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Information retrieval in neural networks.
I. Eigenproblems in neural networks
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75634 Paris Cedex 13, France

(Reçu le 13 novembre 1986, révisé le 8 juillet 1987, accepté le 9 juillet 1987)

Résumé. 2014 Nous étudions le problème des vecteurs propres et des valeurs propres de la matrice synaptique
correspondant au modèle d’Hopfield. Nous montrons en particulier que les vecteurs propres se laissent ranger
en deux sous-espaces orthogonaux : le premier espace est celui des mémoires prototypes ; la dispersion des
valeurs propres correspondantes autour de leur valeur moyenne donne une mesure de l’orthogonalité de ces
prototypes. Le second espace est quant à lui totalement dégénéré. En outre, nous montrons une similitude
entre l’algorithme de mémoire associative et l’algorithme d’orthonormalisation de Gram-Schmidt. A partir de
ces résultats, nous développons un modèle de matrice synaptique dont nous évaluons numériquement les
performances en les comparant à celles d’un processeur d’Hopfield fonctionnant dans les mêmes conditions.

Abstract. 2014 Consideration of the eigenproblem of the synaptic matrix in Hopfield’s model of neural networks
suggests to introduce a matrix built up from an orthogonal set, orthogonal to the original memories. With this
new scheme, capacity storage is significantly enhanced and robustness at least conserved.
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Introduction.

A recent proposal by Hopfield of a neural network
model has triggered a renewal of activity in this field
[1]. Two particularities of Hopfield’s model are, on
the one hand, the emphasis on nonlinear feedback,
and on the other hand, its remarkable ability for
optical implementation. Farhat and Psaltis [2] have
proposed and demonstrated such an ability. A
problem in this type of associative memory is its

capacity storage ; namely, what is the maximum
content of the set of the memories for a given signal
to noise ratio or, more generally, what are the
attractors of the process, and their behaviour ?
Those problems. have been adressed by McEliece et
al. [3], and Amit et al. [4].
More generally, the problem of optimal storage

matrices has been adressed by T. Kohonen [5],
Personnaz et al. [6], Venkatesh and Psaltis [7] and
Kanter et al. [8]. In particular for linearly indepen-
dant patterns the algorithm given in this paper leads
to the same matrix as in these references.
A thorough comparative discussion of those ap-

proaches is in current progress (Venkatesh, Psaltis

and Sirat), and a preliminary presentation has been
done [9].

This paper is the first one of a series of papers, and
is devoted to a brief discussion of the normal

properties of synaptic matrices involved in the

algorithms. The discussion will enable us to propose
a new scheme, allowing both large capacity storage
and robustness of the algorithm.

In a second paper we will propose an optical
implementation of two-dimensional neural networks
based on Frequency Multiplexed Raster ; in a third
paper we will propose an optical implementation of
shift invariant neural networks based also on Fre-

quency Multiplexed Raster.
This paper is organized in the following way : in

the first section we present briefly the Hopfield
Model and discuss the cross correlation factor ; in
the second section, we consider some eigenproblems
and in section 3 we introduce and discuss schemati-

cally a new scheme.

1. Basics of Hopfield model and corrélation factor.

In this section we recall the Hopfield model for-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/rphysap:0198700220100132100

http://www.edpsciences.org
http://dx.doi.org/10.1051/rphysap:0198700220100132100


1322

malism, and discuss the behaviour of the cross-

correlation factor.
Let a set of M binary vectors V(m) be given as the

memory set. Each component is Vi(m) = ± 1 for

1  m  M and 1 i  N, so that the euclidian

norm ~ Vm~ is N, the number of bits of each vector.
We assume that the vectors are linearly independent.
The associated matrix, T(m) of vector V(m), is

defined by :

Where 5,, is the Kronecker symbol.
The synaptic matrix is T :

so that

If the algorithm is addressed by a probe X equal to
one of the stored memories, say V (p.), it will yield
first the estimate for coordinate i :

from (1.2) :

The first term will yield V (JL) amplified by
(N - 1), while the second term is some kind of
correlation of the probe with the remainder of the
memories and represents an unwanted, cross talk,
term. Its mean value is zero and its standard
deviation is [(N - 1)(M - 1)]1/2.
For N sufficiently larger than M, the sign of the

right hand side of (1.4) is safely that of Vi, i.e.

positive if V(03BC)i = 1 and negative otherwise.

Thresholding of Vi will therefore yield V(03BC)i:

If the algorithm is addressed with a binary-valued
vector that is not one of the stored memories but
close to one of them in the Hamming sense, vector-
matrix multiplication and thresholding operations
yield an output binary vector which, in general, is an
approximation of the stored memory that is at the
shortest Hamming distance from the input vector. If
in that case this output vector is fed back and used as

the input to the system, the new output generally is a
more accurate version of the stored memory and
successive iterations converge to the correct vector.
A useful concept in this respect is the cross

correlation factor C :

which is just the negative of the energy defined in
[1].
As was demonstrated [1], thresholding and feeding

back make energy decrease and correlation increase.
We shall use throughout the cross-correlation factor
as an indicator of the presence of a nominal state
vector equal, or nearly equal, to the probe ; utilizing
(1.1) and (1.2), equation (1.2) can be rewritten as :

where C(m) the m-th partial cross-correlation factor
is given by

where p(m)R is the number of right bits (bits for which
vlm). Xi = + 1) and pe) is the number of wrong
bits (bits for which vlm). Xi = - 1) ; the sum of
pe) and pe) is N.

If the algorithm is addressed by a probe X equal to
one of the stored memories, say V(03BC), the pth
partial cross-correlation factor is :

If the algorithm is addressed by a probe X, close
to one of the stored memories, say V (JL), the 03BC-th
partial cross-correlation factor is given by equation
(1.8).

In the following we consider the thermodynamic
limit which is operational when N is large enough.

Let the probe and memory V (’) be a sequence of
N random binary bipolar digits ; then the probability
of PR to be equal to a given integer n is a binomial
distribution whose thermodynamic limit is Gaussian :
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so that the probability of X = (2 pÁm) - N) is

and the mean value of C(m) is :

In the same way, we obtain that

The standard deviation of C(m) is N B/2, so that
the standard deviation of the cross-correlation factor
for a probe uncorrelated to any one of the memories
is N (2 M)1/2 and the noise part of a probe correlated
to one of the memories, but uncorrelated to all the
others is N[2(M - 1)]1/2.

In conclusion, the behaviour of the cross-corre-
lation factor, for uncorrelated memories, is the

following :
i) if the probe is equal to one of the stored

memories the cross-correlation factor is equal to a
signal term of value N (N - 1) and a noise term of
standard deviation N[2(M - 1)]1/2; note that from
(1.13) the cross-correlation factor is larger than
N(N-M);

ii) if the probe is close to one of the stored words
the signal term is decreased to :

and the noise term is (almost) unchanged.
iii) if the probe is uncorrelated with the

memories, only a noise term is present with a

standard deviation of N (2 M)1/2.

2. Eigenproblems for matrix T.

In this section we discuss some eigenproblems of the
synaptic matrix.
The description in section 1 supports an elemen-

tary geometrical picture : from (1.1), one has, in the
general case

where the dot represents the ordinary scalar product.

All vectors are assumed to have the same length,
N. Replacing X in (2.1) by V (m) provides clearly the
following result for the eigenproblem of partial
matrix T(m):

V(m) is eigenvector for T(m), with eigenvalue
(N -1 ).
The (N - 1) remaining eigenvectors span the

subspace orthogonal to V(m) and the degenerate
eigenvalue is (-1 ).
From (1.2) and (2.1) one derives

A consequence of (2.2) is that, if the set of

memories is a complete base, then TX is null for any
X, which is possible if and only if matrix T is null
itself. This extreme case suggests storage limitations
of the synaptic matrix. Now, equations (2.1) and
(2.2) show that, for memory a

Then, noise in (1.4) is seen to be nothing but the
action on V (JI- ) of all the partial matrices T(m) except
its own associate T(03BC).
The eigenproblem for the synaptic matrix reads

as :

Hereabove, X and c are the sought after eigenvec-
tors and eigenvalues. If X belongs to the subspace
orthogonal to that generated by the memory set, the
left hand of (2.4) vanishes so that the solution is

c + M = 0.
As a first result :
The synaptic matrix T has eigenvalue (- M) with

degeneracy (N - M ) ; corresponding eigenvectors
are orthogonal to the memory set.

If (c + M ) does not vanish, equation (2.4) can be
rewritten as :

where

so that X belongs to the space generated by the
memory set.
Assume for a while that the memory set is

orthogonal ; then multiplying (2.4) by V (JI-) provides
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or using

Equation (2.8) shows the seeked eigenvalue is

(c) = N - M, it is degenerate M times ; clearly
V(03BC) are the M associate eigenvectors.

If, as in the general case, the memories are not
orthogonal.
We define :

Equation (2.9) defines matrix e. Its dimension is
M  N. The eigenproblem transforms into :

Dispersion of the eigenvalues is estimated by the
variance

This term appears to be the one with power

(M - 2 ) in the characteristic polynom of matrix e,

and then can be derived by direct inspection, with no
need to actually compute the set of e/s.

Additional properties can be deduced from (2.4)
by multiplying both side by X ; the right hand side is
a sum of squares and is positive, while the left hand
size is (c + M ) N. Note also that the right size is

bounded by MN 2 - being M sums of terms smaller
or equal to N2 ; so that

3. A modified synaptic matrix.

As a direct consequence of the above, we present a
new scheme for calculating the synaptic matrix ; let
the V(m) be the memory set and consider
L = N - M random binary vectors, assumed to be
independant. On this new set, the Gram-Schmidt
orthogonalization procedure is applied. Note first
that from this point we shall work partially in the
analog component scheme for the whole set of
vectors, but that retrieval concems only the original,
binary vectors of the given memories, and not the
orthogonalized vectors.
Another remark concerns the striking formal

analogy between the Gram-Schmidt procedure and
the Hopfield processor : actually, the transformation

of an independant set Xn into an orthonormal set
Vm makes use of the recursion formula

which has to be compared to equation (2.2).
The last L vectors of the set are called the

antimemories wl1); by construction the V(m) and
the W(1) satisfy :

The new synaptic matrix, S, will be defined as

Each one of the partial synaptic matrix S(1)ij fulfills
the relation :

where

Note that each one of the partial synaptic matrix
fulfills a relation similar to (3.4) ; also

where

It is important to remark that ai does not depend
on the particular set of vectors W(1) and is ultimately
determined by the memory set V (m).
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With this scheme, the memories can be retrieved
for almost any value of M (of course smaller than
N). For instance, computer simulations showed that
retrieval was 100 % perfect up to M = 254 for N =
256 (see Fig. 1). Simultaneously a radius of attrac-
tion, characterized as a Hamming distance beyond
which retrieval is lost, was shown to be comparable
to or larger than that of the original synaptic matrix.
The latter property was not systematically studied
but numerically observed on a number of random
sampling for the memories. Last, and as shown

Fig. 1. - Computer simulations of the performances of
the « anti-memories » model versus the Hopfield model.
The graph shows the maximum number of wrong bits
permitted as a function of the number of memories (90 %
retrieval, N = 256).

before, the cross-correlation for any memory is

exactly (N - M ) i.e. the lower bound of the cross- 
correlation factor but without any noise term.

Conclusion.

We have presented a brief discussion of the formal
properties of the synaptic involved in neural net-
works and proposed a new scheme for building such
matrices. An immediate property of the algorithm is
its rather large capacity storage, together with its
robustness. Extended discussion of this new model
will be presented in a forthcoming article of this
series.
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