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We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs).
This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty
that punishes violations of these nonanticipativity constraints. In this paper, we study DPs that have a convex structure
and consider gradient penalties that are based on first-order linear approximations of approximate value functions. When
used with perfect information relaxations, these penalties lead to subproblems that are deterministic convex optimization
problems. We show that these gradient penalties can, in theory, provide tight bounds for convex DPs and can be used to
improve on bounds provided by other relaxations, such as Lagrangian relaxation bounds. Finally, we apply these results
in two example applications: first, a network revenue management problem that describes an airline trying to manage seat
capacity on its flights; and second, an inventory management problem with lead times and lost sales. These are challenging
problems of significant practical interest. In both examples, we compute performance bounds using information relaxations
with gradient penalties and find that some relatively easy-to-compute heuristic policies are nearly optimal.
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1. Introduction
Dynamic programming is a powerful framework for study-
ing stochastic systems where decisions are made sequen-
tially. Unfortunately, in practice, the complexity of dynamic
programming models tends to grow rapidly with the num-
ber of variables considered. When optimal policies are diffi-
cult to identify, many researchers study stochastic dynamic
systems using various forms of heuristic policies and eval-
uate the performance of these heuristics using Monte Carlo
simulation. However, without knowing the optimal policy,
it is hard to know how much better one might do with
some other heuristic. We can always experiment with dif-
ferent forms of heuristics or different parameters for a given
heuristic, but such experimentation can be time consuming
and it is difficult to know when to stop. In these settings,
it can be useful to have easy-to-compute upper bounds on
the performance of an optimal policy: if the performance
of a given heuristic is close to this upper bound, we might
conclude that the heuristic is “good enough” and decide to
not invest more effort in trying to improve the heuristic.

In this paper, we consider the information relaxation
approach for calculating performance bounds for stochas-
tic dynamic programs (DPs), following Brown, Smith, and
Sun (2010; hereafter BSS). In BSS, bounds are generated
by (1) relaxing the nonanticipativity constraints that require
the decision maker (DM) to make decisions based only

on the information available at the time the decision is
made and (2) incorporating penalties that punish violations
of these nonanticipativity constraints. For example, in this
paper we will consider a network revenue management
problem where an airline must decide whether to sell low-
fare tickets long before the departure date or to reserve
capacity (seats) for possible high-fare passengers who may
request tickets later; the problem is complicated by the
fact that many itineraries consume capacity on more than
one flight. In a perfect information relaxation, we assume
the DM knows exactly which requests will arrive before
deciding whether to accept any request. In this case, the
revenue management problem is a deterministic optimiza-
tion problem that can be formulated as a linear program
where one maximizes revenue subject to the capacity con-
straints. By randomly generating scenarios of requests and
repeatedly solving this deterministic “inner problem,” we
obtain an upper bound on the performance with an optimal
policy, namely, the value with perfect information. How-
ever, without any penalty for using this additional informa-
tion, these perfect information bounds are often quite weak.
Informally, we say a penalty is dual feasible if it does not
punish any policy that is nonanticipative; the penalties may,
however, punish policies that violate the nonanticipativity
constraints.

The challenge in practice is to find penalties that provide
good bounds and lead to inner problems that are easy to
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solve. In BSS, we studied general DPs and presented a gen-
eral approach for constructing “good” penalties (informally,
dual feasible with no slack) from differences of approx-
imate value functions. Here we focus on DPs that have
a convex structure. With such DPs, penalties constructed
from differences of approximate value functions may lead
to inner problems that are not convex and may be difficult
to solve. To address these computational challenges, we
consider “gradient penalties” that are based on first-order
linear approximations of approximate value functions and
lead to inner problems that are deterministic convex opti-
mization problems.

In this paper, we study the theoretical properties of these
gradient penalties and demonstrate their use in two exam-
ple applications that are of significant practical interest.
In terms of theory, we show that, given the appropriate
convex structure in the DP and the approximate value func-
tions, these gradient penalties are dual feasible, there exists
a gradient penalty that yields a tight zero-variance bound,
and these gradients can be used to improve on bounds
provided by other dynamic programming relaxations (e.g.,
Lagrangian relaxations). We first consider the case where
the approximate value functions used to generate penal-
ties are differentiable and then consider the more delicate
case where these value functions may not be differentiable.
Nondifferentiable value functions arise frequently: even if
the reward functions and constraints are differentiable, the
value functions may be nondifferentiable if the binding
constraints on actions change in some scenarios. Both of
our example applications involve value functions that are
not differentiable.

The first example we consider is the network revenue
management problem mentioned earlier. Topaloglu (2009)
formulates the network revenue management problem as
a stochastic DP that is difficult (or impossible) to solve.
He then develops a Lagrangian relaxation approximation
that can be solved and uses this to generate heuristics
and performance bounds. We show how information relax-
ations and gradient penalties can be used to improve upon
the Lagrangian relaxation bounds. In the numerical exam-
ples we consider, the performance bounds are significantly
improved and, with these new bounds, we can show that
the heuristics are within 1% of an optimal policy.

The second example we consider is an inventory manage-
ment problem with lead times for delivery and where sales
are lost if adequate inventory is not on hand. We follow
Zipkin (2008a, b), and earlier researchers who formulated
this problem as a stochastic dynamic program and consider
heuristic policies. Specifically, we study a myopic heuristic
and use it to generate gradient penalties. Here again, in our
numerical examples, we obtain reasonably tight bounds and
show that this myopic heuristic is nearly optimal.

In the remainder of this section, we provide a brief litera-
ture review. In §2, we introduce the general framework and
some key results from BSS (2010). In §3, we consider the

case where the DPs or approximating models have a con-
vex structure and develop the theory of gradient penalties.
In §§4 and 5, we consider the network revenue manage-
ment and lost-sales inventory examples. Section 6 provides
a few concluding remarks.

1.1. Literature Review

BSS (2010) builds on earlier work providing methods for
calculating bounds for valuing American options developed
by Rogers (2002), Haugh and Kogan (2004), and Andersen
and Broadie (2004), among others. BSS generalized these
methods from stopping problems to more general stochas-
tic DPs. Rogers (2007) also considers information relax-
ation techniques for Markov decision problems. There is
also a literature in stochastic programming that considers
relaxations of nonanticipativity constraints with Lagrange
multiplier penalties; see, e.g., Rockafellar and Wets (1976)
and Shapiro et al. (2009). BSS compares and contrasts
these related approaches in more detail. Of course, there
are other approaches for generating performance bounds,
including Lagrangian relaxations (see, e.g., Hawkins 2003
or Adelman and Mersereau 2008). We will integrate infor-
mation relaxation bounds and Lagrangian bounds in the
network revenue management example of §4.

Information relaxation bounds have been applied in a
number of settings. For example, there are many applica-
tions in valuing American options, following the early work
of Rogers (2002), Haugh and Kogan (2004), and Ander-
sen and Broadie (2004). BSS (2010) provides examples
in inventory management and option pricing. Lai et al.
(2010) use information relaxation bounds in their study of
heuristics for managing natural gas storage assets; see also
Nadarajah et al. (2014). Devalkar et al. (2011) use this
approach in their study of an integrated model procure-
ment, processing, and trading of commodities in a multi-
period setting.

Brown and Smith (2011) consider an application of in-
formation relaxation bounds in portfolio management with
transaction costs. There we used linear penalties based on
a frictionless model that ignores transaction costs, as well
as other approximate value functions. Here we develop the
theory of this approach more fully and consider nondiffer-
entiable as well as differentiable approximate value func-
tions; we provide a more detailed comparison in an online
appendix (available as supplemental material at http://dx
.doi.org/10.1287/opre.2014.1322). Others have also used
linear penalties in recent work. For example, Haugh et al.
(2014) study a dynamic portfolio optimization problem like
that considered in Brown and Smith (2011), but incorporat-
ing capital gains taxes; they provide information relaxation
bounds with linear penalties based on a model that ignores
taxes. Secomandi (2014) further studies policies for man-
aging natural gas storage assets, using information relax-
ation bounds with linear penalties derived from a model
that ignores inventory adjustment costs and losses and also
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ignores limits on the rate of injection or withdraw of nat-
ural gas from storage. Haugh and Lim (2012) study linear
penalties in linear-quadratic control problems.

2. The Basic Framework and Results

2.1. The Primal Problem

Uncertainty in the DP is described by a probability space
4ì1F1�5, where ì is the set of possible outcomes or sce-
narios �, F is a �-algebra that describes the set of possible
events, and � is a probability measure describing the like-
lihood of each event.

Time is discrete and indexed by t = 01 0 0 0 1 T . The DM’s
state of information evolves over time and is described
by a filtration � = 4F01 0 0 0 1FT 5, where the �-algebra Ft

describes the DM’s state of information at the beginning of
period t; we will refer to � as the natural filtration. The
filtrations must satisfy Ft ⊆Ft+1 ⊆F for all t < T so the
DM does not forget what she once knew. We let Ɛ6−7 =

Ɛ6−�F70 denote expectations conditioned on this initial
state of information. We will assume that F0 = 8�1ì9, so
the DM initially “knows nothing” about the outcome of the
uncertainties; this implies Ɛ6−7 is a constant.

A function (or random variable) f defined on ì is meas-
urable with respect to a �-algebra Ft (or Ft-measurable)
if for every Borel set R in the range of f , we have
8�: f 4�5∈R9 ∈ Ft . We can interpret f being Ft-measur-
able as meaning the value of f depends only on the informa-
tion known in period t. A sequence of functions 4f01 0 0 0 1 fT 5

is adapted to a filtration � (or �-adapted) if each function ft
is measurable with respect to Ft .

The DM must choose an action at in period t from a
set At; we let A4�5⊆A0 ×· · ·×AT denote the set of all fea-
sible action sequences a = 4a01 0 0 0 1 aT 5 given scenario �.
The DM’s choice of actions is described by a policy � that
selects a sequence of actions a in A for each scenario �

in ì (i.e., �2 ì → A). To ensure the DM knows the fea-
sible set when choosing actions in period t, we assume
that the set of actions available in period t depends on the
prior actions 4a01 0 0 0 1 at−15 and is Ft-measurable for each
set of prior actions. We let A denote the set of all feasible
policies, i.e., those that ensure that �4�5 is in A4�5.

In the primal problem, we require the DM’s choices
to be nonanticipative in that the choice of action at in
period t depends only on what is known at the beginning
of period t; that is, we require policies to be adapted to the
natural filtration � in that a policy’s selection of action at

in period t must be measurable with respect to Ft . We let
A� be the set of feasible policies that are nonanticipative.

The DM’s goal is to select a feasible nonanticipative pol-
icy to maximize the expected total reward. The rewards
are defined by a �-adapted sequence of reward functions
4r01 0 0 0 1 rT 5, where the reward rt in period t depends on the
first t+1 actions 4a01 0 0 0 1 at5 of the action sequence a and

the scenario �. We let r4a1�5 =
∑T

t=0 rt4a1�5 denote the
total reward. The primal DP is then

max
�∈A�

Ɛ6r4�570 (1)

Here Ɛ6r4�57 could be written more explicitly as
Ɛ6r4�4�51�57, where policy � selects an action sequence
that depends on the random scenario � and the rewards r
depend on the action sequence selected by � and the sce-
nario �. We will typically suppress the dependence on �
and interpret r4�5 as a random variable representing the
total reward generated under policy �. Also note that
we will assume that the maximum in (1) is attained and
thus will write “max” in place of “sup” throughout.

It will be helpful to rewrite the primal DP (1) as a
Bellman-style recursion in terms of the optimal value func-
tions Vt . We let at = 4a01 0 0 0 1 at5 denote the sequence
of actions up to and including period t. Since the
period-t reward rt depends only on the first t + 1 actions
4a01 0 0 0 1 at5, we will write rt4a5 as rt4at5 with the under-
standing that the actions are selected from the full sequence
of actions a; we will use a similar convention for Vt . For
t > 0, let At4at−15 be the subset of period-t actions At that
are feasible given the prior choice of actions at−12 rt and At

are both implicitly functions of the scenario �. We take the
terminal value function VT+14aT 5= 0 and, for t = 01 0 0 0 1 T ,
we define

Vt4at−15= max
at∈At4at−15

{

rt4at−11at5+Ɛ6Vt+14at−11at5�Ft7
}

0 (2)

Here both sides are random variables (and therefore implic-
itly functions of the scenario �) and we select an optimal
action at for each scenario �.

2.2. Duality Results

In the dual problem, we relax the requirement that the
policies be nonanticipative and impose penalties that pun-
ish violations of these constraints. We define relaxations
of the nonanticipativity constraints by considering alterna-
tive information structures. We say that a filtration � =

4G01 0 0 0 1GT 5 is a relaxation of the natural filtration � =

4F01 0 0 0 1FT 5 if, for each t, Ft ⊆Gt; we abbreviate this by
writing � ⊆ �. � being a relaxation of � means that the
DM knows more in every period under � than she knows
under �. For example, the perfect information relaxation is
given by taking Gt =F for all t. We let A� denote the set
of feasible policies that are adapted to �. For any relaxation
� of �, we have A� ⊆A�; thus, as we relax the filtration,
we expand the set of feasible policies.

The set of penalties ç is the set of functions � that, like
the total rewards, depend on actions a and the scenario �.
As with rewards, we will typically write the penalties as
an action-dependent random variable �4a5 (= �4a1�5) or
a policy-dependent random variable �4�5 (=�4�4�51�5),
suppressing the dependence on the scenario �. We define
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the set ç� of dual feasible penalties to be those that do not
penalize nonanticipative policies in expectation, that is

ç� =
{

� ∈ç2 Ɛ6�4�57¶ 0 for all � in A�

}

0 (3)

Policies that do not satisfy the nonanticipativity constraints
(and thus are not feasible to implement) may have positive
expected penalties.

We can obtain an upper bound on the expected reward
associated with any nonanticipative policy by relaxing the
nonanticipativity constraint on policies and imposing a dual
feasible penalty, as stated in the following weak duality
lemma from BSS (2010). We repeat the proof here, because
it is short and instructive.

Lemma 2.1 (Weak Duality) If �F and � are primal and
dual feasible, respectively (i.e., �F ∈ A� and � ∈ ç�) and
� is a relaxation of �, then

Ɛ6r4�F57¶ max
�G∈A�

Ɛ6r4�G5−�4�G570

Proof. With �, �F , and � as defined in the lemma, we
have

Ɛ6r4�F57¶ Ɛ6r4�F5−�4�F57¶ max
�G∈A�

Ɛ6r4�G5−�4�G570

The first inequality holds because � ∈ ç� (thus Ɛ6�4�F57
¶ 0) and the second because �F ∈A� and A� ⊆A�. �
Thus any information relaxation with any dual feasible
penalty will provide an upper bound on the expected reward
generated by any primal feasible policy.

In this paper, we will focus on the perfect information
relaxation, where the set of relaxed policies is the set of
all policies A and actions are selected with full knowledge
of the scenario �. In this case, the weak duality lemma
implies that for any �F in A� and � in ç�,

Ɛ6r4�F57¶ max
�∈A

Ɛ6r4�5−�4�57

= Ɛ
[

max
a∈A4�5

8r4a1�5−�4a1�59
]

0 (4)

If we take the penalty � = 0, this upper bound is the
expected value with perfect information.

Note that the upper bound (4) is in a form that is con-
venient for Monte Carlo simulation: we can estimate the
expected value on the right side of (4) by randomly gener-
ating scenarios � and solving a deterministic inner problem
of choosing a feasible action sequence a to maximize the
penalized objective in scenario �:

max
a∈A4�5

8r4a1�5−�4a1�590 (5)

Here, unlike (1), we need only consider actions for a partic-
ular scenario � and need not consider the nonanticipativity
constraints that link actions across scenarios.

2.3. Penalties

BSS (2010) provides a general approach for constructing
“good” penalties, based on a set of generating functions.
We will show that we can, in principle, generate an optimal
penalty using this approach.

Proposition 2.1 (Constructing Good Penalties). Let
� be a relaxation of � and let 4w01 0 0 0 1wT 5 be a sequence
of generating functions defined on A×ì, where each wt de-
pends only on the first t + 1 actions 4a01 0 0 0 1 at5 of a.
Define �t4a5 = Ɛ6wt4a5 �Gt7 − Ɛ6wt4a5 �Ft7 and �4a5 =
∑T

t=0 �t4a5. Then, for all�F inA�, we have Ɛ6�t4�F5 �Ft7=0
for all t, and Ɛ6�4�F57= 0.

The result implies that the penalties � generated in this
way will be dual feasible (i.e., Ɛ6�4�F57¶ 0 for �F in A�),
but is stronger in that it implies the inequality defining dual
feasibility (3) holds with equality: i.e., Ɛ6�4�57= 0 for all
� in A�. In this case, we say the penalty has no slack.
A penalty that has slack can certainly be improved by elim-
inating the slack. Good penalties are thus, by construction,
dual feasible with no slack. We refer the reader to BSS for
a proof and further discussion of this result.

Taking the information relaxation � to be the perfect
information relaxation and considering a sequence of gen-
erating functions 4w01 0 0 0 1wT 5, we can write the dual prob-
lem recursively as follows. Take the terminal dual value
function to be V̄T+14aT 5= 0. For t = 01 0 0 0 1 T , we have

V̄t4at−15= max
at∈At4at−15

{

rt4at−11 at5−wt4at−11 at5

+ Ɛ6wt4at−11 at5 �Ft7+ V̄t+14at−11 at5
}

0 (6)

The expected initial value, Ɛ6V̄07, provides an upper bound
on the primal DP (1).

We can construct an optimal penalty using Proposi-
tion 2.1 by taking the generating functions to be based on
the optimal DP value function given by (2). Specifically, if
we take generating functions wt4a5 = Vt+14at5, we obtain
an optimal penalty of the form

�?4a5=

T
∑

t=0

Vt+14at5− Ɛ6Vt+14at5 �Ft70 (7)

It is easy to show by induction that the dual value functions
are equal to the corresponding primal value functions, i.e.,
V̄t = Vt . This is trivially true for the terminal values (both
are zero). If we assume inductively that V̄t+1 = Vt+1, terms
cancel and (6) reduces to the expression for Vt given in
Equation (2). Thus, with this choice of generating function,
we obtain an optimal penalty that we refer to as the ideal
penalty: the inner problem is equal to V0 in every scenario
and, moreover, the primal and dual problems will have the
same sets of optimal policies.

Of course, in practice, we will not know the true value
function and cannot construct this ideal penalty. We can
instead take the generating function to be the approximate
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value functions V̂t+1, and consider a penalty function of
the form

�̂4a5=

T
∑

t=0

{

V̂t+14at5− Ɛ6V̂t+14at5 �Ft7
}

0 (8)

By Proposition 2.1, this penalty �̂ is dual feasible with no
slack, and leads to a valid upper bound on V0. The key to
obtaining a good bound from such an approximation value
function is for the differences in (8) to provide a good
approximation of the differences in (7) based on the true
value function. For example, in the inventory example of
BSS (2010), we often find that penalties based on limited
lookahead approximate value functions do well. Though
these limited lookahead approximations do not approximate
the value functions very well (because they include only a
few periods of rewards), they approximate the differences
in (7) well.

Although the approximate value function V̂t+1 in (8) can
be any function satisfying the conditions of Proposition 2.2,
we can say more in the case where the approximate value
function is an optimal value function for an approximat-
ing DP. Specifically, consider a DP defined on the same
probability space 4ì1F1�5 and filtration � as in the orig-
inal model (as described in §2.1), but with total rewards r̂
instead of r and constraint set Â instead of A. We say this
approximate model is a relaxation of the original model if
r4a1�5¶ r̂ 4a1�5 holds for all a in A4�5 and for all � (i.e.,
for all actions that are feasible for the original model) and
A4�5⊆ Â4�5 for all �; we will abbreviate this by writing
r ¶ r̂ and A ⊆ Â, respectively. Because the rewards and
feasible sets are no smaller in the relaxed model, it is easy
to see that the optimal value in the relaxed model must
be an upper bound on the optimal value in the original
model, i.e.,

V0 = max
�∈A�

Ɛ6r4�57¶ V̂0 = max
�∈Â�

Ɛ6r̂4�571 (9)

where Â� denotes the set of nonanticipative, feasible poli-
cies for the relaxed problem.

What is perhaps not obvious is that the bound based on
the penalty (8) from this relaxed value function V̂t will be
tighter than the bound (9) provided by the relaxed model
itself. We summarize the results of this section and formal-
ize this last observation in the following proposition.

Proposition 2.2. Let �̂ be the penalty given by (8) for
approximate value functions V̂t .

(i) Feasibility. The penalty �̂ is dual feasible and has
no slack.

(ii) Optimality. If the approximate value functions V̂t are
the optimal value functions for the original model, then, for
every scenario �,

max
a∈A4�5

8r4a1�5− �̂4a1�59= V00

(iii) Improving bounds from other relaxations. If the
value functions V̂t are the optimal value functions for a
relaxed model with A ⊆ Â and r ¶ r̂ , then, for every
scenario �,

max
a∈A4�5

{

r4a1�5− �̂4a1�5
}

¶ V̂00

Proof. Part (i) follows from Proposition 2.2 and part (ii)
was established in the discussion preceding the proposition.
Part (iii) follows from part (ii): using the result of part (ii)
with the relaxed model, we know that, for every scenario �,

max
a∈Â4�5

{

r̂ 4a1�5− �̂4a1�5
}

= V̂00

Since r4a1�5¶ r̂ 4a1�5 and A4�5⊆ Â4�5, we have

max
a∈A4�5

{

r4a1�5−�̂4a1�5
}

¶ max
a∈Â4�5

{

r̂ 4a1�5−�̂4a1�5
}

= V̂00 �

As indicated in the proof, the final result follows from the
second result in that we can construct an ideal penalty for
the relaxed model. We can then improve on the bound from
the relaxed model by solving inner problems with the true
(rather than relaxed) rewards and constraints.

3. Convex Dynamic Programs and
Gradient Penalties

Though the results of §§2.2 and 2.3 hold for all DPs, our
focus in this paper will be on the case where the DP or
its approximating model has a convex structure. We will
assume from now on that the actions are vectors of real
numbers, i.e., a ∈�n for some finite n, though the feasible
set of actions may be restricted to some subset of �n, e.g.,
to integer or binary variables. A convex dynamic program
is a DP where the reward functions rt4a1�5 are concave
functions of the actions a for each � and the feasible set
of actions A4�5 is convex for each �. With a convex DP,
the primal DP (1) can be viewed as a (large) convex opti-
mization problem with decision variables corresponding to
choices of actions a for each scenario � and a concave
objective function, a convex set of constraints A4�5 for
each scenario, and a large set of equality constraints that
link actions across scenarios and represent the nonanticipa-
tivity constraints. We can also show that for a convex DP,
the optimal value functions Vt given by the Bellman recur-
sion (2) will be concave in actions.1

With convex DPs, though the rewards are concave and
constraint sets are convex, with penalties like (8) based
on approximate (or the true) value function, the penalized
objective, r4a5− �̂4a5 may not be concave in a and, con-
sequently, the resulting inner problem (5) may be difficult
to solve. A natural way to address this issue is to replace
the penalties with a first-order linear approximation. As
discussed in §1.1, such linear penalties have been used in
several recent applications.
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3.1. Gradient Penalties: The Differentiable Case

Assuming the approximate value functions V̂t are concave
and (for now) differentiable in actions, we can take a first-
order linear approximation around the nonanticipative (or
�-adapted) policy �̂:

V̂t+14at5≈ ïV̂t+14Á̂t5
>4at − Á̂t5+ V̂t+14Á̂t51

where ïV̂t+14at5 denotes the gradient of V̂t+14at5 with
respect to the first t + 1 actions, evaluated at the point at
and Á̂t denotes the first t + 1 actions selected under pol-
icy �̂. Note that V̂t+14Á̂t5 is a random variable (written
more explicitly as V̂t+14Á̂t4�51�5), the gradients are cal-
culated for each �, and the resulting approximation is a
random variable for each action sequence at . We can then
use this approximation as a generating function, taking

wt4at5= ïV̂t+14Á̂t5
>4at − Á̂t5+ V̂t+14Á̂t5

in Proposition 2.1 to generate the gradient penalty:

�̂ï4a5=

T
∑

t=0

{(

ïV̂t+14Á̂t5− Ɛ6ïV̂t+14Á̂t5 �Ft7
)>
4at − Á̂t5

+
(

V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft7
)}

0 (10)

(We use the assumption that Á̂t is Ft-measurable to move
Á̂t outside of the expectation.) This penalty is affine in
actions a and, given a problem with concave rewards and
convex action sets, the inner problem (5) with this penalty
is a convex optimization problem. The final terms (inside
the parentheses) are constant with respect to a and play the
role of control variates: they have zero mean and thus do
not affect the expected value in the bound (4). However,
these terms may be correlated with the reward terms in
(4) and including them in the penalty may help reduce the
variance when estimating the bounds (4) using Monte Carlo
simulation. We discuss this in more detail in §3.3.

What is striking about these gradient penalties is that
the linear approximation, in principle, entails no loss in
functionality when working with convex DPs. Just as in
Proposition 2.2, the gradient penalties will be dual feasi-
ble and have no slack; when working with a convex DP,
there exists a gradient penalty that generates a zero vari-
ance, tight bound; and, when working with an approximate
value function from a relaxed model that is a convex DP,
the gradient penalty will improve on the bound given by
the relaxed model in every scenario. We formalize these
results for the differentiable case as follows; we consider
the nondifferentiable case in the next section.

Proposition 3.1. Suppose the approximate value functions
V̂t are concave in actions and differentiable. Let �̂ï be
the gradient penalty defined by linearizing V̂t around a
�-adapted policy �̂ as in (10).

(i) Feasibility. The gradient penalty �̂ï is dual feasible
and has no slack.

(ii) Optimality. If the original model is a convex DP
and the approximate value functions V̂t and policies �̂ are
the optimal value functions and an optimal policy for this
model, then, for every scenario �,

max
a∈A4�5

{

r4a1�5− �̂ï4a1�5
}

= V00

(iii) Improving bounds from other relaxations. If the
approximate value functions V̂t are the optimal value func-
tions for a relaxed model that is a convex DP with A ⊆

Â and r ¶ r̂ , and �̂ is an optimal policy for this relaxed
model, then, for every scenario �,

max
a∈A4�5

{

r4a1�5− �̂ï4a1�5
}

¶ V̂00

Proof. This result is a special case of Proposition 3.2. �
Note that the last two results above hold “pathwise” (i.e.,
for every scenario �), which implies the dual bounds given
by taking expectations over scenarios,

Ɛ
[

max
a∈A4�5

{

r4a1�5−�ï4a1�5
}

]

1

will be equal to V0 in part (ii) and less than or equal to V̂0

in part (iii). As in Proposition 2.2, the last result follows
from the second result.

Although we defer the formal proof of Proposition 3.1
until we consider the more general case that does not
assume differentiability, it is helpful to provide some intu-
ition about the proof of the second part of the proposition.
To simplify the discussion, we will assume that the action
choices are unconstrained. Consider a gradient penalty �̂ï

defined by linearizing V̂t around policy �̂, as in (10). If we
omit the terms inside the parentheses that are constant in
actions (which, as discussed earlier, serve as control vari-
ates), the inner problem (5) for a given scenario reduces to

max
a

{ T
∑

t=0

rt4at5−
(

ïV̂t+14Á̂t5− Ɛ6ïV̂t+14Á̂t5�Ft7
)>
4at−Á̂t5

}

=max
a

{ T
∑

t=0

rt4at5−
((

ïV̂t4Á̂t−15
0

)

− Ɛ6ïV̂t+14Á̂t5�Ft7

)>

·4at−Á̂t5

}

0 (11)

Here, in rearranging terms, we use the fact that V̂T+1 = 0
and thus ïV̂T+1 = 0. In this expression, ïV̂t has dimen-
sion corresponding to at−1 and, hence, its gradient needs
to be padded with a 0 of the dimension of at to match the
dimensionality of ïV̂t+1, which corresponds to at .

Now, if �̂ is an optimal policy and V̂t are the opti-
mal value functions and the choices of actions are uncon-
strained, we know that

V̂t4Á̂t−15=rt4Á̂t5+ Ɛ6V̂t+14Á̂t5�Ft7

=max
at

{

rt4Á̂t−11at5+ Ɛ6V̂t+14Á̂t−11at5�Ft7
}

1 (12)
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and the first-order conditions for optimality and the “enve-
lope theorem” imply

(

ïV̂t4Á̂t−15

0

)

= ïrt4Á̂t5+ Ɛ6ïV̂t+14Á̂t5 �Ft70 (13)

Using this “consistency condition,” we can rewrite the
reduced inner problem (11) as

max
a

{ T
∑

t=0

rt4at5−ïrt4Á̂t5
>4at − Á̂t5

}

1 (14)

which, given the concavity of rt , is minimized by tak-
ing at = Á̂t for all t. Thus, the reduced inner problem
(11) yields an optimal value of

∑T
t=0 rt4Á̂t5. Using this and

incorporating the control variate terms that were omitted in
the reduced inner problem (11), the inner problem (5) in
this case is

max
a

8r4a5−�ï4a59

=

T
∑

t=0

{

rt4Á̂t5− 4V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft75
}

= V̂0 +

T
∑

t=0

{

rt4Á̂t5− V̂t4Á̂t−15+ Ɛ6V̂t+14Á̂t5 �Ft7
}

= V̂00

Here, in the second equality, we use V̂T+1 = 0 and rear-
range terms. In the third equality, we use the fact that Á̂t

is optimal (so the first equality in (12) holds). Thus using
a gradient penalty based on the optimal value function will
generate a zero-variance tight bound.

In practice, with gradient penalties based on approxi-
mate value functions, the optimality conditions (12) and
(13) may be approximated and the quality of the resulting
bounds will depend on the quality of the approximations.
As with the nongradient penalties and discussed following
Equation (8), the key for a gradient penalty to provide good
bounds is for the linear approximations of the approximate
value functions to approximate the differences in the true
value functions, i.e.,

Vt+14at5− Ɛ6Vt+14at5 �Ft7

≈
(

ïV̂t+14Á̂t5− Ɛ6ïV̂t+14Á̂t5 �Ft7
)>
4at − Á̂t5

+
(

V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft7
)

0

With convex DPs, it suffices to construct a linear approxi-
mation that performs well in the vicinity of the true optimal
solution. In particular, it is important for the difference in
gradients to approximate 4ïVt+14Át5 − Ɛ6ïVt+14Át5 �Ft75
well. In this case, the optimal solutions in the inner prob-
lem will match or closely approximate those of the true
optimal solutions. Errors in the constant terms (Vt+14Át5−

Ɛ6Vt+14Át5 �Ft7) are less important, as they will average
zero when calculating the bounds.

As an example of a setting where we can apply the
results of Proposition 3.1 directly, we can point to Brown
and Smith (2011), where we study a dynamic portfolio opti-
mization problem with transaction costs. There, the approx-
imate model is a portfolio optimization model that ignores
transactions costs; this is a relaxation of the original model
and is not difficult to solve to optimality. These friction-
less value functions are differentiable and hence the results
of Proposition 3.1 apply and, in particular, by part (iii),
we can calculate information relaxation bounds that cer-
tainly improve on the bound provided by the frictionless
model. However, the construction of penalties in Brown and
Smith (2011) was different and, as discussed in the online
appendix, we could have done somewhat better applying
the approach of Proposition 3.1 instead.

3.2. Gradient Penalties: The General Case

As discussed in the introduction, the assumption that
the approximate value functions are differentiable is a
strong assumption that is not satisfied in many applica-
tions, including the revenue management and lost-sales
applications considered in §§4–5. When the approximate
value functions are not differentiable, the gradients are not
uniquely defined and the choice of gradients may affect the
quality of bounds.

We define the differential as the set of all gradients for
a concave function f at a point x as

¡f 4x5=
{

g2 f 4y5¶ f 4x5+ g>4y− x5 for all y
}

0

(With convex functions, these are typically called subgra-
dients and subdifferentials; with concave functions, these
are sometimes called supergradients and superdifferentials.
We will omit the “sub” and “super.”) We note several basic
properties of these differentials in the following lemma.

Lemma 3.1. Let f , f1, and f2 be real-valued concave
functions:

(i) ¡f 4x5 is convex and nonempty.
(ii) If f is differentiable at x, then ¡f 4x5= 8ïf 4x59.

(iii) If � ¾ 0, then ¡4�f 4x55= �¡f 4x5.
(iv) ¡4f14x5+ f24x55= ¡f14x5+ ¡f24x5.
(v) If g4x5= f 4Mx+ b5, then ¡g4x5=M>¡f 4Mx+ b5.

(vi) f 4x∗5= maxx f 4x5 if and only if 0 ∈ ¡f 4x∗5.
(vii) Let f 4x1�5 be concave in x for each �. Then

¡Ɛ6f 4x1�57= Ɛ6¡f 4x1�57.
(viii) Let f ∗4y5= maxx f 4x1 y5 and let x∗4y5 denote an

optimal solution, i.e., such that f ∗4y5= f 4x∗4y51 y5.
Then 401 g5 ∈ ¡f 4x∗4y51 y5 if and only if g ∈ ¡f ∗4y5.

In (iv), the sum on the right side is a set-wise (or Minkowski)
sum; similarly the expectation on the right in (vii) is
a probability-weighted set-wise sum or integral. These
properties of the gradients and differentials also apply to
extended real-valued convex functions, provided the rele-
vant differentials are not empty: ¡f 4x5 will be nonempty if
x is in the relative interior of the domain of f . The first six
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results are standard results with proofs given in, for exam-
ple, Bertsekas et al. (2003). The seventh result is proven
in Bertsekas (1973). We refer to the last property as the
“stacking gradients” result; it will play a role analogous to
the consistency condition (13) for the differentiable case.
We provide a proof in the appendix.

We define a generalized version of gradient penalties
as follows. Consider approximate value functions V̂t that
are concave in actions and a policy �̂, which will serve
as the basis for the approximation. Let Ä = 4Ä01 0 0 0 1ÄT 5
be a gradient selection, where, for each t, Ät selects an
element of the differential ¡V̂t+14Á̂t5 for each scenario.
Here V̂t+14Á̂t5 and Ät are random variables and we require
Ät4�5 ∈ ¡V̂t+14Á̂t4�51�5. Given a gradient selection Ä, we
take the generating functions in Proposition 2.2 to be

wt4at5= Ä>

t 4at − Á̂t5+ V̂t+14Á̂t5

and we have a generalized gradient penalty

�̂¡4a5=

T
∑

t=0

{

4Ät − Ɛ6Ät �Ft75
>4at − Á̂t5

+
(

V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft7
)}

0 (15)

Note that this definition of a gradient penalty reduces to that
of Equation (10) if the approximate value functions V̂t are
differentiable as there is unique gradient in each scenario.

We can now generalize Proposition 3.1 as follows.

Proposition 3.2. Suppose the approximate value functions
V̂t are concave in actions. Let �̂¡ be the gradient penalty
defined in (15) by linearizing V̂t around a �-adapted policy
�̂ using gradient selection Ä.

(i) Feasibility. For any gradient selection Ä, the gradient
penalty �̂¡ is dual feasible and has no slack.

(ii) Optimality. If the original model is a convex DP and
the approximate value function V̂t and policy �̂ are optimal
value functions and policies for this model, then there exists
a gradient selection Ä, such that for every scenario �,

max
a∈A4�5

8r4a1�5− �̂¡4a1�59= V00

Moreover, for any gradient selection Ä, we have V0 ¶
maxa∈A4�58r4a1�5− �̂¡4a1�59 for every �.

(iii) Improving bounds from other relaxations. If the
approximate value functions V̂t are the optimal value func-
tions for a relaxed model that is a convex DP with A⊆ Â
and r ¶ r̂ , and �̂ is an optimal policy for this relaxed
model, then there exists a gradient selection Ä such that,
for every scenario �,

max
a∈A4�5

{

r4a1�5− �̂¡4a1�5
}

¶ V̂00

Proof. See Appendix A.2. �
Thus, any gradient selection Ä will provide a valid penalty
(this follows from Proposition 2.1 as before) and therefore

provide a valid bound. However we can only be sure that
there exists a gradient selection that will be optimal given
the optimal value function or will improve on a relaxed
value function. If the value functions or approximate value
functions are differentiable, there is a unique gradient at
each point and this proposition reduces to Proposition 3.1,
which assumes differentiability.

In the nondifferentiable case, we have some flexibility in
the gradient selection and the choice of gradients may affect
the quality of the bound. The proof of parts (ii) and (iii) of
the proposition follows the same general form as that out-
lined following Proposition 3.1 for the differentiable case,
with the stacking gradient result (Lemma 3.1(viii)) leading
to a generalized version of the consistency condition (13).
The proof of (ii) constructs an optimal gradient selection
and thus provides guidance on how to select gradients in
applications. Setting aside constraints on actions, we seek
gradient selections Ät−1 from ¡V̂t4Á̂t−15, Ä

r
t from ¡rt4Át5,

and Ät from ¡V̂t+14Á̂t5 such that the analog of the consis-
tency condition (13) holds, i.e.,
(

Ät−1

0

)

= Är
t + Ɛ6Ät �Ft70 (16)

We take constraints on actions into account in the proofs by
incorporating them into the reward functions using charac-
teristic functions that punish violations of the constraints.
In the proof, we work forward in time, beginning with a
gradient selection for period 0. Then, given a selection Ät−1

for period t−1, we find selections Är
t and Ät such that (16)

holds. When working with an optimal value function as in
parts (ii) and (iii) of the proposition, we can be sure that
such gradient selections exist.

The consistency condition (16) is critical for obtaining
tight bounds. To see this, consider gradient selections Är

t

from ¡rt4Á̂t5, and Ät from ¡V̂t+14Á̂t5; we will assume any
constraints on actions are included in the reward through
the use of characteristic functions. Suppose (16) holds with
error Åt in period t, i.e., Åt = 4Ät−1105 − Är

t − Ɛ6Ät �Ft7.
Omitting the control variate terms from the penalty, the
inner problem (5) with penalty (15) can be written:

max
a∈A

{ T
∑

t=0

rt4a5−4Ät− Ɛ6Ät �Ft75
>4at−Á̂t5

}

=max
a∈A

{ T
∑

t=0

rt4a5−4Är
t +Åt5

>4at−Á̂t5

}

¶max
a∈A

{ T
∑

t=0

rt4a5−Är>
t 4at−Á̂t5

}

+max
a∈A

{ T
∑

t=0

−Å>

t 4at−Á̂t5

}

¶
T
∑

t=0

rt4Á̂t5+max
a∈A

{ T
∑

t=0

−Å>

t 4at−Á̂t5

}

0

The first equality follows from rearranging terms, the first
inequality from optimizing separately rather than jointly,
and the last from concavity of rt . (If Á̂t is feasible (i.e., in A),
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this last inequality is an equality.) Then, incorporating the
control variate terms in the penalty, we find the inner prob-
lem can be written as

max
a∈A

{

r4a5− �̂¡4a5
}

¶ V̂0 + max
a∈A

T
∑

t=0

−Å>

t 4at − Á̂t51

where V̂0 is the value given by following policy �̂. Thus
the error terms Åt affect the tightness of the bound. If we
are working with optimal values V̂0 and policies �̂ for a
relaxed model as in part (iii) of Proposition 3.2, we can be
sure that there exists gradients such that these error terms
are zero. If we can construct one, we can be sure that
gradient penalty bound will improve on the bounds from
the relaxed model, in every scenario. In our examples, we
will attempt to select gradients so these errors will be zero
when possible (as in the revenue management example of
§4 where the penalty is based on a Lagrangian relaxation,
without reoptimization) or small when not possible (as in
the other cases).

3.3. Control Variates and Pathwise Bounds

As mentioned earlier, the final terms in the expressions
defining the gradient penalties (10) and (15) (inside the
parentheses) have zero mean and are constant with respect
to actions in the inner problem (5); thus these terms have
no effect on expected value of the bound (4). However,
because these terms are likely to be correlated with the
period rewards, these terms may serve as helpful control
variates and reduce the variance in simulation-based esti-
mates of the upper bound (4). (Indeed various forms of
control variates have been frequently used with information
relaxations.)

These control variates may also be helpful when estimat-
ing the expected reward associated with a heuristic policy,
i.e., in estimating a primal lower bound. For example, given
a heuristic policy �̂ that is feasible for the primal DP (1),
we can write the expected total reward as

Ɛ6r4�̂57=Ɛ

[ T
∑

t=0

rt4Á̂t5

]

=Ɛ

[ T
∑

t=0

{

rt4Á̂t5−4V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5�Ft75
}

]

1

(17)

where this last form incorporates the control variate terms.
This form of control variate is of the form considered
in the “approximating martingale process” variance reduc-
tion approach of Henderson and Glynn (2002). It is
not difficult to see that if the value functions V̂t are
value functions corresponding to policy �̂ (so V̂t4Á̂t−15 =

rt4Á̂t5+ Ɛ6V̂t+14Á̂t5 �Ft7) adjacent terms in (17) cancel and
the expectations reduce to the expectation of a constant,
Ɛ6V̂07 = V̂0. In this case, when estimating values by simu-
lation, we obtain a zero-variance estimate of the expected

reward associated with policy �̂. If the functions V̂t approx-
imate the values given by the policy �̂ (or, more precisely,
approximate the differences in values appearing in (17)),
we might expect to obtain low variance estimates of the
value associated with a given policy.

These controlled estimates of the value with a given
heuristic pair nicely with gradient penalties. If we use a
gradient penalty based on approximate functions V̂t with
gradients taken around policy �̂, the inner problem (5)
becomes

max
a∈A

{

r4a5− �̂¡4a5
}

= max
a∈A

T
∑

t=0

rt4ât5− 4Ät − Ɛ6Ät �Ft75
>4at − Á̂t5

−
(

V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft7
)

0

If the policy �̂ chooses feasible actions, we can take a =

Á̂ as a feasible but not necessarily optimal choice in the
optimization problem above and find

max
a∈A

8r4a5− �̂¡4a59

¾
T
∑

t=0

rt4Á̂t5−
(

V̂t+14Á̂t5− Ɛ6V̂t+14Á̂t5 �Ft7
)

1 (18)

where the right side here is the controlled estimate of value
for policy in (17), for a given scenario. Thus, with this form
of penalty, the inner problem values will be greater than or
equal to the corresponding controlled estimate of the value
under policy �̂ in every scenario. This relationship facili-
tates comparisons between heuristics and dual problems in
each scenario and, when the estimates are both controlled
in this way, we can obtain more precise estimates of the
upper and lower bounds as well as the differences between
them, i.e., the duality gap.

Note, however, that the policies �̂ used in the gradient
penalties need not be feasible for the primal problem. For
example, in the network revenue management problem, we
will construct bounds that improve on a Lagrangian relax-
ation of the original model, using the result of Proposi-
tion 3.2(iii). In this case, the gradient penalties are taken
around the optimal solution �̂ for the relaxed model, which,
in general, will not be feasible for the original model.
In this case (as will be evident in Figure 1), the inequal-
ity (18) need not hold in every scenario. When working
with a reoptimized model in the network revenue manage-
ment example, we take gradients around a feasible policy
and (18) will be satisfied every scenario.

4. Example: Network Revenue
Management

We consider a network revenue management application,
following Topaloglu (2009). Although we present the prob-
lem in the context of an airline, the model also applies
in other settings (e.g., railways, hotel chains). Topaloglu
(2009) uses Lagrangian relaxation techniques (see, e.g.,
Hawkins 2003 or Adelman and Mersereau 2008) to approx-
imate the network revenue management model.
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4.1. The Model

Time is discrete and indexed as t = 11 0 0 0 1 T . The airline
has flights on a set L = 811 0 0 0 1L9 of L legs. In each
period, a customer requests one of I itineraries from the
set I = 811 0 0 0 1 I9. We assume T , L, and I are finite.
Itinerary i consumes fil units of capacity on leg l ∈ L;
fi ∈�L

+
denotes the vector of capacity consumption for

all legs of itinerary i. At any time t, the vector ct ∈ �L
+

denotes the airline’s remaining capacity on the legs; the
initial capacity c1 is given.

Given an itinerary request it in period t, the airline de-
cides whether to accept the request (taking at = 1) or
reject it (at = 0). The airline can accept a request only if
enough capacity remains, i.e., only if ct ¾ fit . If the air-
line accepts the request, it receives rit in immediate rev-
enue and capacity becomes ct+1 = ct − fit . If the airline
rejects the request, it receives no revenue and capacity is
unchanged, i.e., ct+1 = ct . This problem can be formulated
as a stochastic DP with state vector 4ct1 it5 describing the
capacity remaining and itinerary request in period t. The
Bellman recursion, for t = 11 0 0 0 1 T , is

Vt4ct1 it5= max
at∈At4ct 1 it5

{

ritat + Ɛ6Vt+14ct − fitat1 ĩt+157
}

1 (19)

with VT+1 = 0 and constraint set At4ct1 it5 = 8a ∈ 80119:
fita¶ ct9. Expectations are taken over the next-period
itinerary request ĩt+1. We assume itinerary requests are
independent over time but allow the probabilities for the
itinerary requests to vary over time. We adopt the conven-
tion that the first request arrives at t = 1, and let V0 =

Ɛ6V14c11 ĩ157 be the expected revenue generated by an opti-
mal policy.

Although the formulation (19) uses state vector notation,
the general setup discussed in §2.1 assumes value functions
are described as functions of past actions. For this problem,
it is straightforward to express the value functions (19) as
functions of prior actions, since ct = c1 −

∑t−1
�=1 fi�a� .

4.2. Lagrangian Relaxations

The state space for the DP (19) grows exponentially in the
number of legs and the DP will be very difficult to solve
with more than a few legs. The challenge comes from the
fact that decisions are coupled across legs, as accepting
an itinerary simultaneously reduces capacity across all legs
on that itinerary. Topaloglu (2009) considers approxima-
tions of (19) that are based on a Lagrangian relaxation that
relaxes this coupling constraint by allowing the airline to
accept or reject individual legs of an itinerary; violations of
the leg coupling constraints are “punished” with Lagrange
multipliers. We will use the same Lagrangian relaxation as
Topaloglu (2009), albeit with a slightly different form.

Before defining this Lagrangian relaxation, it is helpful
to rewrite (19) in a form that has decision variables for each
leg but requires these decisions to be the same for all legs.
We let at = 4at11 0 0 0 1 atL5 denote the vector of decision

variables for period t and let āt denote the average of at
over its L elements, i.e., āt = L−1∑

l∈L alt; the coupling
constraint requires alt = āt for all l. The original model
(19) can then be rewritten as

Vt4ct1it5= max
at∈At4ct 1it5

{

rit āt+ Ɛ6Vt+14ct−fit �at1ĩt+157
}

1 (20)

with At4ct1 it5 = 8a ∈ 80119L: fit lal ¶ ctl, al = ā, for all
l ∈L9. Here fit �at denotes the component-wise product of
the vectors fit and at .

The Lagrangian relaxation introduces Lagrange multi-
pliers associated with the coupling constraints. Following
Topaloglu (2009), we allow these Lagrange multipliers �ilt

to depend on itinerary, leg, and time, but not capacity. The
value function V �

t for this relaxation can be written as

V �
t 4ct1 it5= max

at∈Ât4ct 1 it5

{

rit āt +
∑

l∈L

�ilt4atl − āt5

+Ɛ6V �
t+14ct − fit � at1 ĩt+157

}

1 (21)

where Ât4ct1 it5= 8a ∈ 60117L: fit lal ¶ clt for all l ∈L9 and
V �
T+1 = 0. Note that in this formulation, in addition to relax-

ing the coupling constraints, we also allow alt to be in 60117
rather than 80119. Thus, in addition to allowing the airline
to accept or reject individual legs of an itinerary, in the
relaxed model the airline can accept parts of requests. For
example, if an itinerary consumes two units of capacity, in
the relaxed model, the airline may accept half the itinerary.
This relaxation convexifies the set of feasible actions and
makes the Lagrangian relaxation a convex DP: the rewards
are linear in actions and the action sets are convex. More-
over, the Lagrangian relaxation (21) is also a relaxation
of the original problem (20) in the sense of our Proposi-
tion 3.2(iii): the rewards coincide for all feasible actions
and the set of feasible actions in the Lagrangian relaxation
includes that of the original problem.2

The dual problem associated with this Lagrangian relax-
ation is

min
Ë

V �
0 = min

Ë
Ɛ6V �

1 4c11 ĩ1570 (22)

The following proposition provides some basic properties
of this Lagrangian approximation. We let L4i5 denote the
set of legs on itinerary i, i.e., l such that fil > 0.

Proposition 4.1. Consider the Lagrangian relaxation
(21). Let å ⊆ �ILT denote the set of Lagrange multipliers
satisfying, for all itineraries i and times t: (a) �ilt ¾ 0 for
all l ∈L; (b) �ilt = 0 if l yL4i5; and (c)

∑

l∈L �ilt = ri.
(i) Restricted Lagrangian relaxations. For all capaci-

ties ct and itineraries it ,

Vt4ct1 it5¶ min
Ë

V �
t 4ct1 it5= min

Ë∈å
V �
t 4ct1 it50 (23)

(ii) Value function decomposition. If Ë ∈å, then for all
capacities ct and itineraries it ,

V �
t 4ct1 it5=

∑

l∈L

��
lt4clt1 it51 (24)
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where

��
lt4clt1it5= max

alt∈Alt4clt 1it5

{

�it lt
alt+Ɛ6��

l1t+14clt−fit lalt1ĩt+157
}

1

and Alt4clt1 it5 = 8a ∈ 601172 fit la ¶ clt9. In addition, ��
lt

is nondecreasing, piecewise linear, and concave in clt for
all it .

Thus, with this Lagrangian relaxation, as shown in
Topaloglu (2009), the problem decouples into the sum
of L leg-specific value functions ��

lt that depend only on
the capacity of leg l itself. However, here we restrict the
Lagrange multipliers be in the set å. This simplifies the
representation (24) of the Lagrangian and reduces the num-
ber of nonzero Lagrange multipliers involved in the dual
optimization problem (23). As shown in part (i) above,
this restriction is without loss of optimality. This restric-
tion also leads to a nice interpretation. In this approximate
model (24), the airline can accept or reject individual legs
of itineraries and receive revenue �ilt ¾ 0 for legs on an
itinerary. These fictitious revenues are zero for legs not on
an itinerary and sum to ri. Thus the Lagrange multipliers in
å represent an allocation of the revenue ri for an itinerary i
to the legs on the itinerary; these allocations may vary over
time. The dual problem (23) is to find a revenue alloca-
tion that minimizes the optimal expected revenue in this
relaxed model.3

The approximate value functions from a Lagrangian
relaxation can also be used to generate a heuristic policy that
approximates the continuation value by V �

t in every period.
Specifically, the Lagrangian heuristic, defined in Topaloglu
(2009), will accept itinerary it arriving in period t with
capacities ct if it is feasible to accept the itinerary and the
approximate value of accepting the itinerary exceeds that of
rejecting, i.e., if

rit +
∑

l∈L4it5

Ɛ6��
l1 t+14clt − fit l1 ĩt+157

¾
∑

l∈L4it5

Ɛ6��
l1 t+14clt1 ĩt+1570 (25)

Following Topaloglu (2009), we can potentially improve
the Lagrangian heuristic by reoptimizing the Lagrangian
dual problem (22). Specifically, in each scenario, at pre-
specified times we minimize the Lagrangian dual (22) at
the then-prevailing capacity. Reoptimizing may improve the
heuristic by providing better approximations of the optimal
value function as the capacities evolve over time.

4.3. Gradient Penalties and Inner Problems

We can use these Lagrangian relaxations to generate gradi-
ent penalties and performance bounds. With perfect infor-
mation, the itineraries i11 0 0 0 1 iT are known in advance, and
the inner problem has T decisions at ∈ 80119 representing
whether to accept or reject itinerary it . In these inner prob-
lems, unlike the Lagrangian relaxations, we impose the leg

coupling constraints. Let r be the vector of length T with
tth element being rit and F be the L× T matrix with tth
column corresponding to fit . With �̂�

¡ denoting a gradient
penalty, the inner problem is

maximize
a∈80119T

{

r>a− �̂�
¡ 4a5

}

subject to Fa¶ c10 (26)

Since the penalty is affine in a, (26) is a binary linear pro-
gram: there is a single binary decision variable (accept or
reject the realized itinerary) for each period and the objective
is to maximize the (penalized) revenue. The constraints
require the total capacity consumed by all accepted
itineraries to be less than the initial capacity of each leg.
These inner problems thus scale linearly with the number
of periods T and legs L in the problem and do not depend
on the number of itineraries I or the capacity available on
a leg.

From Proposition 4.1(ii), the Lagrangian relaxation value
functions can be written as a sum of leg-specific value func-
tions. Let � denote a set of Lagrange multipliers and let
��
l = 4��

1 1 0 0 0 1�
�
T 5 be the leg l decisions for this policy. We

can write a gradient penalty associated with this Lagrangian
relaxation as

�̂�
¡ 4a5=

T
∑

t=0

∑

l∈L

{

4��
lt− Ɛ6��

lt754alt−��
lt5+

(

��
l1t+14clt4�

�
l 51it5

− Ɛ6��
l1t+14clt4�

�
l 51ĩt+157

)}

1 (27)

where �lt is a gradient selection for ��
l1 t+14clt4�

�
l 51 it5

with respect to the leg l acceptance decisions and clt4�
�
l 5

denotes the leg l capacity in period t as a function of the
decisions ��

l for this leg under policy �. As noted in Propo-
sition 4.1(ii), the leg-specific value functions ��

l1 t+14clt1 it5
are increasing, piecewise linear, and concave in capac-
ity clt and hence will be nondifferentiable where the slopes
change as we change “pieces” in these piecewise linear
functions. These changes in slopes reflect changes in the
set of binding constraints in future periods as we change
future decisions (according to the optimal policy for the
leg-specific problem) in response to changes in the current
capacity.

Because these leg-specific value functions may be non-
differentiable, the choice of gradients is generally not
unique. Since the Lagrangian relaxation is a convex DP
with rewards and constraint sets that are weakly larger than
those of the original model, Proposition 3.2(iii) ensures that
there exists a gradient selection for (27) such that the opti-
mal value of the inner problems will be less than or equal
to V �

0 in every scenario; with such a selection, the upper
bound from this approach will be (weakly) tighter than
the upper bound from the corresponding Lagrangian relax-
ation. However, some care is required to construct such
a gradient selection. We use a procedure that selects gra-
dients to satisfy condition (16) for the Lagrangian value
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function, working forward in time, as discussed following
Proposition 3.2; this procedure is described in detail in the
appendix. This procedure ensures (16) is satisfied and thus
results in inner problems whose objective function will be
less than or equal to V �

0 in every scenario.
We can simplify the inner problems (26) by relaxing

the binary constraints requiring at to be in 80119 to allow
at to be in 60117, so (26) is a linear program (LP) rather
than an integer program. The average of these relaxed
inner problems would still provide a valid upper bound
and, with the gradient selection discussed above, would
still improve on the Lagrangian bound in every scenario
(because the Lagrangian relaxation also allows at to be in
60117). Although this LP relaxation could in principle lead
to a weaker upper bound than that given by enforcing the
binary constraints, in the numerical experiments of §4.5, the
LP relaxations have had binary optimal solutions in every
scenario and, thus, this relaxation made no difference in the
bounds obtained.

As with the heuristic, we can also use reoptimiza-
tion to potentially improve the upper bounds. We do this
using a gradient penalty analogous to (27) with the reopti-
mized Lagrangian relaxation value functions. In this vari-
ant, we select gradients around actions chosen by the
Lagrangian heuristic (rather than the optimal policy ��

lt for
the Lagrangian relaxation as in (27)). By Proposition 3.2(i),
such a penalty is dual feasible and thus leads to a valid
upper bound. Because this penalty is built from Lagrangian
relaxations that change over time, within each scenario,
we do not have a theoretical result like Proposition 3.2(iii)
that ensures that there will be a gradient selection that
results in an upper bound that is better than the Lagrangian
bound V �

0 . However, we might expect these reoptimized
gradient penalties to lead to better bounds because the value
functions are better approximated in downstream states. We
will use a gradient selection procedure that is like that used
in the case without reoptimization; the details are in the
appendix. However, here, unlike the case without reopti-
mization discussed above, there is no guarantee that we can
find a gradient selection such that (16) holds or that the
resulting upper bound will be better than V �

0 .

4.4. Examples

We will consider two numerical examples, one with one hub
and one with two hubs. These examples are from data sets
that were developed and studied by Huseyin Topaloglu.4

The one-hub example considers a network with one hub
and eight satellite cities: the airline has flights from each
satellite city to the hub and back. The itineraries are all
possible combinations of starting points and final destina-
tions (each reachable with at most two legs) and come in
low- and high-fare classes: thus there are L = 16 legs and
I = 144 itineraries (= 2 fare classes × 9 cities × 8 possi-
ble destinations from each city). All itineraries request at
most one unit of capacity per leg, i.e., fil ∈ 80119. There
are T = 200 periods; the total capacity on all 16 legs is

358 and the maximum initial capacity for any leg is 31.
The probabilities for the itineraries vary over time, with
the probabilities of low-fare itinerary requests decreasing
and high-fare requests increasing as time passes. A full DP
model for this example has approximately 2 × 1026 states
and would be very difficult to solve exactly.

The two-hub example has L = 14 legs, I = 113 itiner-
aries, and the maximum number of legs on any itinerary is
three; again, there are low- and high-fare itineraries for each
route flown. There are T = 400 periods; the total capacity
on all 14 legs is 621 and the maximum initial capacity for
any leg is 82. Again, all itineraries request at most one unit
of capacity per leg and the probabilities vary over time with
a pattern similar to that in the one-hub example. The full
DP has approximately 3 × 1027 states.

For each example, we first optimize the Lagrangian
relaxations (i.e., solve (22)) to find a good set of Lagrange
multipliers. This is done once, before running the simula-
tion. We use a subgradient optimization algorithm, starting
with the Ë ∈å that splits revenue for each itinerary equally
among all legs on the itinerary. We then run this subgra-
dient algorithm for 200 iterations. The resulting Lagrange
multipliers Ë? need not be exactly optimal, but neverthe-
less can be used to generate a heuristic and, as indicated in
Proposition 4.1(i), will provide an upper bound V �?

t on the
optimal value function.

Then, in a Monte Carlo simulation, we generate 100 sam-
ple itinerary scenarios. In each sample scenario, we do the
following:

(i) We evaluate the Lagrangian heuristic using the
approximate value functions V �?

t and calculate the total
reward collected using this heuristic in this scenario. These
sample values are then adjusted using control variates as
discussed in §3.3.

(ii) We calculate a gradient selection and a correspond-
ing gradient penalty based on the Lagrangian relaxation;
we then solve the inner problem (26). The gradient selec-
tion is constructed as discussed in the appendix to ensure
that the upper bounds are weakly tighter than V �?

0 in every
scenario.
Averaging the values from (i) and (ii) across these 100 sam-
ple scenarios provides estimates of lower and upper bounds
on the optimal revenue V0.

In addition, we consider heuristics and bounds based on
the reoptimized Lagrangian heuristic, as discussed in §4.3.
Following Topaloglu (2009), we reoptimize every T /5 time
periods in each scenario. Because these reoptimizations are
time consuming, we use just 25 iterations in the subgradi-
ent optimization algorithm when reoptimizing. Of course,
reoptimizing more frequently or more precisely (e.g., with
more iterations) may lead to better results.

Finally, we compute upper and lower bounds that pro-
vide useful benchmarks for evaluating the other heuristics
and bounds. For a lower bound, we consider a naive heuris-
tic that accepts itineraries whenever capacity is available on
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all involved legs. For an upper bound, we solve inner prob-
lems (26) with zero penalty; the average of the optimal val-
ues for the inner problem gives an estimate of the expected
value with perfect information. Both of these benchmark
bounds are easy to compute.

4.5. Results

Table 1 shows the results, including run times, for both
examples. All computations are on a desktop computer
(a Dell PC with a 3.07 GHz Intel Xeon quad-core CPU and
12.0 GB of RAM) running Windows 7, using MATLAB
7.12.0 (R2011a) with the MOSEK 7.0 Optimization Tool-
box to solve the inner problems (26). Mean standard errors
(MSEs) are provided for the bounds that are estimated using
simulation. The MSEs are calculated in the usual way as
�/

√
n, where � is the standard deviation of the heuristic

or dual values generated in the simulation, and n = 100 is
the number of trials in the simulation. The MSEs for the
heuristics are MSEs for the heuristic values after adjusting
them using the control variates.

The naive heuristic, although very easy to evaluate, per-
forms quite poorly. This is not surprising: in these exam-
ples, the most valuable itineraries have a high probability

Table 1. Bounds and run times for network revenue management examples (100 samples).

Lower bounds One-hub example Two-hub example

Naive heuristic
Mean (MSE), $ 9,355 (30) 27,259 (50)
Run time, seconds 0.01 0.01

Lagrangian heuristic (a)
Mean (MSE), $ 18,191 (33) 44,245 (77)
Run time, seconds 33 85

Lagrangian heuristic with reoptimization (b)
Mean (MSE), $ 18,348 (14) 44,480 (42)
Run time, seconds 2,729 10,853

Upper Bounds

Lagrangian relaxation (c)
Value, $ 18,726 45,291
Run time, seconds 124 571

Perfect information with zero penalty
Mean (MSE), $ 19,342 (30) 46,067 (50)
Run time, seconds 0.27 0.35

Perfect info. + Lagrangian gradient penalty (d)
Mean (MSE), $ 18,597 (10) 45,000 (15)
Run Time, seconds 35 69

Perfect info. + Reopt. Lagrangian gradient penalty (e)
Mean (MSE), $ 18,488 (8) 44,844 (19)
Run Time, seconds 38 69

Gaps

Without reoptimization
Lagrangian relaxation to heuristic, i.e., (c)–(a) 535 2.94% 1,046 2.36%
Perfect info. + LR Grad. penalty to heuristic, i.e., (d)–(a) 406 2.23% 755 1.71%

With reoptimization
Lagrangian relaxation to heuristic, i.e., (c)–(b) 378 2.06% 811 1.82%
Perfect Info. + LR Grad. penalty to heuristic, i.e., (e)–(b) 140 0.76% 364 0.82%

of arriving near the end of the time horizon and this naive
heuristic often leaves insufficient capacity to accept them.

The heuristics and bounds from the Lagrangian relax-
ations are much better. It takes a few minutes to run the
subgradient algorithm to find a good choice of Lagrange
multipliers; the two-hub example takes longer because it
has twice the number of time periods, more capacity, and
the itineraries consume capacity on more legs. Given the
leg-specific value functions for the Lagrangian relaxation,
the heuristic is relatively easy to evaluate. Reoptimiza-
tion increases the run times for the heuristic substantially
(to 45 minutes for the one-hub example and three hours
for the two-hub example), but improves its performance
significantly.

In terms of the upper bounds, the Lagrangian relaxation
upper bounds are good and yield a duality gap less than 3%
when compared to the Lagrangian heuristic and about 2%
when compared to the heuristic with reoptimization. The
perfect information bounds with zero penalty are relatively
weak (much worse than the Lagrangian bounds); this shows
the need to use some form of penalty. The computational
effort associated with calculating the information relaxation
upper bounds is not great: most of the work is in calculat-
ing the Lagrangian relaxation and reoptimizing. In Table 1,
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we see that the bounds with gradient penalties improve on
the Lagrangian relaxation bound. Without reoptimization,
the duality gap is reduced from 2094% to 2023% and 2036%
to 1071% for the two examples. With reoptimization, the
upper bounds are improved and the reoptimized Lagrangian
heuristics are within 1% of the new upper bound.

Figure 1 shows a plot of the sample values for the
Lagrangian heuristic and the inner problem values (26) for
the 100 scenarios in the one-hub example; the plots for the
two-hub example are similar. (The values for the heuris-
tics shown here are adjusted using control variates.) In the
results without reoptimization, we see that the value of the
inner problem with the gradient penalty is no worse than
the upper bound V �?

0 from the Lagrangian relaxation in
every scenario; the gradient selection was constructed to
ensure this, as in Proposition 3.2(iii). With reoptimization,
we see in Figure 1(b) that the inner problem values are
better than V �?

0 in these 100 scenarios, though that need

Figure 1. (Color online) Sample values for the Lagran-
gian heuristic and the inner problems for the
one-hub example.
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not hold in all cases. We also note with reoptimization, in
each scenario, the inner problem values (26) are greater
than or equal to the corresponding values of the Lagrangian
heuristic. As discussed in §3.3, this must be the case when
the gradients are taken around the actions chosen by the
Lagrangian heuristic. This is not true in the case without
reoptimization as the gradients are taken around an infea-
sible policy.

Finally, we consider the impact of the gradient selec-
tion on the quality of the bounds. As discussed earlier, the
results in Table 1 were calculated using a gradient selec-
tion designed to ensure that the consistency conditions (16)
are satisfied, if possible. If we instead take the gradient
selection �t in (27) to be a simple 50–50 mix of left and
right derivatives of ��

l1 t+1 for each capacity level, we obtain
weaker bounds, particularly in the case with reoptimiza-
tion. In the one-hub example, without reoptimization, the
upper bound with the simple 50–50 gradients is $18,656
(13) as compared to $18,597 (10) with the more sophis-
ticated gradient selection; with reoptimization, the upper
bound is $18,929 (31), as compared to $18,488 (8). (MSEs
are shown in parentheses.) The results for two-hub example
are similar: with 50–50 gradients, the bounds are $45,068
(20) without reoptimization and $45,444 (84) with reopti-
mization, as compared to $45,000 (15) and $44,844 (19),
respectively, with the more sophisticated gradient selection.
These results illustrate the importance of selecting gradients
carefully, so the consistency conditions (16) are satisfied
or approximately so. This is particularly important in the
case with reoptimization as we have gradients of different
approximate models (e.g., with different Lagrange multipli-
ers) in different periods and the consistency condition (16)
links gradients across periods.

To get a sense of just how well the heuristic with reop-
timization is performing, let us reconsider the duality gaps
of Table 1. In the one-hub example, the best duality gap
($140) is less than the average value ($225) of an itinerary
arriving in the final period and less than one-third of the
highest priced itinerary ($456). In the two-hub example,
the gap ($364) is close to the average value of an itinerary
in the last period ($331) and less than half the maximum
itinerary value ($775). Hence, in these two examples with
358 and 621 seats to sell, the gradient penalty bounds show
that this heuristic is within the value of a single ticket of
an optimal policy! These bounds thus make it clear that we
cannot improve significantly on this heuristic.

5. Example: Inventory Management with
Lost Sales

The lost-sales inventory problem is a classic problem that
has received renewed attention in recent years. In this
model, there is a lead time between orders being placed
and delivered and sales are lost rather than backordered
when inventory is not sufficient to meet demand. Among
many references, the lost-sales model was originally for-
mulated in Karlin and Scarf (1958), further explored in
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Morton (1971), and recently reexamined in Zipkin (2008a)
and (2008b).

5.1. The Model

We consider a finite-horizon, discrete-time, single-item
inventory system with stochastic demands, a constant lead
time, and lost sales. We let T be the time horizon and L be
the order lead time; L is a positive integer. Given the lead
times, we will assume that the system operates over periods
t ranging from t = 01 0 0 0 1 T +L, with (random) demand dt

(dt ¾ 0) realized in period t. Demands are assumed to be
integer valued and independent and identically distributed
over time. We let at be the quantity ordered in period t
and arriving in period t + L; we assume that at is inte-
ger valued and at ¾ 0. In terms of the general notation
of §2.1, the probability space 4ì1F1�5 is the standard
crossproduct space with scenarios � representing the vec-
tors of demands 4d01 0 0 0 1 dT+L5. In the natural filtration, the
DM learns demand dt in period t, after placing an order in
that period.

The period-t state vector xt = 4xt01 0 0 0 1 xt4L−155 is an L-
vector where the first element (xt0) represents the inventory
level in period t and the remaining elements (xtl) represent
the order arriving in period t + l. Given period-t state xt ,
demand dt , and order at , we can write the next period
state as

xt+14xt1dt1at5=
(

6xt0 −dt7
+
+xt11xt210001xt4L−151at

)

0 (28)

With this transition, the next-period inventory is given by the
leftover inventory (6xt0 −dt7

+) plus the arriving order (xt1);
the remaining orders “shift left” to become one period closer
to arrival and the current order (at) becomes the last order in
process. We assume that the systems begins with no orders
in process.

Let c (c¾ 0) be the unit cost of procurement, h (h¾ 0)
be the unit cost of holding inventory, p (p¾ 0) be the unit
penalty for lost sales, and � (0 ¶ � ¶ 1) be the discount
factor. We can then write the period-t costs as

q4xt1 dt1 at5= �Lcat +h6xt0 −dt7
+

+p6dt − xt07
+0

Here we are assuming that the cost of ordering is paid
when the goods are delivered in period t +L. We take the
terminal value to be fT+L+14xT+L5= 0. We can write earlier
optimal-cost-to-go functions as

ft4xt5=min
at¾0

Ɛ
[

q4xt1d̃t1at5+�ft+14xt+14xt1d̃t1at55
]

1 (29)

where the expectations are taken over the demand d̃t in
period t. Naturally, it is optimal to take at = 0 for t =

T + 11 0 0 0 1 T +L since these orders would not arrive within
the timeframe considered in the model.

5.2. Structural Properties of the Lost-Sales Model

Some care is required to place this problem in the frame-
work of the convex DPs of §3. First, rather trivially, we
are minimizing costs rather than maximizing rewards and,
hence, we want to have convex cost functions rather than
concave value functions and the gradients involved will be
subgradients rather than supergradients. Second, as with the
network revenue management example, though the problem
is naturally described as a function of the state variables,
to place it in the framework of §3, we need to write the
value functions as functions of the past order quantities
rather than the state vector considered above. If we define
period costs as the expectations of q as in (29), the cost-
to-go functions may not be convex in prior order quantities
(more than L periods ago). The inventory level (xt0) in any
given period is a convex function of prior order quantities
and the cost-to-go function (29) is convex in inventory, but
the composition of these two convex functions need not
be convex.

To ensure the cost functions are convex in order quan-
tities, we will consider two transformations of the orig-
inal problem. First, we work with accumulated orders
rather than orders: let zt =

∑t
�=0 at denote the accumulated

order quantities up to time period t. We can write this
in vector form as zt = Mtat , where zt = 4z01 0 0 0 1 zt5, at =

4a01 0 0 0 1 at5, and Mt is a (t+1)-by-(t+1) matrix with ones
on and below the diagonal; the fact that the order quanti-
ties at must be nonnegative implies that the accumulated
order quantities zt must be nondecreasing. Second, we take
the terminal cost function to be the total (discounted) cost
over all T +L+ 1 periods and all earlier cost functions to
be zero.

We can write the terminal cost function JT+L+14zT+L5
for given demand scenario and accumulated order sequence
(zT+L) as a linear program where the decision variables s=

4s01 0 0 0 1 sT+L5 can be interpreted as the cumulative amount
distributed:

JT+L+14zT+L5= min
s

T+L
∑

t=0

�t
(

�Lc4zt − zt−15+h4zt−L − st5

+p4dt − st + st−15
)

subject to

st ¾ st−1 for t = 01 0 0 0 1 T +L1

st ¶ zt−L for t = 01 0 0 0 1 T +L1 (30)

where we take s� = 0 and z� = 0 when � < 0. The con-
straints in (30) require the amount distributed in period t
(st − st−1) to be nonnegative and the total distributed to be
less than the total received. In the objective, 4zt − zt−15, is
the amount ordered in period t, 4zt−L − st5 is the leftover
inventory, and 4dt − st + st−15 is the unmet demand. This
linear programming formulation is a relaxation of the orig-
inal problem (29) in that the DM could choose to hold left-
over in inventory (taking st < zt−L) while simultaneously
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leaving demand unmet (taking st − st−1 < dt), whereas in
the original problem, it is implicitly assumed that demand
must be met before any items could be held over as inven-
tory for the next period. However, it is not difficult to see
that with our assumptions on model parameters (h1p ¾ 0
and � ¶ 1), it will be optimal to meet demand whenever
possible. Moreover, if the demands and order quantities are
all integers, the optimal st will also be integers.

With this terminal cost function, earlier cost functions
are given recursively as

Jt4zt−15= min
8zt 2 zt¾zt−19

Ɛ6Jt+14zt−11 zt571 (31)

where the expectations are taken over period-t demand.
Note that these cost functions represent the expected total
costs including past, present, and future costs, rather than
the expected costs-to-go as in Equation (29). We take
Jt4zt−15= +� for infeasible order sequences.

Following Zipkin (2008a), we now show that the cost
functions for the lost-sales problem are L-natural-convex
(L\-convex) functions of accumulated orders.5 An extended
real-valued function g2 �n → �1 ∪ 8+�9 is submodular if
and only if

g4p5+ g4q5¾ g4p∨q5+ g4p∧q5 for all p1q ∈�n

where ∨ and ∧ denote component-wise maximization and
minimization, respectively. An extended real-valued func-
tion g defined on �n is L\-convex if ĝ4p01p5= g4p−p015
is submodular for all p0 ∈�1. Here 1 is a vector of n ones.

Proposition 5.1. (i) For all t, Jt4zt−15 is L\-convex in zt−1.
(ii) Let g be an extended real-valued L\-convex function

defined on �n, let N be the index set N = 811 0 0 0 1 n9, and
let 14−5 be the set-indicator function defined on subsets
of indices X ⊆ N where 14X5 is an n-vector whose ith
element of 14X5 is 1 if i ∈ X and 0 otherwise. Then, for
any z ∈�n such that g4z5 is finite,

¡g4z5=
{

x∈�n2 g4z5−g4z−14X55¶
∑

i∈X

xi

¶g4z+14X55−g4z5 for all X⊆N

}

0

L\-convexity implies Jt4zt−15 has a convex extension; that
is, there exists a convex function J̄t such that J̄t4zt−15 =

Jt4zt−15 for all integer zt−1. Specifically, the convex exten-
sion J̄t is defined as the point-wise supremum over the set
of all hyperplanes that lie beneath Jt for all integer order
quantities (see Murota 2003). So, in this sense, J̄t can be
viewed as an extended real-valued “convex” function on �t .
The characterization of the differential follows from results
in Murota (2003). The differential ¡g4z5 is closely related
to a base polyhedral set and its extreme points may be
found using a variation of the greedy algorithm; details
are provided in the online appendix. Using this variation
of the greedy algorithm, we can identify an extreme point
(or extreme ray) of the differential ¡g4z5 by evaluating the
function g4z5 a total of t + 1 times.

5.3. Heuristics

Given the difficulty of solving the dynamic program (29),
it is natural to consider simpler heuristics. We will focus
on a myopic heuristic studied by Morton (1971), Zipkin
(2008b), and others. In this heuristic, the DM chooses order
quantities at in period t to minimize costs from period t
to period t+L (when the order at arrives) without consid-
ering the evolution of the system after that point or future
orders. Thus, in each period, we solve a one-dimensional
optimization problem to find the myopic order quantity at

for a given state xt:

f̂ L
t 4xt5=min

at¾0
Ɛ
[

q4xt1d̃t1at5+�f̂ L−1
t+1 4xt+14xt1d̃t1at55

]

0 (32)

For the lookahead values f̂ l
t 4xt5 for 0 < l < L, we as-

sume there are no additional orders and take

f̂ l
t 4xt5= Ɛ

[

q4xt1 d̃t105+�f̂ l−1
t+1 4xt+14xt1 d̃t1055

]

0 (33)

The terminal lookahead value is given by f̂ 0
t 4xt5 =

�46xt0 −dt7
+5. Here �4·5 is a function that approximates

the residual value of inventory remaining at the end of the
myopic lookahead horizon. Zipkin’s version of the myopic
heuristic takes �4x5= −cx, so leftover inventory is valued
as if it substitutes for future purchases. We have found that
we can obtain better performance by taking the residual
value to be �4x5 = −�x and doing a grid search to iden-
tify good � for a given problem. We typically find that
the best � satisfies � < c, which suggests that it is bet-
ter to assume that leftover inventory is valued at less than
the ordering cost. Of course, other functional forms for the
residual value, perhaps including time or state dependence,
may perform even better.

There are a number of other heuristics one might explore.
For example, Zipkin (2008b) considers a “myopic-2”
heuristic that looks L + 2 periods ahead and finds that
it tends to outperform the myopic heuristic. In work in
progress, Sun et al. (2014) consider heuristics based on
L\-convex quadratic approximations of the value functions.
We will focus solely on the myopic heuristic, although the
techniques we use could be used with these other heuristics
as well.

5.4. Gradient Penalties and Dual Bounds

With perfect information about demands, we can write the
inner problem (5) as a linear program, as in (30) but with
cumulative order quantities zt as decision variables as well
as cumulative amount distributed st:

min
z1 s

T+L
∑

t=0

�t
(

�Lc4zt − zt−15+h4zt−L − st5

+p4dt − st + st−15
)

subject to st ¾ st−1 for t = 01 0 0 0 1 T +L1

st ¶ zt−L for t = 01 0 0 0 1 T +L1 (34)
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where we take s� = 0 and z� = 0 when � < 0. If we include
a penalty that is linear in the order quantities zt (such as
our gradient penalties), we simply add terms that are affine
in zt to the objective function. As with (30), given integer
demands, the optimal zt and st will be integers.

As discussed in BSS (2010), if we know the optimal poli-
cies for a dynamic program satisfy certain structural proper-
ties, we can restrict the dual problem to consider solutions
that also satisfy these properties. Zipkin (2008a, Lemma 6)
shows that when starting from a zero initial inventory posi-
tion and following an optimal ordering policy, the optimal
order quantities must satisfy critical fractile bounds, where
the critical fractiles are defined for the total demand over
several periods. Here we can add these linear constraints
on order quantities to the linear program (34) for the inner
problem and improve the bounds. We will include these
critical fractile constraints in our numerical experiments,
but we do not include the more complicated constraints
on weighted sums of inventory levels that Zipkin (2008a,
Corollary 10) develops.

We will consider gradient penalties based on the approx-
imate value functions associated with the myopic heuristic.
Specifically, we take the approximate value functions V̂t

for period t in the gradient penalty (15) to be the value
function (30)–(31), but with the horizon T set to t + L;
this is equivalent to adding the previously incurred costs
to the myopic cost-to-go function (32). As in the myopic
heuristic, we augment the terminal value (30) to include a
residual term �4−5 to value leftover inventory. As this is a
value function for a lost-sales model (albeit with a differ-
ent time horizon), these value functions will be L\-convex
and we can use the result of Proposition 5.1(ii) to char-
acterize the gradients. In addition to considering gradient
penalties based on these myopic approximate value func-
tions, we will also consider penalties based on optimal
value functions in cases with a short lead time (L = 4),
which can be solved exactly. We will take gradients around
the order quantities selected in the myopic heuristic when
working with the myopic value functions and around the
optimal order quantities when working with the optimal
value function.

We will consider two different methods for selecting
gradients for the penalty. In both approaches, we use a
variation of the greedy algorithm (see online appendix)
to identify extreme points (or extreme rays) of the differ-
ential ¡V̂t4zt−15 given in Proposition 5.1(ii); finding such
an extreme point requires evaluating the approximate
value function V̂t4zt−15 a total of t + 1 times. In the first
approach, we use a simple 50–50 convex combination of
two “extreme” extreme points of the differential. These gra-
dients are easy to compute but generally will not satisfy the
consistency condition (16). In the second approach, we use
a more sophisticated procedure where we try to find an ele-
ment of the differential that satisfies condition (16). Here
we work forward in time as discussed following Proposi-
tion 3.2, selecting gradients for one period to match the

selected gradient for the previous period. For each period,
we sequentially generate extreme points of the differential
(using the same variation on the greedy algorithm) until the
convex hull includes an element satisfying the desired con-
dition. If no such point exists, we instead take the point
in the differential that is closest to satisfying (16). This
approach is more time consuming than the first approach
but generates gradients such that (16) is satisfied or approxi-
mately so if it is not possible to satisfy the condition exactly.
The details of these two procedures are provided in the
appendix.

5.5. Numerical Examples

We will consider four numerical examples, all adapted from
Zipkin (2008b). In all cases, we assume a time horizon of
T = 40, ordering costs c = 0, holding costs h = 1, penalty
p = 9, and discount factor �=1.6 We will consider lead
times L= 4 and 10; the model with L= 4 is small enough
to solve exactly, whereas with L = 10, the model is much
too large to solve exactly. In both cases, we consider Pois-
son and geometric demand distributions with mean 5. The
geometric distribution includes more extreme demand sce-
narios and leads to a more difficult inventory management
problem and, as we will see, much higher expected costs.
We will study the myopic heuristic and dual bounds gen-
erated by gradient penalties based on the myopic heuristic
and, for the L= 4 cases, based on the optimal value func-
tion. The results are summarized in Table 2.

For each set of parameters, we first run a few small-
sample simulations to identify a good value � to use in
the residual value function �4x5= −�x that approximately
capture the value of leftover inventory in the myopic heuris-
tic and associated bounds. These values are reported at the
top of Table 2. We also calculate exact value functions for
the L = 4 cases. We then run a Monte Carlo simulation
with 100 sample scenarios, with T + L + 1 demand real-
izations for each scenario. In each sample scenario, we do
the following:

(i) We evaluate the myopic heuristic and adjust these
values using control variates, as discussed in §3.3.

(ii) We then select gradients based on the myopic value
function and optimal value function (for the L = 4 cases),
using both the simple and sophisticated approaches. Using
these selections with gradient penalties, we then solve the
inner problem (34) (with the penalty term included in the
objective) as a linear program. We also consider a bound
where there is no penalty. In all cases, we enforce the crit-
ical fractile constraints discussed in §5.4 when solving the
inner problems.

The average of the values from (i) and (ii) provide esti-
mates of the upper and lower bounds on the optimal costs.
These values and the mean standard errors (MSEs) associ-
ated with these estimates are shown in Table 2; the MSEs
are calculated in the same way as in the network revenue
management examples.
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Table 2. Bounds and run times for lost sales example (100 samples).

Poisson demand Geometric demand

Upper bounds L= 4 L= 10 L= 4 L= 10

Best � value 0.95 1.325 0.675 0.9
Myopic heuristic

Mean (MSE), $ 448 (0.16) 744 (0.53) 833 (0.65) 1,139 (1.28)
Run time, seconds 2 6 3 11

Exact value

Value, $ 448 — 832 —
Run time, seconds 416 1,365

Lower bounds

Zero penalty
Mean (MSE), $ 225 (4.45) 500 (5.94) 315 (8.36) 593 (11.0)
Gap as % of myopic heuristic (%) 49.8 32.8 62.2 47.9
Run time, seconds 2 2 2 2

50–50 gradient penalty based on myopic value function
Mean (MSE), $ 430 (0.26) 713 (0.82) 806 (0.39) 1,092 (0.72)
Gap as % of myopic heuristic (%) 4.0 4.2 3.2 4.1
Run time, seconds 53 94 57 116

50–50 gradient penalty based on optimal value function
Mean (MSE), $ 429 (0.41) — 818 (0.35) —
Gap as % of myopic heuristic (%) 4.4 1.8
Run time, seconds 55 57

Soph. gradient penalty based on myopic value function
Mean (MSE), $ 440 (0.22) 731 (0.36) 816 (0.46) 1,099 (0.68)
Gap as % of myopic heuristic (%) 1.8 1.8 1.9 3.5
Run time, seconds 408 2,690 382 1,879

Soph. gradient penalty based on optimal value function
Mean (MSE), $ 448 (0.00) — 832 (0.00) —
Gap as % of myopic heuristic (%) 0.1 0.1
Run time, seconds 429 338

As in the network revenue management examples, all
computations were done in MATLAB using a standard
desktop PC. We use Mosek to solve the inner problems
(a linear program) as well as a quadratic program that
arises in the sophisticated gradient selection procedure.
The run times (shown in Table 2) are dominated by the
time required to evaluate the (approximate) value functions
when calculating gradients. The simple 50–50 gradient
selection procedure requires evaluating the value functions
in 24t + 15 times in period t. The sophisticated gradi-
ent selection procedure requires more evaluations as we
search for a gradient satisfying condition (16). We have not
attempted to optimize these computations: there are many
redundant calculations and the run times could probably be
significantly improved.

In terms of performance, we see that the myopic heuris-
tic is very close to the exact value (within approximately
0.12%) for the cases where we can compute the exact value.
The lower bound based on the optimal value functions
with the sophisticated gradient selection procedure is sharp,
yielding the exact value with zero variance, as guaranteed
by Proposition 3.1(ii) and our choice of gradients. Review-
ing these results and those for the other lower bounds, we
see the importance of gradient selections: the sophisticated

procedure outperforms the simple 50–50 procedure in every
case. The gaps between the myopic heuristic values and
the corresponding sophisticated gradient bounds based on
the myopic heuristic are under 2% in all but the most dif-
ficult case, with geometric demand and L= 10, where the
gap is 3.5%. It is impossible to know whether this 3.5%
gap (or the 1.9% gap for the other L = 10 case) is mostly
due to the suboptimality of the heuristic or suboptimality
of the bound; we suspect that there is some of each here.
In all cases, the zero penalty bounds are quite weak; this
reflects the difficulty of the inventory management problem
(with perfect information, the holding and penalty costs are
nearly zero, except for the L initial “start up” periods where
no orders have arrived and penalties are unavoidable) and
the importance of using an effective penalty.

Figure 2 shows the sample results for the myopic heuris-
tic (adjusted by the control variates) and the inner problems
for the sophisticated and 50–50 gradient penalties based on
the myopic value function, for the case with L = 10, with
Poisson demand. Here we see that the (adjusted) heuristic
values are greater than both inner problem values in every
sample, as they must be given the discussion in §3.3. We
also see that the dual bounds based on the sophisticated
gradients outperform the simpler 50–50 gradient selection
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Figure 2. (Color online) Sample values for the myopic
heuristic and inner problems for the lost-sales
problem.
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in every scenario. We have no theoretical guarantee that
this will be the case (and indeed it is not always the case
in some other trials), but these results reinforce the impor-
tance of selecting gradients carefully.

To examine the importance of the residual value function
used to value leftover inventory in the myopic heuristic, we
also evaluated this heuristic and associated gradient bounds
using �4x5= −cx, as assumed in Zipkin (2008b) and else-
where, rather than using �4x5= −�x and choosing a coef-
ficient � for the particular problem at hand. With �= c,
we find that the expected costs for the myopic heuristic
increase by amounts ranging from 3.1% in the L = 4 case
with Poisson demand to 7.3% in the L= 10 case with geo-
metric demand. The expected costs given by the gradient
bounds decrease by amounts ranging from approximately
12% to 24%, with the cost decreases being slightly larger
in the cases with the simple 50–50 gradient selection. The
results for the dual bounds are particularly sensitive as this
change in residual coefficient has a significant effect on the
gradients of the approximate value functions.

As shown in Table 2, with these optimized value of � for
the myopic heuristics and gradient bounds, we find dual-
ity gaps of less than 2% in three of the four cases and
3.5% in the fourth. These results may be “good enough”
for most applications. If not, one can experiment with alter-
native forms for residual functions or more sophisticated
heuristics in effort to narrow these gaps.

6. Conclusions
In this paper, we have studied the problem of calculat-
ing performance bounds for stochastic DPs with a convex
structure through the use of information relaxations and
gradient penalties. The main motivation for studying these
penalties was computational tractability: the fact that gra-
dient penalties are linear in actions implies that the inner

problems, with perfect information, may be formulated and
solved as deterministic convex optimization problems. In
terms of quality of the resulting performance bounds, the
analysis suggests these gradient penalties are effective: we
can in theory obtain a tight, zero variance bound with
the right choice of gradient penalty, and we can improve
upon performance bounds from other relaxations using this
approach.

We have considered two example applications that are
interesting in their own right and demonstrate the use-
fulness of the information relaxation approach. The net-
work revenue management application demonstrated how
the dual bounds could be used to improve upon bounds
given by a relaxed approximating model, here a Lagrangian
relaxation, that can be solved to optimality. In the lost-sales
application, the penalties were based on the limited looka-
head value functions that are used with a myopic heuristic.
In the network revenue management model, the rewards
are linear but nondifferentiability arises through changes
(or potential downstream changes) in binding constraints.
In the lost-sales model, the nondifferentiability is embed-
ded in the inventory cost functions and in the state dynam-
ics where sales are lost if sufficient inventory is not on
hand. In both cases, we exploit structural properties of the
approximating model to calculate gradients and penalties.
In the network revenue management model, the key fea-
ture is the ability to decompose the Lagrangian relaxation
into leg-specific subproblems. In the lost-sales model, we
use L\-convexity of the approximating value functions to
characterize the set of gradients. In other applications, one
may need to think carefully about calculating gradients: it
would be nice to have some general techniques that do not
require knowledge of such problem-specific structure.

In recent related work, Desai et al. (2012) study perfor-
mance bounds for a class of convex stochastic DPs. Their
approach involves using a perfect information relaxation
and a set of penalties that are linear in actions; the penalties
are parametric functions of the uncertainties and they use
large-scale optimization to find the best parameters for this
set of penalties. We view their approach as complemen-
tary to the use of gradient penalties. The challenge with
this optimization-based approach is that is not clear what
parametric function to use; the analysis of gradient penal-
ties provides insights into what these functions should look
like. The challenge with the gradient penalty approach is
that we may want to improve the bounds by searching over
penalties from different approximate models; this search
can be tedious. It would be interesting to consider a hybrid
method that efficiently searches over penalties by starting
with a gradient penalty from a given approximate model
and then refines the bound using optimization.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2014.1322.
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Appendix. Proofs for §3

A.1. Proof of Lemma 3.1(viii)

Proof. ⇒: Given 401 g5 ∈ ¡f 4x∗4y51 y5, for any w we have

f ∗4w5=f 4x∗4w51w5

¶f 4x∗4y51y5+0>4x∗4w5−x∗4y55+g>4w−y5

=f ∗4y5+g>4w−y50

Thus g ∈ ¡f ∗4y5.
⇐: Given g ∈ ¡f ∗4y5, for any v1w we have

f 4v1w5¶ f ∗4w5¶ f ∗4y5+ g>4w− y5

= f 4x∗4y51 y5+ 0>4v− x∗4y55+ g>4w− y50

The first inequality follows from the definition of f ∗4w5 as a
maximum; the second inequality follows from the assumption that
g ∈ ¡f ∗4y5. Thus 401 g5 ∈ ¡f 4x∗4y51 y5. �

A.2. Proof of Proposition 3.2

Proof. Part (i) follows directly from Proposition 2.2. Part (iii)
follows from part (ii) in the same way as in Proposition 2.2.

(ii) For the proof of part (ii), it is helpful to represent the con-
straints using characteristic functions. For a set X, let 1At

4at5= 0
if at ∈At4at−15 and −� otherwise; since At is a convex set, 1At

is a concave function taking values on the extended real line.
Since, by assumption, the approximate value functions and pol-

icy correspond to those from the original model (i.e., V̂t = Vt and
�̂= �), we will omit the “hats” from V and � in this proof. With
this notation, we can rewrite the inner problem for a particular
scenario as follows:

max
a∈A

8r4a5− �̂¡4a59

= max
a

T
∑

t=0

{

rt4at5+1At
4at5+

(

Ɛ6Ät �Ft7−Ät

)>
4at −Át5

+
(

Ɛ6Vt+14Át5 �Ft7−Vt+14Át5
)}

0 (1)

We use Át to denote the sequence of actions up to time t cho-
sen by policy � in this scenario �, i.e., Át = 4�04�51 0 0 0 1�t4�55,
and let Á = ÁT . We will show that a = Á is an optimal solution
to (1). Dropping terms that do not depend on a from the max-
imization problem on the right side of (1) and rearranging, this
maximization problem is equivalent to

max
a

T
∑

t=0

{

rt4at5+1At
4at5+4Ɛ6Ät �Ft7−4Ät−11055

>at
}

(2)

in that (1) and (2) have the same sets of optimal solutions. To
parse the above notation, recall that Vt+1 depends on actions at =
4a01 0 0 0 1 at5, and thus Ät has dimension equal to the dimension
of at . The 0 above has dimension equal to the dimension of at ,
so the dimensions of Ät and 4Ät−1105 are the same. We use the
convention that Ä-1 = �, so 4Ä-1105= 0.

Problem (2) is an unconstrained convex optimization problem
with the constraints of the original problem captured through the
characteristic functions in the objective. We will show that there
exists a gradient selection Ä = 4Ä01 0 0 0 1ÄT 5, where Ät−14�5 ∈

¡Vt4Át−14�51�5, such that 0 is in the differential of the objective

function in (2) at a =Á. Since this objective is concave in actions,
by Lemma 3.1(vi), this implies that a =Á is an optimal choice of
actions in (2).

Because the objective in (2) is a sum of concave functions
and differentials commute with summation for concave functions
(Lemma 3.1(iv)), to show that a = Á is optimal in (2), it is suf-
ficient to show that there exist gradients Ät such that 0 is in the
differential for each term in the sum in (2); that is, it is sufficient
to show that there exists a gradient selection Ä = 4Ä01 0 0 0 1ÄT 5
such that, for all t,

0 ∈ ¡8rt4Át5+1At
4Át59+

(

Ɛ6Ät �Ft7− 4Ät−1105
)

1

or, equivalently,

4Ät−1105 ∈ ¡
{

rt4Át5+1At
4Át5

}

+ Ɛ6Ät �Ft70 (3)

Condition (3) generalizes the “consistency condition” (13) to the
case with constraints and nondifferentiable rewards. We show (3)
by forward induction: we first show this condition holds for t = 0
and then, assuming it holds for the first t periods, we show that
it also holds for the first t + 1 periods.

For t = 0, since Ä−1 = �, (3) becomes

0 ∈ ¡8r04�05+1A0
4�059+ Ɛ6Ä0 �F073 (4)

we will show that there exist Ä0 satisfying this condition. By
definition, �0 is optimal for the problem

max
a0

{

r04a05+1A0
4a05+ Ɛ6V14a05 �F07

}

0

Since V14a05 is concave in a0, this is a convex optimization prob-
lem and, by Lemma 3.1(vi), optimality of �0 implies

0 ∈ ¡
{

r04�05+1A0
4�05+ Ɛ6V14�05 �F07

}

0 (5)

By Lemma 3.1(iv), this means that there exists gradients g1 and g2

such that

g1 ∈ ¡
{

r04�05+1A0
4�05

}

1 g2 ∈ ¡Ɛ6V14�05 �F071 and

g1 + g2 = 00

By Lemma 3.1(vii), we can interchange expectations and the dif-
ferential operator and we have

g2 ∈ ¡Ɛ6V14�05 �F07= Ɛ6¡V14�05 �F070

This implies the existence of a selection of gradients Ä04�5 ∈

¡V14�04�51�5 such that g2 = Ɛ6Ä0 �F07. Since g1 + g2 = 0,
(4) holds for the selection of gradients Ä0.

Now assume that (3) holds for t periods for some gradient
selection 4Ä01 0 0 0 1Ät−15 with Ät−1 ∈ ¡Vt4Át−15. We will show that
there is a Ät such that (3) holds for t + 1 periods for the gradient
selection 4Ä01 0 0 0 1Ät−11Ät5. The proof is similar to that for the
t = 0 case. By definition, at = �t is optimal for the problem

Vt4Át−15= max
at

{

rt4Át−11 at5+1At
4Át−11 at5

+ Ɛ6Vt+14Át−11 at5 �Ft−17
}

0
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Then, since this is a convex optimization problem, by the “stack-
ing gradient” result (Lemma 3.1(viii)), we know that Ät−1 ∈

¡Vt4Át−15 implies

4Ät−1105 ∈ ¡
{

rt4Át−11�t5+1At
4Át−11�t5

+ Ɛ6Vt+14Át−11�t5 �Ft7
}

= ¡
{

rt4Át5+1At
4Át5+ Ɛ6Vt+14Át5 �Ft7

}

0

By Lemma 3.1(iv), this implies that there exists gradients g1 and
g2 such that

g1 ∈ ¡8rt4Át5+1At
4Át591 g2 ∈ ¡Ɛ6Vt+14Át5 �Ft71 and

g1 + g2 = 4Ät−11050

By Lemma 3.1(vii), we can interchange expectations and the dif-
ferential operator and we have

g2 ∈ ¡Ɛ6Vt+14Át5 �Ft7= Ɛ6¡Vt+14Át5 �Ft70

This implies the existence of gradients Ät from ¡Vt+14Át5 such
that g2 = Ɛ6Ät �Ft7. Since g1 + g2 = 4Ät−1105, (3) holds for the
selection of gradients 4Ä01 0 0 0 1Ät5. This completes our inductive
proof and we have established that a =Á is an optimal choice of
actions for (2) and, therefore, also for (1).

Now we can rewrite the inner problem for a given scenario and
simplify as follows:

max
a∈A

8r4a5− �̂¡4a59

= max
a

T
∑

t=0

{

rt4at5+1At
4at5+ 4Ɛ6Ät �Ft7−Ät5

>4at −Át5

+ 4Ɛ6Vt+14Át5 �Ft7−Vt+14Át55
}

1

=

T
∑

t=0

{

rt4Át5+1At
4Át5+

(

Ɛ6Vt+14Át5 �Ft7−Vt+14Át5
)}

=

T
∑

t=0

{

Vt4Át−15−Vt+14Át5
}

= V00 (6)

The first equality repeats (1). The second equality uses the previ-
ously established fact that a = Á is an optimal choice of actions
for (1). For the next equalities, we use the definition of the value
function and the fact that VT+1 = 0. This completes the proof that
there exists a gradient selection such that the inner problem yields
V0 for each scenario.

To see that the inner problem yields values greater than V0 for
each scenario for any gradient selection based on Vt and �, recon-
sider the sequence of equalities (6). For any gradient selection,
the first, third, and fourth equalities continue to hold. The second
equality holds with inequality (¾) rather than equality, because
a = Á is a feasible but not necessarily optimal choice for the
optimization problem in the second line. �

Endnotes

1. This can be established with a recursive proof: VT+1 = 0 is triv-
ially concave. If Vt+1 is concave in at , then so is rt + Ɛ6Vt+1 �Ft7,
and, finally, Vt , as the partial maximization of a concave function
over a convex set, is also concave.

2. When the itineraries use at most one unit of capacity on each
leg (i.e., fil ∈ 80119), it can be shown that the optimal decisions in
(21) will always be 0 or 1 for each leg even if noninteger values
are allowed. Thus, in this case, convexifying the set of actions is
without loss of optimality. This convexification of the action set
is not required for the results of Proposition 4.1, but is required
to make the Lagrangian relaxation a convex DP.
3. The representation in Topaloglu (2009) includes terms of the
form max8rit −

∑

l∈L �it lt
109; these terms are equal to zero when

Ë ∈ å due to condition (c). Kunnumkal and Talluri (2012) study
the relationship between the Lagrangian relaxations and approxi-
mate dynamic programming approaches for this network revenue
management model. Among other things, they establish a result
showing that a Lagrangian relaxation similar to (21) can be writ-
ten as the sum of piecewise linear leg-specific value functions,
similar to (24).
4. The one-hub example is problem instance 4200181100145 in
Topaloglu (2009) and is available at http://people.orie.cornell.edu/
huseyin/research/rm_datasets/rm_datasets.html. The data set for
the two-hub example was provided by Huseyin Topaloglu in a
private communication (June 2013); we are grateful for his help
in sharing these examples.
5. Zipkin (2008a) showed that ft4xt5 defined by Equation (29)
is L\-convex in an accumulated version of the state variable xt ,
whereas we establish L\-convexity of Jt as a function of all prior
accumulated order quantities. We use a similar argument to estab-
lish this result.
6. Zipkin (2008b) notes that any lost-sales model with nonzero
costs is equivalent (after transformation of other parameters) to a
model with c = 0. However, this equivalent c = 0 model under-
states the total inventory costs for the original system, as it does
not include ordering costs. Therefore, in percentage terms, the
duality gaps in our experiments are larger than they would be if
the ordering costs were included.
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