [0,T ]×Rn→Rn is the i-th column of σ , i = 1, · · · ,m, and b̄(t,x,u) = b(t,x,u)− 1
2 ∑

m
i=1 σ i

xσ i(t,x). Here

σ i
xσ i(t,x) denotes an n×1 vector with ∑

n
j=1

∂σ ki

∂x j
(t,x)σ ji(t,x) being its k-th entry and σ ki(·) is the k-th component

of σ i(·). Since the stochastic integral in (40) is in the Stratonovich sense, S-SDE (40) adopts its solution in the space

of measurable processes, which may not be adapted to the filtration generated by the Brownian motion. Therefore,

we are allowed to consider anticipative policies u ∈U (0) in (40).

Finally, we need to ensure the existence of a solution to S-SDE (40) if the control strategy u∈U (0) is anticipative.

Following [20],[18], we have a representation of such a solution using the decomposition technique:

xt = ξt(ηt), (41)

where {ξt(x)}t∈[0,T ] denotes the stochastic flow defined by the adapted equation:

dξt =
m

∑
i=1

σ
i(t,ξt)◦dwi

t ,

=
1
2

m

∑
i=1

σ
i
xσ

i(t,ξt)dt +σ(t,ξt)dwt , ξ0 = x, (42)



and (ηt)t∈[0,T ] solves an ordinary differential equation:

dηt

dt
= (

∂ξt

∂x
)−1(ηt)b̄(t,ξt(ηt),ut), η0 = x, (43)

where ∂ξt
∂x denotes the n×n Jacobian matrix of ξt with respect to x. Under some technical conditions (see Section

1 of [20]), the solution (41) is defined almost surely: note that ξt does not depend on the control ut , i.e., it is the

solution to a regular SDE in the Ito sense; ηt is not defined by a stochastic integral so it is the solution to an ordinary

differential equation parameterized by w (note that ∂ξt
∂x is well-defined a.s. for (t,x) ∈ [0,T ]×Rn, because ξt(x) is

flow of diffeomorphisms a.s..). Hence, xt = ξt(ηt) is well-defined regardless of the adaptiveness of u = (ut)0≤t≤T .

To check that xt = ξt(ηt) satisfies (36), we need to employ a generalized Ito formula of (39) for Stratonovich

integral (see Theorem 4.1 in [18]).

B. Value Function-Based Penalty

The tools we have introduced in the last subsection, especially the Ito formula for Stratonovich integral, enable

us to develop the value function-based optimal penalty for the controlled Markov diffusions. This penalty, denoted

by h∗v(u,w), coincides with
∫ T

0 Vx(t,xt)
>σ(t,xt)dwt , when u ∈UF(0).

Theorem 5 (Value Function-Based Penalty) Suppose the value function V (t,x) for the problem(36)(37) (or (40)(37))

satisfies all the assumptions in Theorem 2(b). We also assume that the Ito formula for Stratonovich integral (39)

is valid with F =V (t,x) and y = (t,xt)t∈[0,T ], where (xt)t∈[0,T ] is the solution to (40). Define

h∗v(u,w),
m

∑
i=1

∫ T

0
[Vx(t,xt)

>
σ

i(t,xt)]◦dwi
t

− 1
2

∫ T

0

[
Vx(t,xt)

>( m

∑
i=1

σ
i
xσ

i(t,xt)
)
+ tr
(
Vxx(t,xt)(σσ

>)(t,xt)
)]

dt. (44)

Then

1) If u ∈UF(0), (44) reduces to the following form

h∗v(u,w) =
∫ T

0
Vx(t,xt)

>
σ(t,xt)dwt ,

and h∗v(u,w) ∈MF(0).

2) The strong duality holds in

V (0,x) = E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)}

]
. (45)

Moreover, the following equalities hold almost surely with x0 = x

V (0,x) = sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)} (46)

= Λ(x∗T )+
∫ T

0
g(t,x∗t ,u

∗
t )dt−h∗v(u

∗,w), (47)

where (x∗t )t∈[0,T ] is the solution of (36) using the optimal control u∗ = (u∗t )t∈[0,T ] (defined in Theorem 2(b))

on [0, t) with the initial condition x∗0 = x.



Proof: Proof. Suppose u ∈UF(0) and let yt =Vx(t,xt)
>σ i(t,xt) in Remark 2 for i = 1, · · · ,m. We can imme-

diately obtain

h∗v(u,w) =
m

∑
i=1

∫ T

0
Vx(t,xt)

>
σ

i(t,xt)dwi
t =

∫ T

0
Vx(t,xt)

>
σ(t,xt)dwt .

Note that Vx and σ both satisfy a polynomial growth, since V (t,x) ∈C1,2(Q)∩Cp(Q̄) (also see Appendix A). Then

we have

E0,x
[
‖
∫ T

0
Vx(t,xt)

>
σ(t,xt) ‖2 dt

]
< ∞,

and therefore, E0,x[h∗v(u,w)] = 0 when u ∈UF(0). Hence, h∗v(u,w) ∈MF(0).

Then we show the strong duality (45). According to the weak duality (i.e., Proposition 1),

V (0,x)≤ E0,x[ sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)}]. (48)

Next we prove the reverse inequality. Note that with x0 = x,

Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)

=V (0,x)+
∫ T

0
[Vt(t,xt)+Vx(t,xt)

>b̄(t,xt ,ut)]dt

+
m

∑
i=1

∫ T

0
[Vx(t,xt)

>
σ

i(t,xt)]◦dwi
t −h∗v(u,w)

=V (0,x)+
∫ T

0
[g(t,xt ,ut)+AutV (t,xt)]dt,

where the first equality is obtained by applying Ito formula for Stratonovich integral (i.e., Proposition 5) on V (t,x)

with V (T,xT ) = Λ(xT ):

V (T,xT ) =V (0,x0)+
∫ T

0
[Vt(t,xt)+Vx(t,xt)

>b̄(t,xt ,ut)]dt

+
m

∑
i=1

∫ T

0
[Vx(t,xt)

>
σ

i(t,xt)]◦dwi
t .

Since we assume the value function satisfies all the assumptions in Theorem 2(b), there exists an optimal control

u∗ = (u∗t )t∈[0,T ] with u∗t = u∗(t,xt) and it satisfies

g(t,x,u∗(t,x))+Au∗(t,x)V (t,x) = max
u∈U
{g(t,x,u)+AuV (t,x)}= 0,

then we have

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)}

= sup
u∈U (0)

{V (0,x)+
∫ T

0
[g(t,xt ,ut)+AutV (t,xt)]dt}

≤ V (0,x)+
∫ T

0
sup
u∈U
{g(t,xt ,u)+AuV (t,xt)}dt (49)

= V (0,x)+
∫ T

0

[
g(t,x∗t ,u

∗
t )+Au∗t V (t,x∗t )

]
dt

= V (0,x). (50)



Taking the conditional expectation on both sides, we have

V (0,x)≥ E0,x
[

sup
u∈U (0)

{Λ(xT )+
∫ T

0
g(t,xt ,ut)dt−h∗v(u,w)}

]
.

Together with the weak duality (48) , we reach the equality (45).

Due to the fact of the equality (45)(in expectation sense) and the pathwise inequality (50), we find that the only

inequality (49) (that makes (50) an inequality) should be an equality in almost sure sense. So the equality (46)

holds immediately in almost sure sense. To achieve the equality in (49), the optimal control u∗ should be applied,

which implies the equality (47).

By imposing the value function-based optimal penalty the objective value of the dual problem is equal to V (0,x)

not only in the expectation sense, but also in the almost sure sense. Therefore, we can view the dual approach as a

variance reduction technique. In particular, h∗v plays the role of control variates. As another obvious fact, h∗v(u,w)

evaluated at u = u∗ is equal to h∗(u∗,w) in Proposition 2.

C. Gradient-Based Penalty

In this subsection we review the results in [20], where a Lagrangian term is proposed to penalize the relaxation

of the requirement on non-anticipative control strategies. [20] characterizes the properties of this Lagrangian term,

which coincides with the complementary slackness condition developed in Theorem 4 if it is regarded as a penalty

function. We will show the “gradient-based” flavor of this Lagrangian term by comparing it with the gradient-based

penalty proposed in [9] for MDPs.

For simplicity we present the results of [20] in the case that the control set U is convex in Rud and the intermediate

reward g(t,xt ,ut) = 0 for t ∈ [0,T ]. The following Lagrangian term h∗g (the subscript g refers to “gradient-based”)

is used to penalize the relaxation of non-anticipative constraints on the control strategies:

h∗g(u,w),
∫ T

0
λ (t,xt ,w)>utdt.

Then we consider the inner optimization problem with h∗g (parameterized by w):

Vg(t,x,w) = sup
u∈U (t)

{Λ(xT )−
∫ T

t
λ (s,xs,w)>usds}, xt = x. (51)

Since xt = ξt(ηt) and only ηt depends on ut , we obtain an equivalent problem

Θ(t,η ,w) = sup
u∈U (t)

{Λ◦ξT (ηT )−
∫ T

t
λ̃ (s,ηs,w)>usds}, ηt = η = ξ

−1
t (x), (52)

where λ̃ (s,ηs,w) = λ (s,ξs(ηs),w).

Suppose that u∗ = (u∗(t,xt))0≤t≤T is an optimal control to the problem (36)(37)(or (40)(37)). We will present

one main result of [20] in Theorem 6 that characterizes λ (t,xt ,w) such that u∗ is also optimal to the problem

(40)(51) a.s. (in pathwise sense). For the sake of defining a proper λ (t,xt ,w), [20] first introduced ϕt(η), which is

the flow of

dϕt

dt
=
(∂ξt

∂x
)−1(ϕt)

[
b̄
(
t,ξt(ϕt),u∗(t,ξt(ϕt))

)
−∇ub

(
t,ξt(ϕt),u∗(t,ξt(ϕt))

)
u∗(t,ξt(ϕt))

]
(53)



for t ∈ [0,T ] with the terminal condition ϕT = η , where ∇ub denotes the n×du Jacobian matrix of b with respect

to u. We use ϕ
−1
t to denote the inverse flow of ϕt .

Theorem 6 (Gradient-Based Penalty, Theorem 2.1 in [20]) Consider the deterministic optimal control problem

(43)(52) with the terminal reward Θ(T,η ,w) = (Λ◦ξT )(η) parameterized by w, where ξt(η) is the solution to (42)

with ξ0 = η . If we define

λ̃ (t,η ,w),
∂ [Λ◦ξT (ϕ

−1
t (η))]

∂η

(∂ξt

∂x

)−1
(η)∇ub

(
t,ξt(η),u∗(t,ξt(η))

)
; (54)

λ (t,x,w), λ̃ (t,ξ−1
t (x),w),

then u∗(t,ξt(η)) is an optimal control for the problem (43)(52) a.s., and hence u∗(t,x) is optimal for the problem

(40)(51). We also have

Θ(t,η ,w) = Λ◦ξT (ϕ
−1
t (η));

Vg(t,x,w) = Θ(t,ξ−1
t (x),w);

Et,xVg(t,x,w) =V (t,x).

Remark 3

1) Vg(t,x,w) may NOT be equal to V (t,x) almost surely in pathwise sense.

2) Based on Theorem 6, we have

V (0,x) = E0,x[Vg(0,x,w)]

= E0,x[ sup
u∈U (0)

{Λ(xT )−h∗g(u,w)}]

= E0,x[Λ(x∗T )−h∗g(u
∗,w)],

which implies E0,x[h∗g(u∗,w)] = 0. It can be seen that (u∗,h∗g) satisfies the complementary slackness condition

developed in Theorem 4. Therefore, h∗g(u,w) behaves exactly the same as an optimal penalty, though we

have not shown that h∗g(u,w) ∈MF(0).

A complete proof of Theorem 6 is in [20]. Here we provide some insight on the design of the Lagrangian

multiplier λ̃ (t,η ,w) using the verification argument. If the value function Θ(t,η ,w) for the problem (43)(52) is of

sufficient regularity, it should satisfy the following HJB equation

∂Θ

∂ t
(t,η ,w)+ sup

u∈U
{∂Θ

∂η
(t,η ,w)

(∂ξt

∂x

)−1
(η)b̄(t,ξt(η),u)− λ̃ (t,η ,w)>u}= 0

with the terminal condition Θ(T,η ,w) = Λ◦ξT (η). If we define

λ̃ (t,η ,w) =
∂Θ

∂η
(t,η ,w)

(∂ξt

∂x

)−1
(η)∇ub

(
t,ξt(η),u∗(t,ξt(η))

)



as in (54), then the HJB equation becomes

∂Θ

∂ t
(t,η ,w)+ sup

u∈U
{∂Θ

∂η
(t,η ,w)

(∂ξt

∂x

)−1
(η)[b̄

(
t,ξt(η),u

)
−∇ub

(
t,ξt(η),u∗(t,ξt(η))

)
u]}= 0.

We define the Hamiltonian H (t,η ,u,w) with ∂Θ

∂η
playing the role of the costate:

H (t,η ,u,w) =
∂Θ

∂η
(t,η ,w)

(∂ξt

∂x

)−1
(η)
[
b̄
(
t,ξt(η),u

)
−∇ub

(
t,ξt(η),u∗(t,ξt(η))

)
u
]
.

Because H (t,η , ·,w) is strictly concave on U (ensured by some technical conditions) and its gradient ∇uH(t,η , ·,w)

is

∇uH (t,η ,u,w) =
∂Θ

∂η
(t,η ,w)

(∂ξt

∂x

)−1
(η)
[
∇ub

(
t,ξt(η),u

)
−∇ub

(
t,ξt(η),u∗(t,ξt(η))

)]
. (55)

It can be seen by the first-order condition that

min
u∈U

H (t,η ,u,w) = H (t,η ,u∗(t,ξt(η)),w) a.s..

Hence we have shown why u∗(t,ξt(η)) is optimal for the problem (43)(52). [20] used the characteristics method

to ensure the existence of a sufficient regular function Θ(t,η ,w) as a unique solution to the HJB equation, and a

lengthy approximation argument is spent on passing the results in terms of x via the transformation xt = ξt(ηt).

The derivation of h∗g(u,w) for the continuous-time optimal control problem is based on minimizing the Hamil-

tonian due to the convexity assumption on the control set U and the first order condition, which is analogous

to that of the gradient-based penalty proposed in [9] for MDPs. The latter construction of the optimal penalty is

more straightforward, as it only requires some basic knowledge in convex optimization. We briefly review their

results in the setting of the introduction section. For simplicity we also assume gk(xk,ak) = 0 and A is convex for

k = 0, · · · ,K−1, and assume Λ(xK(a,v)) is differentiable and concave in the control strategy sequence a for every

sequence v. Consider the gradient-based penalty of the form

M∗g(a,v) = ∇aΛ(xK(a∗,v))>(a−a∗), (56)

where a∗ is the optimal control, and ∇aΛ(xK(a,v)) is the gradient of the terminal reward with respect to a feasible

strategy a ∈ A; the first-order condition for optimizing (2) over control strategy sequences a ∈ AG implies

E0,x[M∗g(a,v)]≤ 0, for all a ∈ AG.

With the gradient-based penalty M∗g(a,v) the inner optimization problem (4) becomes

sup
a∈A
{Λ(xK(a,v))−∇aΛ(xK(a∗,v))>(a−a∗)}. (57)

Note that the penalty M∗g(a,v) is linear in the feasible strategy a, and hence the inner optimization problem is a

convex optimization problem in a. As a consequence, the first-order condition is sufficient to guarantee an optimal

solution to (57): the gradient of the objective function in (57) is

∇aΛ(xK(a,v))−∇aΛ(xK(a∗,v)), (58)



and it becomes zero if we take a = a∗. Therefore, a∗ is the optimal solution to the inner optimization (57). Hence,

it is straightforward to see that M∗g(a,v) is an optimal penalty in the sense that V ∗0 (x) = (L M∗g)(x) for all x ∈X .

It is obvious to see the analogy between using the first-order condition (55) and (58) to derive optimal penalties

for the continuous-time problem and discrete-time problem, respectively. This is the reason why h∗g can be viewed

as the “gradient-based penalty” in the dual formulation of controlled Markov diffusions.

APPENDIX E

DETAILS FOR NUMERICAL EXPERIMENTS

The dynamics of the market state and assets returns are the same as those considered in [38]. In particular,

µ
φ

k =−λφk, µk = µ0+µ1φk, σk ≡ σ , σ
φ ,1
k ≡ σφ ,1, and σ

φ ,2
k ≡ σφ ,2. The parameter values are listed in the following

tables including r f , λ , µ0, µ1, σ , σφ ,1, and σφ ,2.

TABLE V

PARAMETER 1

µ0 µ1 σ r f

log(R)


0.081

0.110

0.130




0.034

0.059

0.073




0.186 0.000 0.000

0.228 0.083 0.000

0.251 0.139 0.069

 0.01

φ λ σφ ,1 σφ ,2

0.336
(

-0.741 -0.037 -0.060
)

0.284

TABLE VI

PARAMETER 2

µ0 µ1 σ r f

log(R)


0.081

0.110

0.130




0.034

0.059

0.073




0.186 0.000 0.000

0.228 0.083 0.000

0.251 0.139 0.069

 0.01

φ λ σφ ,1 σφ ,2

1.671
(

-0.017 0.149 0.058
)

1.725



TABLE VII

PARAMETER 3

µ0 µ1 σ r f

log(R)


0.142

0.109

0.089




0.065

0.049

0.049




0.256 0.000 0.000

0.217 0.054 0.000

0.207 0.062 0.062

 0.01

φ λ σφ ,1 σφ ,2

0.336
(

-0.741 -0.040 -0.034
)

0.288

TABLE VIII

PARAMETER 4

µ0 µ1 σ r f

log(R)


0.142

0.109

0.089




0.061

0.060

0.067




0.256 0.000 0.000

0.217 0.054 0.000

0.206 0.062 0.062

 0.01

φ λ σφ ,1 σφ ,2

1.671
(

-0.017 0.212 0.096
)

1.716


