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In this study, data mining using box plots and multivariate statistical analysis using factor analysis are

employed for a spatio-temporal analysis of coastal water quality data from Tolo Harbour, Hong Kong.

The analysis of box plots reveals pronounced spatial heterogeneity of the parameters studied. The

spatial analysis clearly shows monitoring station TM2 in the Harbour Subzone to be most susceptible to

eutrophication with the highest nutrient and algal biomass concentrations. The factor analysis brings to

light dominant parameters to the ecological system under the coastal marine environment. The

temporal analysis confirms the considerable decline in nutrient levels in recent years. In spite of this

decline, the factor analysis indicates that nutrient processes play an important role even in recent years,

suggesting an adequate supply of nutrients. It seems that they are being released from sources other

than known point sources, possibly from nutrients accumulated in the sediments, necessitating steps to

be undertaken for their control also. This study demonstrates the use of data mining techniques in the

ecological system in Tolo Harbour.

Keywords | box plots, data mining, factor analysis, harmful algal blooms, multivariate statistical analysis

INTRODUCTION

A major impact of eutrophication is the stimulation of algal

growth and the production of harmful algal blooms (HABs).

HAB incidents can have a significantly devastating economic

impact on the local fishing industry and on tourism. Over the

past two decades, massive fish kills due to HABs and/or

hypoxia (low dissolved oxygen levels) have occurred in some

of the marine fish culture zones in Hong Kong (Sin & Chau

1992). Thus, better understanding of the complex ecological

processes and HAB dynamics is of the utmost importance.

ResearchonHABshavebeendone formore than20 years and

the general ecological response of phytoplankton to environ-

mental conditions has been extensively studied and incorpor-

ated in process-based mathematical models of eutrophication

(e.g. Thomann&Mueller 1987; Chau 2004). Nevertheless, the

prediction of algal blooms remains a very difficult problem,

owing to the extremely complicated ecological dynamics.

In recent years, with the general availability of computing

systems with ever-expanding capabilities, there is a growing

tendency to use data mining (DM) techniques to complement

or even replace process-based models. There are two primary

goals of data mining in practice, namely “prediction” and

“description” (Fayyad et al. 1996). Prediction involves using

some variables or fields in the database to predict unknown or

future values of other variables of interest,whereasdescription

focuses on finding interpretable patterns describing the data.

With the aim of prediction, extensive use of machine learning

techniques has been reported in ecological modelling

(Recknagel 2001). These include artificial neural networks

(Recknagel et al. 1997, 2002; Yabunaka et al. 1997;Maier et al.

1998;Scardi&Harding 1999;Karul etal. 2000; Jeong etal. 2001;

Scardi 2001;Wei et al. 2001;Lee et al. 2003), evolutionary based

techniques (Bobbin & Recknagel 2001; Recknagel et al. 2002;

Jeong et al. 2003; Chau 2005; Muttil & Lee 2005), fuzzy and

neuro-fuzzy techniques (Maier et al. 2001; Chen & Mynett

2003), and soon.DMtechniqueswith the goal of “description”

have also been used, but to a lesser extent. These include
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principal component analysis (Petersen et al. 2001; Chen &

Mynett 2003), cluster analysis (Brosse et al. 2001), machine

learning techniques (Muttil & Chau 2007), etc.

In this study, we use descriptive DM techniques to reveal

the spatial and temporal ecological dynamics of the coastal

waters of Hong Kong. Data mining using box plots and

multivariate statistical analysis using factor analysis are

employed in this study. In the following sections, we first

present brief descriptions of the data mining techniques used,

which are followed by the analysis of box plots and factor

analysis of the ecological and related water quality data.

DATA MINING METHODOLOGIES

DMandknowledgediscovery indatabases (KDD) isconcerned

with extracting useful information from databases (Fayyad

1997). Theprocess involvesdiscoveringuseful (hidden)patterns

in data: knowledge extraction, exploratory data analysis,

information harvesting, data dredging, etc. Various steps of

the DMand/or KDDprocess include data warehousing, target

data selection, cleaning, preprocessing, transformation and

reduction, DM, model selection (or combination), evaluation

and interpretation, and finally consolidation and use of the

extracted “knowledge”. It can be said to be on the interface

between computer science and statistics, integrating

multiple technologies from both disciplines, which include

database management and warehousing, machine learning,

decision support, and others such as visualisation and parallel

computing (Figure 1, adapted from Thuraisingham (1999)).

Statistics is a major area contributing to DM and various

statistical analysis software packages are now being marketed

as data mining tools. Thus, the main part of DM is concerned

with the analysis of data and the use of software techniques for

finding patterns and regularities in sets of data. The choice of a

particular combination of techniques to apply in a particular

situation depends on both the nature of the datamining task to

be accomplished and the nature of the available data.

Different DM techniques have been applied to

ecological engineering field. Boogaard (1998) presented

self-organization feature maps for analysis of hydrological

and ecological data sets. Hall & Anderson (1999) used a

deterministic ecological risk assessment for copper in

European saltwater environments with a hazard quotient

approach. Russom (2002) performed data mining on

environmental toxicology information with the focus on

currently available web resources. Su et al. (2004) applied a

spatiotemporal assignment mining model to determine the

spatio-temporal relationship between environmental factors

and fish distribution. Chen & Mynett (2005) employed self

organization feature maps to analyse eutrophication in

Tahu Lake. Tadesse et al. (2005) employed rule-based

regression tree models for predicting drought-related

vegetation stress, integrating satellite, climate, and bio-

physical data over the US central plains. Bui et al. (2006)

presented knowledge discovery from models of soil proper-

ties developed through data mining with piecewise linear

tree models. Stockwell (2006) developed improved

ecological niche models by data mining large environmental

datasets for surrogate models.

The techniques employed in this study are described

briefly in the following subsections.

Visual data mining techniques

Visual data mining refers to the visual presentation of data to

extract useful information. The use of visualisation tech-

niques allows users to summarise, extract and grasp more

complex patterns and results than mathematical or text type

descriptions of the same. Box plots are used in this study for a

spatial and temporal analysis of time serieswater quality data.

Box plots, or box and whisker diagrams, provide an

excellent visual summary of a set of data. They show a

measure of central location (the median), two measures of

spread or variation (the range and inter-quartile range), the

skewness (from the orientation of the median relative to
Figure 1 | Knowledge discovery in databases and data mining: integration of multiple

technologies.
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the quartiles) and potential outliers (marked individually).

More specifically, the line across the box represents the

median, which is the point where 50% of the data is above it

and 50%below it. The bottomof the box is at the first quartile,

Q1 (where at most 25% of the data fall below it) and the top is

at the third quartile, Q3 (where at most 25% of the data is

above it). Thebox itself represents themiddle 50%of thedata.

The whiskers are the lines that extend from the bottom and

top of the box to the lowest and highest observations inside

the range defined by a lower limit ofQ1 2 1.5(Q3 2 Q1) to an

upper limit of Q3 þ 1.5(Q3 2 Q1), where (Q3 2 Q1) is the

inter-quartile range. Box plots are especially useful when

comparing two or more sets of data (Chambers et al. 1983).

Factor analysis

Multivariate data often includes a large number of measured

variables, and sometimes these variables “overlap” in the sense

that groups of them may be dependent or correlated. Factor

analysis (FA) is a way to fit a model to multivariate data to

estimate just this sort of interdependence. In a FA model, the

measured variables depend on a smaller number of unob-

served (or latent) “factors”. In other words, this statistical

approach involves finding a way of condensing the infor-

mation contained in a number of original measured variables

into a smaller set of factors with a minimum loss of

information. Because each factor may affect several variables

in common, they are known as “common factors”. Each

variable is assumed tobedependentona linear combinationof

the common factors, and the coefficients are known as

“loadings”. FA can also be used to generate hypotheses

regarding causal mechanisms or to screen variables for

subsequent analysis. There are four basic steps in FA: data

collection and generation of the correlationmatrix; extraction

of initial factor solution; rotation and interpretation; construc-

tion of scales or factor scores to use in further analyses.

FA and principal component analysis (PCA) use the same

set of mathematical tools (spectral decomposition, projection,

etc.), but thereare substantial differencesbetween the twodata

analysis techniques. Both are dimension-reduction tech-

niques, in the sense that they can be used to replace a large

set of measured variables with a smaller set of new variables.

However, the two methods are different in their goals and

underlying models. The biggest difference between FA and

PCA comes from the model philosophy. FA imposes a strict

structure of a fixed number of common factors whereas the

PCA determines p factors in decreasing order of importance.

The most important factor in PCA is the one that maximises

the projected variance (the first principal component). On the

other hand, the most important factor in FA is the one that

(after rotation) gives the maximal interpretation. Often this is

different from the direction of the first principal component

(Hardle& Simar 2003). Thus, PCA can be used only when the

goal is to simply summariseor approximate thedatawith fewer

dimensions, whereas FA can be used to give an interpretation

model for the correlation among the data.

In this study, the adopted factor extraction method is the

most commonly used principal component extractionmethod.

The eigenvalues of the correlation matrix measure the amount

of the variation explained by each factor andwill be the largest

for the first factor and become smaller for the subsequent

factors. Thegoaloffactor rotation is tofindaparametrisation in

which each variable has only a small number of large loadings,

i.e. is affected by a small number of factors, preferably only one.

This can often facilitate the interpretation of the representation

of the factors.Thevarimaxmethodoforthogonal rotationusing

the Kaiser normalization method (Kaiser 1958) is used in this

study. Rotated factors aremostwidely called “varifactors”. The

higher the loading of a variable (either positive or negative), the

more that variable contributes to thevariationaccounted for by

the particular varifactor. In practice, only loadings with

absolute values greater than 60% are selected for the factor

interpretation (Jolliffe 1986).A factorwithaneigenvaluegreater

than or equal to one is usually considered as being of statistical

significance (the Kaiser criterion).

Before applying FA, it is necessary to test the validity of

applying it using the Kaiser–Meyer–Olkin measure of

sampling adequacy. This statistical measure indicates the

proportion of variance in the variables that might be caused

by the underlying factors. High values (close to 1.0) generally

indicate that aFAmaybeusefulwith thedata. If the value is less

than 0.50, the results of the FAwill probably not be very useful.

DATA AND MODELLING APPROACH

The selected DM techniques are applied to water quality data

from Tolo Harbour (Figure 2), which are measured under the
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water quality monitoring program of the Environmental

ProtectionDepartment (EPD) of theHongKong government.

The EPD has seven water quality monitoring stations in Tolo

Harbour, named as TM2, TM3,… , TM8. Based on the spatial

variation in water quality, the harbour is divided into three

subzones: the inner Harbour Subzone (with stations TM2,

TM3 and TM4), the intermediate Buffer Subzone (with

stations TM5 and TM6) and the outer Channel Subzone

(consisting of stations TM7 and TM8). The following subsec-

tions provide further details of the study site and the data used.

The study site

ToloHarbour is a semi-enclosed bay connected to the open sea

atMirsBay (Figure2)withagradientof improvingwaterquality

from the more enclosed and densely populated inner Harbour

Subzone to the outer “better flushed” Channel Subzone. The

nutrient enrichment in the weakly flushed harbour due to

municipal and livestock waste discharges has been a major

environmental concern and eutrophication has resulted in

frequent algal blooms (Chau & Jin 1998). Consequently,

occasional massive fish kills were recorded as a result of severe

dissolvedoxygendepletionor toxic algal blooms.Morton (1988)

reported that the inner Tolo Harbour was effectively dead as a

marine disaster in the late 1980s (in Figure 3, the increase in

frequency of HABs in the late 1980s can be observed). At that

time, a critical stage had been reached, which prompted the

Hong Kong government to implement an integrated Tolo

Harbour Action Plan (THAP). The measures implemented

include: controlling livestock pollution, restoring old landfills,

enforcing theWater Pollution Control Ordinance and building

sewer networks in rural areas (EPD 2003). THAP resulted in a

significant reduction of pollutant loading, which in turn

improved the water quality. Further improvement in the water

quality tookplaceafter the implementationof theToloHarbour

Effluent Export Scheme (THEES), which became fully oper-

ational in early 1998. Under the THEES, fully treated effluent

from the two sewage treatment plants in Shatin and Taipo

(see Figure 2) are transported to a new pumping station at

Shatin, and are exported to Victoria Harbour for discharge

through a series of sewer pipes and tunnel. Earlier, before the

THEES was introduced and implemented, the treated effluent

used to be discharged into Tolo Harbour.

Figure 2 | The study site: Tolo Harbour indicating the seven monitoring stations.

Figure 3 | Frequency of HABs in Tolo harbour.
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The dataset used

Depth-averaged water quality data provided by the EPD are

used in this study. The data are measured either biweekly or

monthly. Fourteen parameters are used in this study, which

are presented in Table 1. The available data covered a

period from 1983 to 2003 for all seven water quality

monitoring stations in Tolo Harbour.

Datasets from any two time periods can be selected for

temporal analysis. In this study, the two most representative

datasets are adopted. The first dataset is from a period when

the water quality in Tolo Harbour was at its worst, which is

the late 1980s. During this period, the HAB incidents

increased significantly and reached a peak in 1988, when a

total of 43 incidents were reported (Figure 3). To represent

this time period, two years of data from 1988–1989 are

selected. The second dataset is from a period when the

water quality had improved significantly after the

implementation of the THAP and the THEES. The data

from 2001–2003 is selected as the second dataset. Both the

selected time periods of data are shaded dark in Figure 3.

MINING OF WATER QUALITY DATA FROM TOLO

HARBOUR

Spatio-temporal analysis using box plots

In this section, we present a spatial and temporal analysis of

the 14 selected water quality parameters using their box

plots. The spatial analysis is undertaken by using the data

from the seven marine water monitoring stations, whereas

the temporal analysis is performed using two sets of data,

namely from 1988–1989 and from 2001–2003.

Box plot analysis of CHL and DO

CHL and DO are generally taken as primary parameters for

water quality monitoring and algal biomass estimation, box

plots for which are presented in Figure 4. From the box plot

for CHL, it is observed that the spread of the box plots

gradually decreased from the TM2 station to TM8 for both

the periods of data. During the period 1988–1989, the CHL

values were much higher at TM2 than at the other stations,

indicated by the larger value ofQ3 and a longer top whisker.

It can also be observed that, for this box plot, the median is

at about 20mg/L, indicating that 50% of the CHL values in

1988–1989 are above 20mg/L. Typically, CHL concen-

trations exceeding 20mg/L would be considered to con-

stitute an algal bloom (Chau & Jin 1998). The box plots for

2001–2003 indicate lower CHL values, as compared to

those for 1988–1989, indicating a reduction in algal

biomass concentration. For the box plots of DO, the period

1988–1989 have much longer bottom whiskers, indicating

much lower DO values. During the 1988–1989 period, DO

values reached minimum values of about 1mg/L at stations

TM2, TM3, TM7 and TM8, whereas the minimum values

during 2001–2003 were around 4mg/L, again indicating an

Table 1 | List of water quality variables

Variable name Symbol Units

Nutrients

Ammonia nitrogen NH4 mg/L

Nitrate nitrogen NO3 mg/L

Total nitrogen TN mg/L

Orthophosphate PO4 mg/L

Total phosphorus TP mg/L

Physical properties

Suspended solids SS mg/L

pH pH –

Turbidity TURB NTU

Water temperature TEMP 8C

Dissolved oxygen DO mg/L

Secchi disc depth SD m

Salinity SAL PSU

Organic constituents

5 d biochemical oxygen demand BOD5 mg/L

Biological indicator

Chlorophyll-a CHL mg/L
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improvement in water quality. The Water Quality Objective

set by the EPD for the Tolo Harbour is that depth-averaged

DO should be greater than or equal to 4mg/L in all the

samples (EPD 2003). DO levels less than 4mg/L are a cause

for concern, as it may cause fish kills due to hypoxia. As far

as the spatial variation is concerned, DO does not seem to

indicate any significant variation amongst the seven

monitoring stations. This indicates that there are no severe

single pollution sources within the entire water body and

that the circulation within the water body is good, which

agrees well with observation data.

Box plot analysis of nutrients and BOD5

The box plots for the nutrients and BOD5 are presented in

Figure 5.With the exceptionofNO3 andPO4, all the remaining

nutrient variables showed a gradual decrease in concentration

from stations TM2 to TM8. For all the nutrients, and especially

for NO3 and PO4, the values at TM2 during 1988–1989 were

exceptionally high. This high concentration of nutrients very

clearly indicates the poorwater quality in ToloHarbour during

the period 1988–1989. Thus, the drastic increase in the

number of HABs in Tolo Harbour in 1988 is not surprising

(seeFigure3).As indicatedby theboxplots for 2001–2003, the

water quality after about 10–12 years has shown significant

improvement. The BOD5 also showed high values at TM2

during1988–1989,whereas for both timeperiods theBOD5at

TM8 was clearly lower than at the other monitoring stations,

indicating much better water quality.

Box plot analysis of physical properties

The box plots for the physical properties are presented in

Figure 6. As expected, SAL showed a gradual increase in

concentration as we move closer to the sea, from station TM2

toTM8.As far as the temporal behavior of SAL is concerned, it

showed reduced values in 2001–2003, indicating the

improved oceanographic conditions of marine water at that

time (as salinity reduces, solubility of oxygen in water

increases). SD also showed increasing values from TM2 to

TM8, indicating increasing transparency and light penetration

from TM2 to TM8. With the improvement in water quality in

2001–2003, the SD values also showed a slight increase.

The SS and TURB did not indicate any spatial pattern from

TM2 to TM8, but their values at TM2were clearly higher than

at theother stations. TURBvalues showedacertain increase in

the period 2001–2003, as compared to the values in 1988–

1989. This phenomenon might be explained by annual

variations. As with TURB, TEMP values also showed a

significant increase in 2001–2003, shown by an upward shift

in theboxes and themedianbyabout 38C.Theminimumwater

temperature in 1988–1989 can be seen in the box plots to be

around138C,whereas in2001–2003, itwas about 168C.This is

undesirable because increase in water temperature cause

Figure 4 | Box plots for chlorophyll-a and dissolved oxygen.
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Figure 5 | Box plots for nutrients and 5 d biochemical oxygen demand.
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Figure 6 | Box plots for physical properties.
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oxygen solubility to decline. Finally, the pH values did

not show any clear spatial change from TM2 to TM8. But the

pH values clearly showed smaller values in 2001–2003,

indicating that the water was more alkaline during the period

1988–1989.

Thus, as far as the spatial variation is concerned, the

water quality in the Channel Subzone was clearly much

better than in the Harbour Subzone. Further, out of the

three monitoring stations in the Harbour Subzone, the

water quality in TM2 has consistently been the worst. This

suggests TM2 to be the most weakly flushed monitoring

station and with consequently the highest concentration of

nutrients. The analysis of the temporal variation between

the two time periods clearly indicated a significant

improvement in water quality in 2001–2003, as compared

to that about 10 years earlier.

Factor analysis

The FA was applied to the two datasets considered in this

study, namely the 1988–1989 and the 2001–2003 data. In

order to isolate the ecological processes from the hydrodyn-

amic effects as much as possible, using the data from

monitoring station TM2, which was found to have the worst

water quality, for FA seems to be most appropriate. But, since

for the 2001–2003 dataset, only monthly values of the water

quality variables are available, we only have 36 data records in

this dataset. Thus, in order to increase the number of data

records, data from the three monitoring stations in the

Harbour Subzone (TM2, TM3 and TM4) were combined for

both datasets from the different time periods.

Factor analysis for 1988–1989 dataset

Prior to the factor analysis, the data first underwent some

preprocessing.TheKaiser–Meyer–Olkinmeasureof sampling

adequacy for thisdatasetwas foundtobe0.706,andsince itwas

greater than 0.5, applying the FA seems to be reliable. Table 2

shows the factor loadings obtained from the principal

components factor analysis with varimax rotation. The first

four varifactors, accounting for 68.66% of the total variation,

are retained on the basis of the “eigenvalue greater than one”

rule. Factor loadingswithvalues greater than0.60are shown in

bold font and only these are used for the factor interpretation.

From Table 2, it is observed that the first two varifactors

were dominant and together accounted for 48.71%of the total

variance, whereas the remaining two varifactors were

secondary and accounted for 11.52% and 8.42% of the

variance, respectively. The first varifactor, with an eigenvalue

of 3.99, explained 28.52% of the total variance. It is clearly

dominated by the nutrients, PO4, NO3, NH4, TP and TN,

which exhibited significant positive loadings. The Harbour

Subzone, being a largely enclosed and consequent weakly

flushed bay, was highly vulnerable to nutrient enrichment

Table 2 | Factor loadings from a principal component factor analysis for the 1988–1989

dataset

Varifactors

Variable 1 2 3 4

PO4 0.871 0.050 0.080 0.054

NO3 0.828 0.004 20.018 20.028

NH4 0.783 20.364 0.048 0.063

TP 0.725 0.239 0.371 0.368

TN 0.527 0.074 0.466 0.426

DO 20.070 0.760 0.421 20.188

BOD5 0.052 0.729 0.325 0.353

CHL 0.031 0.716 0.059 0.339

pH 20.323 0.670 20.377 0.082

SAL 20.370 20.542 0.409 20.112

TEMP 20.212 20.202 20.767 0.169

SS 0.024 20.018 0.663 0.193

TURB 0.081 0.080 0.121 0.781

SD 20.063 20.183 0.094 2 0.708

Eigenvalues 3.994 2.826 1.614 1.180

% of variance 28.529 20.187 11.527 8.427

Cumulative % 28.529 48.715 60.243 68.669

Extraction method: principal component analysis. Rotation method: varimax with Kaiser

normalisation.
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during the late 1980s, to which period this dataset belongs.

Thus, this varifactor can be clearly interpreted as representing

the nutrient processes, namely the nitrogen and phosphorus

cycles – the hydrolysis of organic nitrogen to ammonia

nitrogen and its oxidation to nitrate nitrogen and also the

decay of phosphorus.

The second varifactor, with an eigenvalue of 2.82 and

accounting for 20.18% of the total variance, was also

significant. The variables DO, BOD5 and CHL exhibited

high positive loadings, pH showed low to moderate positive

loading and SAL exhibited a low to moderate negative

loading. This varifactor seems to represent the hydro-

biological processes like phytoplankton primary

production, microbial degradation and dissolved oxygen

budget. Phytoplankton has two opposite effects on the

oxygen level: oxygen production by photosynthesis on the

one hand and oxygen consumption due to its respiration

and death (microbial degradation) on the other hand

(Lee et al. 1991a,b). Thus, this varifactor seems to indicate

the connectivity between phytoplankton or algal biomass

(represented by CHL) and the oxygen production (DO) and

the consumption of oxygen (BOD5).

The remaining two varifactors explain relatively lesser

variance, as compared to the first two. They seem to

represent the physical properties, as they include TEMP, SS,

TURB and SD. Since there has been an abundance of

nutrients in the Harbour Subzone, the critical limiting

factor for phytoplankton growth dynamics was clearly not

the nutrients. The formation of algal blooms is not just

dependent on the availability of the nutrients, although they

are essential. The third and fourth varifactors seem to

indicate the importance of several external environmental

factors, i.e. water temperature (TEMP), suspended solid

(SS), the degree of penetration of sunlight into the water

column (SD and TURB).

Factor analysis for 2001–2003 dataset

The Kaiser–Meyer–Olkin measure of sampling adequacy

for this dataset was found to be 0.706, and for this

dataset also, applying the FA seems useful. The factor

loadings for this dataset are presented in Table 3, in which

loading values greater than 0.60 are shown in bold font.

For this dataset, the first five varifactors are retained,

which account for 69.64% of the total variance. It is

observed that the first three varifactors together accounted

for 54.03% of the total variance, whereas the remaining

two varifactors were less dominant and together accounted

for 15.60%.

Similar to the pattern observed in the FA for the 1988–

1989 dataset, nutrient processes, phytoplankton primary

production, microbial degradation and the external

environmental factor patterns clearly appeared in this

dataset also. But, as shown in Table 3, only TN and NO3

Table 3 | Factor loadings from a principal component factor analysis for the

2001–2003 dataset

Varifactors

Variable 1 2 3 4 5

NO3 0.827 0.254 20.218 0.109 20.047

TN 0.659 0.551 0.254 0.196 0.110

SD 20.589 20.177 20.124 0.301 20.212

SAL 20.570 20.133 20.227 20.539 0.034

NH4 0.327 0.762 20.117 20.092 0.068

PO4 0.144 0.760 0.075 0.106 20.067

TP 0.008 0.729 0.437 0.271 0.123

BOD5 0.049 0.027 0.792 20.044 0.140

CHL 0.184 0.210 0.641 0.423 0.252

pH 20.123 0.143 0.606 20.116 20.253

DO 0.158 20.149 0.561 20.545 20.178

TEMP 0.010 0.080 20.076 0.837 20.174

SS 20.043 0.106 20.016 20.078 0.849

TURB 0.512 20.109 0.044 20.062 0.643

Eigenvalues 3.866 1.941 1.759 1.165 1.020

% of variance 27.612 13.863 12.564 8.320 7.288

Cumulative % 27.612 41.475 54.038 62.359 69.646

Extraction method: principal component analysis. Rotation method: varimax with Kaiser

normalisation.
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dominated the first varifactor, whereas the other nutrient

variables have much lower loadings in this varifactor. This

could be because of the fact that, in recent years, nitrogen

and phosphorus nutrients in Tolo Harbour displayed a

gradual decline and almost reached their lowest levels in ten

years (EPD 2003). Thus, for this dataset, the effect of

nutrient processes is relatively less, being subdivided into

the first two varifactors. The third varifactor, consisting of

BOD5, CHL, pH and DO represented the hydro-biological

processes, similar to the pattern observed in the second

varifactor for the 1988–1989 dataset, but accounting for a

much lesser percentage of variance (12.56%), as compared

to 20.18% in the first dataset, indicating a lesser presence of

algal biomass. In spite of the nutrients exhibiting a gradual

decrease in the harbour in recent years, this FA reveals that

the nutrient processes are still dominant. Perhaps the

nitrogen and phosphorus nutrient concentrations are still

at adequate levels to meet their demand for phytoplankton

growth. This could explain why, despite the decrease of

nutrient concentrations, the chlorophyll-a in Tolo Harbour

has remained relatively stable in recent years, as reported by

EPD (2003). The last two varifactors seem to represent the

external environmental factors, as did the last two varifac-

tors for the 1988–1989 dataset.

The nutrient levels in Tolo Harbour, because of the

vigorous pollution control and nutrient removal measures

(through the implementation of the THAP and the THEES)

have shown a gradual decline in the recent years. But, in

spite of this decline, this study indicates an adequate supply

of nutrients. Significant reduction of pollutant loadings

from point sources has been achieved; still, the presence of

nutrients in the Tolo Harbour indicates that the nutrients

necessary for algal blooms are not just from external

sources, but also from internal sources, as observed by

Chau (2002). Investigators have found that a large amount

of nutrients discharged into natural aquatic ecosystems can

accumulate in sediments in organic and inorganic forms,

and they can be released into the water under some

environmental conditions (Evans 2001). Thus, as suggested

by Xu et al. (2004), steps for eliminating internal pollutant

loadings from sediments have also to be undertaken, along

with the efforts to control the pollutant loadings from

various point sources.

CONCLUSIONS

In this study, ecological and related water quality data taken

over different time periods from seven monitoring stations

in Tolo Harbour are analysed by descriptive DM tech-

niques. The results from the analysis of box plots reveal

pronounced spatial and temporal patterns and the hetero-

geneity of the parameters studied. The studies of spatial

heterogeneity showed that, out of the three monitoring

stations in the Harbour Subzone, TM2 is the most

susceptible to eutrophication. Its nearly landlocked location

leads to higher nutrient concentrations, weaker flushing

and consequent higher algal biomass. The factor analysis

indicates nutrient and hydro-biological processes to be most

dominant and the external environmental factors seem to

be relatively less dominant. The temporal analysis using box

plots confirmed the fact that the level of nutrients in Tolo

Harbour has shown a significant decline in recent years.

But, in spite of this decline, it is revealed in the factor

analysis that the nutrient processes play an important role

even in recent years, suggesting an adequate supply of

nutrients for phytoplankton growth. Since nutrients from

external sources like pollutant loadings from point sources

have been significantly reduced, it seems that they are being

released from nutrients accumulated in the sediments. It is

therefore proposed that, along with steps to control

pollution loadings from external sources, it is necessary to

undertake steps to control pollutant loadings from internal

sources also.
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