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We describe a general technique for determining upper bounds on maximal values (or lower bounds on minimal costs) in
stochastic dynamic programs. In this approach, we relax the nonanticipativity constraints that require decisions to depend
only on the information available at the time a decision is made and impose a “penalty” that punishes violations of
nonanticipativity. In applications, the hope is that this relaxed version of the problem will be simpler to solve than the
original dynamic program. The upper bounds provided by this dual approach complement lower bounds on values that may
be found by simulating with heuristic policies. We describe the theory underlying this dual approach and establish weak
duality, strong duality, and complementary slackness results that are analogous to the duality results of linear programming.
We also study properties of good penalties. Finally, we demonstrate the use of this dual approach in an adaptive inventory
control problem with an unknown and changing demand distribution and in valuing options with stochastic volatilities and
interest rates. These are complex problems of significant practical interest that are quite difficult to solve to optimality. In
these examples, our dual approach requires relatively little additional computation and leads to tight bounds on the optimal
values.
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1. Introduction
In principle, dynamic programming provides a powerful
framework for determining optimal policies in complex
decision problems where uncertainty is resolved and deci-
sions are made over time. However, the widespread use
of dynamic programming is hampered by the so-called
“curse of dimensionality”—the size of the state space typ-
ically grows exponentially in the number of state variables
considered. In contrast, Monte Carlo simulation methods
typically scale well with the number of state variables con-
sidered and, given a control policy, it is not difficult to sim-
ulate a complex dynamic system with many uncertainties.
Simulating with a feasible policy provides a lower bound
on the expected value (or upper bound on the expected
costs) of an optimal policy, but Monte Carlo simulation
typically does not provide a good way to identify an opti-
mal policy or provide an upper bound on the value of an
optimal policy.
In this paper, we describe a dual approach for study-

ing stochastic dynamic programs (DPs) that focuses on
providing an upper bound on the optimal expected value.
This dual approach consists of two elements: (1) we relax
the nonanticipativity constraints that require decisions to
depend only on the information available at the time a deci-
sion is made and (2) we impose a penalty that punishes vio-
lations of the nonanticipativity constraints. By relaxing the

nonanticipativity constraints, we can often greatly simplify
the DP. For example, we study an adaptive inventory con-
trol problem with an unknown and changing demand dis-
tribution and stochastic ordering costs. Here a “perfect
information relaxation” assumes the decision maker (DM)
knows all demands and costs before placing any orders.
With this information, the problem of choosing an optimal
ordering schedule is a deterministic DP that can be solved
quite easily. In another example, we study an option-pricing
model with stochastic volatilities and stochastic interest
rates and consider an “imperfect information relaxation”
where volatilities and interest rates are known in advance
but the stock price is not: with the volatilities and interest
rates known, we can value the option using standard lattice
methods.
Because these relaxations assume the DM has more

information than is truly available, they lead to an upper
bound on value. Without any penalty for using this addi-
tional information, the bound obtained is often quite weak.
Informally, we say a penalty is dual feasible if it does not
penalize any policy that is nonanticipative; the penalties
may, however, punish policies that do not satisfy the nonan-
ticipativity constraints. We will show that in principle we
can always find a dual feasible penalty that provides a tight
bound, i.e., strong duality holds.
We view this dual approach as a complement to

the use of simulation methods and modern approximate
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dynamic programming methods for studying DPs (see, e.g.,
Bertsekas and Tsitsiklis 1996, de Farias and Van Roy 2003,
Powell 2007, or Adelman and Mersererau 2008). As men-
tioned earlier, given a candidate policy (perhaps identi-
fied using a heuristic approach or using approximate DP
techniques), we can use standard simulation techniques to
estimate the expected value with this policy and thereby
generate a lower bound on the expected value with an opti-
mal policy. Our dual approach can then be used to generate
an upper bound on the value of an optimal policy. If the
difference between the expected value with this candidate
policy and the upper bound on the optimal value is small,
we may conclude that the candidate policy is “good enough”
and not continue searching for a better policy. If the differ-
ence is large, it may be worthwhile to work harder to find
a better policy and/or a tighter upper bound. In our inven-
tory example, we will use the dual bounds to determine
whether a simple myopic ordering policy is “good enough”
or whether we need to consider more complex one- or two-
period look-ahead policies. In the option-pricing example,
we use the dual bounds to study the effectiveness of an
exercise policy that ignores uncertainty about volatilities
and interest rates. In both examples, we will also demon-
strate how we can use the results of the dual problem to
identify ways to improve these heuristic policies.
Our interest in this dual approach for DPs was moti-

vated by the need to evaluate the quality of heuristic poli-
cies in applications, and inspired by Haugh and Kogan’s
(2004) dual approach for placing bounds on the value of an
American option; Rogers (2002) independently proposed a
similar dual approach, also applied to option pricing. Both
Haugh and Kogan (2004) and Rogers (2002) consider the
use of what we call perfect information relaxations and
establish their main results using martingale arguments.
Haugh and Kogan propose a particular method for gener-
ating penalties or, in their terminology, “dual martingales”
based on approximate value functions and demonstrate the
use of this method in high-dimensional option-pricing prob-
lems. Andersen and Broadie (2004) propose an alternative
method for generating dual martingales based on approxi-
mate policies. Glasserman (2004) provides a nice overview
of this work.
We generalize the work of Haugh and Kogan (2004),

Rogers (2002), and Andersen and Broadie (2004) in sev-
eral ways. First, rather than focusing exclusively on option-
pricing problems, we consider general stochastic DPs. Sec-
ond, rather than focusing exclusively on perfect information
relaxations, we consider general information relaxations.
Finally, we present a general method for constructing good
penalties that includes and extends the methods proposed
by Haugh and Kogan and Andersen and Broadie. These
generalizations expand the scope and flexibility of this dual
approach.
The idea of relaxing the nonanticipativity constraints has

also been studied in the stochastic programming litera-
ture (see, e.g., Rockafellar and Wets 1991, Shapiro and

Ruszczyński 2003, Shapiro et. al 2009). Rogers (2007)
also recently (independently) proposed a dual approach for
Markov decision processes. In short, though these alterna-
tive approaches have similarities with ours, our formulation
is different and leads to results that we believe are both
simpler and more general. The stochastic programming for-
mulation requires the reward functions and set of feasible
actions to be convex and the penalties considered are linear
functions of the actions; they consider only perfect informa-
tion relaxations. Rogers focuses on Markov decision pro-
cesses and considers only perfect information relaxations
and penalties that are a function of the state variable only;
Rogers does not present any example applications. In con-
trast, our framework allows general reward functions and
action spaces, allows general penalty functions, and con-
siders imperfect as well as perfect information relaxations.
Moreover, our duality proofs are quite simple and direct and
do not rely on sophisticated convex duality or martingale
arguments. Finally, our inventory control and option-pricing
examples demonstrate the power of this dual approach in
some complex problems of significant practical interest.
We begin in §2 by defining the basic framework and

theory underlying the dual approach; the main results are
analogous to the duality results of linear programming.
We then illustrate the approach in the inventory control
and option-pricing examples in §3–4. We offer a few con-
cluding remarks in §5. The electronic companion provides
supporting information: Appendix A contains most of the
proofs; Appendix B compares our results to similar results
in stochastic programming and develops the connections
to linear programming more fully; and Appendix C pro-
vides some details of the adaptive inventory example. The
electronic companion to this paper is available as part of
the online version that can be found at http://or.journal.
informs.org/.

2. The Basic Framework and Results
We begin by describing the general formulation of the pri-
mal stochastic DP in §2.1. We then present our main duality
results in §2.2 and discuss an approach for generating good
penalties in §2.3.

2.1. General Framework

Uncertainty in the DP is described by a probability space
���� ���where� is the set of possible outcomes (with typ-
ical element �), � is a �-algebra that describes the set of
all possible events (an event is a subset of �), and � is a
probability measure describing the likelihoods of the various
events.
Time is discrete and indexed by t = 0� � � � � T . The DM’s

state of information evolves over time and is described by a
filtration � = ��0� � � � ��T � where the �-algebra �t describes
the DM’s state of information at the beginning of period t,
i.e., �t is the set of events that will be known to be true or
false at time t. We will refer to � as the natural filtration. We
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require all filtrations to satisfy �t ⊆�t+1 ⊆� for all t < T so
the DM does not forget what she once knew. We will assume
that�0 = 	���
, so the DM initially “knows nothing” about
the outcome of the uncertainties. A function (or random vari-
able) f defined on � is measurable with respect to a �-
algebra �t (or �t-measurable) if for every Borel set R in the
range of f , we have 	�� f ��� ∈ R
 ∈�t; we can interpret
f being �t-measurable as meaning the result of f depends
only on the information known in period t. A sequence of
functions �f0� � � � � fT � is said to be adapted to a filtration �
(or �-adapted) if each function ft is measurable with respect
to �t .
In the DP model, the DM will choose an action at in

period t from the set At; we let A ⊆ A0 × · · · × AT denote
the set of all feasible action sequences a. The DM’s choice
of actions is described by a policy � that selects a sequence
of actions a in A for each outcome � in � (i.e., �� � → A).
We let � denote the set of all policies. In the primal DP, we
assume that the DM’s choices are nonanticipative in that
the choice of action at in period t depends only on what
is known at the beginning of period t. More formally, we
require policies to be adapted to the natural filtration � in
that a policy’s selection of the first t+1 actions �a0� � � � � at�
must be measurable with respect to �t . We let �� be the
set of all nonanticipative policies.1

The goal of the DP is to select a nonanticipative
policy � to maximize the expected total reward. The
rewards are defined by a sequence of reward functions
�r0�a���� � � � � rT �a���� where the reward in period t
depends on the action sequence a selected and the out-
come �. We let r�a��� = ∑T

t=0 rt�a��� denote the total
reward; discounting can be incorporated into the period
reward function rt . The primal DP is then:

sup
�∈��

Ɛr����� (1)

Here Ɛr���� could be written more explicitly as
Ɛr���������, where policy � selects an action sequence
that depends on the random outcome �, and the rewards r
depend on the action sequence selected by � and the out-
come �. We will typically suppress the dependence on �
and interpret r��� as a random variable representing the
reward generated with policy �.
It is instructive to write the primal DP (1) in the stan-

dard Bellman-style recursive form. First, we will assume
that the period-t rewards rt are �t-measurable for each
set of actions and depend only on the first t + 1 actions
�a0� � � � � at�; we will write rt�a� as rt�a0� � � � � at� with the
understanding that �a0� � � � � at� is selected from the full
sequence of actions a. For t > 0, let At�a0� � � � � at−1� be
the subset of period-t actions At that are feasible given the
prior choice of actions �a0� � � � � at−1�. We take the terminal
value function VT +1�a0� � � � � aT � = 0 and, for t = 0� � � � � T ,
we define

Vt�a0� � � � � at−1� = sup
at∈At�a0�����at−1�

{
rt�a0� � � � � at�

+ ƐVt+1�a0� � � � � at� ��t�
}
� (2)

Here both sides are random variables (and therefore implic-
itly functions of the outcome �) and we select an optimal
action at for each outcome �. Because the rewards rt are
assumed to be �t-measurable and the expected continua-
tion values are conditioned on �t , and thus �t-measurable,
the objective function on the right is �t-measurable for
each set of actions �a0� � � � � at�. Thus, the supremum over
actions at is also �t-measurable, which implies that Vt is
�t-measurable. There is no loss in restricting the choice of
actions at to be �t-measurable; therefore, if the suprema
on the right side of (2) are attained, we can construct a
nonanticipative optimal policy using this recursion. The
final value V0 is equal to the optimal value of (1).

2.2. The Dual Approach

In our dual approach to the DP (1), we relax the require-
ment that the policies be nonanticipative and impose
penalties that punish violations of the nonanticipativity
constraints. We define relaxations of the nonanticipativity
requirement by considering alternative information struc-
tures. We say that a filtration �= ��0� � � � ��T � is a relax-
ation of the natural filtration � = ��0� � � � ��T � if, for each t,
�t ⊆�t ⊆� ; we abbreviate this by writing � ⊆�. � being
a relaxation of � means that the DM knows more in
every period under � than she knows under �. The perfect
information filtration 	 = �
0� � � � �
T � is given by taking

t =� for all t. We let �� denote the set of policies
that are adapted to �. For any relaxation � of �, we
have �� ⊆�� ⊆�	 =�; thus, as we relax the filtration, we
expand the set of feasible policies.
The set of penalties � is the set of all functions z�a���

that, like the total rewards, depend on the choice of action
sequence a and the outcome �. As with rewards, we will
typically write the penalties as an action-dependent ran-
dom variable z�a�(=z�a���) or a policy-dependent random
variable z����=z���������, suppressing the dependence
on the outcome �. We define the set �� of dual feasible
penalties to be those penalties that do not penalize nonan-
ticipative policies (in expectation), that is

�� = 	z ∈�� Ɛz��F ��� 0 for all �F in ��
� (3)

Policies that do not satisfy the nonanticipativity constraints
(and thus are not feasible to implement) may have positive
expected penalties.
We can place an upper bound on the expected reward

associated with any nonanticipative policy by relaxing the
nonanticipativity constraint on policies and imposing a dual
feasible penalty. This simple result can be viewed as a ver-
sion of the “weak duality lemma” for linear programming:

Lemma 2.1 (Weak Duality). If �F and z are primal and
dual feasible, respectively (i.e., �F ∈ �� and z ∈ ��), and
� is a relaxation of �, then

Ɛr��F ��� sup
�G∈��

Ɛr��G� − z��G��� (4)
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Proof. With z, �F , and � as defined in the lemma, we
have

Ɛr��F ��� Ɛr��F � − z��F ��� sup
�G∈��

Ɛr��G� − z��G���

The first inequality holds because z ∈ �� (thus
Ɛz��F ��� 0) and the second because �F ∈�� ⊆��. �

Thus, any information relaxation with any dual feasible
penalty provides an upper bound on all DP solutions. With
a fixed penalty z, weaker relaxations � lead to larger sets
of feasible policies �� and weaker bounds. For example, if
we consider the perfect information relaxation 	, the set of
relaxed policies �	 is simply the set of all policies � and
all actions are selected with full knowledge of the outcome.
Thus, the weak duality lemma implies that for any �F in
�� and z in �� ,

Ɛr��F ��� sup
�∈�

Ɛr��� − z���� = Ɛ
[
sup
a∈A

	r�a� − z�a�

]
� (5)

If we take the penalty z = 0, this upper bound is the
expected value with perfect information.
Note that the upper bound (5) is in a form that is

convenient for Monte Carlo simulation: we can estimate
the expected value on the right side of (5) by randomly
generating outcomes � and solving a deterministic “inner
problem” of choosing an action sequence a to maximize
the penalized objective r�a��� − z�a��� for each �. For
instance, in our inventory example, the perfect information
relaxation assumes the DM has knowledge of all demands
and costs before making any ordering decisions. We esti-
mate the dual bound by randomly generating demand/cost
scenarios in the “outer simulation,” and the inner problem
is a simple deterministic DP that chooses optimal order-
ing quantities in each demand/cost scenario. With imperfect
information relaxations, we can often still use Monte Carlo
simulation to estimate the upper bounds. For instance, in
our option-pricing example, we will randomly generate
interest rates and volatilities in the outer simulation, and
the inner problem is a one-dimensional DP that considers
uncertainty in stock prices.
If we minimize over the dual feasible penalties in (4),

we obtain the dual of the primal DP (1):

inf
z∈��

{
sup

�G∈��

Ɛr��G� − z��G��
}
� (6)

By the weak duality lemma, if we identify a policy �F and
penalty z that are primal and dual feasible, respectively,
such that equality holds in (4), then �F and z must be
optimal for their respective problems. In such a case, there
would be no gap between the values given by these primal
and dual solutions. If the primal solution is bounded, there
is always a dual feasible penalty that yields no gap. For
example, consider the penalty z∗�a� = r�a�−v∗ where v∗ is
the optimal value of the primal DP (1). This z∗ is dual fea-
sible (because Ɛr��F �� � v∗ for all �F ∈ ��) and trivially

optimal: no matter what policy is selected, the penalized
objective function r�a�−z∗�a� is equal to v∗. The existence
of this trivially optimal penalty is not helpful in practice
because it requires knowing the optimal value v∗ of the pri-
mal DP. It does, however, show that there is no gap between
the solutions to the primal and dual problems and that, in
principle, we could determine the maximal expected reward
in the primal DP (1) by solving the dual problem (6). This
result is analogous to the strong duality theorem of linear
programming.

Theorem 2.1 (Strong Duality). Let � be a relaxation
of �. Then

sup
�F ∈��

Ɛr��F �� = inf
z∈��

{
sup

�G∈��

Ɛr��G� − z��G��
}
� (7)

Furthermore, if the primal problem on the left is bounded,
the dual problem on the right has an optimal solution
z∗ ∈�� that achieves this bound.

The “complementary slackness condition” further char-
acterizes the relationship between the primal and dual prob-
lems, saying that for a primal-dual pair ��∗

F � z∗� to be
optimal, it is necessary and sufficient for �∗

F to have zero
expected penalty and for �∗

F to “solve” the dual problem in
the following sense.

Theorem 2.2 (Complementary Slackness). Let �∗
F and

z∗ be feasible solutions for the primal and dual problems
respectively (i.e., �∗

F ∈ �� and z∗ ∈ ��), with information
relaxation �. A necessary and sufficient condition for these
to be optimal solutions for their respective problems is that
Ɛz∗��∗

F �� = 0 and

Ɛr��∗
F � − z∗��∗

F �� = sup
�G∈��

Ɛr��G� − z∗��G��� (8)

Equation (8) can be interpreted as saying that with an
optimal penalty, in dual problem the DM will be content to
choose a policy that is nonanticipative even though she has
the option of choosing a policy that is not. In applications,
we will compare the heuristic policies �F used to compute
a lower bound with the policies �G selected in the dual
problem to see if we can identify some way to improve the
heuristic policy.
Finally, we note a useful property of this dual approach:

if we can simplify the primal problem by focusing on some
subset of policies, we can restrict the dual problem to focus
on policies in this same set. For example, if we know that
the optimal policy for the primal problem is myopic or has
a threshold structure, we can simplify the dual problem by
considering only policies that have the same structure. This
leads to dual bounds that are at least as tight and perhaps
easier to compute than the dual bounds that do not include
this constraint. We summarize this property as follows.
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Proposition 2.1 (Structured Policies.) If for some
� ⊆ � we have sup

�F ∈��

Ɛr��F �� = sup
�F ∈��

Ɛr��F ��, then, for

any dual feasible z, we have

sup
�F ∈��

Ɛr��F ��� sup
�G∈��

Ɛr��G� − z��G��

� sup
�G∈��

Ɛr��G� − z��G��� (9)

Moreover, the inequalities also hold for all z such that
Ɛz��F ��� 0 for all �F in �� .

For instance, in our option-pricing example, in the pri-
mal problem it is never optimal to exercise a call option
prior to expiration, except possibly just before a dividend
is paid. However, in the dual problem with a relaxed fil-
tration, “early exercise” may be optimal. In our numerical
experiments for this example, we will use this structural
result and impose a “no early exercise” constraint in the
dual problem for call options. The resulting bounds are both
tighter and easier to compute than they would be without
this constraint.

2.3. Good Penalties

In our discussion so far, we have considered the set of
all dual feasible penalties. We now focus on identify-
ing “good” penalties that are likely to be useful in prac-
tice. The main approach we will use to generate penalties
is described in the following proposition. We will show
shortly that we can, in principle, generate an optimal dual
penalty using this approach, so that strong duality holds
even when restricted to these “good” penalties.

Proposition 2.2 (Constructing Good Penalties). Let
� be a relaxation of � and let �w0�a���� � � � �wT �a����
be a sequence of generating functions defined on A × �
where each wt depends only on the first t + 1 actions
�a0� � � � � at� of a. Define zt�a� = Ɛwt�a���t�−Ɛwt�a���t�
and z�a� =∑T

t=0 zt�a�. Then:
(i) For all �F in �� , we have Ɛzt��F � ��t� = 0 for all t,

and Ɛz��F �� = 0; and
(ii) �z0�a�� � � � � zT �a�� is adapted to � and zt depends

only on the first t + 1 actions �a0� � � � � at� of a.

Property (i) of the proposition implies that the penalties z
generated using the proposition will always be dual feasible
in that Ɛz��F ��� 0 for �F in �� , but is stronger in that it
implies the inequality defining feasibility holds with equal-
ity. The complementary slackness condition (Theorem 2)
shows that an optimal penalty z∗ will assign zero expected
penalty to an optimal primal policy �∗. Penalties generated
using Proposition 2.2 will assign zero expected penalty to
all nonanticipative policies.
Property (ii) of the proposition implies that the penalized

objective function can be decomposed into period-t compo-
nents rt − zt that depend only on what is known at period t
under � and the actions chosen in or before period t. This

means we can solve the dual problem using a DP recur-
sion like that of Equation (2) using the penalized rewards
and based on filtration � rather than �. Specifically, the
terminal dual value function is V �

T +1�a0� � � � � aT � = 0 and,
for t = 0� � � � � T , we have

V �
t �a0� � � � � at−1�

= sup
at∈At�a0� ���� at−1�

{
rt�a0� � � � � at� − zt�a0� � � � � at�

+ ƐV �
t+1�a0� � � � � at� ��t�

}

= sup
at∈At�a0� ���� at−1�

{
rt�a0� � � � � at� − Ɛwt�a0� � � � � at� ��t�

+ Ɛwt�a0� � � � � at� ��t�

+ ƐV �
t+1�a0� � � � � at� ��t�

}
� (10)

The initial value, V �
0 , provides on upper bound on the pri-

mal DP (1) or, equivalently, (2).
We can construct an optimal penalty using Proposi-

tion 2.2 by taking the generating functions to be based
on the optimal DP value function given by (2). Specif-
ically, if we take wt�a� = Vt+1�a0� � � � � at�, we arrive at
an optimal dual penalty z��a� that we will refer to as the
“ideal” penalty. It is easy to show by induction that with
this choice of generating function, the dual value functions
are equal to the corresponding primal value functions, i.e.,
V �

t = Vt . This is trivially true for the terminal values (both
are zero). If we assume that V �

t+1 = Vt+1, terms cancel and
(10) reduces to the expression for Vt given in Equation (2).
Thus, with this choice of generating function, we obtain
an optimal penalty for any information relaxation �. The
following theorem summarizes this result and adds a bit
more.

Theorem 2.3 (The Ideal Penalty). Let � be a relax-
ation of � and let z� be defined as in Proposition 2.2 by
taking wt�a� = Vt+1�a0� � � � � at�. Then z� is dual feasible
and optimal in that

sup
�F ∈��

Ɛr��F �� = sup
�G∈��

Ɛr��G� − z���G��� (11)

Moreover, if �∗
F ∈�� achieves the supremum for the primal

problem on the left side of (11), then �∗
F is also optimal for

the dual problem on the right. Finally, if � is the perfect
information relaxation and �∗

F ∈ �� is an optimal policy,
then r��∗

F � − z���∗
F � = Ɛr��∗

F �� almost always.

Although the value functions will not be known in appli-
cations, the form of z� illustrates the ideal that we would
like to approximate with our choice of penalties. Intuitively,
we would like to choose penalties that eliminate the benefit
of choosing actions based on the information in � rather
than relying on the information in the natural filtration �.
That is, we want to choose a generating function wt so that
the differences Ɛwt�a� � �t� − Ɛwt�a� � �t� approximate
the differences ƐVt+1�a� � �t� − ƐVt+1�a� � �t� and the
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conditional expectations (Ɛwt�a� � �t� and Ɛwt�a� ��t�)
are not too difficult to compute.
In applications, we can approximate z� in a variety of

ways. Haugh and Kogan (2004) and Andersen and Broadie
(2004) proposed methods for generating penalties (or dual
martingales) in the option pricing context that can be gen-
eralized to our setting. Generalizing Haugh and Kogan’s
approach, we can approximate the ideal penalty z� by using
an approximate value function v̂t�a� in place of the true
value function Vt�a�. This leads to period-t penalties of
the form zt�a� = Ɛv̂t+1�a� � �t� − Ɛv̂t+1�a� � �t�. To use
this approach, we must somehow estimate or calculate the
conditional expectations Ɛv̂t+1�a� ��t� and Ɛv̂t+1�a� ��t�.
Haugh and Kogan consider the perfect information relax-
ation (�t =� ) so Ɛv̂t+1�a� ��t� = v̂t+1�a� can be evaluated
directly for any sample path. They estimate Ɛv̂t+1�a� ��t�
using a “nested simulation” procedure: for each sample
path and each period t, they estimate Ɛv̂t+1�a� ��t� by gen-
erating random successors to the period-t state and averag-
ing the next period values v̂t+1�a� in these successor states.
The penalties generated using this approach will lead to
valid bounds as long as the nested estimates of these con-
ditional expectations are unbiased; see Proposition 2.3(iv)
below.
Andersen and Broadie (2004) also consider a perfect

information relaxation, but base their penalty on a given
policy rather than an approximate value function. In our
framework, their approach can be seen as approximating
the value function Vt�a� with v�

t �a� = Ɛr��t�a�� � �t�,
where �t�a� denotes a policy that takes the first t actions
�a0� � � � � at−1� to match those of a and then continues
according to some given rule. The penalty is then zt�a� =
Ɛv�

t+1�a� � �t� − Ɛv�
t+1�a� � �t�; with a perfect informa-

tion relaxation, this is equivalent to zt�a� = Ɛr��t+1�a�� �
�t+1� − Ɛr��t+1�a�� � �t�. Andersen and Broadie generate
sample paths in the outer simulation and estimate the con-
ditional expectations using nested simulation. Whereas the
nested simulations in the Haugh-Kogan approach consider a
single period, here each period’s nested simulation follows
the specified policy through the end of the horizon or until
the policy calls for stopping. Because each future period
is considered in each nested simulation, the work involved
in the Andersen-Broadie approach potentially grows with
T 2 where T is the number of periods considered in the
model. Again, these penalties will lead to valid bounds as
long as the estimates of these conditional expectations are
unbiased.
In practice, there will typically be a trade-off between the

quality of the bound and the computational effort required
to compute it. We can control this trade-off through our
choice of information relaxation and penalty. The following
proposition provides some properties of penalties and infor-
mation relaxations that are useful in understanding these
trade-offs.

Proposition 2.3 (Properties of Penalties and

Relaxations). (i) Let �1 and �2 be filtrations satisfying

� ⊆ �1 ⊆ �2 and let z1 and z2 be penalties constructed
using Proposition 2.2 with relaxations �1 and �2 and a
common sequence of generating functions �w0� � � � �wT �.
Then

sup
�G∈��1

Ɛr��G�−z1��G��� sup
�G∈��2

Ɛr��G�−z2��G��� (12)

(ii) For any two dual feasible penalties z1 and z2 and
information relaxation �, we have

inf
�G∈��

Ɛz2��G�−z1��G��� sup
�G∈��

Ɛr��G�−z1��G��

− sup
�G∈��

Ɛr��G�−z2��G��

� sup
�G∈��

Ɛz2��G�−z1��G��� (13)

(iii) Let �′ and � be filtrations satisfying � ⊆ �′ ⊆ �
and let �w0� � � � �wT � be a sequence of generating functions
satisfying the conditions of Proposition 2.2. The penalty z
given by zt�a� = Ɛwt�a� � �t� − Ɛwt�a� � � ′

t � and z�a� =∑T
t=0 zt�a� satisfies the results of Proposition 2.2.
(iv) Let � be a relaxation of � and z�a� = ∑T

t=0 zt�a�
be a dual feasible penalty such that zt�a� is �t-measurable
and depends only on the first t + 1 actions of a. Suppose
ẑ�a� = ∑T

t=0 ẑt�a� where each ẑt�a� depends only on the
first t +1 actions of a, and further suppose that each ẑt�a�
is an unbiased estimate of zt�a� in that Ɛẑt�a� � �t� =
zt�a�. Let 	� be a relaxation of � that assumes that in
addition to what is known under �, the values of ẑt�a� are
revealed in period t. Then

sup
�G∈��

Ɛr��G� − z��G��� sup
�G∈�	�

Ɛr��G� − ẑ��G��� (14)

The first result of the proposition says that if we generate
penalties with a common set of generating functions, looser
relaxations lead to weaker bounds. For example, we may
find that the bounds given by using a simple generating
function (say, wt = 0) may be “good enough” with one
information relaxation, but not “good enough” with a looser
relaxation.
The second result of the proposition can be viewed as

a continuity property: if the penalties z1 and z2 are close
in that the difference Ɛz2��G� − z1��G�� is small for all
�G, then the bounds provided by the two penalties will
also be close. For example, if z2 is the ideal penalty z� and
therefore yields the optimal upper bound, the bound given
by some other penalty z1 will exceed the optimal bound by
no more than sup�G∈��

Ɛz���G� − z1��G��. In this sense,
penalties that are close to the ideal penalty will lead to
bounds that are close to optimal.
The third result can be helpful for determining penalties

when Ɛwt�a� � �t� is difficult to calculate. For instance in
the option-pricing example, if we assume that under the
natural filtration � volatility is unobserved, we may be able
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to simplify the computation of bounds by calculating penal-
ties using a filtration �′ that assumes that the volatility is
observed.
The final result of Proposition 2.3 concerns the effects

of errors when penalties are estimated, for example, using
nested simulations as in Haugh and Kogan (2004) and
Andersen and Broadie (2004). Here we can imagine the
probability space ���� ��� as including the uncertainties
associated with the estimation of penalties as well as the
original model uncertainties. These estimation uncertainties
are not revealed under filtrations � or � and do not affect
the rewards or penalties and thus are irrelevant to the pri-
mal and “true” dual problem. The estimates are, however,
revealed under 	� and actions are selected to maximize the
estimated penalized reward r�a�− ẑ�a� rather than the true
penalized reward r�a�− z�a�. Here we see that when these
estimated penalties are unbiased, we obtain estimates of the
bounds that are valid but weaker than the bounds given by
using the penalty z itself. Glasserman (2004) provides some
numerical results studying the quality of the bounds in an
option-pricing example with varying numbers of trials in
the nested simulations. His results (and others’) show the
importance of estimating penalties accurately. Our results
for the option example in §4.7 confirm this finding.

2.4. Summary of Approach

Before turning to our examples, it may be worthwhile to
summarize the steps involved in our approach. Given a
dynamic programming model:

• Identify a heuristic policy that can be used in a simu-
lation study to estimate a lower bound on the optimal value
(or upper bound on the optimal cost) for the problem.

• Choose an information relaxation that makes it “easy”
to determine optimal decisions given the additional infor-
mation in the relaxation. It is often natural to start by con-
sidering a perfect information relaxation, although in some
problems there may be other natural starting points.

• Find a penalty that does not greatly complicate the
calculation of optimal decisions with the chosen informa-
tion relaxation. We can start with zero penalty, but this may
lead to weak upper bounds.

• Estimate lower and upper bounds on the optimal value.
In our examples, we will typically estimate the upper and
lower bounds simultaneously in a single simulation.

• If the gap between bounds is sufficiently small, we
may conclude that the heuristic policy is “good enough”
for use in practice, and we are done. If not, we can study
the differences between the heuristic policies and the dual
policies and see if these suggest some ideas for improving
the heuristic policies, relaxations, or penalties.
In the next two sections, we will study two complex

examples and discuss issues involved in choosing heuris-
tic policies, information relaxations, and penalties in these
applications.

3. Example: Adaptive Inventory Control
Our first example is an adaptive inventory control model
where demand is nonstationary and partially observed,
meaning the probability distribution for demand changes
over time and the true demand distribution is not known.
These kinds of models are of significant practical interest,
but are quite difficult to solve. Treharne and Sox (2002)
consider several heuristic policies and evaluate the perfor-
mance of these policies in a set of five-period examples
that they were able to solve exactly. We illustrate our dual
bounding approach by evaluating some of these heuristic
policies in larger versions of Treharne and Sox’s examples.

3.1. The Model

The goal is to find a policy for ordering goods over T
periods (t = 0� � � � � T − 1) to minimize the expected total
costs. The inventory level at the beginning of period t is
denoted by xt and the amount ordered in period t is at .
The demand in period t is uncertain and denoted by dt .
The inventory level evolves according to xt+1 = xt + at −
dt = x0 +∑t

�=0�a� − d��, where x0 is the initial inventory
level. This evolution equation assumes unmet demand is
backordered and appears as a negative inventory level enter-
ing the next period; the equation also assumes there is no
lead time required to fulfill the orders. The order quantities
and demands are assumed to be nonnegative integers.
The period-t demand dt is drawn from a distribution �t

that changes stochastically, following a Markov process.
The demand dt is observed at the end of period t, but the
distribution �t is never observed. We begin with a prior
distribution �0 on the initial demand distribution �0 and
update this over time with the period-(t + 1) distribution
�t+1��t�dt�, taking into account the prior beliefs �t , the
observed demand dt , and the possibility of the distribution
�t changing.
In each period, there are ordering costs as well as

costs associated with holding inventory or failing to meet
demand. The cost of ordering at units is ctat , where ct is
the cost of ordering one item or unit. The cost of holding
inventory xt+1 from period t into period t + 1 is ft�xt+1� =
ht max�0� xt+1� + pt max�0�−xt+1�, where ht is the per-
unit cost of holding excess inventory in period t and pt

is the per-unit penalty associated with backordering unmet
demand in period t. Treharne and Sox assume a terminal
cost of −cT xT to capture the value (or cost) of holding
inventory (or unmet demand) at the end of the planning
horizon. We generalize Treharne and Sox’s model by allow-
ing the ordering costs ct to vary following a Markov chain
that is independent of the demands dt and demand distri-
butions �t; we assume that the period-t ordering cost ct

is known at the beginning of period t. This generalization
will allow us to consider a broader range of information
relaxations and makes the problem harder to solve.
Placing this model in the general framework of §2.1,

the actions a0� � � � � aT −1 are the order quantities for each
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period and the action sequences a are drawn from the
set A of T -vectors of nonnegative integers. An outcome
� is a sample path that includes the demands, demand
distributions, and ordering costs for each period and a
terminal cost cT ; that is, the outcomes are of the form
� = ��d0� �0� c0�� � � � � �dT −1� �T −1� cT −1�� �cT ��. The nat-
ural filtration � corresponds to knowing the demands
�d0� � � � � dt−1� and costs �c0� � � � � ct� at the beginning of
period t. Because the goal here is to minimize costs, we can
either rewrite the primal DP (1) as a minimization problem
or else take the rewards in (1) to be the negative costs.
The structure of the adaptive inventory model is perhaps

clearer if we view the problem as a partially observ-
able Markov decision process and write it recursively. The
period-t state variable is �xt� ct��t�, where xt is the inven-
tory level at the beginning of period t, ct is the ordering
cost in period t, and �t is the probability distribution on
the period-t demand distribution �t . In this recursive for-
mulation, it is convenient to take the decision variables to
be the order-up-to level yt = xt + at rather than the order
quantity at . We can then write the period-t cost-to-go func-
tion Jt , for t = 0� � � � � T − 1, as

Jt�xt� ct��t�

= −ctxt +min
yt�xt

{
ctyt + Ɛft�yt − d̃t�

+ Jt+1�yt − d̃t� c̃t+1��t+1��t� d̃t�� � ct��t�
}
� (15)

Here d̃t and c̃t+1 denote the random period-t demand
and period-(t + 1) costs, and the terminal cost function is
JT �xT � cT ��T � = −cT xT .

What makes this problem difficult to solve is that each
demand sequence �d0� � � � � dt−1� leads to a different �t

and, consequently, the number of scenarios that must be
considered grows exponentially in the number of periods
considered. For instance, the problems that Treharne and
Sox solved to optimality had 5 time periods, 19 possible
demand levels, and one ordering cost level. To find an opti-
mal policy, they had to solve the optimization problem (15)
for approximately 138,000 different �ct��t�-scenarios. In
our numerical examples, we will consider 10 time periods,
19 demand levels, and three cost levels; we would have
to solve approximately 1012 such optimization problems to
find an optimal policy.

3.2. Heuristic Policies

Because of the complexity of the primal problem, Treharne
and Sox propose using simpler “limited-look-ahead poli-
cies” that choose an order quantity that is optimal for a
truncated version of the model that looks only zero, one
or two periods into the future. For t = 0� � � � � T − 1, the
L-period look-ahead cost-to-go function is defined as

J L
t �xt� ct��t�

= −ctxt +min
yt�xt

{
ctyt + Ɛft�yt − d̃t�

+ J L−1
t+1 �yt − d̃t� c̃t+1��t+1��t� d̃t�� � �t� ct�

}
� (16)

In the terminal cases with t = T or L = −1, we take
J L

t �xt� ct��t� = −ctxt . When simulating the inventory sys-
tem using an L-period look-ahead policy, we determine the
order quantity for a particular �ct��t�-scenario by solving
(16) for the optimal order-up-to level yt . We then draw
the random demand dt and next period cost ct+1, calcu-
late the updated probability distribution �t+1, and repeat
the process by finding the order quantity for the next period
using the L-period look-ahead value function starting at
�ct+1��t+1�.
The complexity of these limited-look-ahead policies

grows exponentially with the look-ahead horizon L. In our
numerical examples, we take L = 0, 1, and 2 and we must
solve 1, 58, and 1,141 scenario-specific optimization prob-
lems (respectively) to determine the recommended order
quantity for each period. If we estimate the expected costs
of these policies using a simulation with T periods and K
trials, we must solve KT , 58KT , or 1�141KT optimization
problems for the 0-, 1-, and 2-period look-ahead policies,
respectively.

3.3. Information Relaxations

We will study three different information relaxations in this
example, each of which allows us to avoid considering
the full tree of all possible cost/demand scenarios. First,
we will consider the perfect information relaxation. In this
case, in the outer simulation we randomly generate the full
sequence of ordering costs �c0� � � � � cT �, demand distribu-
tions ��0� � � � � �T −1�, and actual demands �d0� � � � � dT −1�. In
the inner problem, we determine optimal order quantities
by solving a simple deterministic DP. With this relaxation,
we will be selecting random samples from the large tree of
possible cost/demand scenarios.
Second, we will consider a tighter, imperfect infor-

mation relaxation that assumes the demand distributions
��0� � � � � �T −1� and actual demands �d0� � � � � dT −1� are
known in advance, but assumes the ordering costs ct are
not known until period t. In this case, we randomly gen-
erate the demand distributions and demands in the outer
simulation. In the inner problem, we solve a small stochas-
tic DP that determines cost-dependent order quantities for
each period.
The third relaxation is tighter than the first two: it

assumes that the actual costs ct and demands dt are
revealed as in the natural filtration (in period t and period
t + 1, respectively), but the demand distribution �t is
known in period t; the natural filtration assumes �t is never
observed. In this case, if we assume zero penalty, the dual
problem can be formulated as a Markov DP with state vari-
able �xt� ct� �t�; the number of scenarios that must be con-
sidered no longer grows exponentially in T , and this DP is
easy to solve.

3.4. Penalties

As discussed in §2.3, the ideal penalty takes the generat-
ing function wt to be the optimal continuation value, i.e.,
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the period-(t + 1) value function Vt+1. Here we will take
the generating function wL

t for the “L-period look-ahead
penalty” to be the L-period look-ahead cost-to-go functions
defined by Equation (16),

wt = J L−1
t+1 �yt − dt� ct+1��t+1�dt��t��� (17)

For example, in the myopic case with L = 0, the generating
function is simply −ct+1�yt − dt). Although we would not
expect the (L−1)-period look-ahead cost-to-go functions to
provide a very good approximation of the actual cost-to-go
functions Jt+1 (they consider the costs over a small frac-
tion of the total time frame), these limited-look-ahead cost
functions may provide a reasonable approximation of the
change in costs due to having the additional information
provided by relaxation � instead of the natural filtration �.
In the perfect information relaxation, the full sequence of

demands and costs are known in advance and generated in
the outer simulation. Let �d̂k

0� � � � � d̂k
T −1� and �ĉk

0� � � � � ĉk
T �

denote the sequences of these values generated in the kth
trial of the simulation and let �̂k

t denote the period-t proba-
bility distribution on �t given by starting with the prior dis-
tribution �0 and updating based on seeing �d̂k

0� � � � � d̂k
t−1�.

Following Equation (10), we can write the inner problem
in the kth trial with the L-period-look-ahead penalty as

J L�k
t �xt�

= −ĉk
t xt +min

yt�xt

{
ĉk

t yt − J L−1
t+1 �yt − d̂k

t � ĉk
t+1� �̂k

t+1�

+ J L�k
t+1�yt − d̂k

t � + Ɛft�yt − d̃t�

+ J L−1
t+1 �yt − d̃t� c̃t+1��t+1��̂

k
t � d̃t�� � �̂k

t � ĉk
t �
}

(18)

with terminal value J L�k
T �xT � = −ĉk

T xT . Note that the
limited-look-ahead cost-to-go function J L−1

t+1 and the expec-
tation in (18) would be calculated when determining
the limited-look-ahead order quantity for this trial (see
Equation (16)). Consequently, when simulating to estimate
the expected costs with an L-period look-ahead policy, it is
not difficult to simultaneously estimate the corresponding
dual bound: we need only solve one additional scenario-
specific optimization problem for each period.
The dual bounds are also easy to calculate with the

generating function of Equation (17) for the imperfect
information relaxation that assumes that the demands
�d0� � � � � dT −1� and demand distributions ��0� � � � � �T −1� are
known in advance, but the ordering costs ct are revealed
over time as in the natural filtration. In this case, the inner
problem is a stochastic DP that explicitly considers the
uncertainty about the ordering costs; see Appendix A.7 for
details. By Proposition 2.2(i), we know that the bounds
given by using this imperfect information relaxation will be
at least as good as those given by the perfect information
relaxation.

The third information relaxation we consider in this
problem assumes the demand distributions �t are observed
in period t, but ct and dt are revealed over time as in the
natural filtration. As discussed in §3.3, with zero penalty,
this dual problem can be formulated as a Markov decision
problem that is not difficult to solve. However, with this
relaxation, the generating function of Equation (17) leads
to an inner problem that is not easy to solve. The difficulty
is that the generating functions depend on the probability
distributions �t+1 that, in turn, depend on the whole his-
tory of demands �d0� � � � � dt�. This dependence destroys the
Markovian structure that makes it easy to solve the inner
problem with no penalty. Thus, the generating function (17)
works well with the first two relaxations, but not with the
third.

3.5. Numerical Results

In this section, we describe numerical results for the adap-
tive inventory control example. Our choice of parameters
closely follows Treharne and Sox (2002). Specifically, fol-
lowing Treharne and Sox, we assume that there are three
possible random demand distributions �t , each of which is
a truncated negative binomial distribution that ranges from
0 to 18 units. The three distributions are “low,” “medium,”
and “high” and have means and standard deviations of
�1�1�01�, �9�3�01�, and �16�4�01�, respectively, before
truncation. We consider seven different transition proba-
bility matrices representing various trends for the demand
distributions. The holding costs ht are set to $1.00 per unit
and the backorder costs pt are $1.00, $1.86, or $4.00 per
unit. Finally, we consider four different priors on the initial
demand distribution �0: the first, third, and fourth repre-
sent cases where the demands are most likely to be high,
medium, or low, respectively; the second prior is a uniform
distribution across the three different demand distributions.
In total, there are 84 different combinations of parameters
to consider (7 transition matrices × 3 backorder costs× 4
priors). In each case, we assume the initial ordering costs
c0 are $0.60 per unit and later costs take values $0�00,
$0�60, or $1�20 following a Markov chain. (These assump-
tions are described in detail in Appendix C.) Finally, we
take the planning horizon T to be 10 periods and assume
zero initial inventory.
In our numerical experiments, we calculate upper and

lower bounds on the optimal expected costs using the zero-,
one-, or two-step look-ahead policies and penalties. For
each combination of model parameters, we estimate the
bounds using a simulation of 1,000 trials. Figure 1 sum-
marizes the results for the perfect information relaxation.
Appendix C provides the numbers underlying this figure
(estimated means and standard errors) as well as results for
the imperfect information relaxation described in §3.3.
We call the plot of Figure 1 an “aquarium plot.” In the

figure, there are 84 sets of bars, each appearing (if you
have bad eyesight!) like a tropical fish. Each “fish” rep-
resents the results for a particular set of parameters and
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Figure 1. Upper and lower bounds with the perfect information relaxation.
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Black (dotted): Observable demand distribution lower bounds
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consists of three vertical bars with blue, black, and red
colors and horizontal markers on each end. The blue bars
on the left of each fish represent the myopic (or 0-period
look-ahead) upper and lower bounds; the black bars in the
middle represent the 1-period look-ahead upper and lower
bounds; and the red bars on the right represent the two-
period look-ahead upper and lower bounds. The different
sets of parameters are grouped first according to the transi-
tion matrices (indicated at the bottom), then by backorder
costs (with left to right representing high to low costs), and
last by the initial priors.
In most cases, the gaps between bounds narrow as we

increase the look-ahead horizon, albeit at varying rates.
In many cases, the bounds are all quite narrow and the
fish look like minnows; in these cases, we could probably
assume that the myopic policies are “good enough” and
not consider more complex policies.2 In the cases with a
“stable transition matrix, with positive correlation” (on the
left of the figure), the fish have relatively wide tails on the
left, but narrow quickly: here we may not be satisfied with
the quality of the myopic policy, but may find the one-
or two-period look-ahead policies to be “good enough.”
There are, however, a few cases—with “downward, slow”
and “downward, fast” transitions (on the right side of the

figure)—where the gaps remain relatively large even with a
two-period look-ahead policy. We will return to these cases
in §3.6 below.
Appendix C provides results for the imperfect infor-

mation relaxation where all demands are assumed to be
known in advance, but costs are revealed sequentially over
time. The estimated bounds with imperfect information are
quite similar to those with perfect information, but the
imperfect information bounds are more precisely estimated.
Across the 84 cases, the mean standard errors for the dual
bounds with the imperfect information relaxation average
$0.216, $0.172, and $0.137 for the zero-, one-, and two-
period look-ahead bounds, respectively. With the perfect
information relaxation, the corresponding mean standard
errors for the dual bounds average $0.821, $0.554, and
$0.374. Intuitively, the improved precision in the imper-
fect information bounds comes from eliminating random
sampling variations associated with costs by explicitly enu-
merating the cost scenarios. In the imperfect informa-
tion case, we also enumerate the cost scenarios when
estimating the expected cost of the heuristic policy; this
is somewhat more time consuming (for a fixed number
of samples) but improves the precision of the estimated
bounds.
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Table 1. Computation times (seconds) for calculating
bounds in the inventory example.

Perfect information Imperfect information
relaxation relaxation

Look-ahead Heuristic Dual Heuristic Dual
horizon (L) policy bound policy bound

Zero periods 7�2 +0�2 9�3 +1�3
One period 46�1 +1�2 47�8 +3�7
Two periods 663 +1�2 667 +3�6

The run times required to calculate these bounds are
shown in Table 1. We show the time required to evaluate
the zero-, one-, or two-period look-ahead heuristic poli-
cies using 1,000 trials for one set of model parameters and
the additional time required to calculate the dual bounds
with these same 1,000 trials.3 Here we see that once we
have calculated the bounds associated with the heuristic
policies (and the associated look-ahead value functions),
it takes little additional time to compute the dual bounds.
The myopic dual bounds are somewhat faster to compute
than the one- and two-period look-ahead bounds because
in the myopic case we know the objective function in
Equation (18) is convex and can simplify the optimization
problem. The imperfect information bounds take somewhat
longer to compute than the perfect information bounds,
because we must solve for dual optimal actions in each of
the three possible cost states in each period rather than the
one randomly chosen cost state that is considered in the
perfect information case.
As discussed in Section §3.3, we can construct an alter-

native lower bound on expected costs by considering an
information relaxation where the demands dt and costs ct

are revealed over time according to the natural filtration
but the demand distributions �t are observed in period-t
(rather than never observed, as assumed in the natural fil-
tration). If we take the penalty to be zero, this problem
can be formulated as a Markov DP that takes approxi-
mately 0.08 seconds to solve. These “observable demand
distribution” bounds are shown as connected dotted lines in
Figure 1. These lines are well below the “fish” representing
the limited-look-ahead bounds. Thus, in these examples,
observing the demand distribution is quite valuable and,
with no penalty, the corresponding bounds are quite weak.

3.6. Improving the Heuristic Policies and
Bounds

We now consider the use of the dual results to identify bet-
ter policies and bounds when the gaps are relatively large.
We will focus on the cases with the “downward, slow”
and “downward, fast” transition matrices. In these cases,
demand may initially be high (with mean 16), but it may
drop to medium (with mean 9) or low (with mean 1) this
period, and when demand drops, it will not increase again.
Comparing the order-up-to quantities (the yts) selected by

the myopic policy with those selected in the corresponding
dual bound, we find that the dual problem takes advantage
of the perfect information to reduce the order in the period
when demand drops to the low demand state, thereby avoid-
ing the cost of carrying excess inventory when the system
enters the low state. It appears that the myopic policies
order too much when the system is not in the low demand
state and the dual penalties do not appropriately “punish”
the DM in the dual problem for taking advantage of the
perfect information about demand.
To understand why this is the case, note that the ter-

minal value used in determining myopic policies and
used as the generating function for the myopic dual
bound, J −1

t �xt� ct��t� = −ctxt , implicitly assumes that left-
over inventory substitutes for future purchases. One way
to perhaps improve the policies and bounds is to use
the terminal values based on a model that assumes the
demand distributions is observable. Specifically, we take
the limited-look-ahead terminal value J −1

t �xt� ct��t� to be
ƐJ o

t �xt� ct� �̃t� � �t�, where J o
t is the value function for a

Markov DP that assumes the demand distribution �t is
observed in each period; this model was used to calculate
the “observable demand distribution” bounds described in
§3.5. As is evident in Figure 1, these observable demand
value functions are not very good approximations of the
true value functions (they greatly underestimate costs), but
they are easy to compute and, unlike the original termi-
nal values, they include the holding costs associated with
having excess inventory in a low demand state.
This modification leads to dramatic improvements for

the cases with the “downward, slow” and “downward,
fast” transition matrices, with little additional work. For
example, in the case with the “downward, slow” transition
matrix, high backorder costs, and a high prior distribution,
the myopic bounds with the modified terminal values were
$107.0 and $107.5 as compared to $92 and $111 for the
myopic bounds with the original terminal values; the run
times were 7.7 and 7.4 seconds, respectively. (These results
are for the perfect information relaxation and a simulation
of 1,000 trials.) The myopic bounds for the other cases with
“downward, slow” and “downward, fast” transition matri-
ces are also much improved. In these cases, these modified
myopic policies not only outperform the original myopic
policies, they also outperform the significantly more com-
plex one- and two-period look-ahead policies based on
the original terminal values. (See Appendix C for detailed
results for all cases.)
Although this modification of the myopic policies greatly

improves the results for the cases with the “downward,
slow” and “downward, fast” transition matrices, the mod-
ified myopic policies perform worse than the original
myopic policies in some other cases, where the original
myopic policies performed quite well. In all, comparing
across the 84 different sets of parameters, we find that
we can get within 2% of the optimal costs (and typically
closer) using one of these two myopic policies. Thus, by
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experimenting with the heuristic policies and comparing
the expected costs and policies to the corresponding dual
bounds and policies, we have identified simple heuristic
policies that perform well in each of the 84 cases consid-
ered. Moreover, we know that we cannot do much better
with more complex policies.

4. Example: Option Pricing with
Stochastic Volatilities and
Interest Rates

An American call (put) option gives its owner the right to
buy (sell) a stock at a specified strike price at any time
before the option expires. To value an American option,
we must use dynamic programming methods to determine
an optimal policy for exercising the option. The origi-
nal Black-Scholes-Merton model for valuing options on
stocks assumes that the volatility of the stock price and
the (risk-free) interest rate are both constant over time. In
this setting, we can value an American option by solving
a one-dimensional DP, typically represented as a binomial
or trinomial lattice. In this example, we will consider the
problem of valuing American options on a dividend-paying
stock with stochastic volatilities and interest rates.

4.1. The Model

We will consider fairly standard models of stock prices,
volatilities, and interest rates and will not exploit any
nonstandard properties of these models in our analysis.
Specifically, our model of stock prices and volatilities fol-
lows Heston (1993) and our model of interest rates fol-
lows Medvedev and Scaillet’s (2007) extension of Heston’s
model. With no dividends, the stock price s� at time � has
drift equal to the risk-free interest rate �� and instantaneous
variance v� (v� is the square of the volatility); s� , �� , and
v� evolve according to the joint stochastic process

ds� = ��s�d� + √
v�s�dzs

�

d�� = −����� − �̄�d� + ��

√
��dz�

� �

dv� = −�v�v� − v̄�d� + �v

√
v�dzv

� �

(19)

where �̄ and v̄ are long-run average levels for �� and
v� (respectively); �� and �v are the corresponding mean-
reversion rates; and �� and �v are the corresponding instan-
taneous volatilities. We will assume that the stochastic
increments dzs

� and dzv
� for stock prices and volatilities

have correlation �sv. Following Medvedev and Scaillet, we
will assume that dz�

� is uncorrelated with the other two
factors; this simplifies our discussion somewhat but is not
necessary for our approach. If the stock pays a dividend d�

at time � , the stock price drops instantaneously from s�−
(the price just before the dividend) to s� = s�− − d� .

Following standard practice in option valuation, we
assume that the stochastic differential Equations (19) are
“risk-neutral” processes and the model parameters include

any required risk premiums. With this assumption, the
value of any security whose value depends on s� is given
as the expected present value of its future payoffs, where
expectations are calculated using the risk-neutral processes
and payoffs are discounted at the risk-free rate �� . This
implies that between dividends the discounted stock price
follows a martingale, i.e., the expected present value of the
stock at time �2, discounted back to �1 values at the pre-
vailing interest rate, is equal to the current price s�1

.
This martingale property implies that there is no ben-

efit to exercising a call option before expiration, except
possibly immediately before a dividend is paid. Following
Proposition 2.1, we will impose a constraint that enforces
this “no early exercise” property when calculating bounds
for call options. This “no early exercise” property does not
hold for put options, and we must consider all possible
exercise dates.
To place this problem in our discrete-time framework of

§2, we will consider a discrete-time approximation of the
diffusions (19) where the time until expiration is divided
into T steps of length �. The outcomes � are sample paths
that specify the stock price, volatility, and interest rates at
each step: � = ��s0� v0� �0�� � � � � �sT � vT ��T ��. The actions
at are to exercise the option or not (i.e., at ∈ {exercise, do
not exercise}); the action space A includes the constraint
that the option can be exercised at most once. Let �t =
exp�−��

∑t−1
i=0 �i�� be a discount factor that converts the

period-t option payoff back to period-0 values using the
time-varying risk-free interest rates �t . The period-t reward
for an option with strike price K is then �t�st − K� for a
call option (−�t�st − K� for a put) if at = exercise and 0
otherwise.
The complexity of the primal DP depends on how we

define the natural filtration �. The simplest formulation is
to assume that the stock price, volatility, and interest rates
�st� vt� �t� are observed in period t and that �t reflects
knowledge of these processes up to time t. In this case, the
primal DP can be formulated as a Markov decision pro-
cess with three continuous state variables. In principle, this
could be approximated using a three-dimensional grid to
represent the state space. If we want good coverage of the
state space, these grids may be quite large. For example, if
we were to use a grid with 50 points for each dimension,
we would need a total of 503 = 125�000 elements to rep-
resent the state space, and the probability transition matrix
would have a total of �125�000�2 ≈ 1�6 × 1010 elements.
If we were to consider multifactor models of interest rates
and/or volatilities, these DPs would be even more complex.
Alternatively and perhaps more realistically, we might

consider a natural filtration � that assumes that stock prices
and interest rates are observed in each period, but recog-
nizes the fact that the volatilities are never observed. The
DP with this information structure could be formally mod-
eled as a partially observed Markov decision problem with
the state variable being �st� �t��t� where �t is a probabil-
ity distribution on vt . Given the high dimensionality of �t ,
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the corresponding primal DP would be very difficult to for-
mulate and solve.

4.2. A Heuristic Policy

We can calculate a lower bound on the value of an option
by simulating the option payoffs using any given exercise
policy. We will generate lower bounds using an exercise
policy that is optimal for a simplified model with constant
volatilities and interest rates, set at their long-run means
v̄ and �̄. This simplified option problem can be formulated
as a DP with a one-dimensional state space and solved
using standard lattice techniques. Our dual bounds will help
us determine whether this simple exercise policy is “good
enough” to value options in the more complex setting with
stochastic volatilities and interest rates.

4.3. Information Relaxations

Our primary focus will be on an imperfect information
relaxation that assumes that the volatilities �v0� � � � � vT � and
interest rates ��0� � � � � �T � are known in advance, but the
stock price st is not known until period t. Thus, in the
outer simulation we generate volatilities and interest rates
and the inner problem is a one-dimensional option pricing
problem that can be solved using a simple lattice. Although
the stock prices remain uncertain, the information about
volatilities and interest rates may be valuable. For exam-
ple, if the volatilities are correlated with stock price move-
ments (i.e., �sv �= 0), advance knowledge of the volatilities
provides some information about future stock price move-
ments. Even without such correlation, the volatilities affect
the probability that an option will be “in the money,” and
hence may have some bearing on the option values and
exercise decisions.
We will also consider a perfect information relaxation

that assumes that the volatilities �v0� � � � � vT �, interest rates
��0� � � � � �T �, and stock prices �s0� � � � � sT � are known in
advance and generated in the outer simulation. In this case,
the inner problem is a simple deterministic maximization
problem where we choose the optimal exercise date or
decline to exercise, with full knowledge of the penalized
reward for exercising at each time. Note that these relax-
ations both assume the volatilities are known in advance
and thus provide valid bounds whether we assume that the
volatility is truly observed in period t or not.

4.4. Penalties

We will focus on a simple penalty that approximately can-
cels the benefit of the information about stock prices pro-
vided by the information relaxation. As in the inventory
example, our penalty will be derived from the model that
is used to determine the heuristic policy. Here, the lower
bound is given by simulating the complex model with
stochastic volatilities and interest rates using a policy that
is optimal for a simplified model with constant volatility
and constant discount rates. In the simplified model, the

“delta” for the option, �t�st�, describes the sensitivity of
the period-t value of option to changes in the stock price
st in period t. These deltas are straightforward to compute
in the lattice used to determine these heuristic policies, and
because �t�st� does not depend on the actual volatilities
or interest rates, these deltas need only be calculated once
when simulating to estimate the bounds.
We will use these deltas to approximate the impact of

changing price expectations in our more complex model.
Specifically, when the DM chooses to “wait” or hold the
option (i.e., when at = do not exercise and t < T ), we take
the generating function of Proposition 2.2 for period t to be

wwait
t = �t�t�st��e

−�t�st+1� (20)

where �t is the previously defined discount factor that
converts period-t values to period-0 values. The period-t
penalty when the option is not exercised is then

zwaitt = Ɛwwait
t ��t� − Ɛwwait

t ��t�

= �t�t�st��e
−�t�Ɛs̃t+1 ��t� − e−�t�Ɛs̃t+1 ��t��

= �t�t�st��e
−�t�Ɛs̃t+1 ��t� − st�� (21)

The first two equalities follow from the definitions of zwaitt

and wwait
t (respectively). In the third equality, we have

used the martingale property for the stock prices (st =
e−�t�Ɛs̃t+1 � �t�). This penalty zwaitt can be viewed as a
crude first-order approximation of the change in the value
of the option due to the extra information provided by � in
period t: �t�t�st� approximates the sensitivity of the value
of the option to changes in the period-t stock price (dis-
counted to present value terms) and �e−�t�Ɛs̃t+1 ��t� − st�
represents the change in expected stock price in that period.
When the option is exercised or allowed to expire without
exercise, we take the generating function to be zero and
the resulting penalty is also zero. Note that these penalties
do not depend on how we define the natural filtration �, as
long as stock prices follow a martingale under the natural
filtration. Thus, Equation (21) holds whether we assume
that volatility is observed or not.
The penalties depend on the information relaxation �

through the Ɛs̃t+1 ��t� term appearing in (21). If � is the
perfect information relaxation, then the stock price itself is
known and Ɛs̃t+1 ��t� = st+1. If � assumes the volatilities
�v0� � � � � vT � and interest rates ��0� � � � � �T � are known in
advance but the stock price st is not observed until period t,
then following the derivation in Appendix A.8, we can
write

Ɛs̃t+1 ��t�=e�t�st exp
(
�sv

√
vt�vt+1−vt�− 1

2�
2
svvt�

)
� (22)

Note that if �sv = 0, then this expression simplifies and
we have e−�t�Ɛs̃t+1 � �t� = st . Thus, with no correlation
between stock prices and volatilities, the penalty given by
(21) is identically zero.
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With this form of penalty, we can solve the resulting
inner problems efficiently using a recursive DP formulation.
The terminal value of a call option is given by v̄T +1 = 0
and

v̄t�st� =max	�t�st − K��−zwaitt + Ɛv̄t+1�s̃t+1 ��t�


=max
{
�t�st − K���t�t�st�st

+ Ɛ−�t�t�st�s̃t+1 + v̄t+1�s̃t+1� ��t�
}
� (23)

With the imperfect information relaxation, we will calcu-
late bounds on the option value by randomly generating
volatility and interest rates in the outer simulation and using
a trinomial lattice to evaluate the recursion (23) in each
scenario.
With the perfect information relaxation, stock prices are

also generated in the outer simulation and we can rewrite
the DP (23) for the inner problem as

v̄0 =max
{

max
t∈	0�����T 


	�t�st − K� − �t
�−�T

}
� (24)

where �0 = 0 and �t = ∑t−1
t=0 zwaitt for t > 0. Here, �t is

the accumulated penalty for waiting: if the DM exercises
in period t, she “pays” the accumulated penalty for all of
the periods she waited. Note that whenever we consider
a generating function wt that is zero when the option is
exercised and equal to wwait

t when the DM waits (as we
have assumed here), then �t = ∑t−1

t=0 zwaitt = ∑t−1
t=0�w

wait
t −

Ɛwwait
t ��t�� will be a martingale. This form of penalty can

thus be interpreted as a “dual martingale,” as considered
by Haugh and Kogan (2004), Rogers (2002), and Andersen
and Broadie (2004). There is, however, a subtle difference
in our formulations of the dual optimization problem that
we discuss in Appendix A.9.

4.5. Numerical Results

We will present numerical results for both put and call
options, for a variety of model parameters. In all cases, we
assume the options expire in one year (�T = 1), the ini-
tial stock price s0 is $100, and the stock pays dividends
equal to 1% of the stock price at times � = 0�25, 0.50,
0.75, and 1.00. The rest of our numerical assumptions are
based on Medvedev and Scaillet (2007). The instantaneous
variance process vt is assumed to have mean-reversion rate
�v = 1�58, volatility �v = 20%, and initial value and long-
run average v0 = v̄ = 0�04. The interest rate process �t has
�� = �26, �� = 8%, and �̄ = �0 = 4%. For both put and
call options, we consider strike prices (K) of $90, $100,
and $110 and correlations �sv of −0.25, 0, and 0.25.
In all cases, we will calculate bounds in a simulation

with 5,000 trials. For the imperfect information bounds, we
generate interest rates and volatilities in the outer simu-
lation, and in each trial we solve the inner problem (23)
using a trinomial lattice with 101 stages. In this lattice, the
stock prices are fixed, but the probabilities are chosen to

match the mean and variance of the stock price process in
each period, given the volatility and interest rate informa-
tion. For the put options, we allow exercise at each stage
in the lattice. For the call options, as discussed in §4.1, we
limit exercise to expiration and the periods just before a
dividend is paid. To ensure consistency across the different
bounds, we use this same lattice to value the options using
the heuristic policy and to calculate the perfect information
bounds. To calculate the perfect information bounds, we
randomly select a stock price path from the lattice in each
outer simulation trial.
The results are summarized in Table 2; Table 3 shows

the time required to compute these bounds for one set of
model parameters. In Table 2 we see that, as expected
based on Proposition 2.3(i), the imperfect information
bounds are tighter than the corresponding perfect infor-
mation bounds with penalties constructed using the same
generating function. Of course, the imperfect information
bounds take somewhat longer to compute. Including the
penalties improves the performance of all of the bounds,
except with the imperfect information relaxation when the
correlation �sv is zero: as discussed in §4.4, the penalties
are identically zero in this case. The bounds with imperfect
information and penalty are quite tight: the gap between
the lower bound and this upper bound ranges from 0.2%
to 0.8% of the value of the option. These gaps may be suf-
ficiently small to conclude that the simple heuristic policy
is good enough to use in practice. In addition, examining
the mean standard errors (MSE) in Table 2, we see that the
perfect information bounds are fairly precisely estimated.

4.6. Improving the Heuristic Policy

We can also use the results of the dual problem to improve
the heuristic policy in this example. Specifically, let us
focus on the case with the largest duality gap, the put
option with strike price of $110 and a correlation �sv of
−0.25: the lower and upper bounds in this case are approx-
imately $13.42 and $13.52. To see how the exercise pol-
icy might change with changing volatilities and interest
rates, we fit a nonlinear regression model of the form Et =
min�at� bt exp��t�� + ct� + dtvt�, where Et is the exercise
threshold from the dual problem in period t: �t and vt are
the interest rate and instantaneous variance for that period,
and at , bt , ct , and dt are constants estimated in the regres-
sion. This choice of functional form was selected based on
the graphical appearance of plots of Et versus �t and vt .
If we assume that the volatility vt is observed in period t,
this regression model describes a nonanticipative exercise
policy: exercise the option whenever st is less than the
exercise threshold given by the regression equation. Simu-
lating with this new policy, we found that the put option
value increased by about $0.06, reducing the duality gap
by more than half. We could probe further and attempt to
find a penalty that gives a tighter upper bound, but in this
case the gap seems sufficiently small to suggest that further
improvements would not be of much practical value.
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Table 2. Bounds on option values.

Put options Call options

Correlation (�sv) � = −0�25 � = 0 � = +0�25 � = −0�25 � = 0 � = +0�25

Mean MSE Mean MSE Mean MSE Mean MSE Mean MSE Mean MSE

Strike price= $90
Perfect info:

No penalty: 5�899 0�117 5�508 0�109 5�140 0�100 19�596 0�202 19�755 0�216 20�037 0�227
With penalty: 3�422 0�018 3�331 0�019 3�221 0�018 14�042 0�018 13�963 0�018 13�865 0�018
Lower bound: 3�344 0�087 3�245 0�084 3�057 0�078 13�932 0�183 13�890 0�185 13�949 0�193

Imperfect info:
No penalty: 3�764 0�034 3�270 0�015 3�380 0�005 14�807 0�028 13�899 0�015 14�957 0�060
With penalty: 3�383 0�014 3�270 0�015 3�163 0�015 14�004 0�014 13�899 0�015 13�803 0�015
Lower bound: 3�355 0�030 3�245 0�015 3�137 0�005 13�933 0�027 13�830 0�015 13�731 0�054

Strike price= $100
Perfect info:

No penalty: 13�024 0�150 12�632 0�142 12�313 0�133 11�380 0�180 11�574 0�194 11�885 0�206
With penalty: 7�503 0�021 7�537 0�022 7�534 0�021 8�159 0�021 8�198 0�022 8�201 0�022
Lower bound: 7�391 0�128 7�376 0�125 7�300 0�121 8�056 0�160 8�101 0�166 8�144 0�173

Imperfect info:
No penalty: 8�277 0�047 7�423 0�019 7�940 0�010 8�514 0�017 8�140 0�019 8�752 0�055
With penalty: 7�413 0�017 7�423 0�019 7�445 0�018 8�124 0�018 8�140 0�019 8�160 0�018
Lower bound: 7�354 0�044 7�370 0�018 7�391 0�011 8�088 0�018 8�107 0�019 8�121 0�052

Strike price= $110
Perfect info:

No penalty: 22�839 0�148 22�444 0�141 22�121 0�132 5�689 0�140 5�975 0�155 6�314 0�168
With penalty: 13�676 0�020 13�806 0�021 13�902 0�020 4�311 0�021 4�455 0�022 4�568 0�022
Lower bound: 13�413 0�162 13�600 0�158 13�675 0�156 4�159 0�121 4�331 0�132 4�506 0�140

Imperfect info:
No penalty: 15�143 0�052 13�655 0�017 14�673 0�019 4�430 0�009 4�425 0�018 4�824 0�044
With penalty: 13�520 0�016 13�655 0�017 13�796 0�017 4�274 0�017 4�425 0�018 4�567 0�017
Lower bound: 13�417 0�051 13�562 0�017 13�707 0�020 4�256 0�010 4�412 0�018 4�546 0�042

4.7. Haugh-Kogan and Andersen-Broadie
Style Penalties

We also experimented with Haugh-Kogan and Andersen-
Broadie style bounds, based on the heuristic policy we
use to calculate lower bounds. Recall from §2.3 that the
Haugh-Kogan approach takes the generating function to
be an approximate value function; here we use the value
function from the simplified model with constant volatil-
ity and constant discount rates. In the Andersen-Broadie
approach, we work directly with the heuristic policy. With
both the Haugh-Kogan and Andersen-Broadie style bounds,
we will consider the perfect information relaxation and use
nested simulations to estimate the conditional expectations
Ɛwt ��t� required to determine the penalties. In our nested
simulations, we assume that the volatilities vt are observed

Table 3. Run times for option bounds.

Perfect Imperfect
information information

Puts Calls Puts Calls

Lower bound: 7�2 4�8 21�1 12�1
Upper bound with no penalty: +0�20 +0�17 +13�5 +11�0
Upper bound with penalty: +0�24 +0�20 +20�8 +18�5

in �t . Using Proposition 2.3(iii), this leads to a valid upper
bound regardless of whether we assume volatilities are truly
observed in the natural filtration.
If we let K be the number of trials in the outer simula-

tion, N be the number of trials in each nested simulation,
and T be the number of periods in the model, the Haugh-
Kogan approach will require computational effort on the
order of KNT ; each period requires a one-step nested simu-
lation for each trial in the outer simulation. The nested sim-
ulations in the Andersen-Broadie approach continue until
the option is exercised or expires and the approach there-
fore requires computational effort proportional to KNT 2.
In our model we consider T = 100 periods, so we should
expect the Andersen-Broadie approach to be quite time
consuming. Indeed, with K = 5�000 trials in the outer sim-
ulation and N = 25 trials in each nested simulation, it took
approximately 20,000 seconds (5.6 hours) to estimate the
Andersen-Broadie bounds. It took approximately 270 sec-
onds to estimate the Haugh-Kogan bounds with the same
number of trials. With N = 1�000 trials in the inner simu-
lation, these bounds take approximately 40 times longer to
compute.
Table 4 shows the estimated Haugh-Kogan and

Andersen-Broadie bounds for the case of a put option with
strike price of $110 with correlation �sv equal to −0.25,
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Table 4. Example Haugh-Kogan and Andersen-Broadie
bounds.

Trials in nested simulation �N �

10 25 100 1,000

Mean MSE Mean MSE Mean MSE Mean MSE

Haugh-Kogan 15�43 0�02 14�55 0�02 13�93 0�02 13�65 0�02
bounds:

Andersen-Broadie 17�74 0�13 15�65 0�04 14�11 0�04 13�58 0�01
bounds:

with varying number of trials (N ) in the nested simulation.
All simulations involved K = 5�000 trials in the outer simu-
lation, except the N = 1�000 case for the Andersen-Broadie
bounds. The lower bound given by using the heuristic pol-
icy is approximately $13.42 in this case (or $13.48 with
the improved policy discussed in §4.6). In these results, we
see that sampling error in the nested simulations adversely
affects the quality of the bounds, consistent with Propo-
sition 2.3(iv). Although the Haugh-Kogan and Andersen-
Broadie bounds with 1,000 trials in the nested simulation
($13.65 and $13.58, respectively) are better than the perfect
information bound with our simple delta penalty ($13.67),
the Haugh-Kogan and Andersen-Broadie bounds were very
time consuming to compute with this many nested trials.
However, even with 1,000 nested trials, the Haugh-Kogan
and Andersen-Broadie bounds were not as tight as the
imperfect information bound with our simple delta penalty
($13.52). Thus, in this example the imperfect information
relaxation provides tighter bounds with this relatively easy-
to-compute penalty.

5. Conclusions
We believe that the dual approach developed in this paper
provides a powerful, general, and flexible approach for
calculating upper bounds in DPs. In applications, the
researcher can control the computational effort and the
quality of the bound by choosing the penalties, informa-
tion relaxations, and/or the number of simulations run. As
discussed in the introduction, we see this dual approach
as complementing approximate dynamic programming and
the use of simulation methods with heuristic policies: given
some candidate policy, we can use simulation to determine
the value with this policy and use our dual approach to gen-
erate an upper bound on the value of an optimal policy. The
gap between the lower and upper bounds gives an indica-
tion of how much better we could do with a more complex
policy. In practice, we may find that we can identify poli-
cies that are “good enough” with relatively little work. We
demonstrated these dual bounds in two complex applica-
tions (adaptive inventory control and option pricing) that
are of significant practical interest, and the results appear to
be promising. Lai et al. (2010), recently applied this dual

approach to evaluate heuristic policies used to manage a
natural gas storage facility.
There is certainly an element of art in selecting penalties

and information relaxations, just as there is art in select-
ing good heuristic policies and in selecting approximate
value functions in approximate dynamic programming. The
choice of information relaxation is particularly important
because it determines which uncertainties are treated as
stochastic in the inner problem and which are treated as
deterministic. For instance, in the option-pricing example,
it is straightforward to model stock price uncertainty with
known but time-varying volatility and interest rates, but dif-
ficult to treat volatility, interest rates, and stock prices all
as stochastic. In the adaptive inventory control problem, it
is hard to consider the full tree of possible demand histo-
ries, but relatively easy to sample from this large tree. As
discussed in §2.3, the key is to select a penalty that approx-
imately cancels the benefit provided by the additional infor-
mation. However, we must be mindful of the computational
effort required to compute these penalties. In our examples,
we considered simple penalties that were derived from the
heuristic policy and were easy to compute.
There are a number of directions for possible future

research on these dual methods. First, it would be inter-
esting to consider continuous-time and/or infinite-horizon
models as well as the discrete-time, finite-horizon DP mod-
els considered here. Second, we would like to study ways
to optimize the dual bound through the use of a parame-
terized family of penalty functions. For example, we might
allow the penalty function to be a weighted combination
of candidate penalties and then optimize the weights when
estimating the bound. More ambitiously, we might attempt
to develop automatic methods for generating feasible (i.e.,
nonanticipative) policies or improvements on given poli-
cies using the results from the dual optimization prob-
lems. Finally, and perhaps most importantly, we need to
build more experience through applying these techniques
in examples. In so doing, we can perhaps develop a better
understanding of what kinds of penalties and relaxations
work well for what kinds of problems.

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. Note that we assume that the set of possible action
sequences does not depend on the outcome � and also
that the probabilities associated with the outcomes do not
depend on the selected actions. We could allow the set of
possible action sequences to depend on � by restricting the
set of policies to some subset of �. The general formula-
tion of the DP (1) would be unchanged, but the recursive
formulation (2) would need to be modified to allow the
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actions available in each period to depend (in a measurable
way) on the outcome �. Problems with action-dependent
probabilities can often be recast as equivalent problems
with action-independent probabilities, sometimes quite nat-
urally. For example, we could think of the inventory exam-
ple of §3 as having random transitions from one inventory
level to the next inventory level; the transition probabilities
would then depend on the actions (the order quantities).
Alternatively, we can formulate this problem (as we will)
with demand as uncertain and independent of the actions.
For a general problem, one could take the outcome � to be
a series �U0� � � � �UT � of uniform random numbers where
Ut revealed in period t; we could then calculate the period-
t state from these random deviates and the chosen actions
�a0� � � � � at−1�. There are a variety of ways one can refor-
mulate a model to have action-independent probabilities. In
applications we would want to exploit the specific structure
of the problem under consideration.
2. Note that it is possible for the estimated duality gap
to be negative: although our penalties have zero expected
penalty for nonanticipative policies, there is no guarantee
that these penalties will average exactly zero in a particular
sample. When we saw negative gaps in our study, the esti-
mated gaps were small compared to the associated standard
errors.
3. All computations were performed using MATLAB on
a Dell PC (with a 2.66 GHz Intel Core2 Quad CPU and
3.25 GB of RAM) running Microsoft Windows XP.
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